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Abstract

Across numerous applications, forecasting relies on numerical solvers for partial differential equations (PDEs).
Although the use of deep-learning techniques has been proposed, actual applications have been restricted by the fact
the training data are obtained using traditional PDE solvers. Thereby, the uses of deep-learning techniques were limited

to domains, where the PDE solver was applicable.

We demonstrate a deep-learning framework for air-pollution monitoring and forecasting that provides the ability to
train across different model domains, as well as a reduction in the run-time by two orders of magnitude. It presents
a first-of-a-kind implementation that combines deep-learning and domain-decomposition techniques to allow model
deployments extend beyond the domain(s) on which the it has been trained.
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1. Introduction

Detrimental effects of air pollution on human health
are long-studied. The WHO attributes 3.8 million
deaths per annum to air pollution globally [1]. In many
cities across the developed world, vehicle emissions are
the dominant source of air pollutants [2], contributing
around 70% of emissions of nitrogen oxides (NOy) [3],
and up to 50% of particulate-matter pollution [4].

Quantification, evaluation, and mitigation of these
effects require systems to estimate contribution of traf-
fic volumes to air pollution. Traditionally, this is done
by combining estimates (either observed or modelled)
of traffic volumes, or rather the associated pollution-
generation estimates, with weather observations in dis-
persion models that resolves a set of partial differen-
tial equations (PDE) to compute the desired pollution
distributions. This approach is limited in three ways:
the PDE model is computationally expensive, requires
considerable domain expertise, and is cumbersome to
parameterise for further geographical locations. The
computational expense restricts the meshes that can be
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resolved, in terms of the spatial extent, spatial resolu-
tion, and ultimately, the number of discrete sources of
pollution.

An alternative approach leverages the capabilities of
deep learning (DL) to develop rapid solvers that can scale
to any domain size. As an example of the state of the
art in the area, James et al. [5] recently reported a factor
of 5,000 computational speed-up compared to that of a
leading PDE solver. Considering that the PDE solver is
used to generate the outputs to train the DL model on,
however, the model is still limited to the domain that the
PDE solver can be run on. We integrate DL together
with techniques from PDE-based domain decomposition
to present an approach that learns the pollution disper-
sion at independent, neighbouring meshes and merges
what has been learned into a single unified model for the
region. More specifically, a PDE model for air pollution
is used to generate sufficiently large volumes of data to
facilitate the use of surrogate or reduced-order models
[6] using deep artificial neural networks [7]. The model
is deployed independently for a series of meshes with
each representing a subset of a geographical domain and
the DL model trained on the outputs of these meshes
and merged in a recurrent neural networks (RNN) [8]
type implementation to provide a single DL model of the
entire region. The surrogate model serves as a compu-
tationally lightweight representation of the PDE-based
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model.

In our approach, the DL was trained on small domains
and then applied to larger domains, with consistency
constraints ensuring that the solutions are physically
meaningful even at the boundaries of the domains. Our
contributions are as follows:

e definition of the consistency constraints, wherein
the output for one mesh is used to constrain the
output for another mesh.

e methods for applying the consistency constraints
within the training of a DL, which allows for an
increase in the extent of the spatial domain by con-
catenating the outputs of several PDE-based models
and considering conditions at neighbouring mesh
interface.

e a numerical study of the approach on a pollution-
forecasting problem, wherein we show the test
mean absolute error (MAE) against PDE model
and sensor data.

2. Related Work

A long-standing challenge in applied mathematics is
the boundary-value problem, which consists in imposing
boundary conditions at the defined internal or external
boundaries of the region that is governed by a PDE.
Such boundary conditions are additional constraints that
usually come from field measurements, change of topol-
ogy, or external models. Ensuring that the PDEs are
solved, while embedding the boundary conditions, is the
challenge of many practical engineering applications.
Examples include resolution of the Saint-Venant [9]
and Lighthill-Whitham—Richards (LWR) [10] equations,
for water and transport network problems, respectively.
In atmospheric pollution modelling, one considers the
advection-diffusion equation [11, see equation 2.2] and
the stochastic-coagulation equation [12], while financial
modelling often considers Black-Scholes models and
its numerous (stochastic) variations [13]. Throughout,
there are different types of boundary problems depend-
ing on whether the function, derivative, or variable itself
is known at the boundary. Among the numerical methods
to solve this boundary-value problem for PDEs, promi-
nent examples are the Godunov’s scheme [14], which
involves solving a Riemann problem [15] at each defined
cell interface, the Lax-Friedrichs method [16], which
relies on the introduction of a viscosity term, and the
Galerkin method [17]. The interested reader can refer to
e.g. [15] for a discussion on the topic.

In practice, such discontinuities may be either inher-
ent to the physics itself (proper boundary conditions,
different models due to different flux functions, e.g.,
change from a motorway traffic network to a urban traf-
fic network, different data sources for different regions
in space) or artificial (software limitations, limited run-
time, different entities providing different models). To
our knowledge, our proposed approach is the first to ad-
dress the discontinuities caused by the (arbitrary or not)
discretisation in space of the grid where the forecasting
is done via surrogate DL model(s) to the underlying PDE
model(s).

In the problem presented in this paper, two classes
of boundary conditions are considered: first, external
boundary conditions that describe influx of pollutants
to the domain (e.g., traffic volumes, wind conditions),
and second, internal boundary conditions that can be
enforced to ensure consistency between neighbouring
domains. The latter can be considered a variant of the
additive Schwarz method widely applied in the solution
of partial differential equations. The additive Schwarz
method provides an approximate solution for a bound-
ary value problem by splitting it into boundary value
problems on smaller domains and adding the results [18].
These domain-decomposition techniques are widely stud-
ied in parallel-computing applications and consist of
solving subproblems on various subdomains while en-
forcing suitable consistency constraints between adjacent
subdomains, until the local problems converge to an ap-
proximation of the true solution [19]. It proceeds by
splitting the global domain into a set of smaller overlap-
ping or non-overlapping subdomains. In each step, an it-
erative method resolves the partial differential equations
restricted to individual subdomains and then coordinates
the solution between adjacent subdomains. In our study,
we consider an approach that trains a DL model on a set
of subdomains with an iterative reduction used to enforce
a physically meaningful relationship between adjacent
subdomains. A large number of domain-decomposition
approaches exist and we refer to the books by Quarteroni
and Valli [20] and Smith et al. [21] for an extensive in-
troduction.

Our methods draw on domain-decomposition imple-
mentations and recent work within applying DL to
PDE-based models. A large body of literature exist
on the use of neural networks with PDE-based models
[22, 23, 24, 25, 26, 27, 28, 29], across a variety of appli-
cations such as fluid modelling [30], combustion mod-
elling [31], and the geosciences [32, 33]. More recently,
the use of DL as surrogate for expensive physics-based
models has been investigated [34, 5, 35, 36, 31, 37]. In
these latter studies, a solver for PDEs has been used to



obtain hundreds of thousands of outputs corresponding
to hundreds of thousands of inputs. The DL has then
been used as means of non-linear regression between the
inputs and outputs. In particular, Tompson et al. [34]
considered a convolutional neural network (CNN), while
Wiewel et al. [35] considered long short-term memory
(LSTM) units within a recurrent neural network (RNN).
In a more abstract setting, Sirignano and Spiliopoulos
[38] have explored the use of mesh-free DL in what they
call deep Galerkin methods. Throughout, the applica-
tions of DL have been limited in scale to the domains that
had been tractable for the traditional solver for PDEs.

A wide-variety of recent applications of deep-learning
in numerical analysis include non-intrusive reduced basis
[36] and related [31, 37] methods for the construction of
reduced-order models, learning PDEs from data [39, 40],
and the detection of troubled cells in two-dimensional
unstructured grids [41, 42].

A further stream of related work has been started by
Chen et al. [43], who presented a novel approach to ap-
proximate the discrete series of layers between the input
and output state by acting on the derivative of the hid-
den units. At each stage, the output of the network is
computed using a black-box differential equation solver
which evaluates the hidden unit dynamics to determine
the solution with the desired accuracy. In effect, the
parameters of the hidden unit dynamics are defined as a
continuous function, which may provide greater memory
efficiency and balancing of model cost against problem
complexity. The approach aims to achieve comparable
performance to existing state-of-the-art with far fewer
parameters, and suggests potential advantages for time
series modelling. For follow-up work in this stream, see
[44, 45]. On a similar note Han et al. [46] investigated
approaches to solve PDEs using deep learning gradient-
based approaches. By reformulating the PDEs as back-
ward stochastic differential equations the unknown is
solved for using a gradient-descent approach based on
reinforcement learning.

Finally, there is a long history of the use of machine
learning in pollution monitoring [47, 48, 49, 50, e.g.].
Recently, Zhu et al. [50] considered a coarse (0.25 de-
gree resolution) grid of mainland China, with more than
two years of air quality measurement and meteorologi-
cal data, without any further insights, such as pollution
sources, surface roughness, the reaction model, the multi-
resolution aspects, or similar. Qi et al. [49], considered
a joint model for feature extraction, interpolation, and
prediction while employing the information pertaining
to the unlabelled spatio-temporal data to improve the per-
formance of the predictions. These approaches use the
measurement data without regard to the physics, which

limits their performance, given the sparsity and costs of
presently available sensors.

3. Our Approach

We present the first attempt to apply a domain de-
composition to training of a surrogate model of a partial
differential equation (PDE). At a high level, our approach
consists of training a deep-learning model for each sub-
domain, while providing a method to ensure consistency
across neighbouring domains. By enabling communica-
tion between subdomains via constraints, predictions for
one subdomain can benefit from information outside of
the subdomain. This makes it possible to scale to the
whole domain such that the accuracy of the predictions
and its ability to generalise is increased, compared to
models trained on the individual subdomains without the
consistency constraints.

Let us consider an index-set M of meshes M,,,
m € M, with sets of n,, mesh points P(M,,). The
output of each PDE-based simulation on such a mesh
consists of values in R at each point of P(M,,,). Of-
ten, a small sub-set of ng,c) of such points is of particular
interest, which we call receptors R(M,, ); the remainder
of the points represents hidden points H(M,,,). The re-
ceptors and hidden points thus partition the mesh points
P(My,) = H(Myp) U R(My,), with n, = ni +nll).
Further, let us consider the index-set B C M x M
of boundaries B,,, of meshes. Such a possibly infi-
nite boundary B,,,,, C P(M,,) x P(M,) links pairs of
points from the two meshes. To each boundary B,,,, we
associate a constant ¢,,,, that reflects the importance of
this boundary. Further, for each mesh M,,, we have an or-
dered set of simulations indexed with time ¢ € Z, where
each simulation is defined by the inputs xgm) € X t(m)

and a set of outputs ytm) € (R4m)xnm  Often, one

(m)

++) for some

wishes to consider yt(m) being part of x
k > 0, in a recurrent fashion.

Our aim is to minimise residuals subject to consis-
tency constraints, and thus exchange information be-
tween neighbouring domains and ensure physical “sanity”

of the results, i.e.,

r :m}nz Z HprojR(Mm)(yt(m) - f(m)(xgm))) H

t meM
(H

s.t. Vt V(m,n) € BY(p1,p2) € Bmn :

prox(proj{pl}f(m) (wgm)> 7 prOj{pz}f(”) (xgn))) < €mmn »

where proj, : (Rém)*mm — (Rém)*IQl s a projection
operator that projects the array of outputs at all points



onto the outputs at a subset of points () C P(M,,), prox
is a proximity operator, the decision variable defines the
mapping f = {f("™) 1M whereby f(m>(x§m)) repre-
sents the output of a non-linear mapping between inputs
and PDE-based simulation outputs at the points of the
mesh, £(™ : X™ — (Rdm)*nm on each independent
mesh M,,,, which can be seen as a non-linear regression,
and €, is a constant specific to (m,n) € B. Thinking
about a system based on a PDE, the projection operator
onto R(M,,) can be thought of as selecting the recep-
tors, which are positions at which the solution to the
PDE is evaluated. In principle, the set of mesh points
can also contain points for which no estimates from the
ground-truth model are generated.

Notice that f(™) : X{™ — (R )*"n should be
seen as a non-linear regression; we provide examples of
f(™) in the following sections. The requirement of phys-
ical “sanity” is usually a statement about smoothness of
the values of the mapping f(") across the boundaries
of two different meshes and represents the fact that pro-
cesses in one mesh impact direct neighbours. To be able
to compare those values, we require that the dimensions
are the same, that is Vm,n €¢ M : d,,, = d,, = d. For
example, for prox being the norm of a difference of the
arguments, “smooth” at a point at the boundary of two
meshes means that the values predicted within the two
meshes at that point are numerically close to each other.
Also adding the norm of the difference of their gradients
to that makes it a statement about the closeness of their
first derivatives too. Technically, “smoothness” is a state-
ment about all their higher derivatives as well, however,
we will only concern ourselves with their values, or ze-
roth order of derivatives, for now. Notice though that
generically this is an infinitely large problem.

The constrained optimisation problem equation 1 can
be solved by Lagrangian relaxation techniques [51],
wherein for Lagrange multipliers \ := {)\(m) ;””G%M
we have an unconstrained optimisation problem, as sug-
gested in equation 2 in Figure 1

Under mild conditions [52, Proposition 3.1.1], there
exist )\gm), t € Z, such that the infimum over f (m)
coincides with *, for each m € M. Clearly, if at
least some of the boundaries B,,,, are infinite, then the
optimisation problem is infinite-dimensional.

Next, one can borrow techniques from iterative solu-
tion schemes in the numerical analysis domain. Notice
that the first term in equation 2 is finite-dimensional
and separable across the meshes. For each mesh M,,,
m € M, the above can be computed independently.
Further, one can sub-sample the boundaries to obtain
a consistent estimator. Subsequently, one could solve

the finite-dimensional projections of equation 2, wherein
each new solution will increase the dimension of /\,(sm).
While this is feasible in theory, the inclusion of non-
separable terms with Aﬁ"” would still render the solver
less than practical.

Instead, we propose an iterative scheme, which is
restricted to separable approximations. Let us imag-
ine that during iteration k£ and at time ¢, for a pair
of points (p1,p2) € By, on the boundary indexed
with (m,n) € B, we obtain values from the trained
model at those points in the respective mesh, R? >
fp1 t = Projg,y Fom (xgm)) and R? > fzgz,)t =
PrOj{p,) £ (acg”)) While the two points py, ps lie in
two different meshes, we would like the model outputs
at those points to eventually coincide for high enough
k. For that, we iteratively construct vectors ng?;? and

ngf;? € RY, which serve as lower and upper bounds

on the values obtained from the training of f(™ at the
kM iteration. Those vectors can be updated through a
variety of methods. A naive example includes extract-
ing some bounds based on the upper and lower limits
of neighbouring meshes boundary values. In order to
obtain convergence properties in a non-convex setting,
we use an asymptotically vanishing shift term to adjust
the interval according to the newly trained data, and a
gradient term, according to

(k1) _ (k)
—P1:P24

(7n) (n) (k)

min -
( puti Toaty ) szpzi

k (k 1))
prLpai Xp1pai)

(k1) _ (k) (m ( Flm) g ) x*)
P1:P24

X

—P1:P2 4

Xp1,p2 i Xpl,znzZ p1,tg? :D2 t;

(’f) —(k—1)
Xp1,p2; ~ Xp1,p2 1) : 3

The free parameters ~ and ¢ are tunable and resemble
learning rates. In principle, they could be chosen dynam-
ically, specific to each boundary (m, n). Choosing them
to be constants based on a greedy search across a limited
parameter space eases the computational efforts.

For the first iterations, the boundary values are ini-
tialised using the minimum and maximum of the labels,
respectively. Subsequently, we can form univariate (box,
interval) constraints, restricting the corresponding ele-
ments of both f(™ at p; and f(™ at p, of the next
iteration to the interval (Xpl s’ Xp1,p2;)- Notice that re-

placing Aﬁ’”) with a constant A provides an upper bound
on 7*, which is much easier to solve, computationally.
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Figure 1: The Lagrangian relaxation.

In the scheme, we consider a finite-dimensional pro-
jection of equation 2. For each (m,n) € B we consider

a finite sample B,,,,, C B, of pairs of points, for which
we obtain

rt = r?lx\nz ( Z HPTOJR(Mm) (y§m> - fm (xgm))) H
’ t

meM
“

DD

(m,n)EAB le(m,p1)
(P1,p2) EBmn PE(n,P2)

EmnA Hmax(o,xpw02 - f;li) + max(O, fl(,lz — Xpl,m)

where we consider the function max : R x RY — R¢
to operate element-wise. Further, when we consider \ as
a hyper-parameter, we obtain an optimisation problem
separable in m € M, which in the limit of |By,,| —
| By | provides an over-approximation for any .

In deep learning, this scheme should be seen as a
recurrent neural network (RNN). A fundamental exten-
sion of RNN compared to traditional neural network ap-
proaches is parameter sharing across different parts of the
model. We refer to Goodfellow et al. [7] for an excellent
overview and Figure 2 for a schematic illustration. Each
training iteration provides constants (Xphpz s Xp1.pa)s
which are used in the consistency constraints of the
subsequent iteration. In terms of training the RNN, it
is important to notice that equation 4 allows for very
fast convergence rate even in many classes of non-linear
maps f. For instance, when f(™) : Xt(m) — (Rdm)*nm
is a polynomial of a fixed degree [53], then equation 4
is strongly convex, despite the max function making it
non-smooth. The subgradient of the max function is
well understood [54] and readily implemented in major
deep-learning frameworks.

In numerical analysis, in general, and with respect
to the multi-fidelity methods [55], in particular, our ap-
proach could be seen as iterative model-order reduction.
The original PDEs could be seen as the full-order model

)

(FOM) to reduce, and equation 1 could be seen as a high-
fidelity data-fit reduced-order model (ROM), albeit not
a very practical one, whereas equation 4 could then be
seen as a low-fidelity data-fit ROM, which allows for
rapid prediction.

In approximation theory, and learning theory that grew
out of it, it is known since the work of [56] that even
a feed-forward network with three or more layers of a
sufficient number of neurons with, e.g., sigmoidal acti-
vation function allows for a universal approximation of
functions on a bounded interval. It is not guaranteed,
however, that the approximation has any further desir-
able properties, such as energy conservation etc. Our
consistency constraints can be used to enforce such prop-
erties.

Fundamentally, the approach can be summarised as
learning the non-linear mapping between inputs and pre-
dictions on each independent mesh, and iterating to en-
sure consistency of the solution across meshes. Such
an approach draws on a long history of work on setting
boundary conditions as consistency constraints in the
solution of PDEs [57].

4. Methods

To illustrate this framework, we trained the DL for
city-scale pollution monitoring, utilising:

e Pollution measurements and traffic data.

e Weather data (i.e., velocities, pressures, humidity,
and temperatures in 3D).

e A given discretisation of a city in multiple meshes,
corresponding to multiple geographic areas with
their specificities.

Our test case was based in the city of Dublin, Ire-
land, for which real-time streams of traffic and pollution
data (from Dublin City Council), and weather data (from
the Weather Company) were available to us, but which
did not have any large-scale models of air pollution de-
ployed.



Figure 2: A schematic illustration of our recurrent neural network, where the recursion considers the consistency constraints defined by x, . In

experiments described in Section 4, we use ¢ = 50 and s = 7.

4.1. Air Pollution Forecasting

Our goal is to estimate the traffic-induced air pollution,
specifically levels of NOy (which is closely related to
NOy overall) and PM;, for defined receptors across the
city. We selected these pollutants and as they are central
to major public health concerns particularly in relation
to an observed increase of lung and heart diseases in
cities across the developed world, and as they are mostly
generated by vehicle emissions. In addition ozone O3
is typically produced as a result of complex reactions
involving organic compounds as well as nitrogen oxides
NOx.

Our prediction framework consisted of inputs of traffic
volumes for a number of roadway links across the city,
weather data, and an air-pollution dispersion model. Out-
puts consisted of periodic estimates of pollution levels.
The typical approach in the traffic-induced air-pollution
forecasting literature is to treat links as line sources. Dis-
persion models are, in fact, line-source models that de-
scribe the temporal and spatial evolution of vehicle emis-
sions near roadways [58]. Gaussian-plume models con-
sider a closed-form solution to the advection-diffusion
equation under a series of simplifying and steady-state
assumptions, see from equation 2.2 in [11]. The Ca-
line [59], Hiway [60], and Aermod [61] suite of models
are three examples of Gaussian plume EPA-developed
models, while the latest releases of Caline (Caline 3 and
4) have had the widest adoption over the last decades,
see e.g. Samaranayake et al. [62], and Aermod is the
most recently developed, but licensed model. There also

exist more sophisticated numerical models in the liter-
ature. One can name the non-steady-state Lagrangian
puff modelling system, calPuff [63] or even CFD models
such as the commercial Ansys Fluent model [64] rely-
ing on the discretization of air flow variables as finite
control volumes. Finally, the machine learning family
of air dispersion models should be mentioned, e.g. from
multivariate analysis [65] to neural-network models [66].

In this work, we choose to use a Gaussian-plume
model in its popular Caline-4 implementation, due to
its wide use across the years. We are aware of the com-
plexity of some of the air dispersion models of use in
the literature. However, we selected the Gaussian plume
model and its Caline 4 implementation for the sake of
simplicity and reproducibility. Dealing with more com-
plex models within our presented framework is not an
impossible task, but would be an engineering challenge
requiring the handling of possibly more air quality vari-
ables and possibly deeper DL models. This falls beyond
the scope of this paper which aims at providing a proof
of concept of our newly presented methodology.

In the adopted model, each pollutant is defined by
its mass C'(#,t) at a location ¥ = (z,y, z) and time ¢.
See Figure 3 for an illustration of the propagation of a
pollutant, assuming a wind direction along the z axis.
The pollutant is emitted from the source at height A, and
the concentration profiles are given in the downwind
directions, using the dispersion factors o, and 0.
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Figure 3: An illustration of the Gaussian Plume model, adapted from J. M. Stockie [11].

Following [11], the law of conservation of mass is

—+V-J=8, 5
5 &)
where S(Z,t) is a source or sink term, and J(Z,t) is
the mass flux considering the effects of diffusion and
advection. The equation reduces to

%—FV-(C@):V-(K-VC)—%S, (6)
where 4 is the wind velocity and K is the 3 x 3 diago-
nal matrix of the space-diffusion coefficients, which are
assumed to be functions of the downwind distance only,
and thus all equal to K (x). After proceeding with the
change of variable

1 xr
r=t | K@ Q

and assuming we either know the closed form of
K (z) from experimentally measured values or K (x)
is constant, the Gaussian Plume solution ¢(r, y, z) of the
advection-diffusion equation can then be derived, which
for a homogeneous, steady-state flow and a steady-state
line source of finite length L is given by:

SO0

where (), is a emission constant rate, and where f(z) =
2/y/7 [y exp(—&?)d¢ is the error function. Note that,

for low wind speeds, e.g. lower than 0.5 m s~1, the diffu-
sion term cannot be neglected in the z-direction relative
to the advection term, rendering equation 8 inaccurate.
The interested reader may refer to [11], page 359-360,
for more details.

4.2. The Implementation

We used Caline [59], the standard free dispersion-
modelling suite, to solve the Gaussian Plume model for
the inputs and outputs presented in the previous Sec-
tion. We note while Caline is one of the “Preferred and
Recommended Air Quality Dispersion Model” of the
Environmental Protection Agency in the USA [67], it
has significant practical limitations. Specifically, it is
limited to 20 line sources (of traffic) and 20 receptors
(prediction points) per computational run, which in turn
forces an arbitrary in-homogeneous discretisation of the
road network and is a strong motivation for the use of
our cross-domain deep learning framework.

We implemented the approach for the use case of
Dublin, Ireland. The area was partitioned into 12 do-
mains, with 7-20 line sources of pollution in each sub-
domain. Inputs to the PDE solver comprised of hourly
traffic volume data at each line source obtained (by ag-
gregation of readings of traffic detectors) from the traf-
fic control system (SCATS) used in Dublin, and hourly
weather data (wind speed, direction, temperature, humid-
ity) obtained from The Weather Company. Available
training data comprised almost one year worth of hourly
data from July 15* 2017 to May 29 2018. The outputs
focused on concentrations of NO, and PM; concen-
trations at predefined receptor locations, as illustrated



in Figure 4. To circumvent the limitation on number
of receptors allowed by Caline (20 receptors per com-
putational run), we ran the Caline model 15 times with
receptors positioned in different locations to give ad-
equate spatial coverage of pollution estimates across
the domain. Outputs were produced at 300 receptor lo-
cations within each subdomain giving a total of 3,600
estimates of pollution across the domain each hour for
the 305-day study period. Caline-model specific param-
eters were chosen for each subdomain M,,, based on
the state-of-the-art practices [58]: the emission factors
based on the UK National Atmospheric Emissions In-
ventory database, dispersion coefficients based on the
Caline recommendations (values for inner city, outer
city areas), and background pollution levels chosen as
the average time series values across the pollution mea-
surements stations. This is in line with the usage of the
Environmental Protection Agency of Ireland [68]. The
background pollution levels were subtracted again from
the Caline output to obtain an effective traffic contribu-
tion to the pollution concentrations. Each subdomain
was then computed independently based on the specific
traffic, weather, and model parameters for the locality.
The RNN model was implemented in Tensorflow [69]
to obtain, in effect, the non-linear regression between
the inputs and outputs, with the consistency constraints
applied iteratively. That is, with each map from the
inputs to the outputs, we obtained further consistency
constraints to use in subsequent runs on the same domain.
Features to the neural network consisted of the time step,
the traffic line sources, the weather data, and a receptor
location at each time step. Training label data consisted
of the Caline outputs (without background pollution)
for those features at the given receptor. From those fea-
tures, we created design matrices, each row consisting
of the spatial coordinates of the start and end points of
the traffic line sources (up to 40 coordinate tuples per
subdomain) and traffic volume measurements for each
of the line sources, the weather data (wind speed, di-
rection, directional standard deviation, temperature) for
the locality, the coordinates of a receptor for which the
pollution concentrations should be estimated (there are
300 locations per subdomain), and the hourly timestamp
measured in seconds since January 1% 1970. The train-
ing data inherently has the structure of a time series, and
as such it would be sensible to combine all receptor lo-
cations of a given subdomain in the input of that time
slice, if our problem would be a temporal forecasting
one. However, our problem of combining several sub-
domains by imposing consistency constraints across the
boundaries is primarily a geospatial one. For the consis-
tency constraints, the models need to predict pollution

concentrations at the subdomain boundaries, where no
training data exists. That is: they need to learn the spatial
relations of the underlying physics. As such, it is much
more sensible to structure the learning set into spatial
slices, predicting concentrations for one receptor at a
time.

The timestamp input as well as the output labels were
normalised between zero and one, whereas all other in-
puts were Gaussian normalised over each unit domain.
Overall, the feature design matrix, X, had 1,494,900
rows (number of hourly estimates of all 300 receptors
over the near-yearlong period) and up to 107 columns
(number of features for each subdomain estimate). For
subdomains with fewer line sources, X had correspond-
ingly fewer columns. The label design matrix, Y, for
model training was composed of the 1,494,900 Caline
model runs, each of which comprises one Caline esti-
mate of pollution for each receptor location within each
subdomain. This process was repeated for each of the 12
subdomains and for each of the two pollutants considered
(NO2 and PM;), resulting in a total of 24 correspond-
ing X and Y matrices provided as an input to the RNN
model.

The cost function used the standard regularisation
with the /5-loss of the weights. For the consistency
constraints, we choose ( = 1,¢€,,, = 1, and consid-
ered different values for A and . The final topology
consisted of a multilayer perceptron (MLP) with seven
layers, each having 50 nodes, with a leaky ReLU activa-
tion function with o = 0.1 after each layer [7]. Network
training adopted the Adam optimisation algorithm with
stochastic gradient descent on batches of size 128. The
X and Y data were always randomly shuffled into two
groups to form the training-data set composed of 90%
of the 1,494,900 rows of data with the test-data set the
remaining 10%. We trained for 25 epoch per iteration,
with the consistency constraints between subdomains
updated each iteration for a total of 20 iterations.

The complete source code has been released publicly
under Apache license at https://github.com/
IBM/pde-deep-learning, whereby further details
of the implementation can be studied in detail. Likewise,
all our data are freely available. Traffic-detector data
used in the research are freely available from Dublin
City Council. Weather data have been obtained from
The Weather Company, an IBM business, under a li-
cence. While we do not have rights to redistribute The
Weather Company data, a free API key can be obtained
to download the data from the vendor. Suggestions as
to the model parameters are freely available from the
Environmental Protection Agency, Ireland. The Caline
package used for comparison is freely available from
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Figure 4: Left: Map of Dublin, partitioned into 12 domains (black lines), displaying the positions of line sources (blue lines), receptors (red dots),
and measurement stations (green diamonds). Right: A close-up of Dublin city center, featuring two partitions with adjusted line sources close to the

boundary (central partitions on the left).

the California Department of Transportation (Caltrans).
Pollution measurement data used in the comparison are
freely available from Dublin City Council and Environ-
mental Protection Agency, Ireland. We hope that this
release of code and data stimulates further research in
the field.

5. Results

First, to illustrate the workings of our approach, let
us plot the convergence behaviour of the interval (x, X)
of equation 3 for the consistency constraints at the city-
centre boundary for a few parameter combinations, as
well as the convergence behaviour of the difference be-
tween the predicted values from the two neighbouring
models along this boundary. In order to have clear bound-
ary effects, we adjusted the street layout by bringing the
streets in the southern subdomain closer to the bound-
ary and pushing the streets in the northern subdomain
further away, as illustrated on the right of Figure 4. In
particular, Figure 5 (left) presents the evolution of the in-

terval (X;k)p ,y,(,]f?pz) over iterations k, when averaged
—P1,P2

over the pairs (p1,p2) of corresponding points on the
boundary of the two subdomains. Clearly, we observe
that y converges to x, with rapid convergence especially
in the first four iterations. Further, one may add that
faster convergence with increasing « is observable up
to a certain point. For higher values of «, e.g., k = 0.7,
one enters an oscillatory regime (not shown), which
should be avoided. This behaviour can be understood by
drawing an analogy between equation 3 and accelerated
first-order optimisation methods: one can think of x as a
learning rate. One should like to point out two caveats,

though. First, this behaviour is stochastic: Notice the
difference between the individual sample paths, which is
due to the non-convexity of the problem and the variable
performance of randomised algorithms therein. Second,
this behaviour also does not translate to the values in
(™) (") being the same, except for X sufficiently large
and rather impractical. With these caveats, the behaviour
demonstrates an iterative relaxation of the solution at
neighbouring interfaces towards a reconciliation of both
solutions.

The mean absolute error of the deep-learning model
stabilises for all parameter sets after eight iterations. Fig-
ure 5 (right) demonstrates the convergence of the average
difference of the predicted concentration values across
the boundary. The inset shows the distributions of the
ratios between the different parameter sets after eight it-
erations and demonstrates that imposing the consistency
constraints does lead to a reduction of the discontinuity
in predicted concentration values across the boundary
of about 25% to 30% (c.f. ratios between A > 0 (in
particular 5) and 6)) and A = 0 (1), 2), and 3)). The
fact that all other ratios are close to one confirms that
this effect is indeed systematic.

As a further point, let us mention the run-time of
model training and model application. As has been
stressed in the introduction, computational expense is
one of the primary challenges of large-scale PDE-based
models, limiting the geographical extent and resolution
that can be studied. On the other hand, machine-learning
approaches have a much lower computational expense at
the model-application phase, i.e., once trained. The com-
putational expense of training the model, which can be
conceptually compared to the parameter estimation effort
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Figure 5: Effects of consistency constraints illustrated on two city-centre subdomains presented on the right in Figure 4. The individual experiments
are shown as thin lines. Their average is shown as a thick line with error bars at one standard deviation. Left: Mean lower () and upper (%) values
of the consistency constraint interval plotted across the iterations, i.e., two lines per colour. Right: Mean difference between output of the DL models
along the boundary between the two subdomains illustrating how specification of appropriate consistency constraints reduces the difference between
predictions at adjacent boundaries. The inset shows the ratios between this value for the different parameter specifications. The ratio is computed
over all iterations greater or equal than nine (dashed lined) to allow training error to stabilise.

for PDE-based models, is non-negligible. Considering
commodity-compute resource (i.e., 2.3 GHz Intel Core
i5 processor), training the entire domain for 20 iterations
took about 120 CPU-hours. (We note that this consid-
ers the use of the CPU only, and does not use general-
purpose graphics processing unit or other accelerators
in the training or application of the RNN. Obviously,
the wall-clock time can be significantly shorter with the
use of dedicated GPU resources and parallel computing.
Also, four iterations k = 4 bring much of the improve-
ment, as suggested in the previous paragraph.) This is
obviously a significant expense and one wishes to avoid
frequent re-training of the model. We have trained on
almost a year of data to generate a robust model. Retrain-
ing or updating of the model is not anticipated, unless
the model is to be applied to a different area or under
markedly different conditions (e.g., significant increase
in the use of electric vehicles). In contrast, once trained,
the computational cost of deploying the model to pre-
dict is negligible. Comparing the performance of the
Caline model with the trained RNN model, we observed
a speed-up factor of more than two orders of magnitude
in the model application for the study period.

Last but not least, let us comment on the predictive
skill of the DL model. Performance evaluation consid-
ered the ability of the DL to replicate Caline estimates
at defined locations with known traffic contributions to
pollution, and more broadly across the entire city with
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highly-varying contributions of traffic to pollution. Fig-
ure 6 presents a time-series plot of DL estimates against
Caline for both NO5 and PM; at one example recep-
tor collocated with an NO, measurement site used for
our validation. The neural-network closely captures the
general trends of the Caline estimates, particularly the di-
urnal component, with (traffic-driven) higher values dur-
ing the day. Differences between Caline and DL model
during that period are on average less than 3 jg/cm? for
NO, and 15 pg/ecm?® for PM1q, with no evident biases.

The spatial distribution of pollutants is significantly
more complex, encapsulating a high dependency on local
features (location of traffic line sources) together with the
Gaussian-plume distribution characteristics of the Caline
model. Figure 7 presents a contour map of Caline and DL
estimates of NOs values across the entire domain at an
instance in time. Results demonstrate that the DL model
captures areas of high pollution contributions rather well,
with peak values similar for Caline and DL. Across large
areas of the model domain, Caline reports low values of
traffic pollution with values falling back to an ambient
level of background pollution. The DL model, on the
other hand, predicts a much more uniform distribution
of NO; concentrations, which is not as tightly restricted
by the geographical proximity to traffic line sources.

This serves to illustrate one of the key differences
of model estimates guided by physical rules and that
driven purely by data. Caline estimates of pollution are
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restricted to the immediate vicinity of line-sources based
on the physical equations governing the Gaussian plume
model. The DL model faces no such restriction and in-
stead seeks the optimal combinations of weights that
minimise the objective functions. Results demonstrate
a tendency towards a smoother distribution of pollution
by the DL model compared to that produced by Caline.
This results in a significant mismatch between DL and
Caline estimates in regions where traffic-generated pol-
lution is low. The mean absolute error (MAE) of the
deep-learning computed values was 1.7 ug/cm?® with a
standard deviation of 2.1 ug/cm3.

6. Conclusions

We have presented consistency constraints, which
make it possible to train surrogate models on small do-
mains and apply the trained models to larger domains,
while allowing incorporation of information external to
the domain. The consistency constraints will ensure
that the solutions are physically meaningful even at the
boundary of the small domains in the output of the surro-
gate model. We have demonstrated promising results on
an air-pollution forecasting model for Dublin, Ireland.

For the first time, this work makes it possible to apply
deep-learning techniques to develop surrogate models
that potentially exceed the capabilities of the more com-
plex parent model. Borrowing domain-decomposition
techniques from the PDE community, it provides a frame-
work to merge the outputs from disparate models or so-
lutions that have spatial dependencies. In contrast, tradi-
tional machine-learning approaches consider each model
prediction to be a function of events that happen within
the computational domain. Numerous approaches, how-
ever, exist in the PDE literature to incorporate processes
outside the domain (e.g., Dirichlet or Neumann bound-
ary conditions, Iterative Schwarz interface methods) and
are particularly common in parallel-computing imple-
mentations. This paper presents a first demonstration of
implementing exchange of information across domains
to a deep-learning framework. Leveraging consistency
constraints, we demonstrate a deep-learning approach
that learns the mapping of each domain individually and
using RNN techniques, iteratively adjusts consistency
constraints to provide an optimal representation of the
global solution. Within the domain of our example appli-
cation, recent surveys [70] also suggest that ours is the
first use of deep-learning in the forecast of air-pollution
levels.

This work makes possible numerous extensions. Fol-
lowing the copious literature on PDE-based models of
air pollution, one could consider further pollutants such
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as ground-level ozone concentrations [71], and ensemble
[72] or multi-fidelity methods. One may also consider a
joint model, allowing for traffic forecasting, weather
forecasting, and air-pollution forecasting, within the
same network, possibly using LSTM units [73], at the
same time. More generally, one could consider further
applications of the consistency constraints, e.g., in en-
ergy conservation, or merging the outputs of a num-
ber of PDE models within multi-physics applications.
In multi-resolution approaches, lower-resolution (e.g.,
city-, country-scale) component could constrain higher-
resolution components (e.g., district-, city-scale), which
in turn impose consistency constraints on the former. In
some applications, it may be useful to explore other net-
work topologies. Following [35], one could use long
short-term memory (LSTM) units. Further, over-fitting
control could be based on an improved stacked auto-
encoder architecture [74]. In interpretation of the trained
model, the approach of [73] may be applicable. One
could also consider applications to inverse problems,
following [75, 76]. Finally, one could generalise our
methods in a number of directions of the multi-fidelity
[55] modelling, e.g., by combining the reduced-order and
full-order models using adaptation, fusion, or filtering.

Our work could also be seen as an example of Ge-
ometric Deep Learning [77], especially in conjunction
with the use of mesh-free methods [38], such as the 3D
point clouds [78], non-uniform meshing, or non-uniform
choice of receptors within the meshes. Especially for
applications, where the grids are in 3D or higher dimen-
sions, the need for such techniques is clear. More gen-
erally, one could explore links to isogeometric analysis
of [79], which integrates solving PDEs with geometric
modelling. Overall, the scaling up of deep learning for
PDE-based models seems to be a particular fruitful area
for further research.
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