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This paper introduces three new Schur complement approximations for the augmented 
Lagrangian preconditioner. The incompressible Navier-Stokes equations discretized by a 
stabilized finite element method are utilized to evaluate these new approximations of 
the Schur complement. A wide range of numerical experiments in the laminar context 
determines the most efficient Schur complement approximation and investigates the 
effect of the Reynolds number, mesh anisotropy and refinement on the optimal choice. 
Furthermore, the advantage over the traditional Schur complement approximation is 
exhibited.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we consider the numerical solution of the steady, laminar and incompressible Navier-Stokes equations as 
follows

−ν�u + (u · ∇)u + ∇p = f on �,

∇ · u = 0 on �.
(1)

Here u is the velocity, p is the pressure, the positive coefficient ν is the kinematic viscosity and f is a given force field. 
� is a 2D or 3D bounded and connected domain with the boundary ∂�. On the boundaries of the computational domain, 
either the Dirichlet boundary condition u = g or Neumann boundary condition ν ∂u

∂n − np = 0 is imposed, where n denotes 
the outward-pointing unit normal to the boundary.

After the Picard linearization and FEM discretization [1], the incompressible Navier-Stokes equations convert to the fol-
lowing linear system in saddle-point form[

A BT

B −C

][
u
p

]
=

[
f
g

]
with A :=

[
A BT

B −C

]
, (2)
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where the matrices B and BT correspond to the divergence and gradient operators, respectively. Picard linearization leads to 
the matrix A in block diagonal structure, and each diagonal block corresponds to the convection-diffusion operator. Due to 
the presence of the convective term, A is not symmetric. For the finite element discretization satisfying the LBB (‘inf-sup’) 
stability condition [1], no pressure stabilization is required and C = 0 is taken. When LBB unstable finite elements are 
applied, the nonzero matrix C corresponds to a stabilization operator.

Block structured preconditioners [1–3] are often utilized to accelerate the convergence of the Krylov subspace solvers for 
saddle point systems as (2). They are based on the block LDU decomposition of the coefficient matrix given by

A=LDU =
[

A BT

B −C

]
=

[
I1 O

B A−1 I2

][
A O
O S

][
I1 A−1 BT

O I2

]
, (3)

where S = −(C + B A−1 BT ) is the so-called Schur complement. A combination of this block factorization with a suitable 
approximation of the Schur complement is utilized to successfully design the block structured preconditioners, which are 
given as follows

PF =
[

A O
B S̃

] [
I1 Ã−1 BT

O I2

]
, (4)

PL =
[

A O
B S̃

]
, PU =

[
A BT

O S̃

]
. (5)

Multiplying the LD and DU factors of (3) results in the block lower- and upper-triangular preconditioners PL and PU , 
respectively. Preconditioner PF is based on the multiplication of the LDU factors. The term Ã−1 denotes some approxi-
mation of the inverse action of A, which is given either in an explicit form or implicitly defined via an iterative solution 
method with a proper stopping tolerance.

It is not practical to explicitly form the exact Schur complement due to the action of A−1, typically when the size is 
large. This implies that the most challenging task is to find the spectrally equivalent and numerically cheap approximation 
of the Schur complement, which is denoted by S̃ in (4) and (5). There exist several state-of-the-art approximations of the 
Schur complement, e.g. the least-square commutator (LSC) [4,5], pressure convection-diffusion (PCD) operator [6,7] and the 
approximations from the SIMPLE(R) [8–10] and augmented Lagrangian (AL) preconditioner [11,12] etc. Among them, the 
AL preconditioner exhibits attractive features with stable finite element methods (FEM) used for the discretization, e.g. the 
purely algebraic and simple construction of the Schur complement approximation and robustness with respect to the mesh 
refinement and Reynolds number, at least for academic benchmarks. Motivated by these advantages, the further extension to 
the context of finite volume method (FVM) [13] and the modified variant [14] with reduced computational complexities are 
promoted. Recently, the authors of this paper propose a new variant of the AL preconditioner [15] for the Reynolds-Averaged 
Navier-Stokes (RANS) equations discretized by a stabilized FVM, which are widely used to model turbulent flows in industrial 
computational fluid dynamic (CFD) applications.

The role of the AL term for preconditioning is very simple: by varying parameter γ it puts more weight on either the 
(1,1) or the (2,2) block of the AL preconditioner. If one cannot afford larger values of γ , then finding a suitable (more compli-
cated) preconditioner for Sγ becomes important again, where Sγ denotes the Schur complement for the augmented system. 
More discussions on Sγ and the involved parameter γ are given in Section 3 of this paper. Known representations for Sγ

[11,14] suggest ways to utilize earlier developed preconditioners for the non-augmented problem. The paper is built on this 
simple observation and the original idea as given in [11]. This observation is already exploited, for example, in [14,16]. The 
challenges encountered in the turbulent calculations [17–19] are inevitable factors which could cause the breakdown of the 
AL preconditioner, including the high Reynolds number, high-aspect ratio cells near the very thin boundary layer and the 
significant variation in the value of viscosity due to the presence of the eddy-viscosity. To overcome these challenges, an 
alternative method to approximate the Schur complement for the AL preconditioner is introduced in [15], which leads to 
a new variant of the AL preconditioner. This new method approximates the Schur complement through its inverse form 
and facilitates the utilization of the existing Schur complement approximations. Among the available candidates, the Schur 
complement approximation from the SIMPLE preconditioner [8,20] is chosen and substituted into the inverse Schur comple-
ment approximation for the AL preconditioner. This choice is motivated from the notion that it reduces to a scaled Laplacian 
matrix [8,20] with the considered FVM and its promising efficiency on the turbulent applications of the maritime industry 
[8,21]. Consequently, the so-arising new variant of the AL preconditioner reduces the number of Krylov subspace iterations 
by a factor up to 36 compared to the original one [15].

Since the new method to approximate the Schur complement for the AL preconditioner use the existing Schur com-
plement approximations, the following questions straightforwardly raise. Does the utilization of other existing Schur 
complement approximations deliver a better performance than that from the SIMPLE preconditioner? If so, which Schur 
complement approximation is the most efficient one? Does the optimal choice depend on the test problem and parameters 
arising from the physics and discretization, e.g. the Reynolds number and grid size? To answer these questions, in this 
paper we utilize the existing Schur complement approximations not only from the SIMPLE preconditioner but also from 
the LSC and PCD operators to construct the new Schur complement approximation in the AL preconditioner. Moreover, 
extensive comparisons between the considered Schur complement approximations are carried out on a wide range of nu-
merical experiments to evaluate the effect of the Reynolds number, mesh anisotropy and refinement on the optimal choice. 
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These numerical evaluations are considered in the context of laminar flows, which is motivated by the expectation that the 
obtained results can provide a fundamental guideline for the more complicated turbulent flow calculations.

The structure of this paper is given as follows. The utilized stabilization method and a brief survey of the existing 
approximations of the Schur complement are introduced in Section 2. Section 3 illustrates the method using these existing 
Schur complement approximations to construct the new approximation of the Schur complement in the AL preconditioner. 
Section 4 includes numerical results on varying laminar benchmarks. Conclusions and future work are outlined in Section 5.

2. Stabilization method and survey of Schur complement approximations

2.1. Stabilization

In this paper we use the mixed FEM which does not uniformly satisfy a discrete inf-sup condition [1] to discretize the 
Navier-Stokes equations governing laminar flows, which is chosen by the following considerations. Firstly, the existing Schur 
complement approximations are originally designed with finite element methods used for discretization. Therefore, it is 
expected to apply the new Schur complement approximation for the AL preconditioner in the FEM context. In addition, this 
closes a gap in the application of the new Schur complement approximation. Secondly, both the stabilized FEM [1] and FVM 
[17] lead to saddle point system with a nonzero (2, 2) block which arises from the pressure stabilization. Thanks to this 
similarity, a minor adaption is required to extend the new variant of the AL preconditioner from the stabilized FVM to the 
stabilized FEM. Finally, the utilization of stabilized FVM degrades the generality to some extent since the Schur complement 
approximation in the SIMPLE preconditioner reduces to a special formation [8,20]. However, this special formation can not 
be obtained with other stabilization and discretization methods. Using stabilized FEM, all Schur complement approximations 
considered in this paper are expressed in their defined manners, including that from the SIMPLE preconditioner. In this way, 
a convincing evaluation of the novel Schur complement approximation for the AL preconditioner can be expected.

Based on the above motivations, in this paper we use the Q 1-Q 1 mixed finite element approximation where the equal 
first-order discrete velocities and pressure are specified on a common set of nodes. Among the available stabilization meth-
ods [22–27] specified for the Q 1-Q 1 discretization, we choose the approach introduced in [25]. The main motivation is that 
there are few stabilization parameters required in the following operator

C (proj)(ph,qh) = 1

ν
(ph − �0 ph,qh − �0qh), (6)

where �0 is the L2 projection from the pressure approximation space into the space P0 of the piecewise constant basis 
function. This projection is defined locally: �0 ph is a constant function in each element �k ∈ Th . It is determined simply by 
the following local averaging

�0 ph|�k = 1

|�k|
∫
�k

ph, for all �k ∈ Th, (7)

where |�k| is the area of element k. Due to the locality as illustrated by equation (7), the stabilization matrix C can be 
assembled from the contribution matrices on macroelements in the same way as assembling a standard finite element mass 
matrix. Taking the 2D rectangular grid as an example, the 4 × 4 macroelement contribution matrix C (macro) is given by

C (macro) = 1

ν
(M(macro) − qqT |�k|), (8)

where M(macro) is the 4 × 4 macroelement mass matrix for the bilinear discretization and q = [1/4, 1/4, 1/4, 1/4]T is the 
local averaging operator. The null space of the macroelement matrix C (macro) and assembled stabilization matrix C consist 
of constant vector, see [1,25] for more details.

Contrary to other pressure stabilization methods [27,28] which utilize the viscosity and velocity fields to derive the 
scaling parameter in front of the stabilization matrix, the alternative employed in this paper only involves the viscosity co-
efficient. Results in numerical experiment section demonstrate that the utilized stabilization method results in a reasonable 
and smooth calculation of the velocity and pressure unknowns ranging from the moderate to large Reynolds numbers. The 
assessment of other pressure stabilization methods and their effects on the proposed preconditioning techniques by this 
paper is included in future research plan.

2.2. Survey of Schur complement approximations

As follows we briefly introduce several state-of-the-art Schur complement approximations which are utilized to con-
struct the new approximation of the Schur complement for the AL preconditioner. We refer for more details of the Schur 
complement approximation to the surveys [2,3,29,30] and the books [1,31].

In the following illustration, we use the notation p to indicate the operators defined on the pressure space and the 
notation u for the operators defined on the velocity space.
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(1) The pressure convection-diffusion operator ̃S P C D .
This approximation, denoted by S̃ P C D , is proposed by Kay et al. [6] and defined as

S̃ P C D = −Lp A−1
p Mp, (9)

where Mp is the pressure mass matrix, and Ap and Lp are the discrete pressure convection-diffusion and Laplacian 
operators, respectively. Although the PCD Schur complement approximation (9) is originally proposed for stable finite 
element methods, it is straightforwardly applicable for the discretizations needing a stabilization term, e.g. the Q 1-Q 1
pair. For more details about this extension we refer to [1]. On the other hand, this approximation requires users to pro-
vide the discrete operators Ap and Lp and preset some artificial pressure boundary conditions on them. The boundary 
conditions could strongly effect the performance so appropriate ones should be carefully selected based on the problem 
characteristic [32,33]. Applying the PCD Schur complement approximation involves the action of a Poisson solve, a mass 
matrix solve and a matrix-vector product with the matrix A p .

(2) The least-square commutator ̃SL SC .
Elman et al. [4] originally propose this method for stable finite element discretizations and then extend it to alterna-
tives [5] that require stabilization. For system (2) with a nonzero stabilization operator C , the LSC Schur complement 
approximation S̃ L SC is defined as

S̃ L SC = −(BM̂−1
u BT + C1)(BM̂−1

u AM̂−1
u BT + C2)

−1(BM̂−1
u BT + C1), (10)

where M̂u denotes the diagonal approximation of the velocity mass matrix Mu , i.e. M̂u = diag(Mu). Given the stabi-
lization matrix C assembled from the macroelement contribution matrix C (macro) (8), the contribution matrices C (macro)

1

and C (macro)
2 for the associated stabilization matrices C1 and C2 are introduced by

C (macro)
1 = ν

|�k| · C (macro), C (macro)
2 = ν2

|�k|2 · C (macro), (11)

where ν denotes the viscosity parameter. For the derivation of C (macro)
1 and C (macro)

2 we refer to [5]. The implemen-
tation of the LSC Schur complement approximation does not require any artificial boundary condition and consists of 
one matrix-vector product with the middle term in (10) and two solves with the other term. When the LSC Schur 
complement approximation is applied to stable finite element discretizations, the matrices C1 and C2 are set to zero in 
(10).

(3) The approximation ̃S S I M P LE from the SIMPLE preconditioner.
SIMPLE (Semi-Implicit Pressure Linked Equation) is used by Patanker [18] as an iterative method to solve the Navier-
Stokes problem. The scheme belongs to the class of basic iterative methods and exhibits slow convergence. Vuik et al.
[9,10] use SIMPLE as a preconditioner in a Krylov subspace method, achieving in this way, a much faster convergence. 
Regarding the Schur complement S = −(C + B A−1 BT ) of system (2), the SIMPLE preconditioner approximates A by its 
diagonal, i.e. diag(A), and obtains the approximation S̃ S I M P LE as

S̃ S I M P LE = −(C + Bdiag(A)−1 BT ). (12)

Substituting S̃ S I M P LE and Ã−1 = diag(A)−1 into (4) leads to the so-called SIMPLE preconditioner. For stable finite el-
ement discretizations, C = 0 is set in system (2) and correspondingly in the Schur complement approximation (12). 
The easy implementation and promising performance on the complicated maritime problems [8,21] make the SIMPLE 
preconditioner and its variants attractive in real world applications.

The main goal of this paper is to utilize the above mentioned Schur complement approximations to construct a new ap-
proximation of the Schur complement in the AL preconditioner, with more details presented in the next section. Theoretical 
analysis and numerical evaluation of the above Schur complement approximations fall out of the scope of this work and 
we refer to [1,3,34] for more results. Here we summarize the key differences. S̃ P C D requires the construction of additional 
matrices on the pressure space while S̃ L SC and S̃ S I M P LE rely on matrices which could be easily generated or are readily 
available. As seen from S̃ L SC , the stabilization terms C (macro)

1 and C (macro)
2 are easily obtained by substituting the available 

term C (macro) into (11). On the other hand, ̃S P C D easily extends to the stabilized elements and a minor adaption is required 
by ̃S S I M P LE for this extension. However, ̃SL SC does not immediately apply and needs appropriate stabilization terms C1 and 
C2. We further note that boundary conditions for the pressure unknowns, which have few physical meanings, have to be 
considered for Lp and Ap in S̃ P C D . What boundary conditions work best with a specific type of problem is usually based 
on experimental knowledge [32,33].

3. Augmented Lagrangian preconditioner

The focus of this section is the new method to approximate the Schur complement in the augmented Lagrangian (AL) 
preconditioner. In the following, we first briefly recall the AL preconditioner and then introduce the new method followed 
by a comparison with the old one.
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The motivation of applying the AL preconditioner is to circumvent the challenge on finding the efficient approximation 
of the Schur complement S for the original system (2), cf., [11,14]. To apply the AL preconditioner, the original system (2)
is transformed into an equivalent one with the same solution [13,14], which is of the form[

Aγ BT
γ

B −C

][
u
p

]
=

[
fγ
g

]
with Aγ :=

[
Aγ BT

γ

B −C

]
, (13)

where Aγ = A +γ BT W −1 B , BT
γ = BT −γ BT W −1C and fγ = f +γ BT W −1 g . This transformation is obtained by multiplying 

γ BT W −1 on both sides of the second row of system (2) and adding the resulting equation to the first one. Clearly, the 
transformed system (13) has the same solution as system (2) for any value of γ and any non-singular matrix W . The Schur 
complement of the transformed system (13) is Sγ = −(C + B A−1

γ BT
γ ).

The AL preconditioner is applied for the equivalent system (13), which is to be solved. Using the block DU decomposition 
of Aγ , the ideal AL preconditioner PI AL and its variant, i.e. the modified AL preconditioner PM AL , are given by

PI AL =
[

Aγ BT
γ

O S̃γ

]
and PM AL =

[
Ãγ BT

γ

O S̃γ

]
, (14)

where S̃γ and Ãγ denote the approximations of Sγ and Aγ , respectively.

First we consider the approximation Ãγ . Given the original pivot matrix A =
[

A1 O
O A1

]
and the divergence matrix 

B = [
B1 B2

]
in the 2D case, the transformed pivot matrix Aγ = A + γ BT W −1 B can be written as

Aγ =
[

A1 + γ BT
1 W −1 B1 γ BT

1 W −1 B2

γ BT
2 W −1 B1 A1 + γ BT

2 W −1 B2

]
.

Contrary to PI AL , PM AL approximates Aγ by its block upper-triangular part, i.e. Ãγ with a zero (2,1) block, such that the 
difficulty of solving the systems with Aγ is avoided [14]. When applying PM AL one needs to solve the sub-systems with 
the diagonal blocks of Aγ , i.e. A1 + γ BT

1 W −1 B1 and A1 + γ BT
2 W −1 B2, which do not contain the coupling between two 

components of the velocity so that standard algebraic multigrid methods can be applied [34]. This advantage motivates us 
to choose PM AL in this paper despite the observation that the performance of PM AL is dependent of the values of γ , which 
is seen in the numerical experiments of this paper and other related references [14]. The above advantage also motives to 
approximate Aγ by its block lower-triangular part with a zero (1,2) block. Numerical experiments demonstrate that different 
approximations of Aγ slightly effect the performance of the modified AL preconditioner for the considered benchmarks. For 
this reason, in this paper we only illustrate the results by applying the block upper-triangular approximation of Aγ in the 
modified AL preconditioner. Regarding the ideal AL preconditioner PI AL , standard multigrid methods are ineffective to solve 
the systems with Aγ . A specialized multigrid algorithm for Aγ is built in [11] and the extension to the three dimensional 
applications is recently proposed in [35]. Alternatively, previous work [12] suggests to solve the systems with Aγ by the 
Krylov subspace methods, which are accelerated by the approximate inverse preconditioner based on the Shermon-Morrison 
formula. In the related work [34], the comparison between the modified and ideal AL preconditioners is realized by applying 
the direct solution method for the involved sub-systems. Although fewer Krylov iterations are needed by the ideal AL 
preconditioner, removing the difficulty to solve the sub-systems with Aγ makes the modified AL preconditioner attractive 
in practice.

3.1. New Schur approximation in the AL preconditioner

Finding an effective approximation of the Schur complement Sγ is the key for the ideal and modified AL preconditioners. 
This paper is meant to use the available Schur approximations for the original system (2), as introduced in Section 2, to 
construct a new approximation of Sγ . The new Schur complement approximation is realized by using the following lemma.

Lemma 3.1. Assuming that all the relevant matrices are invertible, then the inverse of Sγ is given by

S−1
γ = S−1(I − γ C W −1) − γ W −1, (15)

where S = −(C + B A−1 BT ) denotes the Schur complement of the original system (2).

Proof. For the proof we refer to [13,14]. �
Lemma 3.1 is originally revealed by [14] and used to derive the old approximation of Sγ , which is discussed in the 

next section. Here, Lemma 3.1 is viewed from another side. Since Lemma 3.1 builds the connection between the Schur 
complements Sγ and S , the natural and simple method to approximate Sγ is substituting the approximation of S into 
expression (15). In this way, the new approximation of Sγ , denoted by S̃γ new, is derived in the inverse form as
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S̃−1
γ new = S̃−1(I − γ C W −1) − γ W −1, (16)

where S̃ denotes the approximation of S .
The novel approach provides a framework to use the known Schur complement approximation S̃ for the original system 

(2) to construct S̃γ new in the AL preconditioner, which is applied to the transformed system (13). Substituting the Schur 
complement approximations demonstrated in Section 2, i.e. S̃ P C D , S̃ L SC and S̃ S I M P LE into expression (16), three variants of 
S̃γ new are derived as

• S̃−1
γ P C D = S̃−1

P C D(I − γ C W −1) − γ W −1,

• S̃−1
γ L SC = S̃−1

L SC (I − γ C W −1) − γ W −1,

• S̃−1
γ S I M P LE = S̃−1

S I M P LE(I − γ C W −1) − γ W −1.

Following other related references [11,14], in this paper we choose the matrix parameter W to the diagonal approxima-
tion of the pressure mass matrix, i.e. W = M̂p = diag(Mp). It is trivial to obtain the action of W −1 in the transformation 
(13) and the new Schur complement approximation (16). Applying the new Schur complement approximation S̃γ new con-
verts to solve a system with it and the choice of W = M̂p focuses the complexity mainly on the solve of S̃ . This implies a 
limited increase of the complexity when implementing the new Schur complement approximation S̃γ new compared to S̃ . 
In addition, the considerable efforts to optimize the approximation S̃ can straightforwardly reduce the computational time 
of S̃γ new.

When applying stabilized FVM, the inverse of Sγ is expressed in a similar manner [15] as Lemma 3.1 and this similarity 
facilitates the extension of the new Schur complement approximation from the stabilized FVM to the stabilized FEM. Re-
garding the new Schur complement approximation, there are two main differences between [15] and this work. Firstly, only 
S̃γ S I M P LE is considered in [15] and in this paper we introduce three variants, i.e. S̃γ P C D , S̃γ L SC and S̃γ S I M P LE . In this 
way, the comparison between them is expected to answer the questions raised in the introduction section and find out the 
optimal choice. Secondly, in [15] finite volume discretization stabilized by the pressure-weighted interpolation method [36]
is applied, which leads to S̃ S I M P LE in a reduced form. The generality is degraded since this special form of S̃ S I M P LE can 
not be obtained by using other stabilization and discretization methods in general. In this paper, the approximations S̃ P C D , 
S̃ L SC and S̃ S I M P LE are expressed in their defined manners so that a convincing assessment of the new Schur complement 
approximation can be expected.

Based on the above approach, it is easy to see that there is no extra requirement on the value of the parameter γ . 
This advantage of the new Schur complement approximation can be more clearly seen in the next section, where the 
contradictory requirements on the values of γ in the old approach are presented.

3.2. Original Schur approximation in the AL preconditioner

The starting point to construct the original approximation of the Schur complement in the AL preconditioner is also 
Lemma 3.1. However, the strategy is totally different. Choosing W1 = γ C + Mp and substituting W1 into expression (15) we 
have

S−1
γ = S−1(I − (γ C + Mp − Mp)(γ C + Mp)−1) − γ (γ C + Mp)−1

= S−1Mp(γ C + Mp)−1 − γ (γ C + Mp)−1

= (γ −1 S−1Mp − I)(C + γ −1Mp)−1.

For large values of γ such that ‖ γ −1 S−1Mp ‖� 1, the term γ −1 S−1Mp can be neglected so that we have ̃Sγ orig as follows

S̃γ orig = −(C + γ −1Mp). (17)

As shown above, the choice of W1 = γ C + Mp is used to derive the original Schur complement approximation S̃γ orig. 
However, the choice of W1 = γ C + Mp is not practical since the action of W −1

1 is needed in the transformed system (13). 
One practical choice is to omit the term γ C in W1 and replace Mp by its diagonal approximation, which leads to W = M̂p . 
This modification is only applied to simplify the matrix parameter W and the original Schur complement approximation 
S̃γ orig remains the same as given in (17). In summary, the choice of W = M̂p and S̃γ orig is used in this paper and other 
related work, for instance [13,14] where stabilized discretizations are employed.

The contradictory requirements in the above approximation are shown as follows. The approximation S̃γ orig is obtained 
if and only if W1 = γ Ĉ + Mp and large values of γ are chosen. However, W = M̂p is spectrally equivalent to W1 = γ C + Mp

only when γ is small. This means that it is contradictory to tune the value of γ so that W = M̂p and S̃γ orig could be si-
multaneously obtained. By contrast, this contradictory requirements are avoided by applying the new Schur complement 
approximation as given in Section 3.1. This disadvantage of the original Schur complement approximation reflects in the 
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Table 1
Summary of the linear systems to be solved, applied preconditioners and approximations of 
the Schur complement utilized therein.

Linear system Preconditioner Schur complement approximations

Transformed system with Aγ PM AL S̃γ P C D , S̃γ L SC , S̃γ S I M P LE , S̃γ orig

Original system with A PU S̃ P C D , S̃ L SC , S̃ S I M P LE

Table 2
Pressure sub-system ‘mass-p’ with ̃Sγ in PM AL and ̃S in PU , and the systems involved therein.

‘mass-p’ with ̃Sγ new ‘mass-p’ with ̃S Systems involved in ̃S

S̃γ P C D S̃ P C D Lp and Mp

S̃γ L SC S̃ L SC (BM̂−1
u BT + C1) twice

S̃γ S I M P LE S̃ S I M P LE C + Bdiag(A)−1 BT

‘mass-p’ with ̃Sγ orig – Systems involved in ̃Sγ orig

S̃γ orig – C + γ −1 Mp

slower convergence rate of the Krylov subspace solvers compared to the new Schur complement approximation. This con-
clusion is made based on the fact that the performance of the modified AL preconditioner is evaluated by varying the Schur 
complement approximations. See more results in the numerical section.

The application of the original Schur complement approximation S̃γ orig involves the solution of the system with C +
γ −1 Mp . Since the contribution stabilization matrix C (macro) on macroelements consists of the macroelement pressure mass 
matrix as illustrated in (8), the presence of the assembled pressure mass matrix Mp does not introduce more non-zero 
fill-in in the stabilization matrix C .

3.3. Summary of the Schur complement approximations

At each Picard iteration, we solve either the transformed system (13) with the coefficient matrix Aγ or the original sys-
tem (2) with the coefficient matrix A. We apply the modified AL preconditioner PM AL (14) and the block upper-triangular 
preconditioner PU (5) to the transformed and original systems, respectively. The Schur complement approximations applied 
in PM AL and PU are summarized in Table 1.

Due to the small size of test problems and the lack of code optimization, the complexity comparison of preconditioners 
PM AL and PU is done based on the following costs analysis in this paper, instead of reporting the computational time. 
Firstly, we consider the costs of using the modified AL preconditioner PM AL for a Krylov subspace method that solves the 
system with Aγ . The preconditioner is applied at each Krylov iteration and the modified AL preconditioner involves the 
solution of the momentum sub-system ‘mom-u’ with Ãγ and the pressure sub-system ‘mass-p’ with S̃γ . Furthermore, at 
each Krylov iteration additional costs are expressed in the product of the coefficient matrix Aγ with a Krylov residual vector 
bres . Thus, the total costs at each Krylov iteration are

• PM AL : mom-u with Ãγ + mass-p with S̃γ + Aγ × bres .

Clearly, the difference of costs by applying PM AL arises from solving the pressure sub-system ‘mass-p’ with different 
Schur complement approximations. If we ignore the multiplications in the definition of the new Schur complement ap-
proximation S̃γ new, finding the solution of the pressure sub-system in PM AL with three variants derived from S̃γ new, 
i.e., S̃γ P C D , S̃γ L SC and S̃γ S I M P LE is reduced to solve the pressure sub-system in PU with S̃ P C D , S̃ L SC and S̃ S I M P LE , re-
spectively. Systems involved in S̃ P C D , S̃ L SC and S̃ S I M P LE are shown in Table 2. The costs of applying the original Schur 
complement approximation S̃γ orig are also included in Table 2 for a comparison with the new Schur complement approxi-
mation ̃Sγ new. Note that all involved systems are of the same size. If we assume a comparable complexity to solve different 
involved systems, the analysis in Table 2 shows that the costs of using PM AL with ̃Sγ P C D and ̃Sγ L SC are roughly the same 
and two times of that with S̃γ S I M P LE and S̃γ orig.

Secondly, we consider the costs of applying the upper block-triangular preconditioner PU with different Schur comple-
ment approximations, which are used for the original system. Similar to the analysis of PM AL , we obtain the total costs at 
every Krylov iteration as

• PU : mom-u with A + mass-p with S̃ + A × bres .

Also, varying Schur complement approximations S̃ results in the difference of costs by applying PU . Based on the analysis 
in Table 2 and the assumption of a comparable solution complexity for all involved systems, we find out that the costs of 
applying PU with S̃ P C D and S̃ L SC are roughly the same and two times of that with S̃ S I M P LE .
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Lastly, we compare the costs between PM AL and PU . As mentioned before, solving the pressure sub-system with the new 
Schur complement approximation ̃Sγ new in PM AL can be reduced to calculate the solution of the pressure sub-system with 
S̃ , which is the Schur complement approximation used in PU . Thus, the difference of costs between PM AL and PU focuses 
on the solution of the momentum sub-system and the product of the coefficient matrix with the Krylov residual vector. 
More non-zero fill-in in Aγ and Aγ [13], compared to A and A, results in a heavier matrix-vector product when applying 
PM AL at each Krylov iteration. However, the heavier complexity of PM AL could be paid off by a reduced number of Krylov 
iterations. In this paper we obtain a faster convergence rate preconditioned by PM AL with the new Schur complement 
approximations, compared to PU used for the original system. The time advantage of PM AL needs a further assessment 
which is included in future research plan.

4. Numerical experiments

In this section, we carry out numerical experiments on the following 2D laminar benchmarks:

(1) Flow over a finite flat plate (FP)
This example, known as Blasius flow, models a boundary layer flow over a flat plate on the domain � = (−1, 5) ×
(−1, 1). To model this flow, the Dirichlet boundary condition ux = 1, u y = 0 is imposed at the inflow boundary (x = −1; 
−1 ≤ y ≤ 1) and also on the top and bottom of the channel (−1 ≤ x ≤ 5; y = ±1), representing walls moving from left 
to right with speed unity. The plate is modeled by imposing a no-flow condition on the internal boundary (0 ≤ x ≤ 5; 
y = 0), and the Neumann condition is applied at the outflow boundary (x = 5; −1 < y < 1), i.e., ν ∂u

∂n − np = 0. The 
Reynolds number is defined by Re = U L/ν and the reference velocity and length are chosen as U = 1 and L = 5. On the 
FP flow, we consider four Reynolds numbers as Re = {102, 103, 104, 105}, which correspond to the viscosity parameters 
ν = {5 · 10−2, 5 · 10−3, 5 · 10−4, 5 · 10−5}, respectively.
Since stretched grid is typically needed to compute the flow accurately at large Reynolds numbers, stretched grid 
is generated based on the uniform Cartesian grid with 12 × 2n · 2n cells. The stretching function is applied in the 
y-direction with the parameter b = 1.01 [cf. [8]]:

y = (b + 1) − (b − 1)c

(c + 1)
, c = (

b + 1

b − 1
)1− ȳ, ȳ = 0,1/n,2/n, ...1. (18)

(2) Flow over backward facing step (BFS)
The L-shaped domain is known as the backward facing step. A Poisseuille flow profile is imposed on the inflow (x =
−1; 0 ≤ y ≤ 1). No-slip boundary conditions are imposed on the walls. The Neumann condition is applied at the outflow 
(x = 5; −1 < y < 1) which automatically sets the outflow pressure to zero. Using the reference velocity and length U = 1
and L = 2 and the viscosity parameters ν = {2 · 10−2, 2 · 10−3}, the corresponding Reynolds numbers are Re = U L/ν =
{102, 103}.
The BFS flow is more complicated than the flat-plate flow as it features separation, a free shear-layer and reattachment. 
On the BFS flow we do not consider the Reynolds number Re > 103 since the increase of the Reynolds number by an 
order of magnitude will transfer the flow to be turbulent. On this case we only consider uniform Cartesian grid with 
11 × 2n · 2n cells.

(3) Lid driven cavity (LDC)
This problem simulates the flow in a square cavity (−1, 1)2 with enclosed boundary conditions. A lid moving from left 
to right with a horizontal velocity as:

ux = 1 − x4 for − 1 ≤ x ≤ 1 y = 1.

In order to accurately resolve the small recirculations, we consider stretched grid around the four corners. Stretched grid 
is generated based on the uniform Cartesian grid with 2n · 2n cells. The stretching function is applied in both directions 
with parameters a = 0.5 and b = 1.01 [8]

x = (b + 2a)c − b + 2a

(2a + 1)(1 + c)
, c = (

b + 1

b − 1
)

x̄−a
1−a , x̄ = 0,1/n,2/n, ....,1. (19)

The reference velocity and length U = 1 and L = 2 and the viscosity parameters ν = {2 ·10−2, 2 ·10−3, 2 ·10−4} result in 
the following Reynolds numbers Re = {102, 103, 104}. For the same reason as BFS, a larger Reynolds number Re > 104

is not considered on this case.

In order to explore the performance of PM AL and PU with varying Schur complement approximations as summarized in 
Table 1 and Table 2, numerical evaluations are classified into four categories as follows.

(C1) On small Reynolds number and uniform grid
In this category we consider the FP, BFS and LDC cases on the small Reynolds number Re = 102 and uniform Cartesian 
grid.



X. He, C. Vuik / Journal of Computational Physics 408 (2020) 109286 9
(C2) On moderate Reynolds number and uniform grid
In this category we apply the moderate Reynolds number Re = 103 on the FP, BFS and LDC cases. Similar to the first 
class of experiments, uniform Cartesian grid is used here to check the variation of performance when increasing the 
Reynolds number by an order of magnitude.

(C3) On moderate Reynolds numbers and stretched grid
This category contains the tests carried out on the FP and LDC cases with stretched grid. The stretching functions for 
the FP and LDC cases are (18) and (19), respectively. Still, the moderate Reynolds number Re = 103 is employed for 
the two tests. Comparing with the second class of experiments, this category is meant to investigate the effect of mesh 
anisotropy.

(C4) On large Reynolds numbers and stretched grid
The LDC case with Re = 104 and FP case with Re = {104, 105} are included in this class of tests to assess how the 
Krylov subspace solver behaves at relatively large Reynolds numbers. Here stretched grid is employed to accurately 
resolve the problem characteristics.

In this paper all experiments are carried out based on the blocks A, B , C , C1, C2, Ap , Mp , Lp and Mu and the right-hand 
side vector rhs, which are obtained at the middle step of the whole nonlinear iterations. Numerical experiments in [13]
show that the number of linear iterations varies during the nonlinear procedure. The motivation of choosing the middle 
step of the nonlinear iterations to export the blocks and vector is that a representative number of linear iteration can 
be obtained, compared to the averaged number of linear iterations through the whole nonlinear procedure. The relative 
stopping tolerance to solve the linear system by GMRES is chosen equal to 10−8. The restart functionality of GMRES is 
not used in this paper. Since the preconditioners PM AL and PU involve various momentum and pressure sub-systems, all 
these sub-systems are directly solved in this paper to avoid the sensitiveness of iterative solvers on the varying solution 
complexities.

As pointed out in Section 2, the application of the Schur complement approximation S̃γ P C D needs to preset boundary 
conditions for the pressure Laplacian Lp and convection-diffusion Ap operators. In this paper, we follow the suggestions 
of [32,33] to use Dirichlet boundary conditions along inflow boundaries to define L p and Ap . This means that the rows 
and columns of Lp and Ap corresponding to the pressure nodes on an inflow boundary are treated as though they are 
associated with Dirichlet boundary conditions. For the enclosed flow, we algebraically add h2 I to Lp and Ap to make them 
non-singular, where h denotes the grid size and I is the identity matrix of proper size. Such artificial pressure boundary 
conditions are only imposed on the preconditioner. The coefficient matrix and right-hand side vector are not affected by 
these boundary node modifications.

4.1. On small Reynolds number and uniform grid

In this subsection we carry out experiments on the FP, BFS and LDC cases with uniform Cartesian grid and small Reynolds 
number Re = 102. The number of Krylov iterations to solve the transformed system preconditioned by the modified AL 
preconditioner PM AL is given in Table 3. The Schur complement approximations S̃γ P C D , S̃γ L SC , S̃γ S I M P LE in PM AL are 
derived from the new method S̃γ new (16) and the approximation S̃γ orig corresponds to the original Schur complement 
approximation (17). In this paper, the reported number of Krylov iterations preconditioned by PM AL is obtained by using the 
optimal value of γ , which results in the fastest convergence rate of the Krylov subspace solver. The following observations 
are made from Table 3.

Except S̃γ S I M P LE , we see that the other Schur complement approximations result in the independence of Krylov itera-
tions on the mesh refinement at the three test cases. In terms of the number of Krylov iterations, S̃γ L SC is superior to the 
other Schur complement approximations on the FP and BFS cases by the reduced number of iterations and equally efficient 
as S̃γ P C D and S̃γ orig on the LDC case. To understand this advantage, we take the FP case as an example and plot the 
eigenvalues of the preconditioned Schur complement matrix S̃−1

γ Sγ in Fig. 1. As can be seen, S̃γ L SC leads to more clus-
tered eigenvalues and the smallest eigenvalue further away from zero. Such a distribution of eigenvalues is favorable for the 
Krylov subspace solver and a faster convergence rate can be expected. We know that there can be matrices where there is 
no relation between the spectrum and the convergence of GMRES [37], especially if the matrix is strongly non normal. We 
include the spectrum because in our examples the properties of the spectrum are in line with the convergence properties 
of GMRES. In addition, the field-of-values type estimates for the augmented Lagrangian preconditioned matrix are provided 
by [38].

As analyzed in Section 3.3, at each Krylov iteration the costs of applying PM AL with S̃γ L SC are roughly the same as 
S̃γ P C D and two times of that using S̃γ S I M P LE and S̃γ orig. If we assume the computational expense of applying PM AL

with S̃γ orig to be unit at each iteration, the total costs by using all Schur complement approximations on the finest grid 
are presented in Table 4 and calculated by multiplying the expense per iteration by the number of iterations. In the other 
classes of evaluations we also use this method to calculate the total computational costs.

Results in Table 4 show that the minimal computational costs are achieved by using S̃γ orig in PM AL . Although fewer 
Krylov iterations are needed by using ̃Sγ L SC in PM AL seen from Table 3, the reduced number of iterations does not pay off 
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Table 3
Re = 102 and uniform grid: the number of GMRES iterations to solve the transformed system with Aγ precon-
ditioned by PM AL with different Schur complement approximations and the optimal value of γ in parentheses.

S̃γ P C D S̃γ L SC S̃γ S I M P LE S̃γ orig

FP case:
n = 5 26(1.e-1) 17(8.e-2) 43(2.e-1) 38(2.e-1)
n = 6 25(1.e-1) 25(8.e-2) 67(2.e-1) 38(2.e-1)
n = 7 25(1.e-1) 26(8.e-2) 100(2.e-1) 38(2.e-1)

BFS case:
n = 5 34(2.e-2) 17(2.e-2) 42(1.e-1) 36(1.e-1)
n = 6 42(3.e-2) 21(2.e-2) 60(1.e-1) 36(1.e-1)
n = 7 45(3.e-2) 22(2.e-2) 87(1.e-1) 36(1.e-1)

LDC case:
n = 6 17(2.e-2) 17(2.e-2) 34(1.e-1) 19(1.e-1)
n = 7 18(2.e-2) 20(2.e-2) 48(1.e-1) 19(1.e-1)
n = 8 18(2.e-2) 22(2.e-2) 63(1.e-1) 19(1.e-1)

Table 4
Re = 102 and uniform grid: the total costs of applying PM AL with different Schur complement approximations 
on the finest uniform Cartesian grid.

S̃γ P C D S̃γ L SC S̃γ S I M P LE S̃γ orig

FP case: 50 52 100 38
BFS case: 90 44 87 36
LDC case: 36 44 63 19

the heavier costs of ̃Sγ L SC . In this class of experiments, it seems that the original Schur complement approximation ̃Sγ orig
is more efficient than the other approximations due to the fewer computational costs in total.

4.2. On moderate Reynolds number and uniform grid

In this subsection we choose the moderate Reynolds number Re = 103 to evaluate the performance of the Schur com-
plement approximations used in the modified AL preconditioner PM AL and compare with the evaluations at Re = 102 in 
Section 4.1. Based on the number of Krylov iterations presented in Table 5, we see that the independence of Krylov iterations 
on the mesh refinement is achieved by using the Schur complement approximations S̃γ P C D and S̃γ L SC in PM AL , which 
is also observed in Section 4.1. Contrary to the observations in Section 4.1, the original Schur complement approximation 
S̃γ orig does not result in the mesh independence of Krylov iterations at Re = 103. With the utilization of S̃γ S I M P LE the 
number of Krylov iterations is dependent of the grid size at both Re = 102 and 103.

Results in Table 5 show that the smallest number of Krylov iterations is obtained by using S̃γ L SC in PM AL , which also 
results in the minimal total costs in Table 6. The total costs are calculated by using the same method as Section 4.2. Taking 
the mesh independence into account, the utilization of S̃γ L SC will lead to a further reduction of total costs on finer grids 
over S̃γ S I M P LE and S̃γ orig, which require more iterations with mesh refinement. Compared to S̃γ P C D which also results 
in the mesh independence of Krylov iterations, the application of S̃γ L SC reduces the total computational costs at least two 
times on the FP and BFS cases, and this reduction factor can also be expected on finer grids. On the LDC case S̃γ L SC is 
equally efficient as S̃γ P C D .

For the tests at Re = 103 it shows that S̃γ L SC is superior to the other Schur complement approximations by the re-
duction of Krylov iterations and total computational costs. In the previous tests with Re = 102, the superiority of S̃γ orig is 
seen. This implies that the optimal Schur complement approximation depends on the Reynolds number.

4.3. On moderate Reynolds number and stretched grid

This subsection is meant to investigate the influence of mesh anisotropy on the performance of the modified AL pre-
conditioner PM AL . To compare with Section 4.2, we apply the stretched grid and moderate Reynolds number Re = 103 on 
the FP and LDC cases. The number of Krylov iterations and total computational costs are presented in Table 7 and Table 8, 
respectively. From Table 7 we note that only S̃γ P C D results in the mesh independence and the minimal number of Krylov 
iterations. Although the total costs of applying ̃Sγ P C D are more than that by using ̃Sγ S I M P LE and ̃Sγ orig on the considered 
finest grid, as seen from Table 8, fewer costs in total by using S̃γ P C D can be expected on finer grids due to the mesh in-
dependence. Therefore, we think that S̃γ P C D is superior to the other Schur complement approximations on the tests with 
Re = 103 and stretched grid.

Note that on the FP and LDC cases with stretched grid, PM AL with S̃γ L SC is not mesh independent any more and 
performs the worst. This is contrary to the observations with uniform Cartesian grid seen in Section 4.2. Considering the 
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Fig. 1. FP and Re = 102: plot of eigenvalues of the preconditioned matrices S̃−1
γ Sγ at the uniform Cartesian grid with 12 × 25 · 25 cells.

Table 5
Re = 103 and uniform grid: the number of GMRES iterations to solve the transformed system with Aγ precon-
ditioned by PM AL with different Schur complement approximations and the optimal value of γ in parentheses.

S̃γ P C D S̃γ L SC S̃γ S I M P LE S̃γ orig

FP case:
n = 5 54(8.e-3) 29(8.e-3) 34(2.e-2) 76(6.e-2)
n = 6 55(8.e-3) 18(8.e-3) 51(2.e-2) 90(6.e-2)
n = 7 56(8.e-3) 17(8.e-3) 99(2.e-2) 95(6.e-2)

BFS case:
n = 5 66(4.e-3) 45(3.e-3) 49(1.e-2) 71(3.e-2)
n = 6 63(4.e-3) 27(3.e-3) 77(1.e-2) 76(3.e-2)
n = 7 65(3.e-3) 29(3.e-3) 142(1.e-2) 84(3.e-2)

LDC case:
n = 6 30(4.e-3) 54(1.e-3) 66(7.e-3) 36(2.e-2)
n = 7 28(4.e-3) 29(4.e-3) 52(1.e-2) 42(2.e-2)
n = 8 29(4.e-3) 29(4.e-3) 85(1.e-2) 48(2.e-2)

FP case as an example, on the finest stretched grid of n = 7 the number of Krylov iterations preconditioned by PM AL with 
S̃γ L SC increases by a factor about 7 compared to the finest uniform grid. This can be seen by comparing the corresponding 
results in Table 5 and Table 7. The less efficiency of PM AL with ̃Sγ L SC arising from the mesh anisotropy is also seen on the 
LDC case. On the other hand, the number of Krylov iterations preconditioned by PM AL with the other Schur complement 
approximations seems robust with respect to mesh anisotropy on the FP and LDC cases.
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Table 6
Re = 103 and uniform grid: the total costs of applying PM AL with different Schur complement approximations 
on the finest uniform Cartesian grid.

S̃γ P C D S̃γ L SC S̃γ S I M P LE S̃γ orig

FP case: 112 34 99 95
BFS case: 130 58 142 84
LDC case: 58 58 85 48

Table 7
Re = 103 and stretched grid: the number of GMRES iterations to solve the transformed system with Aγ precon-
ditioned by PM AL with different Schur complement approximations and the optimal value of γ in parentheses.

S̃γ P C D S̃γ L SC S̃γ S I M P LE S̃γ orig

FP case:
n = 5 59(8.e-3) 90(7.e-3) 37(2.e-2) 69(6.e-2)
n = 6 66(8.e-3) 89(7.e-3) 63(2.e-2) 85(6.e-2)
n = 7 62(8.e-3) 117(6.e-3) 119(2.e-2) 92(6.e-2)

LDC case:
n = 6 65(2.e-3) 98(2.e-3) 57(7.e-3) 69(1.e-2)
n = 7 41(2.e-3) 58(2.e-3) 46(7.e-3) 40(1.e-2)
n = 8 38(2.e-3) 84(2.e-3) 75(7.e-3) 54(1.e-2)

Table 8
Re = 103 and stretched grid: the total costs of applying PM AL with different Schur complement approximations 
on the finest stretched grid.

S̃γ P C D S̃γ L SC S̃γ S I M P LE S̃γ orig

FP case: 124 234 119 92
LDC case: 76 168 75 54

Fig. 2. FP and Re = 103: plot of eigenvalues of the preconditioned matrices S̃−1
γ L SC Sγ at the uniform and stretched grids with 12 × 25 · 25 cells.

The less efficiency of S̃γ L SC on the stretched grid can be explained by the results in Fig. 2, where we consider the FP 
case at Re = 103 and plot the eigenvalues of the preconditioned matrix S̃−1

γ L SC Sγ for both uniform and stretched grids. As 
seen from Fig. 2, stretching the grid considerably spreads the distribution of the eigenvalues of the preconditioned Schur 
complement S̃−1

γ L SC Sγ , which makes the convergence of the Krylov subspace solver more difficult.

4.4. On large Reynolds number and stretched grid

In this subsection we apply large Reynolds numbers Re ≥ 104 and stretched grids on the LDC and FP cases. Results in 
Table 9 and Table 10 illustrate that the fastest convergence rate of the Krylov subspace solver and the minimal computational 
costs in total are achieved by using S̃γ S I M P LE in PM AL on the two tests. Taking the FP case at Re = 104 as an example, 
from Table 10 we see that the utilization of S̃γ S I M P LE reduces the total costs at least two times with respect to the other 
Schur approximations. The reduction factor turns to five at least when applying an even larger Reynolds number Re = 105
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Table 9
Re = 104 and stretched grid: the number of GMRES iterations to solve the transformed system with Aγ precon-
ditioned by PM AL with different Schur complement approximations and the optimal value of γ in parentheses.

S̃γ P C D S̃γ L SC S̃γ S I M P LE S̃γ orig

FP case:
n = 5 363(8.e-4) 369(6.e-4) 35(2.e-3) 93(1.e-2)
n = 6 334(8.e-4) 336(6.e-4) 53(3.e-3) 128(2.e-2)
n = 7 346(8.e-4) 374(6.e-4) 83(4.e-3) 192(2.e-2)

LDC case:
n = 6 113(3.e-4) 97(2.e-4) 34(1.e-3) 46(5.e-3)
n = 7 143(3.e-4) 235(2.e-4) 45(1.e-3) 65(5.e-3)
n = 8 159(4.e-4) 309(2.e-4) 80(2.e-3) 106(5.e-3)

Table 10
Re = 104 and stretched grid: the total costs of applying PM AL with different Schur complement approximations 
on the finest stretched grid.

S̃γ P C D S̃γ L SC S̃γ S I M P LE S̃γ orig

FP case: 692 748 83 192
LDC case: 318 618 80 106

Table 11
FP and Re = 105: the number of GMRES iterations and total costs to solve the transformed system with Aγ

preconditioned by PM AL with different Schur complement approximations and the optimal value of γ in paren-
theses. The stretched grid is applied.

S̃γ P C D S̃γ L SC S̃γ S I M P LE S̃γ orig

iterations:
n = 5 1000+ 1000+ 26(1.e-4) 136(1.e-3)
n = 6 1000+ 1000+ 35(2.e-4) 192(2.e-3)
n = 7 1000+ 1000+ 58(3.e-4) 310(2.e-3)

total costs:
n = 7 2000+ 2000+ 58 310

on the FP case, which is seen from Table 11. In the context of large Reynolds numbers, it appears that S̃γ S I M P LE is the 
optimal Schur complement approximation in the modified AL preconditioner PM AL . In contrast to the previous tests, at large 
Reynolds numbers none of the considered Schur complement approximations lead to the mesh independence of PM AL . The 
advantage of S̃γ S I M P LE on finer grids needs a further assessment, which is included in future research.

To investigate the effect of the Reynolds number, we take the FP case as an example and in Fig. 3 plot the number 
of Krylov iterations preconditioned by PM AL at varying Reynolds numbers. It appears that only S̃γ S I M P LE results in the 
robustness of PM AL with respect to the Reynolds number. To understand the reasons, we compute the extremal eigenvalues 
of the preconditioned Schur complement matrix S̃−1

γ Sγ and present them in Table 12. Rmin and Rmax denote the smallest 
and largest real parts of the eigenvalues and Imax corresponds the largest imaginary part. These extremal values correspond 
to the boundaries of the rectangular domain containing all eigenvalues. Regarding S̃−1

γ S I M P LE Sγ , the values of Rmin slightly 
decrease and remain the same order of magnitude. Together with the decrease of Rmax/Rmin and Imax , the eigenvalues are 
further clustered. However, fewer clustered eigenvalues are yielded by using the other Schur complement approximations. 
This explains the robustness of PM AL with S̃γ S I M P LE with respect to the Reynolds number.

To investigate the computed solutions at large Reynolds numbers, we choose the FP case. In the inviscid limit Re → ∞
the solution is simply ux = 1, u y = 0 and p = constant . Since the shear boundary layer is of width proportional to 

√
ν and 

within the layer the horizontal velocity increases rapidly from zero to unity, the plate seems “invisible” as Re → ∞ [1]. 
To check this feature, in Fig. 4 we illustrate the calculated pressure and equally spaced contours of the horizontal velocity 
between 0 and 0.95 at different Reynolds numbers. The stretched grid with 12 × 26 · 26 cells is utilized. At Re = 103, the 
counters of the horizontal velocity show the evolution of the boundary layer as the fluid passing from the leading edge of 
the plate to the outflow. The parabolic shape of the velocity contours seems consistent with asymptotic theory [39] and 
the reported results in [1]. When increasing the Reynolds numbers to Re = 105, we see that the plate “disappears” and the 
difference between the pressure values decreases by one order of magnitude compared to the case of Re = 103. Results in 
Fig. 4 demonstrate that the computed solutions, ranging from the moderate to large Reynolds numbers, seem reasonable.

4.5. Summary of the Schur complement approximations in PM AL

Based on the above four classes of numerical evaluations, in Table 13 we summarize the optimal Schur complement 
approximation in the modified AL preconditioner PM AL . It shows that the optimal Schur complement approximation, which 
leads to the fastest convergence rate of the Krylov subspace solver, depends on the Reynolds number and mesh anisotropy. 
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Fig. 3. FP and stretched grid: plot of the number of GMRES iterations preconditioned by PM AL at varying Reynolds numbers.

At every class of evaluations, the optimal Schur complement approximation is problem independent. Numerical evaluations 
in this paper show that ̃Sγ orig is suitable for the calculations with small Reynolds numbers and ̃Sγ S I M P LE delivers a better 
performance for large Reynolds numbers due to its Reynolds robustness. In the context of moderate Reynolds numbers, 
S̃γ L SC is more efficient with uniform grids but sensitive to mesh anisotropy. When stretched grids are employed, S̃γ P C D

turns out to be the optimal choice in the moderate Reynolds number context. Except the calculations at small Reynolds 
numbers and uniform grids, the optimal Schur complement approximations on other classes of tests are derived from the 
new method S̃γ new proposed in this paper. This demonstrates the advantage of the new approach over the traditional one 
S̃γ orig. The mesh independence of Krylov iterations is not achieved by using the optimal Schur complement approximation 
only for the class of tests with large Reynolds numbers. The reason and possible improvement on this issue are to be 
considered in future research.

4.6. Comparison between PM AL and PU .

To apply the modified AL preconditioner PM AL , one needs to transform the original system (2) to an equivalent one 
(13) with the coefficient matrix Aγ . This transformation consumes additional costs. Furthermore, at each Krylov iteration 
extra costs arise from the product of Aγ with a Krylov residual vector due to more fill-in in Aγ [13]. In this sense, the 
heavier complexities of PM AL could be payed off only by a reduced number of Krylov iterations, compared to the block 
upper-triangular preconditioner PU applied to the original system. In this section, we consider the comparisons between 
PM AL and PU on the LDC and FP cases at the large Reynolds number Re = 104 and stretched grid which represent stiff 
tests on the considered preconditioners.

It is revealed in Section 4.4 that S̃γ S I M P LE turns out to be the most efficient Schur complement approximation for the 
modified AL preconditioner PM AL in this class of evaluations. Therefore, the comparison is carried out between PM AL with 
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Fig. 4. FP and stretched grid: plot of the calculated pressure unknown (left) and contours of the horizontal velocity between 0 and 0.95 (right) at different 
Reynolds numbers.
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Table 12
FP and stretched grid: the extremal eigenvalues of the preconditioned Schur complement S̃−1

γ Sγ at varying 
Reynolds numbers. The stretched grid with 12 × 25 · 25 cells is used. Rmin and Rmax denote the smallest and 
largest real parts of the eigenvalues and Imax corresponds the largest imaginary part.

Re = 102 Re = 103 Re = 104 Re = 105

S̃−1
γ P C D Sγ

Rmin 0.2062 0.1283 0.1129 0.1992
Rmax 2.3315 4.2868e+1 4.1574e+2 1.3059e+3
Rmax/Rmin 1.1621e+1 3.3412e+2 3.6824e+3 6.5557e+3
Imax 0.2567 1.2106 1.1109e+1 1.2598e+2

S̃−1
γ L SC Sγ

Rmin 0.2537 0.2530 0.8865 0.5652
Rmax 2.1509e+1 1.0623e+1 1.0973e+1 1.1309e+2
Rmax/Rmin 8.4782e+1 4.1991e+1 1.2378e+1 2.0009e+2
Imax 2.2301e+1 4.6429 4.6264e+1 8.8363e+2

S̃−1
γ S I M P LE Sγ

Rmin 0.6714 0.4075 0.1949 0.1541
Rmax 2.9729e+1 9.8786 3.1976 1.4942
Rmax/Rmin 4.4280e+1 2.4241e+1 1.6406e+1 9.6963
Imax 5.3308 1.0578 0.1630 0.1755

S̃−1
γ orig Sγ

Rmin 0.161e-1 0.167e-1 0.3423e-2 0.1315e-3
Rmax 0.8000 0.9231 0.9524 0.9524
Rmax/Rmin 4.9689e+1 5.5275e+1 2.8011e+2 7.2382e+3
Imax 0.1081 0.2458 0.3078 0.3404

Table 13
The optimal Schur complement approximation S̃γ opt in the modified AL preconditioner on varying classes of 
evaluations.

Class of evaluations S̃γ opt Mesh independence Problem independence

Re = 102 and uniform grid S̃γ orig Yes Yes
Re = 103 and uniform grid S̃γ L SC Yes Yes
Re = 103 and stretched grid S̃γ P C D Yes Yes
Re ≥ 104 and stretched grid S̃γ S I M P LE No Yes

Table 14
Re = 104 and stretched grid: the number of GMRES iterations to solve the transformed system with Aγ precon-
ditioned by PM AL and the number of GMRES iterations to solve the original system with A preconditioned by 
PU .

PM AL for Aγ PU for A
S̃γ S I M P LE S̃ P C D S̃ L SC S̃ S I M P LE

LDC case:
n = 6 34(1.e-3) 130 147 83
n = 7 45(1.e-3) 246 307 119
n = 8 80(2.e-3) 364 560 182

FP case:
n = 5 35(2.e-3) 879 661 62
n = 6 53(3.e-3) 1000+ 599 122
n = 7 83(4.e-3) 1000+ 809 229

S̃γ S I M P LE and PU and presented in Table 14. As seen, fewer iterations are needed when applying PM AL with S̃γ S I M P LE . 
Considering the LDC case on the finest grid, the application of PM AL with ̃Sγ S I M P LE reduces the number of Krylov iterations 
by a factor about four, seven and two, compared to that by using PU with ̃S P C D , ̃SL SC and ̃S S I M P LE , respectively. On the FP 
case, a further reduction of Krylov iterations is obtained by using PM AL with S̃γ S I M P LE . One direction of future research is 
to verify whether the reduced number of Krylov iterations could convert to the advantage of PM AL with ̃Sγ S I M P LE in terms 
of the total computational costs.

5. Conclusion and future work

In this paper we introduce three variants based on the new method to approximate the Schur complement for the AL 
preconditioner. To evaluate their performance, we classify the numerical experiments to four categories according to the 
Reynolds number and mesh anisotropy. At every class of evaluations we consider different test problems. The optimal Schur 
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complement approximation for every class of tests is determined and given in Table 13. It is seen that the most efficient 
Schur complement approximation is dependent of the Reynolds number and mesh anisotropy, but problem independent. 
Furthermore, we find out that, except the experiments at Re = 102 and uniform grid, the optimal Schur complement ap-
proximations on the other three classes of tests are the variants derived from the new method to approximate the Schur 
complement in the modified AL preconditioner. This demonstrates the advantage of the new approach over the traditional 
Schur complement approximation.

In this paper we observe that for large Reynolds numbers Re ≥ 104 none of the considered Schur complement approx-
imations can make the modified AL preconditioner independent of the grid size. One planned future research is on the 
improvement which allows the mesh independence. Another direction of future work is to evaluate whether the advantage 
of the modified AL preconditioner by the reduced number of Krylov iterations, which is shown in this paper, can convert to 
the wall-clock time benefit with respect to the preconditioner applied to the original system.
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