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Abstract

A conservative finite-volume framework, based on a collocated variable arrangement, for the simulation of
flows at all speeds, applicable to incompressible, ideal-gas and real-gas fluids is proposed in conjunction with
a fully-coupled pressure-based algorithm. The applied conservative discretisation and implementation of the
governing conservation laws as well as the definition of the fluxes using a momentum-weighted interpolation
are identical for incompressible and compressible fluids, and are suitable for complex geometries represented
by unstructured meshes. Incompressible fluids are described by predefined constant fluid properties, while
the properties of compressible fluids are described by the Noble-Abel-stiffened-gas model, with the definitions
of density and specific static enthalpy of both incompressible and compressible fluids combined in a unified
thermodynamic closure model. The discretised governing conservation laws are solved in a single linear system
of equations for pressure, velocity and temperature. Together, the conservative finite-volume discretisation,
the unified thermodynamic closure model and the pressure-based algorithm yield a conceptually simple, but
versatile, numerical framework. The proposed numerical framework is validated thoroughly using a broad variety
of test-cases, with Mach numbers ranging from 0 to 239, including viscous flows of incompressible fluids as well
as the propagation of acoustic waves and transiently evolving supersonic flows with shock waves in ideal-gas
and real-gas fluids. These results demonstrate the accuracy, robustness and the convergence, as well as the
conservation of mass and energy, of the numerical framework for flows of incompressible and compressible fluids
at all speeds, on structured and unstructured meshes. In particular, the precise recovery of a divergence-free
velocity field in the incompressible limit, the accurate prediction of acoustic waves, and the convergence to
the correct weak solution for strong shock waves with the same finite-volume discretisation and pressure-based
algorithm are important features of the proposed numerical framework.

Keywords: Finite-volume methods, Pressure-based algorithms, Flows at all speeds, Compressible fluids,
Incompressible fluids, Unstructured meshes

c© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.
http://creativecommons.org/licenses/by-nc-nd/4.0/

1. Introduction

Since the seminal work of Harlow and Amsden [1, 2], the formulation of numerical algorithms that can be
applied for fluid flows at any speed is a central quest in computational fluid dynamics (CFD). Yet, despite
extensive research efforts over the past 50 years, the development of numerical methods and algorithms that
are able to provide an accurate and robust prediction of the behaviour of fluids with different compressibility
and of fluid flows at all speeds has proven difficult. Although the flow of any fluid and at any speed is described
by the governing equations describing the conservation of mass, momentum and energy, different modelling
assumptions with respect to the compressibility of the fluid and the different physical mechanisms dominating
at different flow speeds yield dissimilar mathematical characteristics of the governing equations. This in turn
leads to distinct and often contrasting numerical requirements.

When developing numerical methods for flows at all speeds, it is important to recognise the numerical
implications associated with the flow speed U , represented by the Mach number M = U/a, where a =

√
1/(ρβs)

is the speed of sound, and with the isentropic compressibility of the fluid, βs = {dρ/(ρdp)}s, that relates changes
in pressure p and density ρ of a fluid at constant entropy. While pressure and density are strongly coupled
for large flow speeds (M > 0.1), in particular for supersonic flows (M > 1), the pressure-density coupling
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diminishes at low Mach numbers and vanishes for M → 0, where dρ → 0. Founded on the observation that
density changes are small at small speeds, a common assumption when modelling fluid flows is that the fluid is
incompressible, with a constant density (dρ = 0) along the fluid particle trajectories and, consequently, βs = 0.
Hence, pressure waves propagate with infinite speed (a→∞) in incompressible fluids, contrary to compressible
fluids where βs > 0 and 0 < a < ∞. In fact, the convergence of solutions of the governing equations of the
flow of compressible fluids to the governing equations of the flow of incompressible fluids for M → 0 has been
proven rigorously by Klainerman and Majda [3] and Hoff [4]. In addition to the governing conservation laws,
compressible fluids require a thermodynamic closure model that describes the relationship between density,
pressure and energy. The ideal-gas model represents the most simple and most widely used thermodynamic
closure model, with p ∝ (ρ, T ), where T is the temperature. More complex formulations, so-called real-gas
models, further include the effects of intermolecular repulsion [5], intermolecular attraction [6, 7] or both [8, 9],
or other material properties, e.g. the acentric factor describing the shape of the molecules [10, 11]. For an
incompressible fluid, however, no closure model is required, since the density is not coupled to pressure, and an
isothermal flow of an incompressible fluid is fully described only by the momentum and continuity equations,
i.e. the energy equation becomes redundant.

The challenge in developing numerical frameworks that are applicable to incompressible fluids and compress-
ible fluids at all flow speeds is, therefore, to construct a numerical method that combines a unified thermody-
namic closure model, a uniform set of interpolation functions, a consistent handling of the incompressible limit,
shock capturing capabilities, a method to advect the solution that is applicable in all speed regimes, as well as
a set of solution variables that are physically meaningful for incompressible and compressible fluids [12].

The choice of solution variables is of particular importance in constructing a numerical method that is
applicable to flows at all speeds, since a unified algorithm is predicated on a single set of solution variables
[12]. Choosing the conserved variables, i.e. density, momentum and total energy, as solution variables for the
continuity, momentum and energy equations, respectively, is desirable for compressible fluids at sufficiently
large speeds (M > 0.1). However, the continuity equation is not effective as a transport equation for density
in the incompressible limit, because dρ → 0, and, instead, becomes a constraint on the velocity field with
∇ · u → 0 [13]. An attractive choice of the solution variables for numerical algorithms applicable to predict
flows at all speeds is, therefore, the primitive variables including pressure [6, 12, 14, 15], i.e. pressure, velocity
and temperature. Using pressure as a solution variable, the vanishing density differences in the incompressible
limit do not pose a problem and the pressure acts as a Lagrange multiplier that enforces ∇ · u → 0 [16–18].
Conveniently, choosing primitive variables as solution variables still allows to discretise the governing equations
in conservative form [19]. In practice, however, achieving accurate conservation of mass and energy, constructing
robust shock capturing schemes and ensuring a stable numerical solution in the transonic regime has proven
difficult in the context of primitive variables [20, 21]. It is, therefore, convenient to develop numerical algorithms
either for incompressible fluids or for compressible fluids, which has led to two primary classes of algorithms:
pressure-based algorithms and density-based algorithms.

Pressure-based algorithms, in which the continuity equation serves as an equation for pressure, while density
is constant (incompressible fluid) or evaluated explicitly using an equation of state (compressible fluid), may be
used to predict flows at all speeds, see e.g. [14, 15, 22–33]. For both incompressible and compressible fluids, the
majority of pressure-based algorithms are founded on pressure-correction methods, such as projection methods
[34, 35], the SIMPLE method [36, 37] and its subsequent derivatives, or the PISO method [38, 39]. However,
the weak coupling between density, pressure, velocity and energy of the discretised governing equations as a
result of the iterative predictor-corrector solution procedure, which usually necessitates underrelaxation of the
discretised equations to reach a converged solution, is a key shortcoming of segregated methods [31, 40]. This
has motivated the development of coupled algorithms, where the discretised governing equations are solved
in a single linear system of equations, for both incompressible fluids [30, 32, 41, 42] and compressible fluids
[14, 15, 24, 31, 33, 43], showing great potential in terms of versatility, robustness and performance in all speed
regimes. For instance, Darwish et al. [30] demonstrated substantial performance benefits for incompressible
flows compared to pressure-correction methods and Denner et al. [44] reported robust results for flows with
Mach numbers ranging from 0.001 to 100 with a fully-coupled pressure-based algorithm.

Contemporary numerical methods for the simulation of compressible flows are typically predicated on density-
based algorithms, e.g. [45–47], where the conserved quantities are chosen as solution variables for the governing
conservation equations and, in particular, the continuity equation serves as an equation for density. While
density-based algorithms are naturally suited for compressible flows, they are poorly suited for low-Mach number
flows [21, 48], where the coupling of pressure and density vanishes. Although density-based algorithms have
been applied to low-Mach number flows with some success, this requires pre-conditioning techniques [47, 49–52]
that are computationally very expensive, especially for transient problems, and the success of which is typically
determined, at least in parts, by predefined constants [49, 53]. In order to improve the performance for low Mach
number flows, recent work has been focusing on combining density-based methods with segregated pressure-
correction algorithms [54–58] and/or reformulating the energy equation as an equation for pressure [55, 59–62].
These density-based algorithms have been applied successfully to a wide range of flows, including flows ranging
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from an incompressible flow to the propagation of strong shock waves, stationary and high-speed discontinuous
waves as well as the propagation of linear acoustic waves [54, 56, 59, 63].

An important aspect for the design of numerical frameworks for fluid flows at all speeds is that pressure
plays an important role in all Mach number regimes [22, 64]; pressure changes are, contrary to density changes,
always finite. Exploiting this versatile role of pressure by including pressure as a primary solution variable in
the numerical framework, thus, provides a seemingly distinct advantage for applications in all Mach number
regimes: it provides a solution variable, i.e. pressure, which is meaningful in all Mach number regimes and
does not require particular pre-conditioning techniques. This is further supported by the analysis of Hauke and
Hughes [12], who identified the primitive variables (pressure, velocity and temperature) as particularly suitable
solution variables to predict flows at all speeds. Remarkably, all of the numerical methods that stand out with
respect to modelling fluid flows at all speeds, due to their versatility and robustness, incorporate the unique
role of pressure, albeit in different ways. In pressure-based algorithms, the special role of pressure can be taken
into account through an appropriate linearisation of the discretised continuity equation [19, 22, 33, 48]: for
compressible flows, the continuity equations serves as a transport equation for density, with density formulated
as a function of pressure by an equation of state, whereas for incompressible flows, the continuity equation
serves as a constraint on the divergence of the velocity field [43], with pressure acting as a Lagrange multiplier.
The extension of density-based algorithms to low Mach numbers, either by introducing a pressure-Poisson
equation [54, 56] or by reformulating the energy equation as an equation for pressure [55, 59, 60], provides
a pressure-velocity coupling at low speeds and enforces a divergence-free velocity field in the incompressible
limit. However, despite the broad variety of numerical methods able to simulate flows at all speeds, a numerical
framework based on a unified conservative discretisation that is able to incorporate incompressible fluids as well
as ideal-gas and real-gas compressible fluids, and which can predict flows at all speeds accurately and robustly,
including low-Mach acoustics, Riemann problems and multidimensional flows ranging from the incompressible
limit to supersonic flow, has not been presented in the literature yet.

In this article, a conservative, collocated, finite-volume framework in combination with a fully-coupled
pressure-based algorithm for flows of incompressible, ideal-gas and real-gas fluids at all Mach numbers is pro-
posed. The governing equations describing the conservation of continuity, momentum and energy are discretised
using standard finite-volume methods and are solved for pressure, velocity and temperature in a single linear sys-
tem of equations. Incompressible fluids are described by predefined constant fluid properties, while compressible
fluids are described by the Noble-Abel-stiffened-gas model [9], with the definitions of density and specific static
enthalpy of both incompressible and compressible fluids combined in a unified thermodynamic closure model.
This enables the design of a conceptually simple, but versatile, numerical algorithm that is able to predict flows
of incompressible fluids as well as flows of compressible fluids at all speeds. The conservative discretisation and
implementation of the governing equations are identical for incompressible and compressible fluids, employing
a single definition of the fluxes based on a momentum-weighted interpolation [65]. A broad variety of repre-
sentative test-cases featuring flows of incompressible and compressible fluids in all Mach number regimes are
considered to scrutinise and validate the proposed numerical framework: the propagation of acoustic waves,
contact discontinuities and shock waves, shock tubes in different Mach number regimes, Taylor vortices in an
inviscid fluid, diffusion-dominated problems, a lid-driven cavity, supersonic flow over a forward-facing step, and
Stokes flow around a rotating sphere. The presented results demonstrate the accuracy and robustness, as well
as the conservation and convergence properties, of the numerical framework for all flow speeds on structured
and unstructured meshes. In particular, the precise recovery of a divergence-free velocity field for M → 0, the
accurate prediction of acoustic waves and the convergence to the correct weak solution for M � 1 are important
features of the proposed numerical framework. As such, the proposed numerical framework stands out for the
simplicity of its discretisation in conjunction with the broad range of flows that can be predicted accurately and
robustly.

The governing equations are introduced in Section 2. Subsequently, the three main building blocks of the
proposed finite-volume method are presented: a unified thermodynamic closure model in Section 3, the finite-
volume discretisation in Section 4, and the pressure-based algorithm used to solve the discretised governing
equations in Section 5. The results of representative test-cases are presented and discussed in Section 6. The
article is summarised and concluded in Section 7.

2. Governing equations

The conservation laws governing fluid flows at all speeds, applicable to both incompressible and compressible
flows, formulated in a Cartesian coordinate system, are the conservation of mass

∂ρ

∂t
+
∂ρui
∂xi

= 0, (1)

the conservation of momentum
∂ρuj
∂t

+
∂ρuiuj
∂xi

= − ∂p

∂xj
+
∂τji
∂xi

, (2)
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and the conservation of energy

∂ρh

∂t
+
∂ρuih

∂xi
=
∂p

∂t
− ∂qi
∂xi

+
∂

∂xj
(τji ui) , (3)

where t is time, u is the velocity vector, p is pressure, ρ is the density of the fluid and h = hs + u2/2 is the
specific total enthalpy, with hs the specific static enthalpy. The stress tensor τ for the considered Newtonian
fluids is given as

τji = µ

(
∂uj
∂xi

+
∂ui
∂xj

)
− 2

3
µ
∂uk
∂xk

δij , (4)

where µ is the dynamic viscosity of the fluid. Heat conduction is modelled by Fourier’s law,

qi = −k ∂T
∂xi

, (5)

where k is the thermal conductivity of the fluid and T is the temperature.
The enthalpy formulation is chosen for the energy equation, rather than the more common internal energy

formulation, because it leads to a straightforward application in the numerical algorithm, since the transient
pressure term on the right-hand side of Eq. (3) does not require linearisation [33, 58]. The governing conservation
laws require closure through an appropriate model that defines the thermodynamic properties (see Section 3).

3. Thermodynamic closures

In order to close the governing conservation laws presented in Section 2, the thermodynamic properties of
the fluid have to be defined. In the proposed formulation, this is achieved by defining the density ρ and the
specific static enthalpy

hs = cp T + e∗, (6)

where cp is the specific isobaric heat capacity and e∗ is the specific residual energy, through a set of input
quantities (ρ0, cv, cp, Π, b). This approach enables the formulation of a unified thermodynamic closure for
incompressible, ideal-gas and real-gas fluids, which facilitates a straightforward finite-volume discretisation that
is applicable for incompressible flows as well as compressible flows in all Mach number regimes.

An incompressible fluid is characterised by a constant density, with dρ = 0, defined as

ρ = ρ0. (7)

The specific isobaric heat capacity cp is assumed to be constant for incompressible fluids and the specific residual
energy is e∗ = 0. The speed of sound for an incompressible fluid is given as

a =

√(
dp

dρ

)
s

→∞, (8)

with subscript s denoting constant entropy.
The Noble-Abel-stiffened-gas (NASG) model, originally proposed by Le Métayer and Saurel [9], is chosen

to represent ideal and real gases. The NASG model is a combination of the stiffened-gas model [6, 66] and the
Noble-Abel-gas model (also called co-volume gas model) [5], with the motivation of defining a simple gas model
that accounts for molecular attraction and repulsion. The thermal and caloric equations of state of the NASG
model are given as [9]

p(v, T ) = (γ − 1)
cv T

v − b
−Π (9)

p(v, e) = (γ − 1)
e− e0

v − b
− γΠ, (10)

respectively, where γ = cp/cv is the heat capacity ratio, cv is the specific isochoric heat capacity, v = 1/ρ is the
specific volume, e is the specific internal energy and e0 is the specific reference energy. The pressure constant
Π represents attraction between molecules and is typically relevant for condensed phases, e.g. to model liquids,
while the co-volume b accounts for the volume occupied by the individual molecules of the fluid. The density is
given by rearranging Eq. (9) as

ρ =
p+ Π

(γ − 1) cv T + b (p+ Π)
, (11)

and the specific total enthalpy, h = hs + u2/2, follows from Eqs. (6), (9) and (10) as

h = cp T + e∗ +
u2

2
, (12)

4



with specific residual energy
e∗ = b p+ e0. (13)

In the following, the specific reference energy is assumed to be e0 = 0, because only single-phase flows without
phase transition and reactions are considered. The specific heat capacities cv and cp are constant and the speed
of sound is [9]

a =

√
γ

p+ Π

ρ (1− b ρ)
. (14)

Contrary to the van der Waals gas model, which also accounts for molecular attraction and repulsion, the
coefficients Π and b are constant; the NASG model thus represents these molecular interactions in the simplest
possible form. Furthermore, the NASG model is, unlike, for instance, the van der Waals gas model, uncondi-
tionally convex. With respect to liquids, such as water, the NASG model resolves the inaccuracy of specific
heat capacities resulting from applying the classical stiffened-gas model [9]. The NASG model reduces to the
ideal-gas (IG) model for Π = 0 and b = 0, to the Noble-Abel (NA) gas model for Π = 0 and b > 0, and to the
stiffened-gas (SG) model for Π > 0 and b = 0.

In order to incorporate incompressible and compressible fluids in the same numerical framework, the defini-
tions for the density ρ and the specific residual energy e∗ are unified by the binary operators C and I = 1− C.
The binary operator C, given as

C =

{
0 , for incompressible fluids

1 , for compressible fluids
(15)

is used as a coefficient for the compressible part and, analogously, the binary operator I is used as a coefficient
for the incompressible part of the unified closure model. The density of the fluid is then defined, based on
Eqs. (7) and (11), as

ρ = C
[

p+ Π

(γ − 1) cv T + b (p+ Π)

]
+ I ρ0, (16)

and the specific residual energy is given based on Eq. (13), and assuming e0 = 0, as

e∗ = C b p. (17)

The type of fluid considered in a simulation can be simply specified through the binary operator C, without
changes to the thermodynamic closure model or the discretisation of the governing equations. An incompressible
fluid (C = 0) is, thereby, fully defined by setting ρ0 and cp, while a compressible fluid (C = 1) is defined by
setting cv, cp, Π and b.

4. Finite-volume discretisation

The proposed numerical framework is founded on a collocated finite-volume discretisation, which is based
on the integral formulation of the governing conservation laws, for unstructured meshes. Taking the convection-
diffusion equation for the transport of a general flow variable, φ, as an example, given as

∂ρφ

∂t
+
∂ρuiφ

∂xi
=

∂

∂xi

(
Γφ

∂φ

∂xi

)
, (18)

where Γφ is the diffusion coefficient of φ, its integral form with respect to control volume V is given as

˚
V

∂ρφ

∂t
dV +

˚
V

∂ρuiφ

∂xi
dV =

˚
V

∂

∂xi

(
Γφ

∂φ

∂xi

)
dV. (19)

The discretisation of each individual term is discussed in the following.

4.1. Gradient evaluation

The spatial gradient at cell centre P is evaluated using the divergence theorem, given as

∂φ

∂xi

∣∣∣∣
P

≈ 1

VP

∑
f

φf ni,f Af , (20)

where f denotes the faces bounding cell P , VP is the volume of cell P , nf is the normal vector of face f pointing
outwards with respect to cell P , and Af is the area of face f . The face value φf is interpolated from the adjacent
cell centres P and Q, schematically illustrated in Fig. 1a, as

φf = (1− lPf )φP + lPf φQ + ri,f
∂φ

∂xi

∣∣∣∣
f

, (21)
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sf

nf

P

Q

f

f ′
rf

(a) General discretisation

u

U

D

f

(b) TVD differencing

Figure 1: Schematic illustration of (a) cell P with its neighbour cell Q and the shared face f , where nf is the unit normal vector
of face f and sf is the unit vector connecting cell centres P and Q (both outward pointing with respect to cell P ), with f ′ the
interpolation point associated with face f and rf the vector from interpolation point f ′ to face centre f , and (b) upwind cell U
and downwind cell D of face f , where u represents the velocity vector.

where lPf is the inverse-distance weighting coefficient,

lPf =
|rPf |
∆sf

, (22)

with ∆sf the distance between cell centres P and Q, and rPf is the vector connecting cell centre P with face
interpolation point f ′. A formally second-order accurate gradient-based correction of mesh-skewness [25, 67] is
included in Eq. (21), with rf the vector connecting the interpolation point f ′ of the face with face centre f on
meshes with skewness, see Fig. 1a.

4.2. Transient terms

The First-Order Backward Euler scheme, also widely known as BDF1 scheme, and the Second-Order Back-
ward Euler scheme, also widely known as BDF2 scheme, are used to discretise the transient terms of the
governing flow equations. The transient term of the transport equation (19), with Φ = ρφ, is given for cell P
discretised with the First-Order Backward Euler scheme as

˚
V

∂Φ

∂t
dV ≈

ΦP − Φ
(t−∆t1)
P

∆t1
VP +O(∆t1), (23)

and discretised with the Second-Order Backward Euler scheme as [68]

˚
V

∂Φ

∂t
dV ≈

[(
1

∆t1
+

1

∆τ

)
ΦP −

(
1

∆t1
+

1

∆t2

)
Φ

(t−∆t1)
P +

∆t1
∆t2∆τ

Φ
(t−∆τ)
P

]
VP +O(∆t1∆τ), (24)

with ∆τ = ∆t1 + ∆t2, where ∆t1 is the current time-step, ∆t2 is the previous time-step, superscript (t−∆t1)
denotes values of the previous time-level and superscript (t − ∆τ) denotes values of the previous-previous
time-level. If the time-step is constant, with ∆t1 = ∆t2, the transient term of Eq. (19) discretised with the
Second-Order Backward Euler scheme simplifies to the more familiar form

˚
V

∂Φ

∂t
dV ≈

3ΦP − 4Φ
(t−∆t1)
P + Φ

(t−2∆t1)
P

2∆t1
VP +O(∆t21). (25)

For consistency, all transient terms of the governing equations (1)-(3) are discretised with the same scheme [33].

4.3. Advection terms

Applying the divergence theorem, the advection term of Eq. (19) is given as
˚

V

∂ρuiφ

∂xi
dV =

‹
∂V

ρuiφ dSi, (26)

where S is the outward-pointing surface vector on the surface ∂V of control volume V . Assuming the surface
of the control volume has a finite number of flat faces f with area Af , and applying the midpoint rule [16, 64],
the advection term follows in semi-discretised form as‹

∂V

ρuiφ dSi ≈
∑
f

ρ̃fϑf φ̃fAf , (27)

6



where ϑf = uf · nf is the advecting velocity at face f , which will be discussed in detail in Section 5.1. The

advected variable φ̃f and the density ρ̃f are interpolated using a TVD interpolation for three-dimensional
unstructured meshes with an implicit correction of mesh skewness [69], given as

φ̃f = φU + ξf
|rUf |
∆sf

(φD − φU ) , (28)

where subscripts U and D denote the upwind and downwind cells, as illustrated in Fig. 1b, ξf is the flux
limiter and rUf is the vector connecting the cell centre of the upwind cell U with face interpolation point f ′. A
detailed description of the implementation of this TVD interpolation using common TVD schemes on skewed
and non-equidistant meshes can be found in [69]. In this study, the first-order upwind scheme, ξf = 0, the
central differencing scheme, ξf = 1, and the Minmod scheme [70], ξf (gf ) = max(0,min(1, gf )), where gf is the
ratio of the upwind and downwind gradients of φ [69], are considered.

4.4. Diffusion terms

Applying the divergence theorem and the midpoint rule, the diffusion term of the transport equation (19)
is given as ˚

V

∂

∂xi

(
Γφ

∂φ

∂xi

)
dV ≈

∑
f

Γφ,f
∂φ

∂xi

∣∣∣∣
f

ni,f Af . (29)

Following Ferziger [71], the diffusion coefficient Γφ at face f is defined as

1

Γφ,f
=

1− lPf
Γφ,P

+
lPf

Γφ,Q
. (30)

Considering an orthogonal mesh, where the unit normal vector nf of face f and the unit vector sf connecting
the adjacent cell centres P and Q are parallel, with nf = sf , the face-centred gradient is approximated with
second-order accuracy as

∂φ

∂xi

∣∣∣∣
f

ni,f ≈
φQ − φP

∆sf
. (31)

The decomposition and deferred correction approach of Demirdžić [72] is applied to correct for non-orthogonality
of the mesh, as illustrated in Fig. 1a, with the face-centred gradient defined as [25]

∂φ

∂xi

∣∣∣∣
f

ni,f ≈ αf
φQ − φP

∆sf
+

∂φ

∂xi

∣∣∣∣
f

(ni,f − αfsi,f ). (32)

The scaling factor αf = (nf · sf )−1 ensures a robust convergence even for large non-orthogonality of the mesh
[73, 74]. Equation (32) reduces to Eq. (31) for an orthogonal mesh with nf = sf .

5. Pressure-based algorithm

A finite-volume framework with a pressure-based algorithm for the prediction of flows of incompressible
fluids and compressible fluids at all speeds is proposed. To this end, the governing equations (1)-(3) are
closed by the thermodynamic closure model and discretised using the finite-volume discretisation presented in
Sections 3 and 4, respectively. Once discretised and linearised as detailed below, the governing equations are
solved simultaneously in a single linear system of equations, Aψ = σ, for the pressure p, the velocity vector
u ≡ (u, v, w)T and the temperature T . For a three-dimensional computational mesh with N cells, the linear
system of governing equations is given as

Aρ,p Aρ,u Aρ,v Aρ,w 0
Aρu,p Aρu,u Aρu,v Aρu,w 0
Aρv,p Aρv,u Aρv,v Aρv,w 0
Aρw,p Aρw,u Aρw,v Aρw,w 0

Aρh,p Aρh,u Aρh,v Aρh,w Aρh,T

 ·

ψp

ψu

ψv

ψw

ψT

 =


σρ

σρu

σρv

σρw

σρh

 , (33)

where Aζ,χ, with ζ the conserved quantity and χ the primary solution variable of a given governing equation,
are the coefficient submatrices of size N×N of the continuity equation (44) for ζ = ρ, the momentum equations
(46) for ζ ∈ {ρu, ρv, ρw}, and the energy equation (47) for ζ = ρh. The subvectors ψχ of length N hold the
solution for primary solution variable χ and the subvectors σζ of length N hold all contributions from previous
nonlinear iterations and previous time-levels.

The solution procedure performs nonlinear iterations in which the linear system of governing equations (33)
is solved using the Block-Jacobi preconditioner and the BiCGSTAB solver of the software library PETSc [75–77]
until the residual of (33) satisfies ‖Aψ − σ‖ < η ‖σ‖, where η is the predefined solution tolerance and ‖ · ‖
denotes the L2-norm, as presented and tested in detail by Denner [33].
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5.1. Advecting velocity

In the proposed numerical framework, the advecting velocity ϑf = uf ·nf is based on a momentum-weighted
interpolation (MWI), originally introduced by Rhie and Chow [78], and serves to advect the conserved quantities
ζ = {ρ, ρu, ρh}. Furthermore, for flows of incompressible fluids and low Mach number flows of compressible
fluids, the advecting velocity allows to solve the continuity equation for pressure (see Section 5.4) and prevents
pressure-velocity decoupling associated with the collocated variable arrangement [16, 65].

Following the work of Bartholomew et al. [65], the advecting velocity ϑf at face f is given as

ϑf = ui,f ni,f − d̂f

[
pQ − pP

∆sf
− ρ∗f

(
1− lPf
ρP

∂p

∂xi

∣∣∣∣
P

+
lPf
ρQ

∂p

∂xi

∣∣∣∣
Q

)
si,f −

ρ
∗(t−∆t1)
f

∆t1

(
ϑ

(t−∆t1)
f − u(t−∆t1)

i,f ni,f

)]
,

(34)

where the interpolated face velocities uf and u
(t−∆t1)
f are obtained by linear interpolation, and lPf is given by

Eq. (22). As derived and discussed in detail by Bartholomew et al. [65], the coefficient d̂f is defined as

d̂f =

(
VP
SP

+
VQ
SQ

)
2 +

ρ∗f
∆t1

(
VP
SP

+
VQ
SQ

) , (35)

where SP =
∑3
j=1D

ρuj ,uj

P and SQ =
∑3
j=1D

ρuj ,uj

Q are the sum of the diagonal matrix coefficients of the velocity
arising from the advection and shear stress terms of the discretised momentum equations, see Eq. (A.10) in
Appendix A. The face density is defined as

1

ρ∗f
=

1− lPf
ρP

+
lPf
ρQ

. (36)

The MWI provides a robust pressure-velocity coupling for incompressible flows by introducing a cell-to-
cell pressure coupling and applying a low-pass filter acting on the third derivative of pressure [16, 21, 25, 65],
thus avoiding pressure-velocity decoupling due to the collocated variable arrangement. The transient term of
Eq. (34) ensures a time-step independent contribution of the MWI in conjunction with the coefficient d̂f [65]
and is important for a correct temporal evolution of pressure waves [43, 65]. However, the MWI is known
to introduce numerical dissipation that manifests in an unphysical dissipation of kinetic energy [65, 79], a
conservation error that converges with ∆x3 and that is, assuming the consistent formulation given by Eq. (34),
independent of the applied time-step [65].

5.2. Discretised governing equations

Applying the finite-volume methods described in Section 4 and, in particular, using the BDF1 scheme for
the transient term in the interest of clarity, the discretised continuity equation (1) for cell P is given as

ρP − ρ(t−∆t1)
P

∆t1
VP +

∑
f

ρ̃f ϑf Af = 0. (37)

Similar to the discretisation of the continuity equation, applying the finite-volume scheme presented in
Section 4, the discretised momentum equations (2) in cell P are given as

ρP uj,P − ρ(t−∆t1)
P u

(t−∆t1)
j,P

∆t1
VP +

∑
f

ρ̃f ϑf ũj,f Af = −
∑
f

pf nj,f Af

+
∑
f

µf

(
∂uj
∂xi

∣∣∣∣
f

+
∂ui
∂xj

∣∣∣∣
f

)
ni,f Af −

∑
f

2

3
µf

∂uk
∂xk

∣∣∣∣
f

ni,fAf ,

(38)

where the viscosity µf at face f is defined by Eq. (30). In order to account for mesh non-orthogonality, the
deferred correction approach given in Eq. (32) is applied to decompose the shear-stress term as(

∂uj
∂xi

∣∣∣∣
f

+
∂ui
∂xj

∣∣∣∣
f

)
ni,f ≈ αf

uj,Q − uj,P
∆sf

+
∂uj
∂xi

∣∣∣∣
f

(ni,f − αfsi,f ) +
∂ui
∂xj

∣∣∣∣
f

ni,f . (39)
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The discretised energy equation (3) in cell P , using the applied finite-volume discretisation, is given as

ρPhP − ρ(t−∆t1)
P h

(t−∆t1)
P

∆t1
+
∑
f

ρ̃f ϑf h̃f Af =
pP − p(t−∆t1)

P

∆t1
VP +

∑
f

kf
∂T

∂xi

∣∣∣∣
f

ni,f Af

+
∑
f

ui,f µf

(
∂uj
∂xi

∣∣∣∣
f

+
∂ui
∂xj

∣∣∣∣
f

− 2

3

∂uk
∂xk

∣∣∣∣
f

)
nj,f Af ,

(40)

where the heat conduction term is decomposed as described by Eq. (32) and the thermal conductivity kf at
face f is defined by Eq. (30).

5.3. Linearisation and implementation

The details of the linearisation of the governing equations have been shown to be a critical aspect for all-Mach
formulations and algorithms [19, 33, 40, 48] and provides additional potential with respect to the performance
of fully-coupled algorithms [33]. To this end, a Newton linearisation is applied to facilitate an implicit treatment
of all dominant pressure, velocity and temperature terms in the linear system resulting from the linearisation
and discretisation of the governing equations (1)-(3), given for two generic fluid variables as

φ1 φ2 ⇒ φ
(n+1)
1 φ

(n+1)
2 ≈ φ(n)

1 φ
(n+1)
2 + φ

(n+1)
1 φ

(n)
2 − φ(n)

1 φ
(n)
2 (41)

or for three generic fluid variables as

φ1 φ2 φ3 ⇒ φ
(n+1)
1 φ

(n+1)
2 φ

(n+1)
3 ≈ φ(n)

1 φ
(n)
2 φ

(n+1)
3 + φ

(n)
1 φ

(n+1)
2 φ

(n)
3 + φ

(n+1)
1 φ

(n)
2 φ

(n)
3 − 2φ

(n)
1 φ

(n)
2 φ

(n)
3 , (42)

where n is the iteration counter associated with the nonlinear iterations performed to solve the system of
discretised governing equations, Eq. (33), at each time-step. Superscript (n) denotes the most recent available
solution, which is the solution of the previous time-step during the first nonlinear iteration of a given time-step
or, otherwise, the solution of the previous nonlinear iteration, and superscript (n+ 1) denotes the solution that
is sought implicitly.

Applying the Newton linearisation given in Eq. (41) to the advection term and formulating the cell-centered
density ρP of the transient term as a semi-implicit function of pressure pP , given as

ρ
(n+1)
P ≈ C

[
p

(n+1)
P + Π

(γ − 1) cv T
(n)
P + b (p

(n)
P + Π)

]
+ I ρ0, (43)

the discretised continuity equation (37) follows as

ρ
(n+1)
P − ρ(t−∆t1)

P

∆t1
VP +

∑
f

(
ρ̃

(n)
f ϑ

(n+1)
f + ρ̃

(n+1)
f ϑ

(n)
f − ρ̃(n)

f ϑ
(n)
f

)
Af = 0. (44)

Following previous studies [33, 44], the advecting velocity ϑ
(n+1)
f is defined by a semi-implicit formulation as

ϑ
(n+1)
f ≈ u(n+1)

i,f ni,f − d̂f

p(n+1)
Q − p(n+1)

P

∆sf
− ρ∗(n)

f

 1− lPf
ρ

(n)
P

∂p

∂xi

∣∣∣∣∣
(n)

P

+
lPf

ρ
(n)
Q

∂p

∂xi

∣∣∣∣∣
(n)

Q

 si,f


+ d̂f

ρ
∗(t−∆t1)
f

∆t1

(
ϑ

(t−∆t1)
f − u(t−∆t1)

i,f ni,f

)
.

(45)

Linearising the transient terms and the advection terms with the Newton linearisation given in Eqs. (41)
and (42), respectively, following the work of Denner [33], and treating cell-centered pressure and velocity con-
tributions implicitly, the discretised momentum equations (38) follow as

ρ
(n)
P u

(n+1)
j,P + ρ

(n+1)
P u

(n)
j,P − ρ

(n)
P u

(n)
j,P − ρ

(t−∆t1)
P u

(t−∆t1)
j,P

∆t1
VP

+
∑
f

(
ρ̃

(n)
f ϑ

(n)
f ũ

(n+1)
j,f + ρ̃

(n)
f ϑ

(n+1)
f ũ

(n)
j,f + ρ̃

(n+1)
f ϑ

(n)
f ũ

(n)
j,f − 2ρ̃

(n)
f ϑ

(n)
f ũ

(n)
j,f

)
Af = −

∑
f

p
(n+1)
f nj,fAf

+
∑
f

µf

(
αf
u

(n+1)
j,Q − u(n+1)

j,P

∆sf
+
∂uj
∂xi

∣∣∣∣(n)

f

(ni,f − αfsi,f ) +
∂ui
∂xj

∣∣∣∣(n)

f

ni,f −
2

3

∂uk
∂xk

∣∣∣∣(n)

f

ni,f

)
Af ,

(46)
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and the discretised energy equation (40) becomes

ρ
(n)
P h

(n+1)
P + ρ

(n+1)
P h

(n)
P − ρ(n)

P h
(n)
P − ρ(t−∆t1)

P h
(t−∆t1)
P

∆t1
VP

+
∑
f

(
ρ̃

(n)
f ϑ

(n)
f h̃

(n+1)
f + ρ̃

(n)
f ϑ

(n+1)
f h̃

(n)
f + ρ̃

(n+1)
f ϑ

(n)
f h̃

(n)
f − 2ρ̃

(n)
f ϑ

(n)
f h̃

(n)
f

)
Af

=
p

(n+1)
P − p(t−∆t1)

P

∆t1
VP +

∑
f

kf

(
αf
T

(n+1)
Q − T (n+1)

P

∆sf
+

∂T

∂xi

∣∣∣∣(n)

f

(ni,f − αfsi,f )

)
Af

+
∑
f

u
(n+1)
i,f µf

(
∂uj
∂xi

∣∣∣∣(n)

f

+
∂ui
∂xj

∣∣∣∣(n)

f

− 2

3

∂uk
∂xk

∣∣∣∣(n)

f

)
nj,f Af ,

(47)

with ρ
(n+1)
P given by Eq. (43) and ϑ

(n+1)
f given by Eq. (45). The implicitly computed specific total enthalpy

h
(n+1)
P at cell-centre P is formulated, following Eq. (12) and assuming e0 = 0, as an implicit function of

temperature T and pressure p, given as

h
(n+1)
P = cp T

(n+1)
P + C b p(n+1)

P +
u

(n),2
P

2
. (48)

This treatment enables the implicit solution of the energy equation for temperature, pressure and velocity, which
allows to solve the cell-centred values of temperature of the heat conduction term implicitly, see Eq. (47), and,
thus, time-step restrictions associated with an explicit treatment of the heat conduction term [37] do not apply
for the presented algorithm.

Following the work of Khosla and Rubin [80], the TVD interpolation of advected variables, see Eq. (28), is
implemented using a deferred correction approach, given as

φ̃
(n+1)
f ≈ φ(n+1)

U + ξf
|rUf |
∆sf

(φ
(n)
D − φ(n)

U ) , (49)

where the upwind contribution is treated implicitly and the high-order correction is based on the values of
the previous nonlinear iteration. This interpolation is unconditionally stable [21, 64, 80], which is essential for
the simulation of convection-dominated flows with Peclet numbers of Pe = ρ|u|∆x/µ � 1 and, in particular,
inviscid flows (Pe→∞).

The coefficients of the linear equation system Aψ = σ, Eq. (33), for cell P follow after rearranging the
discretised and linearised governing equations (44), (46) and (47) as

Aρ,pP p
(n+1)
P +Aρ,pQ p

(n+1)
Q +Aρ,ui

P u
(n+1)
i,P +Aρ,ui

Q u
(n+1)
i,Q = σρP (50)

Aρuj ,p
P p

(n+1)
P +Aρuj ,p

Q p
(n+1)
Q +Aρuj ,uj

P u
(n+1)
j,P +Aρuj ,uj

Q u
(n+1)
j,Q +Aρuj ,ui

P u
(n+1)
i,P +Aρuj ,ui

Q u
(n+1)
i,Q = σ

ρuj

P (51)

Aρh,pP p
(n+1)
P +Aρh,pQ p

(n+1)
Q +Aρh,ui

P u
(n+1)
i,P +Aρh,ui

Q u
(n+1)
i,Q +Aρh,TP T

(n+1)
P +Aρh,TQ T

(n+1)
Q = σρhP , (52)

respectively, with Q the neighbour cells of cell P . The individual coefficients A and right-hand side contributions
σ are given in Appendix A.

The strong implicit coupling of pressure, density and velocity through a Newton linearisation has been shown
to be beneficial for the performance and stability of the solution algorithm in all Mach number regimes [33].
For instance, the Newton linearisation of the advection term of the continuity equation (44) facilitates a smooth

transition from low to high Mach number regions [19, 33, 48], with the term
∑
f ρ̃

(n)
f ϑ

(n+1)
f Af of Eq. (44)

dominant at low Mach numbers and the term
∑
f ρ̃

(n+1)
f ϑ

(n)
f Af dominant in regions of high Mach numbers [43].

As a result, the Newton linearisation of the advection term also yields performance and stability benefits for
flows with sharp changes in Mach number and strong compressibility [33], and provides the necessary implicit
pressure-velocity coupling for incompressible flows [32, 43].

5.4. Incompressible limit

The incompressible limit deserves special attention, as this is the Achilles’ heel of many previously proposed
numerical frameworks for flows at all speeds. From a numerical viewpoint, the incompressible limit includes
both the flow of compressible fluids with very small Mach numbers (M → 0) and the flow of incompressible
fluids (ρ = const.). As density changes of the fluid particles vanish in the incompressible limit, with dρ → 0,
the density is constant along the fluid particle trajectories [13], with

Dρ

Dt
≡ ∂ρ

∂t
+ ui

∂ρ

∂xi
= 0. (53)
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Inserting Eq. (53) into the governing equations (1)-(3) yields

∂ui
∂xi

= 0, (54)

ρ

(
∂uj
∂t

+
∂uiuj
∂xi

)
= − ∂p

∂xj
+
∂τji
∂xi

, (55)

ρ

(
∂h

∂t
+
∂uih

∂xi

)
=
∂p

∂t
− ∂qi
∂xi

+
∂

∂xj
(τji ui) , (56)

for the continuity, momentum and energy equations, respectively, in the incompressible limit.
Applying the discretisation and linearisation schemes presented in the previous sections to the governing

equations in the incompressible limit, Eqs. (54)-(56), the discretised continuity equation follows as∑
f

ϑ
(n+1)
f Af = 0, (57)

the discretised momentum equations are given as

ρP

u(n+1)
j,P − u(t−∆t1)

j,P

∆t1
VP +

∑
f

(
ϑ

(n)
f ũ

(n+1)
j,f + ϑ

(n+1)
f ũ

(n)
j,f − ϑ

(n)
f ũ

(n)
j,f

)
Af


= −

∑
f

p
(n+1)
f nj,f Af +

∑
f

µf

(
αf
u

(n+1)
j,Q − u(n+1)

j,P

∆sf
+
∂uj
∂xi

∣∣∣∣(n)

f

(ni,f − αfsi,f ) +
∂ui
∂xj

∣∣∣∣(n)

f

ni,f

)
Af

(58)

and the discretised energy equation follows as

ρP

h(n+1)
P − h(t−∆t1)

P

∆t1
VP +

∑
f

(
ϑ

(n)
f h̃

(n+1)
f + ϑ

(n+1)
f h̃

(n)
f − ϑ(n)

f h̃
(n)
f

)
Af


=
p

(n+1)
P − p(t−∆t1)

P

∆t1
VP +

∑
f

kf

(
αf
T

(n+1)
Q − T (n+1)

P

∆sf
+

∂T

∂xi

∣∣∣∣(n)

f

(ni,f − αfsi,f )

)
Af

+
∑
f

u
(n+1)
i,f µf

(
∂uj
∂xi

∣∣∣∣(n)

f

+
∂ui
∂xj

∣∣∣∣(n)

f

)
nj,f Af .

(59)

The definition of the semi-implicit advecting velocity ϑ
(n+1)
f , with the implicit treatment of the cell-centred

pressure values, as defined in Eq. (45), yields a consistent discretisation of Eq. (54) as a function of pressure.
This allows pressure to enforce a divergence-free velocity field in the incompressible limit, as well as a robust
implicit pressure-velocity coupling for the collocated variable arrangement. Furthermore, Eqs. (57)-(59) treat
all the terms implicitly which Nerinckx et al. [55] identified to carry acoustic information, thereby eliminating
the acoustic time-step restriction and enabling an efficient solution for M → 0 and, specifically, for M = 0.
In fact, Eqs. (57) and (58) are identical to the discretised continuity and momentum equations of the fully-
coupled pressure-based algorithm for incompressible interfacial flows of Denner and van Wachem [32]. Thus,
the discretised governing equations presented in Section 5.2 represent the incompressible limit accurately and
facilitate the simulation of incompressible flows. If isothermal incompressible fluids are considered, the energy
equation may be disregarded, removing Eq. (47) from Eq. (33), although this simplification is not taken into
account in the results presented in Section 6.

6. Validation

The results for a broad variety of test-cases are presented here to scrutinise each aspect of the thermody-
namic closure, the finite-volume discretisation and the fully-coupled pressure-based algorithm, including the
convergence and conservation properties. In Section 6.1, the propagation of acoustic waves is considered to test
the accurate prediction of acoustic effects for both ideal-gas and real-gas fluids, in particular the amplitude of
pressure waves and the speed of sound. The propagation of a moving contact discontinuity is considered in
Section 6.2 to test the convergence under mesh refinement for linearly degenerate waves, a distinct challenge
for finite-volume methods [81]. In Section 6.3, the propagation of a strong shock wave with Mach number 100
is considered to check if the proposed finite-volume framework converges to the correct weak solution of the
governing equations, for both ideal-gas and real-gas fluids. Shock tubes with flows in different Mach number
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Table 1: Fluid properties considered for the propagation of acoustic waves.

Fluid γ cp [J kg−1 K−1] b [m3 kg−1] Π [Pa]
Air 1.400 1008 0 0
JA2 propellant gas [84] 1.225 1484 1.00× 10−3 0
Water 1 [85] 6.120 1367 0 3.430× 108

Water 2 [9] 1.187 4285 6.61× 10−4 7.028× 108

Table 2: Density ρ and speed of sound a0 of the fluids defined in Table 1 for ambient pressure p0 = 105 Pa and ambient temperature
T0 = 300 K, the applied time-step ∆t, the frequency f of the acoustic waves, the wavelength λ0 and pressure amplitude ∆p0 of
the acoustic waves based on linear acoustic theory, as well as the wavelength λ and pressure amplitude ∆p of the acoustic waves
computed with the proposed numerical framework.

Fluid ρ [kg m−3] a0 [m s−1] ∆t [s] f [s−1] λ0 [m] λ [m] ∆p0 [Pa] ∆p [Pa]
Air 1.1574 347.8 2.5× 10−6 1750 0.199 0.199 4.025 4.025
JA2 propellant gas [84] 1.2214 316.9 2.7× 10−6 1750 0.181 0.181 3.871 3.869
Water 1 [85] 1000.0 1449 6.0× 10−7 7000 0.207 0.207 14490 14487
Water 2 [9] 1053.6 1615 5.4× 10−6 7000 0.230 0.231 17016 17012

regimes, ranging from M = 8.5×10−3 to M = 239, are compared against the exact Riemann solution in Section
6.4. The evolution of Taylor vortices in an inviscid fluid is considered in Section 6.5 to test the conservation
of kinetic energy of the proposed numerical framework. In Section 6.6, the Poiseuille flow of an incompressible
fluid and the Couette flow of a compressible fluid are simulated to probe the prediction of diffusion-dominated
flows, both momentum diffusion and heat conduction, by the proposed numerical framework. The flow of an
incompressible fluid in a lid-driven cavity at different Reynolds numbers is considered in Section 6.7 to test the
accurate prediction of flows in which both advection and diffusion play an important role, and to demonstrate
the correct enforcement of ∇ · u = 0 for incompressible fluids. In Section 6.8, a supersonic flow of an ideal gas
and a real gas over a forward-facing step are simulated, predominantly to scrutinise the mass conservation for
a complex flow in which different Mach number regimes coexist. Finally, in Section 6.9, the Stokes flow around
a rotating sphere is simulated to demonstrate the reliable prediction of flows in complex geometries.

6.1. Acoustic waves

As a first test, the propagation of acoustic waves in a one-dimensional domain is simulated. The formation
and propagation of acoustic waves is an important feature of compressible flows and predicting acoustic waves
reliably is known to be challenging [43, 44, 63, 82]. In these simulations, the acoustic waves are generated at
the domain inlet by a sinusoidal velocity perturbation with amplitude ∆u0. For small perturbations to the
flow, ∆u0 � a0, the resulting wave is a sound wave propagating with the speed of sound a0. According to
linear acoustic theory, the pressure wave has an amplitude of ∆p0 = Z ∆u0 [83], where Z = ρa is the acoustic
impedance. Four different fluids, with the fluid properties given in Table 1, are considered. In each case, the
unperturbed flow velocity is u0 = 1 m s−1, the ambient pressure is p0 = 105 Pa and the ambient temperature
is T0 = 300 K, leading to the density and speed of sound given in Table 2. The computational domain has a
length of 1 m, which is represented by an equidistant mesh with mesh spacing ∆x = 2×10−3 m, and the applied
time-steps, see Table 2, correspond to a Courant number of Co = a0∆t/∆x ' 0.43. The velocity at the domain
inlet is uin = u0 + ∆u0 sin(2πft), with frequency f as given in Table 2 and amplitude ∆u0 = 0.01u0.

The computed pressure amplitude ∆p and the theoretical pressure amplitude ∆p0 based on linear acoustic
theory, both given in Table 2, are in excellent agreement. Figure 2 shows the profiles of the pressure amplitude
∆p of the acoustic waves in the four considered fluids as a function of space, with good agreement of the
minimum and maximum pressure amplitude with the theoretical pressure amplitude. In addition, the computed
wavelength λ is predicted accurately compared to the theoretical wavelength λ0, given in Table 2, demonstrating
a correct prediction of the speed of sound.

6.2. Moving contact discontinuity

A contact discontinuity is a linearly degenerate wave and represents the main source of error in terms of
convergence of the applied finite-volume method under mesh refinement [81, 86], with the contact discontinuity
progressively smoothing over the course of the simulation [87, 88]. To test the accuracy of the proposed finite-
volume framework in predicting contact discontinuities, a moving contact discontinuity in a one-dimensional
domain with a length of 1 m is simulated, as considered in previous studies [59, 63]. The contact discontinuity
is initially located at x0 = 0.5 m, with the initial conditions of the left and right states given as

ρL = 1.0 kg m−3, uL = 0.5 m s−1, pL = 0.5 Pa,
ρR = 0.5 kg m−3, uR = 0.5 m s−1, pR = 0.5 Pa.
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Figure 2: Profiles of the pressure amplitude ∆p of acoustic waves in different fluids, with the fluid properties given in Table 1 and
the frequency given in Table 2. The theoretical pressure amplitudes, ±∆p0, based on linear acoustic theory are given as a reference.

The contact discontinuity is simulated in an IG fluid with γ = 1.4 and cp = 1008 J kg−1 K−1, as well as an
NASG fluid with γ = 2.0, cp = 114.286 J kg−1 K−1, Π = 5.0 Pa and b = 10−3 m3 kg−1. The transient terms are
discretised using the BDF2 scheme and the applied time-step corresponds to Co = uL∆t/∆x = 0.5.

Figure 3 shows the density profiles at t = 0.3 s for both the IG fluid and the NASG fluid, using different
mesh resolutions. The results of both fluids are in very good agreement and, irrespective of the mesh resolution,
the contact discontinuity propagates with the correct velocity. The convergence of the L1-norm of the solution
error associated with a linearly degenerate wave for a q-th order advection scheme without compressive limiting
is of order q/(q + 1) [81]. The spatial convergence of the L1-norm of the density error,

`1(ρ) =
1

N

N∑
P=1

∣∣∣∣ρcomp.
P − ρexact

P

ρL − ρR

∣∣∣∣ , (60)

where ρcomp.
P is the computed density at cell P and ρexact

P is the corresponding exact density value, obtained
with the upwind scheme (q = 1) and the Minmod scheme (q = 2) matches the theoretical order of convergence
closely in both fluids, as observed in Fig. 4, with convergence order 1/2 using the upwind scheme and order
2/3 using the Minmod scheme. Furthermore, the self-similarity of the transport of the contact discontinuity is
not affected by the choice of fluid model, resulting in only minute differences in the L1-norm `1(ρ) between the
IG fluid and the NASG fluid for a given mesh resolution, with |`1(ρ)IG − `1(ρ)NASG|/`1(ρ)IG < 10−2 using the
Minmod scheme and |`1(ρ)IG − `1(ρ)NASG|/`1(ρ)IG < 10−7 using the upwind scheme.

In order to test the progressive smearing of the contact discontinuity during the course of the simulation,
the contact discontinuity in the IG fluid is simulated in a domain with a length of 3 m and with the contact
discontinuity initially located at x0 = 0.1 m. The computational domain is resolved by 1200 equidistant mesh
cells and the advection terms are discretised using the Minmod scheme. All other settings remain the same
as above. The computed density profiles after n ∈ {20, 200, 2000} time-steps are plotted in Fig. 5a, clearly
showing a progressive smearing of the contact discontinuity. The width of the contact discontinuity should be
proportional to n1/(q+1) for a q-th order finite-difference or finite-volume method [87, 88], where n is the number
of time-steps. Figure 5b shows the width d of the contact discontinuity as a function of the time-step n, with
the width d given by the distance between the points at which the density takes the values 0.55 kg m−3 and
0.95 kg m−3, as illustrated in the inset of Fig. 5b, since the density changes abruptly between 0.5 kg m−3 and
1.0 kg m−3 at the considered contact discontinuity. As shown in Fig. 5b, the width of the contact discontinuity
increases with the number of time-steps with a slope closely matching n1/3, which is the increase expected for
a consistently second-order finite-volume method [87].
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Figure 3: Profiles of the density ρ of a moving contact discontinuity in (a) an IG fluid and (b) an NASG fluid, on equidistant meshes
with different resolutions. The advection terms are discretised using the Minmod scheme, the transient terms are discretised using
the BDF2 scheme and the time-step corresponds to Co = uL∆t/∆x = 0.5.
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Figure 4: Spatial convergence of the L1-norm of the density error, `1(ρ), as defined in Eq. (60), of a moving contact discontinuity
in (a) an IG fluid and (b) an NASG fluid, using the first-order upwind scheme and the Minmod scheme. The transient terms are
discretised using the BDF2 scheme and the time-step corresponds to Co = uL∆t/∆x = 0.5.
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Figure 6: Profiles of the pressure p of a shock wave with Mach number Ms = 100 in (a) air, described as an IG fluid, and (b) water,
described as an NASG fluid, and (c) spatial convergence of the L1-norm of the density error, `1(ρ), as defined in Eq. (60). The
exact solution given by the Rankine-Hugoniot relations, Eq. (61), is shown as a reference in (a) and (b). The applied time-step
corresponds to Co = uL∆t/∆x = 0.5.

6.3. Shock waves

The propagation of a shock wave poses particular challenges for finite-volume methods, because a shock
wave is discontinuous and valid solutions of the governing conservation laws are not guaranteed to satisfy the
second law of thermodynamics across shock waves [89]. As such, simulating the propagation of a shock wave is
well suited to test whether a numerical scheme reliably converges to the physically-correct weak solution of the
governing conservation laws, which is a prerequisite for the accurate prediction of both the speed and strength
of shock waves [89, 90]. To this end, the Lax-Wendroff theorem [91] stipulates that if a conservative numerical
scheme for hyperbolic conservation laws converges, the computed solution converges towards a weak solution of
the conservation laws.

The propagation of a strong shock wave with Mach number Ms = 100 in air and water in a one-dimensional
domain with a length of 1 m is simulated. Air is described by the IG model using the fluid properties given
in Table 1 and water is described by the NASG model using the fluid properties proposed by Le Métayer and
Saurel [9], also given in Table 1 (see properties of Water 2). Viscous stresses and heat conduction are neglected,
i.e. µ = k = 0, so the governing equations (1)-(3) reduce to the Euler equations [92], which are hyperbolic.
From the Rankine-Hugoniot relations, the pressure and density ratios across a shock wave propagating with
velocity us in a quiescent NASG fluid are given as

pI

pII
= 1 +

2 γ

γ + 1
(Ms − 1)

(
1 +

Π

pII

)
(61)

ρI

ρII
=

pI + Π

pII + Π
+
γ − 1

γ + 1
γ − 1 + 2 b ρII

γ + 1

pI + Π

pII + Π
+
γ + 1− 2 b ρII

γ + 1

, (62)

where subscript I denotes the post-shock state, subscript II denotes the pre-shock state and Ms = us/aII is the
Mach number of the shock wave. With the initial conditions of the pre-shock state (II) for both cases given as

pII = 105 Pa, uII = 0 m s−1, TII = 300 K,

the shock relations yield the initial conditions of the post-shock state (I) for air,

pI = 1.16665× 109 Pa, uI = 28979.9 m s−1, TI = 58616.7 K,

and for water,
pI = 7.62925× 1012 Pa, uI = 44833.0 m s−1, TI = 278744 K.

The shock wave is initially located at xs,0 = 0.25 m and the applied time-step corresponds to Co = us∆t/∆x =
0.5.

The Rankine-Hugoniot relations are reproduced accurately in both air and water, as seen in Fig. 6, despite
the very large pressure discontinuities with pressure ratios of more than four and seven orders of magnitude,
respectively. In both fluids the L1-norm of the density error, `1(ρ), converges with first order under mesh
refinement, as seen in Fig. 6c. The first order convergence is imposed by the applied monotone discretisation
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Figure 7: Profiles of pressure, density and Mach number of the low-Mach shock tube at t = 0.01 s, compared against the theoretical
Riemann solution. In addition, a magnified view of the minute change in Mach number at the contact discontinuity is shown in
(c).
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Figure 8: Profiles of pressure, density and Mach number of Sod’s shock tube at t = 0.15 s, compared against the theoretical Riemann
solution.

schemes, in this case the Minmod scheme, and is expected for an oscillation-free numerical simulation of a shock
wave [93]. The robust convergence for strong shock waves further implies accurate conservation properties as well
as convergence to the correct weak solution of the governing conservation laws using the proposed finite-volume
framework and pressure-based algorithm.

6.4. Shock tubes

Shock tubes are routinely and extensively used to test numerical frameworks and schemes for compressible
flows, because they feature shock waves, rarefaction fans as well as contact discontinuities and because an exact
reference solution based on the associated Riemann problem exists. Three different shock tubes, covering Mach
numbers over five orders of magnitude, are considered. In all cases, the fluid has a heat capacity ratio of γ = 1.4
and a specific gas constant of cp = 1008 J kg−1 K−1.

A low-Mach shock tube, as proposed by Moguen et al. [94], is considered. The discontinuity is initially
located at x0 = 0.5 m, with the initial conditions of the left and right states given as

ρL = 25.0 kg m−3, uL = 0.200 m s−1, pL = 10000.00 Pa,
ρR = 25.0 kg m−3, uR = 0.202 m s−1, pR = 10000.85 Pa.

The applied time-step corresponds to a Courant number of Co = (uL + aL)∆t/∆x = 0.5. Overall, the results
obtained on both meshes are in very good agreement with the theoretical Riemann solution, as seen in Fig. 7.
Because the particle velocity is very small, umax = 0.202 m s−1, the contact discontinuity only moves by 0.002 m
in the studied time frame and, thus, remains very sharp, as evident by the density profile in Fig. 7. A small
wiggle is observed in the Mach number profile at the contact discontinuity, which however has no impact on
the overall result.
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Figure 9: Profiles of pressure, density and Mach number of the high-Mach shock tube at t = 3.5 × 10−4 s, compared against the
theoretical Riemann solution.

The shock tube initially introduced by Sod [95] is considered as a shock tube with intermediate Mach number,
with initial conditions

ρL = 1.0 kg m−3, uL = 0 m s−1, pL = 1.0 Pa,
ρR = 0.125 kg m−3, uR = 0 m s−1, pR = 0.1 Pa.

The discontinuity is initially located at x0 = 0.5 m and the applied time-step corresponds to a Courant number
of Co = aL∆t/∆x = 0.6. The results obtained on both meshes, shown in Fig. 8, are in very good agreement
with the theoretical Riemann solution.

The high-Mach shock tube proposed by Xiao [54] is considered. The discontinuity is initially located at
x0 = 0.5 m, with the initial conditions

ρL = 10 kg m−3, uL = 2000 m s−1, pL = 500 Pa,
ρR = 20 kg m−3, uR = 0 m s−1, pR = 500 Pa.

Notably, the flow of the left state has a Mach number of ML = 239. The applied time-step corresponds to a
Courant number of Co = uL∆t/∆x = 0.5. As observed in Fig. 9, although the profile of the Mach number is
not predicted very accurately on the coarse mesh, the density and pressure profiles are in good agreement with
the theoretical Riemann solution. On the fine mesh, the computed results are in very good agreement with the
theoretical Riemann solution, demonstrating the accurate prediction of high-Mach Riemann problems with the
proposed numerical framework.

6.5. Taylor vortices

The conservation of kinetic energy is a fundamental property arising from the conservation of mass and
momentum. Two-dimensional Taylor vortices in an inviscid (µ = 0), non-conducting (k = 0) fluid are simulated
to analyse the conservation of kinetic energy by the proposed numerical framework. The domain has the
dimensions 2 m × 2 m and is periodic in all directions, so that energy transfer across the domain boundaries
does not have to be considered. The initial conditions, shown in Fig. 10, are u = − cos(πx) sin(πy), v =
sin(πx) cos(πy) and p = −0.25 [cos(2πx) + cos(2πy)]. Since µ = k = 0, the Taylor vortices are steady and no
energy dissipation occurs naturally, with a constant kinetic energy of

Ekin =
1

2

ˆ
Ω

ρu2 dΩ ≈ 1

2

N∑
P=1

ρP u
2
P VP , (63)

where Ω is the volume of the computational domain. Any dissipation of kinetic energy is, thus, the result of
numerical dissipation induced by the applied discretisation.

Figure 11a shows the evolution of the error in kinetic energy of the Taylor vortices,

εkin =
E

(0)
kin − Ekin

E
(0)
kin

, (64)

with E
(0)
kin the kinetic energy of the initialised (t = 0) flow field, in an IG fluid with γ = 1.4 and cp =

1008 J kg−1 K−1, and Mach number M = 0.01. As expected, the error in kinetic energy is substantially larger
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(a) Velocity u (b) Pressure p

Figure 10: Contours of the initial velocity u along the x-axis and the initial pressure p of the Taylor vortices.
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Figure 11: Temporal evolution of εkin, Eq. (64), on an equidistant Cartesian mesh with ∆x = 0.04 m defining the advecting velocity
ϑf (a) with the MWI as described in Section 5.1 and (b) without the MWI as ϑf = uf · nf , and (c) convergence of the error in
kinetic energy εkin of the Taylor vortices with the MWI as described in Section 5.1. The first-order upwind scheme or the central
differencing scheme are applied for the discretisation of the advection term. The applied time-step in all cases is ∆t = 2 × 10−3 s.

using the first-order upwind scheme compared to the error in kinetic energy obtained using the central differ-
encing scheme. Interestingly, the applied transient discretisation scheme, i.e. BDF1 or BDF2, does not affect
the error in kinetic energy, which is consistent with the Taylor vortices being a steady flow in the absence of
molecular viscosity and heat conduction. However, even with central differencing, kinetic energy is dissipated
as a result of the MWI formulation of the advecting velocity [65], see Eq. (34). No appreciable distortion of the
vortices is observed for the considered simulations when central differencing is applied, which is consistent with
the only small error in kinetic energy (εkin < 1%) in theses cases.

The flow is sufficiently compressible (M = 0.01) and smooth, that pressure and velocity remain coupled
even without MWI [65]. Exploiting this by omitting the correction introduced by the MWI, with the advecting
velocity simply defined as ϑf = uf · nf , the error in kinetic energy remains constant for t & 0.08 s, as seen in
Fig. 11b, which indicates that the numerical dissipation of kinetic energy is negligible. This is to be expected
when simulating a sufficiently smooth flow with a second-order accurate finite-volume framework without any
explicitly introduced physical or numerical dissipation. Only a small error in kinetic energy is observed at the
beginning of the simulation, caused by the initial conditions [65].

The error in kinetic energy converges with third order using central differencing under mesh refinement, as
shown in Fig. 11c, which is consistent with the third-order convergence of the error in kinetic energy introduced
by the MWI [65]. On the other hand, when the first-order upwind scheme is applied, the kinetic energy dissipated
artificially by the MWI is insignificant compared to the numerical diffusion introduced by the upwind scheme,
as evident by the first-order convergence of the error in kinetic energy shown in Fig. 11c.

These results, therefore, suggest that the MWI is the only source of numerical dissipation in the proposed
finite-volume discretisation, assuming a consistent second-order (or higher-order) interpolation of spatial and
transient terms is applied, e.g. central differencing and BDF2.
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Figure 12: Schematic of a planar Poiseuille flow, as well as the profile of the axial velocity compared against the analytical
solution, Eq. (65), and spatial convergence of the L∞-norm of the error in axial velocity, Eq. (66), of the planar Poiseuille flow
of an incompressible fluid. The axial velocity profile in (b) is obtained on a mesh with ∆y = d/20, with each dot representing a
cell-centred value.

6.6. Diffusion-dominated flows

The test-cases discussed in the previous sections only test the discretisation of the transient and advection
terms, not taking into account diffusion terms, i.e. viscous stresses, heat conduction and viscous heating. Two
well-defined diffusion-dominated flows, a planar Poiseuille flow of an incompressible fluid and a planar Couette
flow of a compressible fluid, are considered to test the discretisation and implementation of the diffusion of
momentum and heat.

The planar Poiseuille flow of an incompressible fluid between two parallel plates of infinite length separated
by a constant distance d, illustrated schematically in Fig. 12a, is a flow that is entirely governed by viscous
stresses. Assuming the viscosity µ is constant and the flow is laminar, the velocity profile is readily given as

U(y) = −dp

dx

y(d− y)

2µ
, (65)

where −dp/dx is the driving pressure gradient. This type of flow, thus, allows a straightforward quantification
of the solution error associated with the axial velocity. The computational domain is taken to be periodic in
the streamwise direction, to circumvent any influence of inlet and outlet boundary conditions, and the flow is
driven by a constant momentum source corresponding to the driving pressure gradient −dp/dx. The profile of
the axial velocity U of the planar Poiseuille flow obtained on a mesh with a resolution of ∆y = d/20 is shown
in Fig. 12b, alongside the spatial convergence of the L∞-norm of the error in axial velocity,

`∞(U) = max

∣∣∣∣U comp.
P − U exact

P

U exact
max

∣∣∣∣ , (66)

in Fig. 12c. The axial velocity profile is in excellent agreement with the analytical solution, Eq. (65), and the
L∞-norm of the error in axial velocity converges with second order under mesh refinement, as expected given
the second-order discretisation of the viscous stresses in Eq. (38).

The planar Couette flow of a compressible fluid between two parallel plates of infinite length separated
by a constant distance d, illustrated schematically in Fig. 13a, is a compressible flow that is dominated by
viscous stresses and heat conduction. Assuming the viscosity µ is constant and the stationary wall is adiabatic,
the velocity and temperature profiles only depend on the Prandtl number Pr = µ cp/k and the Mach number
Mm = Um/am at the moving wall, with the velocity given as U(y)/Um = y/d and the temperature given as [96]

T (y)

Tm
= 1 +

γ − 1

2
PrM2

m

[
1−

(y
d

)2
]
. (67)

This type of flow, thus, allows a straightforward quantification of the solution error associated with the temper-
ature. The considered fluid is an ideal gas with a Prandtl number of Pr = 1 and a heat capacity ratio of γ = 1.4.
The computational domain is taken to be periodic in the streamwise direction, to circumvent any influence of
inlet and outlet boundary conditions. The profile of the temperature T of the planar compressible Couette flow
with Mm = 1.0 obtained on a mesh with a resolution of ∆y = d/20 is shown in Fig. 13b, alongside the spatial
convergence of the L∞-norm of the error in temperature,

`∞(T ) = max

∣∣∣∣T comp.
P − T exact

P

T exact
s − T exact

m

∣∣∣∣ , (68)
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Figure 13: Schematic of a planar Couette flow, as well as the profile of the temperature compared against the analytical solution,
Eq. (67), and spatial convergence of the L∞-norm of the temperature, Eq. (68), of the planar Couette flow of a compressible
fluid for both considered Mach numbers. The temperature profile in (b) is obtained on a mesh with ∆y = d/20, with each dot
representing a cell-centred value.
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Figure 14: Schematic illustration and polygonal mesh of the lid-driven cavity.

at Mach numbers Mm ∈ {0.1, 1.0} in Fig. 13c. The temperature profile is in excellent agreement with the
analytical solution, Eq. (67), and the L∞-norm of the error in temperature converges with second order under
mesh refinement for both Mach numbers, as expected given the second-order discretisation of the heat conduction
term in Eq. (40). Notably, `∞(T ) is independent of the Mach number Mm for a sufficiently high spatial
resolution, as seen in Fig. 13c.

6.7. Lid-driven cavity

The lid-driven cavity, schematically shown in Fig. 14a, is a common test case to validate numerical methods
for fluid flows, since it captures convective and diffusive momentum transport of the fluid. The considered
two-dimensional domain is of size L× L, with no-slip boundary conditions imposed on all four walls. The top
wall moves with velocity uw and the flow of the incompressible fluid has a Reynolds numbers of Re = ρLuw/µ ∈
{100, 1000}. A polygonal mesh with 8708 cells, shown in Fig. 14b, represents the computational domain.

Figures 15 and 16 show the u-velocity profile in the y-direction and the v-velocity profile in the x-direction
along lines that pass through the centre of the domain for the two considered Reynolds numbers, compared
against the reference results of Ghia et al. [97]. The results are in very good agreement with the reference results
of Ghia et al. [97], as well as other studies that have previously considered this test-case [43, 60, 67, 98], for
both considered Reynolds numbers, demonstrating the accurate prediction of the convective-diffusive transport
of momentum on unstructured meshes using the proposed algorithm. The contours of the divergence of velocity,
∇ · u, at steady state are shown in Fig. 17 for the lid-driven cavity with Re = 1000, alongside the transient
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Figure 15: Profiles of (a) the u-velocity along the y-centreline of the domain and (b) the v-velocity along the x-centreline of the
domain of the lid-driven cavity with Re = 100. The results of Ghia et al. [97] are shown as a reference.
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Figure 16: Profiles of (a) the u-velocity along the y-centreline of the domain and (b) the v-velocity along the x-centreline of the
domain of the lid-driven cavity with Re = 1000. The results of Ghia et al. [97] are shown as a reference.
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Figure 17: (a) Contours of the divergence of the velocity field, ∇ ·u, at steady state and b) L1-norm of the error in the divergence
of the velocity field, `1(∇ · u), for the lid-driven cavity with Re = 1000.
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(a) Mach number M (b) Pressure p

Figure 18: Contours of Mach number and pressure of the supersonic flow over a forward-facing step at t = 4 s with co-volume b = 0.

(a) Mach number M (b) Pressure p

Figure 19: Contours of Mach number and pressure of the supersonic flow over a forward-facing step at t = 4 s with co-volume
b = 0.1 m3 kg−1.

evolution (considering an initially quiescent fluid) of the L1-norm of the error in the divergence of the velocity
field, given as

`1(∇ · u) =
1

N

N∑
P=1

|∇ · uP | =
1

N

N∑
P=1

∣∣∣∣∣∣ 1

VP

∑
f

ϑfAf

∣∣∣∣∣∣ , (69)

where f are the faces of cell P . The divergence-free condition of the velocity field imposed by the conservation
of mass in conjunction with the considered incompressible fluid, see Eq. (54), is satisfied accurately, with only
marginal errors subject to the applied tolerance of the iterative solver (see Section 5). This is to be expected
from the proposed algorithm, as ∇ · u = 0 is implicitly enforced by Eq. (57).

6.8. Forward-facing step

The two-dimensional supersonic flow over a forward-facing step of an initially uniform flow features the
spatiotemporal evolution of shock waves, developing transonic flow and large pressure gradients. This test-case
is, thus, well suited to test the conservation properties of the finite-volume discretisation as well as the stability of
the pressure-based algorithm during the transient development of large pressure gradients. Following Woodward
and Colella [99], the height of the computational domain is 1 m, and the step has of height 0.2 m and is positioned
at 0.6 m from the inlet of the domain. The flow entering the domain has a Mach number of M = u/a0 = 3 and
a pressure of p0 = 1 Pa. The two-dimensional domain is represented by an equidistant Cartesian mesh with
∆x = 0.01 m and the applied time-step corresponds to Co = u∆t/∆x = 0.75. The considered fluid has a heat
capacity ratio of γ = 1.4 and a specific isobaric heat capacity of cp = 1008 J kg−1 K−1, with a co-volume of
either b = 0 or b = 0.1 m3 kg−1. Figure 18 shows the contours of the Mach number and the pressure at t = 4 s
for b = 0, which are in good agreement with previously reported results [33, 99, 100]. Changing the co-volume
to b = 0.1 m3 kg−1, the position of the primary shock wave in front of the forward-facing step moves further
upstream and fewer reflected shock waves can be observed, as seen in Fig. 19.

Based on the initial mass m(0) at t = 0, the mass in the domain Ω and the mass entering and leaving the
domain over its boundaries ∂Ω, the conservation error of mass at time t is given as

εm(t) =
1

m(0)

(
m(0) −

ˆ
Ω

ρ(t) dΩ−
ˆ t

0

‹
∂Ω

ρ ui dΣi dt

)
, (70)

where Σ is the outward-pointing surface vector of the surface ∂Ω of the computational domain Ω. The tem-
poral evolution of the mass conservation error of the supersonic flow over the forward-facing step is shown
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Figure 20: Temporal evolution of the mass conservation error, εm, as defined in Eq. (70), of the supersonic flow over a forward-facing
step, obtained with different solution tolerances η.
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Figure 21: Schematic of the flow around a rotating sphere (in the xy-plane through the centre of the domain) and applied mesh in
the vicinity of the sphere together with the contours of the axial velocity.

in Fig. 20, obtained with both considered co-volumes, b ∈ {0, 0.1}m3 kg−1, with different solution tolerances,
η ∈ {10−5, 10−6, 10−7, 10−8}, applied for the solution of the system of governing equations (33). Overall, the
proposed finite-volume framework conserves mass accurately and the mass conservation error is predominantly a
function of the solution tolerance, with a decreasing mass conservation error for a decreasing solution tolerance.

6.9. Rotating sphere

The flow of an incompressible fluid around a sphere with radius R, rotating at angular velocity ω, in a
Stokes flow with Reynolds number Re = ρR|u∞|/µ � 1, where u∞ is the free-stream velocity, is considered.
As a result of the rotation, a lift force is acting on the sphere, also known as Magnus effect, with the analytical
solution for the force on the sphere given as [101]

F = −6π µRu∞

(
1 +

3

8
Re

)
+ π R3ρω × u∞, (71)

where the first term on the right-hand side represents the drag force and the second term represents the lift
force. The sphere is simulated in a cubical three-dimensional domain of size 100R × 100R × 100R, illustrated
schematically in Fig. 21a, with the sphere placed at the centre of the domain. The considered flow has the
free-stream velocity u∞ = (ux,∞, 0, 0)T , corresponding to Re = 0.05, and the sphere rotates around its z-axis
with ω = (0, 0, ωz)

T . The computational domain is represented with a boundary-fitted hexahedral mesh with
384 000 cells, shown in Fig. 21b, which is strongly refined in the vicinity of the sphere and gradually coarsened
(growth factor 1.2) with increasing distance from the sphere. The applied time-step is ∆t = 100 tµ, where
tµ = ρR2/µ is the viscous timescale, which corresponds to a maximum Courant number of Co = 49 − 1559,
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Figure 22: Drag coefficient Cd and lift coefficient Cl of the rotating sphere in Stokes flow for different dimensionless angular velocities
ω̂ as a function of the dimensionless time τ = t/tµ, normalised with the theoretical values, Cd,0 and Cl,0, based on Eq. (71).

dependent on the angular velocity ωz, for the considered simulations. The transient term is discretised with the
BDF2 scheme and the advection terms are discretised using the Minmod scheme.

Fig. 22 shows the transient evolution of the drag coefficient, Cd = 2Fd/ρApu
2
x,∞, and the lift coefficient,

Cl = 2Fl/ρApu
2
x,∞, with Ap = πR2 the projected area of the sphere, for three different dimensionless angular

velocities, ω̂ = Rωz/ux,∞, as a function of the dimensionless time τ = t/tµ. For all three angular velocities
the drag and lift coefficients are predicted accurately compared to the analytical solution, Eq. (71), with errors
< 1% for both drag and lift coefficients.

7. Conclusions

A conservative numerical framework for the prediction of flows of incompressible, ideal-gas and real-gas
fluids at all speeds has been presented. This numerical framework is founded on a unified thermodynamic
closure model for incompressible and compressible fluids, a standard finite-volume discretisation applicable to
structured and unstructured meshes, a single flux definition based on a momentum-weighted interpolation, as
well as a fully-coupled pressure-based algorithm with collocated variable arrangement. The proposed unified
thermodynamic closure model combines the definitions of incompressible fluids with the Noble-Abel-stiffened-
gas model [9] for ideal-gas and real-gas fluids, which facilitates a straightforward finite-volume discretisation
that is applicable to incompressible flows as well as compressible flows in all Mach number regimes. Since
the thermodynamic closure model requires only the definition of the density and specific static enthalpy, it
can be extended to more complex gas models, such as the Peng-Robinson model [11], without changes to the
finite-volume discretisation or the pressure-based algorithm. The employed finite-volume framework combines
well-established conservative discretisation schemes to yield a consistently second-order accurate discretisation
that is applicable to structured and unstructured meshes. The discretised governing equations are solved in
a single linear system of equations for pressure, velocity and temperature, which enables a robust solution for
flows at any speed.

The main feature of the proposed finite-volume discretisation and pressure-based algorithm is the accurate
and robust simulation of flows of incompressible and compressible fluids at all speeds without changes to the
discretisation or the solution procedure. Using a Newton linearisation of the continuity equation in conjunction
with the semi-implicit discretisation of the fluxes through the mesh faces by a momentum-weighted interpolation
method, the discretised continuity equation acts as a transport equation for density in compressible flows and
as a constraint on the velocity field in incompressible flows. This allows this numerical framework to represent
the incompressible limit correctly and enables the simulation of flows of both incompressible and compressible
fluids with the same algorithm.

The proposed numerical framework has been validated using a broad variety of test-cases, demonstrating
accurate and robust results, irrespective whether the considered flow was of an incompressible fluid, an ideal-gas
fluid or a real-gas fluid, with an error convergence consistent of a second-order finite-volume discretisation. The
propagation of acoustic waves demonstrated an accurate prediction of the speed of sound and acoustic effects
in general, while the propagation of a moving contact discontinuity demonstrated convergence for linearly de-
generate waves. The propagation of a strong shock wave as well as the shock tubes in different Mach number
regimes scrutinised the resolution of strongly nonlinear and discontinuous flow features, which are predicted
accurately in all Mach number regimes. In particular, the speed, position and strength of strong shock waves
are predicted accurately, demonstrating that the finite-volume framework converges to the correct weak so-
lution of the governing equations [90], further suggesting that the proposed algorithm implicitly satisfies the
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second law of thermodynamics. The evolution of Taylor vortices in an inviscid fluid offered the possibility to
test the conservation of energy of the proposed numerical framework, showing that the momentum-weighted
interpolation is the only source of numerical energy dissipation, an error which however converges with third
order under mesh refinement. The Poiseuille flow of an incompressible fluid and the Couette flow of a compress-
ible fluid demonstrated the accurate simulation of flows in which viscous stresses and heat conduction play a
dominant role. The flow of an incompressible fluid in a lid-driven cavity at different Reynolds numbers further
demonstrated the accurate simulation of flows in which both advection and diffusion play an important role,
and demonstrated the correct enforcement of ∇ ·u = 0 for incompressible fluids to any chosen solver tolerance
(within the limit of machine precision), on unstructured meshes. The results presented for the supersonic flow
of an ideal gas and a real gas over a forward-facing step demonstrated accurate mass conservation, even for
complex flows in which different Mach number regimes coexist. Lastly, the Stokes flow around a rotating sphere
demonstrated that flows in complex three-dimensional geometries can be predicted accurately with the proposed
numerical framework.

In this paper we have put forward a thermodynamic closure model, a finite-volume discretisation and a
fully-coupled pressure-based algorithm for the prediction of the behaviour of the flow of incompressible fluids as
well as compressible fluids described by ideal- or real-gas models on arbitrary meshes. We have combined these
constituent parts into a fully-coupled pressure-based framework and have shown that this framework is able to
predict realistic flows at any speed. However, these parts can also be used individually, for instance in existing
frameworks.
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Appendix A. Coefficients of the linear equation system

The coefficients of the discretised governing equations, Eqs. (50)-(52), are given below. In order to simplify
the presentation, the coefficients are given based on the assumption that cell P is the upwind cell U of face f
and using the BDF1 scheme for the discretisation of the transient terms.

For the discretised continuity equation (50), the pressure coefficients associated with cell P and its neighbour
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cells Q are

Aρ,pP = C VP[
(γ − 1) cv T

(n)
P + b (p

(n)
P + Π)

]
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+
∑
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{
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f d̂f
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(n)
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}
Af (A.1)

Aρ,pQ =
∑
f

−
ρ̃

(n)
f d̂f

∆sf
Af , (A.2)

respectively. The velocity coefficients, which arise from the implicit treatment of the advecting velocity of the
advection term, associated with cell P and its neighbour cells Q, are

Aρ,ui

P =
∑
f

ρ̃
(n)
f (1− lPf )ni,f Af (A.3)

Aρ,ui

Q =
∑
f

ρ̃
(n)
f lPf ni,f Af , (A.4)

respectively. The coefficient of the right-hand side vector, σρ, associated with cell P is given as

σρP =

{
ρ
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(A.5)

where δf = ξf |rPf |/∆sf is the weighting coefficient that follows from the TVD discretisation of the advection
term, see Section 4.3.

For the discretised momentum equations (51), the pressure coefficients are given as

Aρuj ,p
P = C

u
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(n)
j,f d̂f

∆sf
+ lPf nj,f

}
Af . (A.7)

The coefficients associated with velocity uj are given as

Aρuj ,uj

P =
ρ

(n)
P VP
∆t1

+Dρuj ,uj

P (A.8)
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where
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∑
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(n)
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(n)
f +

αfµf
∆sf

}
Af (A.10)

is the coefficient arising from the advection of velocity and the implicit velocity contribution of the decomposed
shear stress term, which is used for the definition of the advection velocity ϑf , see Section 5.1. The coefficients
of the velocity components that arise from the implicit treatment of the advecting velocity of the advection
term are
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(n)
j,f (1− lPf )ni,f Af (A.11)

Aρuj ,ui

Q =
∑
f

ρ̃
(n)
f ũ
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The coefficient of the right-hand side subvector σρuj follows as
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The coefficients of the discretised energy equation (52) follow in a similar fashion, with the pressure coeffi-
cients given as
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and the coefficients of the temperature given as
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The coefficient of the right-hand side subvector σρh follows as
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