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Abstract We develop an entropy stable two–phase incompressible Navier–Stokes/Cahn–Hilliard discon-
tinuous Galerkin (DG) flow solver method. The model poses the Cahn–Hilliard equation as the phase field
method, a skew–symmetric form of the momentum equation, and an artificial compressibility method to
compute the pressure. We design the model so that it satisfies an entropy law, including free– and no–slip
wall boundary conditions with non–zero wall contact angle. We then construct a high–order DG approx-
imation of the model that satisfies the SBP–SAT property. With the help of a discrete stability analysis,
the scheme has two modes: an entropy conserving approximation with central advective fluxes and the
Bassi–Rebay 1 (BR1) method for diffusion, and an entropy stable approximation with an exact Riemann
solver for advection and interface stabilization added to the BR1 method. The scheme is applicable to,
and the stability proofs hold for, three–dimensional unstructured meshes with curvilinear hexahedral
elements. We test the convergence of the schemes on a manufactured solution, and their robustness by
solving a flow initialized from random numbers. In the latter, we find that a similar scheme that does not
satisfy an entropy inequality had 30% probability to fail, while the entropy stable scheme never does. We
also solve the static and rising bubble test problems, and to challenge the solver capabilities we compute
a three–dimensional pipe flow in the annular regime.
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1 Introduction

The study of multiphase flows is of broad interest, from both scientific and industrial perspectives. In
particular, the oil industry investigates two–phase flows of immiscible fluids (e.g. oil and water). Without
mixing, the typical flow configuration is the segregation of the two fluids, separated by a thin interfacial
region that behaves like a permeable membrane. At the interface of two dissimilar fluids, the forces acting
on the molecules of each of these fluids are not the same as within each phase and generate interfacial
tension.

Among the various techniques to approach the solution of immiscible two–phase flows, one finds
two broad categories: sharp and diffuse interface models. In the former, the interface is considered
infinitely thin, and acts as a physical boundary condition where the two fluids are coupled and balanced
by interfacial forces [1]. An example of a sharp interface model is the level–set method [2], where the
interface is tracked by an additional variable advected by the flow velocity field.

Diffuse interface approaches, however, regularize the problem with the introduction of an interface
with non–zero thickness and a smooth transition of thermodynamic variables between both fluids. This
time, interfacial forces (which in the sharp interface approach are delta functions applied at the interface)
are transformed to body forces whose effect is concentrated at the interface [3].

In this work we study the diffuse interface model of Cahn–Hilliard [4, 5] combined with the incom-
pressible Navier–Stokes equations with variable density and artificial (also called pseudo) compressibility
[6]. A review of alternate Navier–Stokes/Cahn–Hilliard models can be found in [7].

We discretize the system of partial differential equations that represents the model with a high–order
Discontinuous Galerkin Spectral Element Method (DGSEM). The DGSEM allows for arbitrary order of
accuracy and can represent complex geometries through the use of unstructured meshes with curvilinear
elements. Here, we develop an entropy–stable discretization, which enhances its robustness and enables
the industrialization of the method.

This work is the third on a roadmap to obtain an entropy stable multiphase solver. In [8], we developed
a free–energy stable discretization of the Cahn–Hilliard equation, while in [9] we derived an entropy–
stable approximation of the incompressible Navier–Stokes equations with artificial compressibility. We
combine the developments in those previous papers to construct an entropy–stable DG approximation
of the incompressible Navier–Stokes/Cahn–Hilliard system.

As in [8, 9], the method is a nodal DG approximation with Gauss–Lobatto points, which satisfies
the summation–by–parts simultaneous–aproximation–term (SBP–SAT) property [10, 11]. The SBP–SAT
property satisfied by the Gauss–Lobatto variant of the DGSEM allows us to mimic the continuous entropy
analysis semi–discretely (i.e. discrete in space, continuous in time). The SBP-SAT property originated
with finite difference methods [10, 11, 12], and has been exploited in recent years to obtain entropy–stable
DG schemes for the linear advection equation [13, 14], Burgers equation [15, 16], shallow water equations
[17], Euler and Navier–Stokes equations [18, 16, 9], the magneto–hydrodynamics equations [19], and the
Cahn–Hilliard equation [8] among others. Although we develop a DG approximation, the approach taken
here can be applied to any discretization that satisfies the SBP–SAT property (e.g. finite difference).

An entropy–stable approximation requires that the continuous system of partial differential equations
satisfies an entropy law. When the density is allowed to vary between the two fluids in a multiphase flow,



ES–DGSEM with SBP for the incompressible NS/CH system 3

as opposed to the more traditional Model H [20] with constant density, the design of an entropy–stable
scheme requires care. The variable density compromises the formulation used for the momentum equation
[21]. Two main approaches to the design of a variable density entropy–stable approximation are commonly
adopted: to use a skew–symmetric version of the momentum equation [22], or to augment the momentum
equation with an additional diffusive flux that depends on the density difference [23, 24].

The addition of the artificial compressibility model, where a divergence–free velocity is not strictly
enforced, completes the formulation used for the body interfacial forces. Without proper choices, terms
proportional to ~∇ · ~u, which can not be neglected nor bounded, might appear in the entopy equation.
With the proper choices, we confirm that the entropy of the Navier–Stokes/Cahn–Hilliard system obeys
the Onsager principle; the total entropy is the sum of the entropy of the incompressible Navier–Stokes
equations, plus the free–energy of the Cahn–Hilliard equation [4]. In [9] we derived a mathematical
entropy of the incompressible Navier–Stokes equations with artificial compressibility as the sum of the
traditional kinetic energy, plus an additional energy term that accounts for compressibility effects. As a
result, the total entropy becomes the sum of the kinetic energy, the artificial compressibility energy, and
the free–energy.

In this paper we construct a multiphase approximation that is appropriate to solve typical applications
in the oil industry. An example is the transport of crude oil in pipes, where the flow of oil and water
is solved under high Reynolds number conditions. Since one desires to keep the mesh and degrees of
freedom as low as possible, the flow configuration is often under–resolved. Under these circumstances,
a robust method that is provably stable is attractive, as it avoids aliasing driven numerical instabilities
that might lead to numerical divergence [14].

The rest of this work is organized as follows: in Sec. 2 we describe the incompressible Navier–
Stokes/Cahn–Hilliard model, with the continuous entropy analysis in Sec. 2.1. The construction of the
discrete DG approximation is described in Sec.3. Then, the semi–discrete stability analysis of the ap-
proximation is performed in Sec. 4, for which a summary can be found in Sec. 4.5. Lastly, we provide
numerical experiments in Sec. 5 that assess both the accuracy and robustness of the method. We solve
a manufactured solution convergence analysis in Sec. 5.1, and an assessment of the robustness solving
a random initial condition in Sec. 5.2. Then, we solve classic static and rising bubble test problems in
Sec. 5.3 and Sec. 5.4 respectively. Lastly, in Sec. 5.5 we challenge the technique by solving a multiphase
pipe in the annular flow regime. Conclusions and discussions can be found in Sec. 6.

2 Governing equations. Continuous entropy analysis

In this section we describe a model that combines the incompressible Navier–Stokes and the Cahn–
Hilliard equations, which we will refer to as iNS/CH. In the single phase variable density incompressible
Navier–Stokes equations, the density ρ(~x, t) is an independent variable that satisfies the continuity equa-
tion (see [22, 25, 9]),

ρt + ~∇ · (ρ~u) = 0, (1)

where ~u(~x, t) = (u, v,w) is the velocity field. In the two–phase iNS/CH system, however, the density is
computed from the concentration c(~x, t) of the two fluids [3],

ρ = ρ(c) = ρ1c+ ρ2(1− c), (2)



4 Juan Manzanero et al.

where ρ1,2 are the densities of fluids 1 and 2, respectively, which are constant in space and time.

In phase field methods, an advection–diffusion equation drives the concentration. Among the model
choices, we pick the Cahn–Hilliard equation [4, 5],

ct + ~∇ · (c~u) = M0~∇2µ. (3)

In (3), µ is the chemical potential,

µ = df0(c)
dc

− 3
2σε

~∇2c, (4)

where f0(c) is the chemical free–energy,

f0 = 12σ
ε
c2(1− c)2, (5)

σ is the coefficient of interface tension between the fluids, ε is the interface width, and M0 is the mobility,
computed in this work with the chemical characteristic time, tCH, as

M0 = ε

σtCH
. (6)

The parameters σ, ε, M0, and tCH are positive constants. The Cahn–Hilliard equation (3), with the
chemical potential definition (4), has an associated free–energy

F(c, ~∇c) = f0(c) + 3
4σε|

~∇c|2. (7)

The velocity field is computed from the momentum equation. If one considers that the continuity
equation (1) holds, the conservative,

(ρ~u)t + ~∇ · (ρ~u~u) = −~∇ps − ~∇ ·
(
~∇c⊗ ∂F

∂~∇c

)
+ ~∇ ·

(
η
(
~∇~u+ ~∇~uT

))
+ ρ~g, (8)

non–conservative,

ρ (~u)t + ρ~u · ~∇~u = −~∇ps − ~∇ ·
(
~∇c⊗ ∂F

∂~∇c

)
+ ~∇ ·

(
η
(
~∇~u+ ~∇~uT

))
+ ρ~g, (9)

and skew–symmetric

1
2 (ρ~u)t+

1
2ρ (~u)t+ ~∇·

(
1
2ρ~u~u

)
+ 1

2ρ~u·
~∇~u = −~∇ps− ~∇·

(
~∇c⊗ ∂F

∂~∇c

)
+ ~∇·

(
η
(
~∇~u+ ~∇~uT

))
+ρ~g, (10)

forms of the momentum equation are identical in the continuous setting. However, since the density does
not satisfy the continuity equation (1), but rather the compatibility condition (2), the three forms (8),
(9) and (10) are no longer equivalent. In this situation, the momentum equation is frozen as one of the
three forms. Following [22, 21], we choose the skew–symmetric version of the momentum (10) since is the
only one that satisfies an entropy inequality for any positive density field. (An alternative that produces
an entropy–stable scheme for the iNS/CH system is to include a relative flux in the momentum equation
that models the diffusion of the components [26].) We use the chain rule in time to perform an additional
manipulation on the time derivative of (10) and obtain the momentum form by Guermond et al. [22],

√
ρ (√ρ~u)t + ~∇ ·

(
1
2ρ~u~u

)
+ 1

2ρ~u ·
~∇~u = −~∇ps − ~∇ ·

(
~∇c⊗ ∂F

∂~∇c

)
+ ~∇ ·

(
η
(
~∇~u+ ~∇~uT

))
+ ρ~g. (11)
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In (11), ps (~x, t) is the static pressure. The second term is the body force approximation of the capillary
pressure [3],

~pc = −~∇ ·
(
~∇c⊗ ∂F

∂~∇c

)
= −3

2σε
~∇ ·
(
~∇c⊗ ~∇c

)
. (12)

Finally η is the viscosity, computed from the concentration c and the viscosities of fluids 1 and 2, η1,2,

η = η(c) = η1c+ η2 (1− c) . (13)

As in [3], we write the capillary pressure more conveniently. Applying the derivative product rule,

~pc = −3
2σε

(
~∇2c~∇c+ ~∇

(
1
2 |
~∇c|2

))
, (14)

and adding and subtracting the term ~∇f0 = f ′0(c)~∇c, we can rewrite the expression for the body force
as

~pc =
(
f ′0(c)− 3

2σε
~∇2c

)
~∇c− ~∇

(
f0(c) + 3

4σε|
~∇c|2

)
= µ~∇c− ~∇F = −c~∇µ− ~∇ (F − µc) . (15)

In the last form, an additional application of the product derivative rule for the first term has been
performed. Eq. (15) represents equivalent expressions of the capillary pressure (12), the last form being
the one adopted here. The first term of the last form, −c~∇µ, is a non–conservative term, and the second,
−~∇ (F − µc), is combined with the static pressure gradient to define an auxiliary pressure

p = ps + F − µc. (16)

With all of these manipulations, we get the final expression of the momentum equation,

√
ρ (√ρ~u)t + ~∇ ·

(
1
2ρ~u~u

)
+ 1

2ρ~u ·
~∇~u+ c~∇µ = −~∇p+ ~∇ ·

(
η
(
~∇~u+ ~∇~uT

))
+ ρ~g. (17)

Many authors have explored how to relax the incompressibility constraint ~∇·~u = 0 in Navier–Stokes
and Navier–Stokes/Cahn–Hilliard systems by using the artificial (or pseudo) compressibility method
[6, 27, 28, 29]. We use the time derivative of the pressure [27, 25, 9],

pt + ρ0c
2
0
~∇ · ~u = 0, (18)

where c0 is the artificial sound speed, and ρ0 = max (ρ1, ρ2).

Remark 1 Alternatively, one can take the time derivative of the pressure Laplacian [6, 21, 30],

− ~∇2pt + ρ0c
2
0
~∇ · ~u = 0. (19)

Since both models share the same velocity divergence term, we can modify the proofs of stability for the
approximation of (18) and study the approximation of the second model (19). We do so in Appendix A.
The use of the Laplacian of the pressure leads to a more complicated implicit implementation, so for that
scheme we include only the stability proof in this paper.
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The combination of (3), (17) and (18) is the iNS/CH system studied in this paper. The coupling
between the Cahn–Hilliard equation and the incompressible Navier–Stokes equations is two–way, through
the compatibility conditions (2), (13), and the capillary pressure. We note that even in the continuous
setting, the momentum is not conserved because of the choice of the skew–symmetric form (17). Although
one can argue about the physical implications, we note that the capillary force is a non–conservative
term as well, so momentum conservation is not guaranteed in any of the forms (8), (9), and (17).
Alternative incompressible Navier–Stokes/Cahn–Hilliard discretizations using the skew–symmetric form
of the momentum equation can be found in [31, 21].

To simplify the notation, we write the iNS/CH system as a general advection–diffusion equation,
1 0 0 0 0
0 √ρ 0 0 0
0 0 √ρ 0 0
0 0 0 √ρ 0
0 0 0 0 1




c
√
ρu
√
ρv
√
ρw

p


t

+ ~∇ ·


c~u

1
2ρ~uu+ p~e1
1
2ρ~uv + p~e2
1
2ρ~uw + p~e3

0



+


~0

1
2ρ~u · ~∇u+ c~e1 · ~∇µ
1
2ρ~u · ~∇v + c~e2 · ~∇µ
1
2ρ~u · ~∇w + c~e3 · ~∇µ

ρ0c
2
0

(
~e1 · ~∇u+ ~e2 · ~∇v + ~e3 · ~∇w

)

 = ~∇ ·


M0~∇µ
2ηS · ~e1
2ηS · ~e2
2ηS · ~e3
~0

+


0

ρ~g · ~e1
ρ~g · ~e2
ρ~g · ~e3

0

 ,

(20)

where,

S = sym
(
~∇~u
)

= 1
2

(
~∇~u+ ~∇~uT

)
, (21)

is the strain tensor, and ~ei are the space unit vectors. Note that we have grouped the velocity divergence
in the artificial compressibility equation (18) into the non–conservative terms. Although treating the
velocity divergence as conservative or non–conservative is equivalent, the latter makes it easier to show
stability.

We adopt the notation in [16] to work with vectors of different nature. We define space vectors (e.g.
~x = (x, y, z) ∈ R3) with an arrow on top, and state vectors (e.g. q =

(
c,√ρ~u, p

)
∈ R5) in bold. Moreover,

we define block vectors as the result of stacking three state vectors (e.g. fluxes),

↔
fe =

 fe,1
fe,2
fe,3

 =

 fe
ge
he

 ,
↔
fv =

 fv,1
fv,2
fv,3

 =

 fv
gv
hv

 , (22)

and define the operator Υ that transforms a 5× 3 (state–space) matrix into a 15× 1 block vector,

↔
f = Υ


f1 g1 h1
f2 g2 h2
f3 g3 h3
f4 g4 h4
f5 g5 h5

 =

 f
g
h

 . (23)
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This notation allows us to define products of state, space, and block vectors,

↔
f · ↔g =

3∑
i=1

fTi gi, ~g ·
↔
f =

3∑
i=1

gifi, ~gf =

 g1f
g2f
g3f

 . (24)

We can then define the divergence and gradient operators using (24),

~∇ ·
↔
f =

3∑
i=1

∂fi
∂xi

, ~∇q =

qx
qy
qz

 . (25)

Lastly, we refer to state matrices (i.e. 5× 5 matrices) with an underline, e.g. B, which can be combined
to construct a block matrix,

B =

B11 B12 B13
B21 B22 B23
B31 B32 B33

 . (26)

Block matrices can be directly multiplied to a block vector to obtain another block vector. For instance,
to perform a matrix multiplication in space (e.g. a rotation),

~g = M~f , (27)

for each of the variables in the state vector, we construct the block matrix version of M (I5 is the 5× 5
identity matrix),

M =

M11I5 M12I5 M13I5
M21I5 M22I5 M23I5
M31I5 M32I5 M33I5

 , (28)

so that we can compactly write
↔g =M

↔
f . (29)

For more details, see [16].

The notation introduced above makes it possible to write the iNS/CH system (20) compactly in the
form of a general advection–diffusion equation,

mqt + ~∇ ·
↔
fe (q) +

5∑
m=1

↔
φm (q) · ~∇wm = ~∇ ·

↔
fv
(
q, ~∇w

)
+ s (q) , (30)

with state vector q =
(
c,√ρ~u, p

)
, gradient variables vector w = (w1,w2, ...,w5) = (µ, ~u, p), mass matrix

m,

m =

 1 0 0
0 √ρI3 0
0 0 1

 , (31)

inviscid fluxes
↔
fe (q),

fe,1 = fe =


cu

ρu2 + p

ρuv

ρuw

0

 , fe,2 = ge =


cv

ρuv

ρv2 + p

ρvw

0

 , fe,3 = he =


cw

ρuw

ρvw

ρw2 + p

0

 , (32)
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non–conservative term coefficients
↔
φm (q),

↔
φ1 = Υ


0
c~e1
c~e2
c~e3
0

 ,
↔
φ2 = Υ


0

1
2ρ~u

0
0

ρ0c
2
0~e1

 ,
↔
φ3 = Υ


0
0

1
2ρ~u

0
ρ0c

2
0~e2

 ,

↔
φ4 = Υ


0
0
0

1
2ρ~u

ρ0c
2
0~e3

 ,
↔
φ5 = Υ


0
0
0
0
0

 ,

(33)

viscous fluxes
↔
fv
(
~∇w
)

,

fv,1 = fv =


M0µx
2ηS11
2ηS21
2ηS31

0

 , fv,2 = gv =


M0µy
2ηS12
2ηS22
2ηS32

0

 , fv,3 = hv =


M0µz
2ηS13
2ηS23
2ηS33

0

 , (34)

and source term s (q) = (0, ρ~g, 0).

An attractive property of the iNS/CH system from the point of view of computational efficiency
is that the same gradient variables w are used in both the non–conservative terms and the viscous
fluxes. Moreover, these gradient variables will be shown to be the entropy variables associated with the
mathematical entropy in Section 2.1. Additionally, recall that the velocity divergence from the artificial
compressibility equation (18) was grouped into the non–conservative terms since it is beneficial when
proving stability.

2.1 Entropy analysis of the iNS/CH system

The entropy analysis rests on the existence of a pair E (q) (mathematical entropy) and w (entropy
variables) that contract the system of equations (30) into a conservation law [32],

wT

(
mqt + ~∇ ·

↔
fe (q) +

5∑
m=1

↔
φm (q) · ~∇wm − ~∇ ·

↔
fv
(
q, ~∇w

))
= Et +∇ · ~fE +∇wT ·

↔
fv = 0,

(35)

with an entropy flux ~fE , and a viscous dissipative contribution,

~∇wT ·
↔
fv > 0. (36)

The difference between the usual entropy analysis [32, 11, 11] and this work is that we will incorporate
the Cahn–Hilliard free–energy into the mathematical entropy, which makes it depend not only on the



ES–DGSEM with SBP for the incompressible NS/CH system 9

solution, but also its gradient. To obtain the entropy of the iNS/CH system, we add the Cahn–Hilliard
free–energy F to the incompressible NSE entropy defined in [9]. The latter combines the traditional
kinetic energy K with an extra energy term due to the artificial compressibility EAC. For the iNS/CH
system, the total entropy is,

E = F(c, ~∇c) +K (√ρ~u) + EAC(p)

= f0(c) + 3
4σε|

~∇c|2 + 1
2ρv

2
tot + p2

2ρ0c2
0
> 0,

(37)

where v2
tot = u2 + v2 +w2 is the square of the total speed. Eq. (37) assumes positivity on the density ρ,

which is ensured by limiting the maximum and minimum density values used in the momentum equation
with a simple cutoff,

ρ (ĉ) = ρ1ĉ+ ρ2 (1− ĉ) , ĉ = min (max (c, 0) , 1) . (38)

We find a set of entropy variables w that contracts the time derivative of the state vector, qt, into
the time derivative of the entropy Et, plus an additional divergence term of a time derivative flux ~fEt ,

wTmqt = Et + ~∇ · ~fEt . (39)

To do so, we compute the time derivative of the entropy (37),

Et = f ′0(c)ct + 3
2σε∇c · ∇ct +√ρ~u · (√ρ~u)t + ppt

ρ0c2
0

=
(
f ′0(c)− 3

2σε
~∇2c

)
ct + ~∇ ·

(
3
2σεct

~∇c
)

+√ρ~u · (√ρ~u)t + ppt
ρ0c2

0

= µct + ~∇ ·
(

3
2σεct

~∇c
)

+√ρu (√ρu)t +√ρv (√ρv)t +√ρw (√ρw)t + ppt
ρ0c2

0
,

(40)

and the product of the entropy variables with the time derivative of the state vector,

w1ct +√ρw2 (√ρu)t +√ρw3 (√ρv)t +√ρw4 (√ρw)t + w5pt. (41)

Thus, we replace (40) and (41) in (39) and rearrange,

(w1 − µ) ct +√ρ (w2 − u) (√ρu)t +√ρ (w3 − v) (√ρv)t +√ρ (w4 − w) (√ρw)t

+
(
w5 −

p

ρ0c2
0

)
pt = ~∇ ·

(
~fEt + 3

2σεct
~∇c
)

,
(42)

to extract the entropy variables w and time entropy flux ~fEt

w =
(
µ,u, v,w, p

ρ0c2
0

)
, ~fEt = −3

2σεct
~∇c. (43)

Note that the minimum of the entropy is found when all the entropy variables are zero.

The contraction of the inviscid fluxes rests on one property to be satisfied by the inviscid fluxes and
the non–conservative terms.
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Property 1 If inviscid fluxes,
↔
fe, and non–conservative terms coefficients,

↔
φm, satisfy

eTm
↔
fe = wT

↔
φm, (44)

where em is the state unit vector along the m–th state variable, then the entropy variables automatically
contract the inviscid fluxes, and the entropy flux is computed as

~fEe = wT
↔
fe. (45)

To show the contraction property (44), we multiply the divergence of the inviscid fluxes by the entropy
variables, apply the derivative product rule, and write the second scalar product as the sum of the
product of the five state components. Lastly we use (44) and (45) to see that

wT ~∇ ·
↔
fe = ~∇ ·

(
wT

↔
fe
)
−∇wT ·

↔
fe = ~∇ ·

(
wT

↔
fe
)
−

5∑
m=1

eTm
↔
fe · ~∇wm

= ~∇ · ~fEe −
5∑

m=1

wT
↔
φm · ~∇wm.

(46)

Therefore,

wT

(
~∇ ·

↔
fe (q) +

5∑
m=1

↔
φm (q) · ~∇wm

)
= ~∇ · ~fEe . (47)

The iNS/CH system does satisfy the property (44), for

eT1
↔
fe = c~u = wT

↔
φ1,

eT2
↔
fe = 1

2ρu~u+ p~e1 = wT
↔
φ2,

eT3
↔
fe = 1

2ρv~u+ p~e2 = wT
↔
φ3,

eT4
↔
fe = 1

2ρw~u+ p~e3 = wT
↔
φ4,

eT5
↔
fe = 0 = wT

↔
φ5.

(48)

So, the inviscid entropy flux for the iNS/CH system follows from (45) and is

~fEe =
(

1
2ρv

2
tot + p+ µc

)
~u. (49)

For completeness, insight into how each of the different terms are combined into an entropy flux is
provided in Appendix B.

Lastly, the entropy variables contract viscous fluxes. The entropy flux follows (45),

~fEv = wT
↔
fv = M0µ~∇µ+ 2ηS · ~u. (50)
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Also, (36) holds,

~∇wT ·
↔
fv = M0|~∇µ|2 + η

(
~∇~u+ ~∇~uT

)
: ~∇~u

= M0|~∇µ|2 + 2η 1
2

(
~∇~u+ ~∇~uT

)
: 1

2

(
~∇~u+ ~∇~uT

)
= M0|~∇µ|2 + 2ηS : S > 0.

(51)

Therefore,
wT ~∇ ·

↔
fv = ~∇ ·

(
wT

↔
fv
)
− ~∇wT ·

↔
fv 6 ~∇ · ~fEv . (52)

In (51), we replaced ~∇~u by its symmetric part (21) since it multiplies a symmetric tensor.

With these results, we confirm that the iNS/CH system, (20), with entropy, (37), satisfies the con-
servation law

Et + ~∇ · ~fE = −~∇wT ·
↔
fv = −M0|~∇µ|2 − 2ηS : S 6 0, (53)

with entropy flux ~fE ,

~fE = ~fEt + ~fEe + ~fEv = −3
2σεct

~∇c+
(

1
2ρv

2
tot + p+ µc

)
~u+ 2ηS · ~u+M0µ~∇µ. (54)

Eq. (53) shows that the entropy (37) is always dissipated in the interior of the domain, and it can
only increase due to boundary exchanges. The entropy equation can be written as a global equation by
integrating over the whole domain Ω,

dĒ
dt

+
∫
∂Ω

~fE · ~ndS = −
∫
Ω

(
M0|~∇µ|2 + 2ηS : S

)
d~x 6 0 (55)

where Ē is the total entropy,
Ē =

∫
Ω

E d~x. (56)

The discrete approximation will be constructed so that it mimics (55), which will guarantee that the
discrete entropy of the approximation will remain bounded by the boundary and initial data.

2.1.1 Boundary conditions

Boundedness of the total entropy depends on proper specification of boundary conditions. We examine
the effect of free– and no–slip boundary conditions. For the Cahn–Hilliard equation, we use a non–
homogeneous Neumann condition for the concentration [33], and a homogeneous Neumann condition for
the chemical potential,

− 3
2σε

∂c

∂~n

∣∣∣∣
∂Ω

= f ′w(c), ∂µ

∂~n

∣∣∣∣
∂Ω

= 0, (57)

where fw(c) is the boundary free–energy function that controls the wall contact angle. One choice is to
use the function [33]

fw(c) = 1
2σ cos θw(2c− 1)(1 + 2c− 2c2), f ′w(c) = 6σ cos θwc(1− c), (58)
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where θw is the imposed contact angle with the wall. In most simulations performed in this work we use
a 90◦ angle, which simplifies fw(c) = 0.

For free–slip boundary conditions, we impose zero normal velocity and zero normal stress for mo-
mentum, while for no–slip walls, all velocity components are zero (~u = 0), and we do not impose any
conditions on the stress tensor. Either way, the boundary entropy flux is,

~fE · ~n = −3
2σεct

~∇c · ~n+
(

1
2ρv

2
tot + p+ µc

)
~u · ~n+ 2η~n · S · ~u+M0µ~∇µ · ~n.

= ctf
′
w(c) = dfw

dt
,

(59)

i.e., both entropy fluxes for the free– and no–slip walls coincide. The entropy balance (55) with wall
boundary conditions is therefore

d

dt

(
Ē +

∫
∂Ω

fw(c)dS
)

= −
∫
Ω

(
M0|~∇µ|2 + 2ηS : S

)
d~x 6 0, (60)

where the volume entropy is augmented with the surface free energy as in [33, 8].

3 Space and time discretization

We now construct the entropy–stable DGSEM approximation. We restrict ourselves to the tensor product
DGSEM with Gauss–Lobatto (GL) points, since it satisfies the Summation–By–Parts Simultaneous–
Approximation–Term (SBP–SAT) property [11]. The SBP–SAT property allows us to discretely follow
the continuous stability steps to construct a discrete entropy law.

3.1 Differential geometry and curvilinear elements

The physical domain Ω is tessellated with non–overlapping hexahedral elements, e, which are geomet-
rically transformed from a reference element E = [−1, 1]3. This transformation is performed using a
(polynomial) transfinite mapping ~X that relates physical coordinates (~x =

(
x1,x2,x3) = (x, y, z) =

xx̂+ yŷ + zẑ) to local reference coordinates (~ξ =
(
ξ1, ξ2, ξ3) = (ξ, η, ζ) = ξξ̂ + ηη̂ + ζζ̂) through

~x = ~X
(
~ξ
)

= ~X (ξ, η, ζ) . (61)

The space vectors x̂i and ξ̂i are unit vectors in the three Cartesian directions of physical and reference
coordinates, respectively.

From the transformation (61) one can define three covariant basis vectors,

~ai = ∂ ~X

∂ξi
, i = 1, 2, 3, (62)

and three contravariant basis vectors,

~ai = ~∇ξi = 1
J

(~aj × ~ak) , (i, j, k) cyclic, (63)
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where
J = ~a1 · (~a2 × ~a3) (64)

is the Jacobian of the mapping ~X. The contravariant coordinate vectors satisfy the metric identities [34],
3∑
i=1

∂
(
Jain

)
∂ξi

= 0, n = 1, 2, 3, (65)

where ain is the n–th Cartesian component of the contravariant vector ~ai.

We use the volume weighted contravariant basis J~ai to transform differential operators from physical
(~∇) to reference (~∇ξ) space. The divergence of a vector is [16]

~∇ · ~f = 1
J
~∇ξ ·

(
MT ~f

)
, (66)

where M =
(
J~aξ, J~aη, J~aζ

)
. We use (28) to write the divergence of an entire block vector compactly.

Thus, we define the block matrix M,

M =

Ja1
1I5 Ja

2
1I5 Ja

3
1I5

Ja1
2I5 Ja

2
2I5 Ja

3
2I5

Ja1
3I5 Ja

2
3I5 Ja

3
3I5

 , (67)

which allows us to write (66) for all the state variables simultaneously,

~∇ ·
↔
f = 1

J
~∇ξ ·

(
MT

↔
f
)

= 1
J
~∇ξ ·

↔

f̃ , (68)

with
↔

f̃ being the block vector of the contravariant fluxes,
↔

f̃ =MT
↔
f , f̃ i = J~ai ·

↔
f . (69)

The gradient of a scalar is [16]
~∇w = 1

J
M~∇ξw, (70)

which we can also extend to all entropy variables using (67),

↔g = ~∇w = 1
J
M~∇ξw, (71)

and to non–conservative terms,
↔
φm · ~∇wm = 1

J
↔

φ̃m · ~∇ξwm. (72)

To transform the iNS/CH system, (20), into reference space, we first write it as a first order system.
To do so, we define the auxiliary variables ↔g = ~∇w and ~gc = ~∇c so that

mqt + ~∇ ·
↔
fe(q) +

5∑
m=1

(
↔
φm (q) · ~∇wm

)
= ~∇ ·

↔
fv (↔g) + s(q),

↔g = ~∇w,

µ = f ′0(c)− 3
2σε

~∇ · ~gc,

~gc = ~∇c.

(73)
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Recall that the viscous fluxes of the incompressible NSE depend only on the gradient of the entropy
variables, ↔g, and not on the state vector q. Note that in the first equation the non–conservative terms
are written in terms of ~∇w and not in terms of ↔g. This allows us to construct an entropy–stable scheme.

Next, we transform the operators to reference space using (68), (71), and (72)

Jmqt + ~∇ξ ·
↔

f̃e(q) +
5∑

m=1

(↔

φ̃m (q) · ~∇ξwm
)

= ~∇ξ ·
↔

f̃v (↔g) + Js(q), (74a)

J
↔g =M~∇ξw, (74b)

Jµ = Jf ′0(c)− 3
2σε

~∇ξ · ~̃gc, (74c)

J~gc = M~∇ξc, (74d)

to obtain the final form of the equations to be approximated.

The DG approximation is obtained from weak forms of the equations (74). We first define the inner
product in the reference element, E, for state and block vectors

〈f , g〉E =
∫
E

fTg dE,
〈

↔
f , ↔g
〉
E

=
∫
E

↔
f · ↔g dE. (75)

We construct four weak forms by multiplying (74) by four test functions ϕq,
↔
ϕg, ϕµ, and ~ϕc, then we

integrate over the reference element E, and finally we integrate by parts to get

〈
Jmqt,ϕq

〉
E

+
∫
∂E

ϕTq

(
↔

f̃e +
5∑

m=1

↔

φ̃mwm −
↔

f̃v

)
· n̂dSξ −

〈↔

f̃e, ~∇ξϕq
〉
E

−
5∑

m=1

〈
wm, ~∇ξ ·

(
ϕTq

↔

φ̃m

)〉
E

= −
〈↔

f̃v, ~∇ξϕq
〉
E

+
〈
Js,ϕq

〉
E

,

〈
J

↔g, ↔
ϕg
〉
E

=
∫
∂E

wT
(↔
ϕ̃g · n̂

)
dSξ −

〈
w, ~∇ξ ·

↔
ϕ̃g

〉
E

,

〈Jµ,ϕµ〉E = 〈Jf ′0,ϕµ〉E −
∫
∂E

3
2σεϕµ

~̃gc · n̂dSξ +
〈

3
2σε

~̃gc, ~∇ξϕµ
〉
E

,

〈J~gc, ~ϕc〉E =
∫
∂E

c~̃ϕc · n̂dSξ −
〈
c, ~∇ξ · ~̃ϕc

〉
E

.

(76)

The quantities n̂ and dSξ are the unit outward pointing normal and surface differential at the faces of
E, respectively. The contravariant test functions

↔
ϕ̃g and ~̃ϕc follow the definition (69). Finally, surface

integrals extend to all six faces of an element,∫
∂E

~̃f · n̂dSξ =
∫

[−1,1]2
f̃1 dη dζ

∣∣∣∣ξ=1

ξ=−1
+
∫

[−1,1]2
f̃2 dξ dζ

∣∣∣∣η=1

η=−1
+
∫

[−1,1]2
f̃3 dξ dη

∣∣∣∣ζ=1

ζ=−1
. (77)

We can write surface integrals in either physical or reference space. The relation between physical
and reference surface differentials is given by,

dSi =
∣∣J~ai∣∣dξj dξk = J if dSiξ, (78)
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where we have defined the face Jacobian J if =
∣∣J~ai∣∣. We can write the surface flux in either reference

element, ~̃f · n̂, or physical, ~f · ~n, variables through

~̃f · n̂i dSξ =
(
MT ~f

)
· n̂i dSξ = ~f ·

(
Mn̂i

)
dSξ = ~f · ~n

∣∣J~ai∣∣dSξ = ~f · ~ni dS. (79)

Therefore, the surface integrals can be written in both physical and reference spaces,∫
∂E

~̃f · n̂dSξ =
∫
∂e

~f · ~ndS, (80)

and we will use one or the other depending on whether we are studying an isolated element (reference
space) or the entire mesh (physical space).

3.2 Polynomial approximation and the DGSEM

We now construct the discrete version of (76). The approximation of the state vector inside each element
E is an order N polynomial,

q ≈ Q
(
~ξ
)

=
N∑

i,j,k=0

Qijk(t)li(ξ)lj(η)lk(ζ) ∈ PN , (81)

where PN is the space of polynomials of degree less than or equal to N on [−1, 1]3. The state values
Qijk(t) = Q(ξi, ηj , ζk, t) are the nodal degrees of freedom (time dependent coefficients) at the tensor
product of each of the Gauss–Lobatto (GL) points {ξi}Ni=0. Then, Lagrange polynomials li(ξ) are

li(ξ) =
N∏
j=0
j 6=i

ξ − ξj
ξi − ξj

. (82)

The geometry and metric terms are also approximated with order N polynomials. Let us denote IN as
the polynomial interpolation operator [35]. The transfinite mapping is approximated using X = IN (X),
but special attention must be paid to its derivatives (i.e. the contravariant basis) since J~ai 6= IN (~aj × ~ak).
For the metric identities (65) to hold discretely,

3∑
i=1

∂IN
(
Jain

)
∂ξi

= 0, n = 1, 2, 3, (83)

we approximate metric terms using the curl form [34],

J ain = −x̂i · ~∇ξ ×
(
IN
(
Xl~∇ξXm

))
∈ PN , i = 1, 2, 3, n = 1, 2, 3, (n,m, l) cyclic. (84)

If we compute J~ai using (84), we ensure discrete free–stream preservation, which is crucial to avoid grid
induced solution changes [34].
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Next, we approximate integrals that arise in the weak formulation using Gauss quadratures. Let
{wi}Ni=0 be the quadrature weights associated to Gauss–Lobatto nodes {ξi}Ni=0. Then, in one dimension,∫ 1

−1
f(ξ)dξ ≈

∫
N

f(ξ)dξ =
N∑
m=0

wmf(ξm) =
N∑
m=0

wmFm. (85)

For Gauss–Lobatto points, the approximation is exact if f (ξ) ∈ P2N−1. The extension to three dimensions
has three nested quadratures, one for each of the three reference space dimensions. For example, the inner
product is

〈f , g〉E ≈ 〈f , g〉E,N =
N∑

m,n,l=0

wmnlFmnlGmnl, wmnl = wmwnwl, (86)

with a similar definition for block vectors. The approximation of surface integrals is performed similarly,
replacing exact integrals by Gauss quadratures in (77),∫

∂E

~̃f · n̂dSξ ≈
∫
∂E,N

~̃f · n̂dSξ =
∫
N

f̃1 dη dζ

∣∣∣∣ξ=1

ξ=−1
+
∫
N

f̃2 dξ dζ

∣∣∣∣η=1

η=−1
+
∫
N

f̃3 dξ dη

∣∣∣∣ζ=1

ζ=−1

=
N∑

j,k=0

wjk
(
F̃ 1
Njk − F̃ 1

0jk
)

+
N∑

i,k=0

wik
(
F̃ 2
iNk − F̃ 2

i0k
)

+
N∑

i,j=0

wij
(
F̃ 3
ijN − F̃ 3

ij0
)

.
(87)

Gauss–Lobatto points are used to construct entropy–stable schemes using split–forms [11, 18]. There
is no need to perform an interpolation from the volume polynomials in (87) to the boundaries, since
boundary points are included, which is known as the Simultaneous–Approximation–Term (SAT) property.
The exactness of the numerical quadrature and the SAT property yield the discrete Gauss law [11, 36]:
for any polynomials

↔
F and V in PN ,〈

~∇ξ ·
↔

F̃, V
〉
E,N

=
∫
∂E,N

(↔

F̃ · n̂
)

VdSξ −
〈↔

F̃, ~∇ξV
〉
E,N

. (88)

We start the discretization with the insertion of the discontinuous polynomial ansatz (81), (86), and
(87) into the continuous weak forms (76),

〈
JMQt,ϕq

〉
E,N +

∫
∂E,N

ϕTq

(
↔

F̃e +
5∑

m=1

↔

Φ̃mWm −
↔

F̃v

)
· n̂dSξ −

〈↔

F̃e, ~∇ξϕq
〉
E,N

−
5∑

m=1

〈
Wm, ~∇ξ ·

(
ϕTq

↔

Φ̃m

)〉
E,N

= −
〈↔

F̃v, ~∇ξϕq
〉
E,N

+
〈
JS,ϕq

〉
E,N ,

〈
J

↔
G, ↔
ϕg

〉
E,N

=
∫
∂E,N

WT
(↔
ϕ̃g · n̂

)
dSξ −

〈
W, ~∇ξ ·

↔
ϕ̃g

〉
E,N

,

〈J µ,ϕµ〉E,N = 〈JF ′0,ϕµ〉E,N −
∫
∂E,N

3
2σεϕµ

~̃Gc · n̂dSξ +
〈

3
2σε

~̃Gc, ~∇ξϕµ
〉
E,N

,〈
J ~Gc, ~ϕc

〉
E,N

=
∫
∂E,N

C ~̃ϕc · n̂dSξ −
〈
C, ~∇ξ · ~̃ϕc

〉
E,N

.

(89)
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In (89), the test functions are restricted to polynomial spaces, PN . Taken in context, µ (which lacks an
upper case symbol) refers to the polynomial approximation of the chemical potential.

Euler conservative fluxes and viscous fluxes have inter–element coupling and physical boundary con-
ditions enforced by numerical fluxes in the element boundary quadratures in (89),

↔
Fe ≈

↔
F
?

e (QL, QR) ,
↔
Fv ≈

↔
F
?

v

(
↔
GL,

↔
GR

)
, W ≈W? (QL, QR) ,

~Gc ≈ ~G?c

(
~GcL, ~GcR

)
, C ≈ C? (CL,CR) .

(90)

Whereas for non–conservative terms, we follow [37] and use diamond fluxes at the boundaries,

↔
ΦmWm ≈

(
↔
ΦmWm

)♦
(QL, QR) . (91)

Both numerical and diamond flux functions are detailed below in Sec. 3.3. In (90) and (91), L and
R represent the values from the left and right adjacent elements. Although numerical fluxes are single
valued at each interface, diamond fluxes are not so constrained and their value can jump from one side
to the other.

Inserting the numerical (90) and diamond (91) fluxes into (89) completes the semi–discretization,

〈
JMQt,ϕq

〉
E,N +

∫
∂E,N

ϕTq

(
↔

F̃?e +
5∑

m=1

(↔

Φ̃mWm

)♦
−

↔

F̃?v

)
· n̂dSξ −

〈↔

F̃e, ~∇ξϕq
〉
E,N

−
5∑

m=1

〈
Wm, ~∇ξ ·

(
ϕTq

↔

Φ̃m

)〉
E,N

= −
〈↔

F̃v, ~∇ξϕq
〉
E,N

+
〈
JS,ϕq

〉
E,N , (92a)

〈
J

↔
G, ↔
ϕg

〉
E,N

=
∫
∂E,N

W?,T (↔
ϕ̃g · n̂

)
dSξ −

〈
W, ~∇ξ ·

↔
ϕ̃g

〉
E,N

, (92b)

〈J µ,ϕµ〉E,N = 〈JF ′0,ϕµ〉E,N −
∫
∂E,N

3
2σεϕµ

~̃G?c · n̂dSξ +
〈

3
2σε

~̃Gc, ~∇ξϕµ
〉
E,N

, (92c)〈
J ~Gc, ~ϕc

〉
E,N

=
∫
∂E,N

C? ~̃ϕc · n̂dSξ −
〈
C, ~∇ξ · ~̃ϕc

〉
E,N

. (92d)

Because it enhances the algorithm efficiency and makes it easier to show stability, we apply the discrete
Gauss law (88) to the non–conservative terms and inviscid fluxes of (92a), in (92b), and in (92d), and
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use (80) to write surface integrals in physical variables,

〈
JMQt,ϕq

〉
E,N +

∫
∂e,N

ϕTq

(
↔
F?e −

↔
Fe +

5∑
m=1

(
↔
ΦmWm

)♦
−

↔
ΦmWm

)
· ~ndS

+
〈
ϕq, ~∇ξ ·

↔

F̃e
〉
E,N

+
5∑

m=1

〈
ϕq,

↔

Φ̃m · ~∇ξWm

〉
E,N

=
∫
∂e,N

ϕTq
↔
F?v · ~ndS −

〈↔

F̃v, ~∇ξϕq
〉
E,N

+
〈
JS,ϕq

〉
E,N , (93a)〈

J
↔
G, ↔
ϕg

〉
E,N

=
∫
∂e,N

(
W?,T −WT

) (↔
ϕg · ~n

)
dS +

〈
↔
ϕ̃g, ~∇ξW

〉
E,N

, (93b)

〈J µ,ϕµ〉E,N = 〈JF ′0,ϕµ〉E,N −
∫
∂e,N

3
2σεϕµ

~G?c · ~ndS +
〈

3
2σε

~̃Gc, ~∇ξϕµ
〉
E,N

, (93c)〈
J ~Gc, ~ϕc

〉
E,N

=
∫
∂e,N

(C? − C) ~ϕc · ~ndS +
〈
~̃ϕc, ~∇ξC

〉
E,N

. (93d)

The algorithm efficiency is improved by the use of single calculation of the local gradient of the en-
tropy variables, ~∇ξW, for both non–conservative terms in (93a) and gradients in (93b). As a result,
non–conservative terms are as expensive as source terms (i.e. no additional matrix multiplications are
required). Then for the gradients

↔
G we augment the pre–computed local gradients ~∇ξW with the surface

integral in (93b).

The point–wise discretization is obtained by replacing the test function in (93) by the Lagrange
polynomials. For completeness, we write the implementation of the discretization in Appendix C.

3.3 Numerical fluxes

The approximation (93) is completed with the specification of numerical fluxes F?e, F?v, W?, ~G?c , C?, and
diamond fluxes (

↔
ΦmWm)♦. For the inviscid fluxes we propose two options: an entropy conserving option

using using central fluxes, and an entropy–stable approximation using the exact Riemann solver derived
in [25]. For the viscous fluxes and concentration gradient, we use the Bassi–Rebay 1 (BR1) scheme [38].

Before we write the numerical fluxes, we first describe the rotational invariance property satisfied by
inviscid fluxes and non–conservative terms. The rotational invariance of the flux [39] allows us to write
the normal flux

↔
Fe · ~n from a rotated version of the inviscid flux x–component Fe,

↔
Fe · ~n = TTFe (TQ) = TTFe (Qn) , T =


1 0 0 0 0
0 nx ny nz 0
0 t1,x t1,y t1,z 0
0 t2,x t2,y t2,z 0
0 0 0 0 1

 , (94)

where T is a rotation matrix that only affects velocities, ~n = (nx,ny,nz) is the normal unit vector to
the face, and ~t1 and ~t2 are two tangent unit vectors to the face. When the rotation matrix T multiplies
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the state vector Q, we obtain the face normal state vector Qn,

Qn = TQ = (C,√ρUn,√ρVt1,√ρVt2,P ) , (95)

where Un = ~U ·~n the normal velocity, and Vti = ~U ·~ti (i = 1, 2) are the two tangent velocities. Note that
the reference system rotation does not affect the total speed

V 2
tot = U2 + V 2 +W 2 = U2

n + V 2
t1 + V 2

t2. (96)

The non–conservative terms,

5∑
m=1

↔
ΦmWm = Υ


0 0 0

1
2ρU

2 + µC 1
2ρUV

1
2ρUW

1
2ρUV

1
2ρV

2 + µC 1
2ρVW

1
2ρUW

1
2ρVW

1
2ρW

2 + µC

ρ0c
2
0U ρ0c

2
0V ρ0c

2
0W

 , (97)

are also rotationally invariant,

5∑
m=1

(
↔
ΦmWm

)
· ~n = TT


0

1
2ρU

2
n + µC

1
2ρUnVt1
1
2ρUnVt2
ρ0c

2
0Un

 = TTFΦW (Qn) , (98)

with its equivalent x–component,

fφw (q) =


0

1
2ρu

2 + µc
1
2ρuv
1
2ρuw

ρ0c
2
0u

 . (99)

3.3.1 Inviscid fluxes: entropy conserving central fluxes

The first choice for the inviscid numerical and diamond fluxes is to use central fluxes, which will lead
to an entropy conserving approximation. We adapt the approach used for the resistive MHD in [37], so
that

↔
F?e · ~n = {{

↔
Fe}} · ~n = TT


{{CUn}}

{{ 1
2ρU

2
n + p}}

{{ 1
2ρUnVt1}}
{{ 1

2ρUnVt2}}
0

 , (100)
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and

5∑
m=1

(
↔
ΦmWm

)♦
· ~n =

5∑
m=1

↔
Φm{{Wm}} · ~n = TT


0

1
2ρUn{{Un}}+ C{{µ}}

1
2ρUn{{Vt1}}
1
2ρUn{{Vt2}}
ρ0c

2
0{{Un}}

 . (101)

In (100) and (101), {{u}} represents the average operator,

{{u}} = uL + uR
2 (102)

and
↔
Φm (without average) represents the element local state at the face.

3.3.2 Inviscid fluxes: entropy–stable exact Riemann solver (ERS)

The second option uses the solution of the exact Riemann problem derived in [25]. The star region
solution of the incompressible NSE (i.e. without the Cahn–Hilliard equation) is,

U?n =
PL − PR + ρLUnLλ

+
L − ρRUnRλ

−
R

ρLλ
+
L − ρRλ

−
R

, P ? = PL + ρLλ
+
L (UnL − U?n) ,

ρ? =
{
ρ?L if U?n > 0
ρ?R if U?n < 0 , ρ?L =

ρLλ
+
L

U?n − λ−L
, ρ?R =

ρRλ
−
R

U?n − λ+
R

, V ?ti =
{
VtiL if U?n > 0
VtiR if U?n < 0 ,

(103)

with eigenvalues,

λ±L = UnL ± aL
2 , λ±R = UnR ± aR

2 , a =

√
U2
n + 4ρ0c2

0
ρ

. (104)

We evaluate the numerical flux with the star region solution with the normal state Qn in (94) for
the momentum, and perform the average for the Cahn-Hilliard part,

↔
F?e · ~n = TT


{{CUn}}

1
2ρ
?U?,2

n + p?

1
2ρ
?U?nV

?
t1

1
2ρ
?U?nV

?
t2

0

 . (105)

For non–conservative terms, we choose the diamond fluxes,
5∑

m=1

(
↔
ΦmWm

)♦
· ~n =

↔
Φ1{{W1}} · ~n+

5∑
m=2

(
↔
Φ?
mW

?
m +

↔
ΦmWm −

↔
Φ?
mWm

)
· ~n

= TT


0

1
2ρ
?U?,2

n + 1
2ρU

2
n − 1

2ρ
?U?nUn + C{{µ}}

1
2ρ
?U?nV

?
t1 + 1

2ρUnVt1 −
1
2ρ
?U?nVt1

1
2ρ
?U?nV

?
t2 + 1

2ρUnVt2 −
1
2ρ
?U?nVt2

ρ0c
2
0U

?
n

 = TTFERS
ΦW ,

(106)

where
↔
Φ?
m and W ?

m refer to non–conservative coefficients and entropy variables evaluated with the star
region solution (103). This choice is justified by the stability analysis.
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3.3.3 Viscous and chemical potential fluxes: Bassi–Rebay 1 (BR1) method

For the viscous fluxes and the chemical potential we use the Bassi–Rebay 1 (BR1) scheme [38], which
averages entropy variables and fluxes between the adjacent elements. However, for the Cahn–Hilliard
equation, we include the possibility to add interface stabilization. Although it is not a requirement for
stability, we have found it enhances accuracy when the flow configuration is under–resolved [8]. The
viscous and Cahn–Hilliard fluxes are,

W? = {{W}},
↔
F
?

v = {{
↔
Fv}}+ β JµK e1~nL, C? = {{C}}, ~G?c = {{~Gc}}+ β JCK~nL, (107)

where β is the penalty parameter, computed in this work following [40, 8],

β = κβ
N(N + 1)

2 |Jf |{{J−1}}, (108)

with κβ a dimensionless free parameter (in this work we only use κβ = 0 to disable interface stabilization,
and κβ = 1 to enable interface stabilization), we define the inter–element jumps as J•K = •R − •L, and
~nL is the outward normal vector to the left element. In (108) N is the polynomial order, |Jf | is the
surface Jacobian of the face, and {{J−1}} is the average of the inverse of the Jacobians of left and right
elements.

3.4 Boundary conditions

The approximation is completed with the addition of boundary conditions. Here we show how we impose
free– and no–slip wall boundary conditions. The boundary conditions are imposed through the numer-
ical and diamond fluxes at the physical boundary faces. We consider the inviscid and viscous fluxes
individually.

3.4.1 Inviscid flux

The inviscid numerical flux controls the normal velocity ~u · ~n = 0 for both free– and no–slip boundary
conditions. Again, as at interior faces, we provide an entropy conserving option with central fluxes, and
an entropy stable version with the exact Riemann problem solution. Either way, we apply central fluxes
(100)–(101) or the ERS (105)–(106) to the interior state Qi

n and a mirrored ghost state Qe
n,

Qi
n =


C
√
ρUn√
ρVt1√
ρVt2
P

 , Qe
n =


C

−√ρUn√
ρVt1√
ρVt2
P

 . (109)

The fluxes differ depending on which numerical flux is used.
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1. The entropy conserving approximation with central fluxes. The numerical (100) and diamond (101)
central fluxes for (109) are,

↔
F?e · ~n = TT


0

1
2ρU

2
n + P

0
0
0

 ,
5∑

m=1

(
↔
ΦmWm

)♦
· ~n = TT


0
Cµ

1
2ρUnVt1
1
2ρUnVt2

0

 . (110)

2. The entropy stable approximation with the exact Riemann solver. The star region values computed
from the states (109) are

U?n = 0, P ? = P + ρλ+Un, λ+ = Un + a

2 . (111)

With these star values the numerical (105) and diamond (106) fluxes become

↔
F?e · ~n = TT


0

P + ρλ+Un
0
0
0

 ,
5∑

m=1

(
↔
ΦmWm

)♦
· ~n = TT


0

1
2ρU

2
n + Cµ

1
2ρUnVt1
1
2ρUnVt2

0

 . (112)

3.4.2 Viscous and Cahn–Hilliard fluxes

For the free–slip wall boundary condition, we impose zero normal stress S · ~n = 0 (Neumann), whereas
for the no–slip wall boundary condition, we impose zero velocity ~u = 0 (Dirichlet). Furthermore, we
implement the discrete version of the homogeneous and non–homogeneous Neumann boundary conditions
(57) for the Cahn–Hilliard equation. The concentration, concentration gradient, entropy variables, and
viscous fluxes at the boundaries are:

1. Free–slip wall boundary condition.

C? = C, ~G?c = g′(C), W? = W,
↔
F?v · ~n = 0. (113)

2. No–slip wall boundary condition.

C? = C, ~G?c = g′(C), W? = (µ, 0, 0, 0,P ) ,
↔
F?v · ~n =

 0
2ηS

0

 · ~n. (114)

3.5 Implicit–Explicit (IMEX) time discretization

The fully–discrete scheme is completed with the discretization of the time derivatives Qt in (93). The
numerical stiffness induced by the fourth order derivatives present in the Cahn–Hilliard equation prevents
us from practically using fully explicit time marching. Therefore, we use the IMplicit–EXplicit (IMEX)
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Backward Differentiation Formula (BDF) time integrator described in [24]. We revisit the continuous
setting (20)

ct + ~∇ · (c~u) = M0~∇2
(
f ′0(c)− 3

2σε
~∇2c

)
,

√
ρ (√ρ~u)t + ~∇ ·

(
1
2ρ~u~u

)
+ 1

2ρ~u ·
~∇~u+ c~∇µ = −~∇p+ 2ηS + ρ~g,

pt + ρ0c
2
0
~∇ · ~u = 0,

(115)

to describe the approximation in time.

The IMEX version of the BDF integrator for a time derivative dy/dt is

γ0 =
{

1 if J = 1
3
2 if J = 2 , ŷ =

{
yn if J = 1

2yn − 1
2y
n−1 if J = 2 , yn+1,e =

{
yn if J = 1

2yn − yn−1 if J = 2 , (116)

where yn = y(tn), γ0 and ŷ yield a J–th order approximation of the time derivative,

yn+1
t ≈ γ0y

n+1 − ŷ
∆t

, (117)

and yn+1,e is a J–th order explicit approximation of yn+1. The IMEX scheme used in [24] was constructed
to solve the fourth order derivative implicitly, and the remaining terms explicitly,

γ0c
n+1 − ĉ
∆t

+ ~∇ · (c~u)n+1,e = M0~∇2
(
f ′0(cn+1,e)− 3

2σε
~∇2cn+1

)
,

√
ρn+1,e γ0

√
ρ~un+1 −√ρ~û

∆t
+
(
~∇ ·
(

1
2ρ~u~u

)
+ 1

2ρ~u ·
~∇~u+ c~∇µ

)n+1,e

=
(
−~∇p+ 2ηS + ρ~g

)n+1,e
,

γ0p
n+1 − p̂
∆t

+ ρ0c
2
0
~∇ · ~un+1,e = 0.

(118)

As in the vast majority of BDF implementations, the first step is first order (J = 1), and the following
steps can be maintained first or use second order (J = 2). Note that the Jacobian matrix associated with
the fourth order derivative is constant in time. Hence, only one computation of its solution is required.
In this work, we perform a single LU decomposition, and afterwards use Gauss substitution to solve the
linear system at each time step, but other direct or iterative solvers could be used.

One can use a fully explicit time integrator if the time step restriction allows it (e.g. when the chemical
characteristic time is large enough). We have also implemented a low–storage third–order Runge–Kutta
method to explicitly solve the system [41].

4 Semi–discrete stability analysis

We prove the stability of the spatial discretization (93), by showing that it mimics a discrete version
of the entropy conservation law (55). As in the continuous analysis, we do not study the effect of lower
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order source terms (S = 0). The entropy analysis reproduces the continuous analysis steps discretely.
Therefore, we use proper choices for the test functions, which contract the system of equations into a
single equation, to be shaped into an entropy equation. The latter is produced in four steps, as we study
the time derivative terms, inviscid terms, viscous terms, and finally interior and physical boundary terms.

First, we follow [8] and take the time derivative of (93d),

〈
J ~Gc,t, ~ϕc

〉
E,N

=
∫
∂e,N

(C?t − Ct) ~ϕc · ~ndS +
〈
~̃ϕc, ~∇ξCt

〉
E,N

, (119)

and then replace the test functions. Following [16, 9], we insert ϕq = W, and ↔
ϕg =

↔
Fv, and following

[8], ϕµ = Ct, and ~ϕc = 3
2σε

~Gc,

〈JMQt, W〉E,N +
∫
∂e,N

WT

(
↔
F?e −

↔
Fe +

5∑
m=1

(
↔
ΦmWm

)♦
−

↔
ΦmWm

)
· ~ndS

+
〈

W, ~∇ξ ·
↔

F̃e
〉
E,N

+
5∑

m=1

〈
W,

↔

Φ̃m · ~∇ξWm

〉
E,N

=
∫
∂e,N

WT
↔
F?v · ~ndS −

〈↔

F̃v, ~∇ξW
〉
E,N

, (120a)〈
J

↔
G,

↔
Fv
〉
E,N

=
∫
∂e,N

(
W?,T −WT

) (↔
Fv · ~n

)
dS +

〈↔

F̃v, ~∇ξW
〉
E,N

, (120b)

〈J µ,Ct〉E,N = 〈JF ′0,Ct〉E,N −
∫
∂e,N

3
2σεCt

~G?c · ~ndS +
〈

3
2σε

~̃Gc, ~∇ξCt
〉
E,N

, (120c)

3
2σε

〈
J ~Gc,t, ~Gc

〉
E,N

=
∫
∂e,N

3
2σε (C?t − Ct) ~Gc · ~ndS +

〈
3
2σε

~̃Gc, ~∇ξCt
〉
E,N

. (120d)

Next, we replace the last term in (120a) by the last term in (120b), and the last term in (120c) by the
last term in (120d),

〈JMQt, W〉E,N +
∫
∂e,N

WT

(
↔
F?e −

↔
Fe +

5∑
m=1

(
↔
ΦmWm

)♦
−

↔
ΦmWm

)
· ~ndS

+
〈

W, ~∇ξ ·
↔

F̃e
〉
E,N

+
5∑

m=1

〈
W,

↔

Φ̃m · ~∇ξWm

〉
E,N

=
∫
∂e,N

(
WT

↔
F?v + W?,T ↔

Fv −WT
↔
Fv
)
· ~ndS −

〈
J

↔
G,

↔
Fv
〉
E,N

, (121a)

〈J µ,Ct〉E,N = 〈JF ′0,Ct〉E,N + 3
2σε

〈
J ~Gc,t, ~Gc

〉
E,N

−
∫
∂e,N

3
2σε

(
Ct ~G

?
c + C?t ~Gc − Ct ~Gc

)
· ~ndS, (121b)
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to combine four equations into two. Under the assumption of exactness in time, we can use the chain
rule on (121b),

〈JF ′0,Ct〉E,N + 3
2σε

〈
J ~Gc,t, ~Gc

〉
E,N

=
〈
J
(
F0 + 3

4σε|
~Gc|2

)
t

, 1
〉
E,N

= 〈JFt, 1〉E,N ,
(122)

to obtain the time derivative of the discrete approximation of the free–energy (7).

We complete the analysis by examining each term in (121) separately to get the semi–discrete entropy
law. The rest of the section computes the terms as follows: the time derivative coefficients in Sec. 4.1,
inviscid volume integrals in Sec. 4.2, viscous volume integrals in Sec. 4.3, and lastly boundary integrals
in Sec. 4.4. The discrete entropy law is completed in Sec. 4.5.

4.1 Time derivative coefficients

We first study the discrete inner product containing time derivatives found in (121a). We expand the
inner product,

〈JMQt, W〉E,N = 〈JCt,µ〉E,N +
〈
J
(√

ρ~U
)
t
,√ρ~U

〉
E,N

+ 1
ρ0c2

0
〈JPt,P 〉E,N , (123)

into which we insert the discrete approximation of 〈JCt,µ〉E,N found in (121b), and apply the chain
rule in time for the kinetic and artificial compressibility terms,

〈JMQt, W〉E,N = 〈JFt, 1〉E,N −
∫
∂e,N

3
2σε

(
Ct ~G

?
c + C?t ~Gc − Ct ~Gc

)
· ~ndS

+
〈
J
(

1
2ρV

2
tot

)
t

, 1
〉
E,N

+
〈
J
(

P 2

2ρ0c2
0

)
t

, 1
〉
E,N

= 〈J (F +K + EAC)t , 1〉E,N

−
∫
∂e,N

3
2σε

(
Ct ~G

?
c + C?t ~Gc − Ct ~Gc

)
· ~ndS

= 〈J Et, 1〉E,N −
∫
∂e,N

3
2σε

(
Ct ~G

?
c + C?t ~Gc − Ct ~Gc

)
· ~ndS.

(124)

Eq. (124) is the discrete version of (39). As a result, we get the discrete version of (39) for the entropy,

E = F +K + EAC = F0 + 3
4σε|

~Gc|2 + 1
2ρV

2
tot + P 2

2ρ0c2
0

, (125)

and for the time entropy flux ~F Et , which appears as the argument of the surface integral in (124).
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4.2 Inviscid volume terms

We now show that the contraction of the inviscid volume terms into a boundary entropy flux holds
discretely as in the continuous analysis (47), i.e.,〈

W, ~∇ξ ·
↔

F̃e
〉
E,N

+
5∑

m=1

〈
W,

↔

Φ̃m · ~∇ξWm

〉
E,N

=
∫
∂e,N

~F E · ~ndS. (126)

Two properties were used in the continuous analysis: the integration by parts (which holds discretely by
the discrete Gauss law (88)), and the relationship between inviscid fluxes and non–conservative terms
(44), which also holds for contravariant components,

eTm
↔

F̃e = eTm
(
MT

↔
Fe
)

= MT
(
eTm

↔
Fe
)

= MT
(
WT

↔
Φm

)
= WT

(
MT

↔
Φm

)
= WT

↔

Φ̃m. (127)

In (127), space and state multiplications commute since the matrix (67) is built from identity matrices
state–wise.

Eq. (127) together with the discrete Gauss law (88) is sufficient to prove (126). We use the discrete
Gauss law for the first term in (126), and explicitly write the scalar product of the resulting integral
approximation as the sum of the components,〈

W, ~∇ξ ·
↔

F̃e
〉
E,N

=
∫
∂e,N

WT
↔
Fe · ~ndS −

〈↔

F̃e, ~∇ξW
〉
E,N

=
∫
∂e,N

WT
↔
Fe · ~ndS −

5∑
m=1

〈
eTm

↔

F̃e, ~∇ξWm

〉
E,N

=
∫
∂e,N

~F E · ~ndS −
5∑

m=1

〈
WT

↔

Φ̃m, ~∇ξWm

〉
E,N

.

(128)

In the last identity, we used (45) and (127). Thus, when we move the non–conservative terms to the left
hand side of (128), we prove (126).

4.3 Viscous volume terms

Analogously to (51), viscous volume terms are dissipative if〈
J

↔
G,

↔
Fv
(

↔
G
)〉

E,N
> 0. (129)

Thus, we closely follow the continuous steps,〈
J

↔
G,

↔
Fv
〉
E,N

= M0

〈
J ~Gµ, ~Gµ

〉
E,N

+
〈
J ~G~u, 2ηS

〉
E,N

= M0

〈
J ~Gµ, ~Gµ

〉
E,N

+

〈
J

(
~G~u + ~GT~u

2

)
, 2ηS

〉
E,N

=
〈
J
(
M0|~Gµ|2 + 2ηS : S

)
, 1
〉
E,N

> 0,

(130)
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where S = S
(
~G~u

)
is the strain tensor (21) evaluated with the discrete gradients ~G~u. As a result, we

find that discrete viscous volume terms are dissipative.

4.4 Boundary terms

Boundary term stability only makes sense when considering all elements in the domain. Thus, we update
(121) with (124), (126), and (130), and sum over all elements, creating

dĒ
dt

+ IBT + PBT = −
∑
e

〈
J
(
M0|~Gµ|2 + 2ηS : S

)
, 1
〉
E,N

, (131)

where Ē is the total entropy,
Ē =

∑
e

〈J E , 1〉E,N , (132)

IBT is the contribution from interior faces,

IBT =IBTe + IBTv + IBTch

=−
∑
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faces
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z
C?t −

r
Ct ~Gc
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(133)

and PBT is the contribution from physical boundary faces,

PBT =PBTe + PBTv + PBTch

=
∑

boundary
faces

∫
f ,N

(
WT

↔
F?e +

5∑
m=1

WT

((
↔
ΦmWm

)♦
−

↔
ΦmWm

))
· ~ndS

−
∑
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f ,N

(
WT

(
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↔
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+ W?,T ↔
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− 3
2σε

∑
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∫
f ,N

(
Ct ~G

?
c + C?t

~Gc − Ct ~Gc
)
· ~ndS.

(134)

In the inviscid fluxes, the entropy flux definition ~F E = WT
↔
Fe was taken into account to reduce the

number of terms. Moreover, in the interior boundary terms, we used the left element as the reference
(hence the ~nL vector).

We now analyze the contributions of the interior and boundary terms in (131) separately.
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4.4.1 Inviscid interior boundary terms: entropy conserving scheme with central fluxes

We address the stability of the inviscid interior boundary terms when using the central fluxes for the
conservative numerical (100) and non–conservative diamond fluxes (101). Inserting the central fluxes into
the inviscid IBTe (133) terms,

IBTe =−
∑

interior
faces

∫
f ,N

(
r
WT

z ↔
F?e +

5∑
m=1

s
WT

(
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)♦{
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r
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z
)
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5∑
m=1

(
JWmK {{eTm

↔
Fe}} − JWmK {{WT

↔
Φm}}

)
· ~nLdS = 0.

(135)

Thus we find that inviscid interior boundaries exactly satisfy IBTe = 0. In the second equality, we
explicitly wrote the first product as the sum of the product of its components, and in the last equality,
we used the algebraic relationship satisfied by jump and average operators,

JuvK = {{u}} JvK + JuK {{v}} (136)

for the second and third products. Additionally, both terms in the last sum of (135) are identical because
of the condition (44). We conclude that inviscid interior boundary contribution to the entropy equation
is identically zero, i.e. the interface approximation is entropy conserving.

4.4.2 Inviscid interior boundary terms: entropy stable scheme with the exact Riemann solver

The exact Riemann solver was proven to be stable in [9] for the incompressible Navier–Stokes equations.
Now we extend the proof to the iNS/CH system, which is done by a consistent choice of the diamond
fluxes. The proof rests on the exact Riemann solver star solution satisfying

∆ERS
e =1

2ρ
?
q
V 2
tot

y
U?n − ρ?U?n (U?n JUnK + V ?t1 JVt1K + V ?t2 JVt2K)

− P ? JUnK− JP KU?n + JPUnK > 0.
(137)

Eq. (137) implies that the ERS is dissipative for the incompressible NSE. We use the same star region
solution for the inviscid numerical fluxes (105) and the choice for the diamond fluxes given in (106). The
result is that the argument of the inviscid interior boundary terms is

∆IBT
e =

(
−

r
WT

z ↔
F?e −

5∑
m=1

s
WT

(
↔
ΦmWm

)♦{
+

r
WT

↔
ΦmWm

z
)
· ~nL

=−
r
WT

z
TTF?e −

r
WTTTFERS

ΦW

z
+

r
WTTTFΦW

z

=−
r
WT

n

z
F?e −

r
WT

n

(
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)z
.

(138)
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We write the first term in the last line of (138) as

−
r
WT

n

z
F?e = − JµK {{CUn}} −

1
2ρ

?U?n (U?n JUnK + V ?t1 JVt1K + V ?t2 JVt2K)− P ? JUnK , (139)

and the second term as
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(140)

which when inserted into (138) yields,

∆IBT
e =1

2ρ
?U?n JVtotK

2 − ρ?U?n (U?n JUnK + V ?t1 JVt1K + V ?t2 JVt2K)

− P ? JUnK− U?n JP K + JPUnK = ∆ERS
e > 0.

(141)

The non–negativity of ∆IBT
e confirms that the incompressible NSE exact Riemann solver (105), with

the associated diamond flux choice (106) introduced in this work produces an entropy stable interface
approximation for the iNS/CH system.

4.4.3 Viscous and Cahn–Hilliard interior terms: Bassi–Rebay 1 method

The use of the standard BR1 method identically cancels the boundary integrals (see [16] for the com-
pressible NSE, [9] for the incompressible NSE, [37] for the MHD equations, and [8] for the Cahn–Hilliard
equation). Then, we prove that the extra interface stabilization terms are dissipative. In this work,
we obtain the same integral approximation as in [9] for the incompressible NSE, and as in [8] for the
Cahn–Hilliard part,
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∑
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(142)
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whereas for the Cahn–Hilliard terms,

IBTch =3
2σε
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(143)

which says that viscous and Cahn–Hilliard interior boundary contributions do not contribute to the
entropy balance if β = 0, since the integrals are identically zero. This means that interface stabilization
is not a requirement for stability. When β > 0, the integrals in IBTv are positive (i.e. dissipative), and
the integral in IBTch, which is not positive per se because of the time derivative, will be added to the
entropy, since the integral argument is positive.

4.4.4 Interior boundary terms: Summary

The contribution to the interior boundary terms from viscous and Cahn–Hilliard terms are identically zero
when using the BR1 method without interface stabilization (β = 0), and dissipative otherwise (β > 0).
As for the inviscid terms, interior boundary terms are conservative with central fluxes (IBTe = 0), and
dissipative with the exact Riemann solver (IBTe > 0).

4.4.5 Physical boundary terms: free– and no–slip walls

We now address the stability of physical wall boundary terms (134). For inviscid fluxes PBTe, we use
the entropy conserving approach with central fluxes (110),
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(144)

or the entropy stable counterpart with the exact Riemann solver (112),
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∑
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Either way, the inviscid physical boundary contribution is stable. Furthermore, for the viscous terms,
the free–slip wall boundary condition (113),

PBTv =−
∑

boundary
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(146)

and for the no–slip wall boundary condition (114),

PBTv =−
∑
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(147)

are dissipative. Lastly, the Cahn–Hilliard physical boundary condition for both free– and no–slip walls
(113)–(114) gives,
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(148)

which represents the discrete version of the surface free–energy time derivative (60).

4.5 Semi–discrete stability: Summary

We constructed a DG approximation of the iNS/CH system (93) whose analysis mimics the continuous
stability analysis of Sec. 2.1 semi–discretely. As a result, we have shown that the discrete entropy satisfies
a balance law,

d

dt

Ēβ +
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boundary
faces

∫
f ,N

fw(C)dS

 6 −
∑
e

〈
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(
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)
, 1
〉
E,N

, (149)

for both free– and no–slip wall boundary conditions. The entropy has been extended to consider the
interface stabilization in the Cahn–Hilliard equation,

Ēβ =
∑
e

〈J E , 1〉E,N + 3
4σε

∑
interior
faces

∫
f ,N

β JCK2 dS > 0. (150)
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Note that if β = 0 we recover Ēβ=0 = Ē =
∑

e 〈J E , 1〉E,N , and that a continuous solution (i.e. JCK = 0)
also recovers the original entropy. Otherwise, the extended entropy Ēβ is also always positive, such that
its definition remains valid and the scheme is entropy–stable. The justification to include this term in
the entropy, is that the free–energy measures the fluid interfaces using the solution gradients 3

4σε|~Gc|
2.

However, if the discrete solution is allowed to be discontinuous at the inter–elements interface, it enables
the creation of a fluid interface, which is not reflected in the original free–energy. The addition of this
penalization, allows to account for inter–element discontinuities as part of the fluid interface, so that
their associated energy is also weighted in the entropy. In practice, we have found that if the flow is
under–resolved and β = 0, the solution minimizes the entropy allowing sharp discontinuities at the
inter–elements interface. Since that effect has not been taken into account in the entropy with β = 0, the
flow wrongly enables the discontinuity mechanism to minimize the entropy. This adverse effect (from the
point of view of accuracy) is mitigated when β > 0 [18, 8]. Since now the inter–elements discontinuities
belong to the entropy, their size can be kept bounded and controlled. In any case, the use of interface
stabilization does not compromise the stability of the scheme.

Finally, the form of (149) depends on the choice of the inviscid numerical and diamond fluxes, and
the Cahn–Hilliard interface stabilization: an equality for central fluxes and β = 0, and an inequality for
the exact Riemann solver and β > 0. For either choice, the discrete entropy plus the surface free energy
remains bounded by the initial condition.

5 Numerical experiments

We now explore the capabilities of the new DGSEM with numerical simulations. First, we validate the
implementation with a convergence study on a manufactured solution. Second, we explore the robustness
of the scheme by integrating in time from a random initial condition, where we compare an entropy–
stable scheme with a Gauss point formulation that is not provably stable. Third, we solve a static bubble
as a benchmark for steady–state accuracy, and a transient rising bubble. Finally, we present solutions
for a three–dimensional pipe flow in the annular regime.

5.1 Convergence study

We first assess the spatial and temporal accuracy of the implementation of the approximation. We
test with the same two–dimensional manufactured solution and configuration used in other Navier–
Stokes/Cahn–Hilliard works, specifically [24],

cm(x, y; t) = 1
2 (1 + cos (πx) cos (πy) sin (t)) ,

um(x, y; t) = 2 sin (πx) cos (πz) sin (t) ,
vm(x, y; t) = −2 cos (πx) sin (πy) sin (t) ,
pm(x, y; t) = 2 sin (πx) sin (πz) cos (t) ,

(151)

on the domain (x, y) ∈ [−1, 1]2. The final time is tF = 0.1, and all physical parameters are presented in
Table 1.
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Table 1 List of the parameter values used with the manufactured solution (151)

ρ1 ρ2 (kg/m3) η1 η2 (Pa·s) ε (m) tCH (s) c2
0 (m/s2)2 σ (N/m)

1.0 2.0 1.0E-3 1.0E-3 1/
√

2 1.0E3 1.0E3 6.236E-3

We measure L2 errors using the discrete inner product,

error = ‖φ− φm‖J ,N =
√∑

e

〈J (Φ− Φm) , (Φ− Φm)〉E,N . (152)

Regarding the configuration of the scheme, we use the exact Riemann solver, and we vary the poly-
nomial order N , mesh size (we use an equally spaced Cartesian mesh M2), and time–step size ∆t of the
BDF2 scheme (J = 2) to evaluate the convergence rates as the resolution is increased either by increasing
the polynomial order or decreasing the mesh size.

We first use a Cartesian 42 element mesh and vary the polynomial order from N = 3 to 10. The L2

errors (152) are presented in Fig. 1, using ∆t = 10−4 in Fig. 1(a) and ∆t = 10−5 in Fig. 1(b).

(a) ∆t = 10−4 (b) ∆t = 10−5

Fig. 1 Exponential convergence of the manufactured solution (151) as the polynomial order increases. We represent
the L2 errors in concentration, x– and y–momentum, and pressure. The polynomial order ranges from 3 to 10, and
we integrate in time until tF = 0.1 with two time step sizes: ∆t = 10−4 and 10−5. All physical parameters are given
in Table 1

Figs. 1(a) and 1(b) show typical and expected error behavior: an approximately linear semi-log con-
vergence for lower polynomial orders implying exponential convergence of the error (i.e. under–resolved
solution in space), and error stagnation for higher orders (under–resolved solution in time). The stagna-
tion error threshold can be controlled with ∆t, as shown in Fig. 1(b).

For the next test configuration, we use polynomial orders N = 2, 3, 4 and 5, and meshes with
42, 62, 82, 122 and 162 elements for an h−type convergence study. The time–step is ∆t = 5 · 10−5. We
solve the manufactured solution problem (151), and summarize the errors in Table 2. An estimate of
the scheme’s order of convergence is provided there. We note that for the momentum components, the



34 Juan Manzanero et al.

convergence orders are as expected, as they are close to N +1. For the pressure, the order of convergence
is somewhat smaller (closer to N), which was also experienced in [25, 9]. The convergence is also not
optimal for the concentration; for even polynomials, the convergence can surpass the theoretical N + 1
value, while for odd polynomials, the convergence rate is roughly N in most of the cases. This effect was
also noticed in [8], whose nature remains unclear.

Table 2 Manufactured solution (151) convergence analysis: we use 43, 83, and 163 meshes, and N = 2, 3, 4 and 5.
The final time is tF = 0.1, and we use the IMEX BDF2 scheme with ∆t = 5 · 10−5

Mesh c error order √
ρu error order √

ρv error order p error order
N=2 42 1.35E-03 – 3.39E-02 – 3.39E-02 – 2.22E-01 –

62 8.27E-04 1.21 1.24E-02 2.47 1.24E-02 2.47 9.02E-02 2.22
82 4.40E-04 2.19 5.96E-03 2.56 5.95E-03 2.56 4.68E-02 2.28
122 1.30E-04 3.01 2.04E-03 2.65 2.03E-03 2.65 1.78E-02 2.39
162 5.35E-05 3.08 9.23E-04 2.75 9.23E-04 2.75 8.67E-03 2.50

N=3 42 1.81E-04 – 3.49E-03 – 3.50E-03 – 2.57E-02 –
62 5.71E-05 2.85 8.28E-04 3.55 8.29E-04 3.55 6.81E-03 3.27
82 2.76E-05 2.53 2.90E-04 3.65 2.91E-04 3.65 2.57E-03 3.39
122 9.53E-06 2.62 6.34E-05 3.75 6.37E-05 3.74 6.17E-04 3.52
162 4.36E-06 2.72 2.10E-05 3.83 2.12E-05 3.83 2.17E-04 3.64

N=4 42 1.99E-05 – 2.89E-04 – 2.87E-04 – 2.31E-03 –
62 5.27E-06 3.28 4.40E-05 4.64 4.40E-05 4.62 3.94E-04 4.36
82 7.50E-07 6.78 1.12E-05 4.75 1.12E-05 4.75 1.09E-04 4.47
122 8.46E-08 5.38 1.55E-06 4.89 1.55E-06 4.89 1.70E-05 4.59
162 1.94E-08 5.12 3.61E-07 5.05 3.61E-07 5.05 4.42E-06 4.68

N=5 42 1.69E-06 – 1.94E-05 – 1.98E-05 – 1.71E-04 –
62 1.91E-07 5.38 1.96E-06 5.65 1.97E-06 5.70 1.87E-05 5.46
82 4.67E-08 4.89 3.76E-07 5.74 3.77E-07 5.74 3.78E-06 5.57
122 6.43E-09 4.89 3.64E-08 5.76 3.65E-08 5.76 3.79E-07 5.67
162 1.63E-09 4.77 7.08E-09 5.69 7.11E-09 5.69 7.47E-08 5.64

5.2 Assessing robustness: random initial condition

We also assess the robustness of the scheme by introducing a random initial condition. Because the scheme
developed here is entropy stable even for severely under–resolved solutions, the numerical implementation
should not crash, as long as the time–step is small enough to stay within the time integrator stability
region and the positivity condition is satisfied.

As a point of reference, and only in this section, we also consider the DG scheme using Gauss points.
The standard DG method with Gauss points does not satisfy the SAT property [35] and the proofs
developed for semi–discrete stability do not carry over. As a result, the standard scheme is not provably
stable. To make the comparison even more stark, we compare robustness of the Gauss scheme with
upwind flux dissipation to the new Gauss–Lobatto method with only central fluxes.

We solve the problem on the domain Ω = [0, 1]3, and on a three–dimensional 43 element Cartesian
mesh. We initialize the solution using uniform random numbers in [0, 1] for concentration, and in [−1, 1]
for velocities and pressure. We use a high density ratio (ρ1/ρ2 = 1000), and Reynolds number Re = 106
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so that physical viscosity will have only a weak stabilizing effect. The rest of the parameters are given
in Table 3.

Table 3 Physical parameters for the random initial condition test problem

ρ1 ρ2 (kg/m3) η1 η2 (Pa·s) ε (m) tCH (s) c2
0 (m/s2)2 σ (N/m)

1000.0 1.0 10−3 10−4 0.75 10.0 1.0E2 1.0

With Gauss–Lobatto points, the discrete entropy balance (149) shows that the free–energy time
derivative Et should be always negative as a result of viscous and chemical potential dissipation, for
either central fluxes or the ERS. Moreover, the entropy remainder, defined as

R (E) = d

dt

∑
e

〈J E , 1〉E,N +
∑

boundary
faces

∫
f ,N

fw(C)dS

+
〈
J
(
M0|~Gµ|2 + 2ηS : S

)
, 1
〉
E,N

6 0, (153)

should be zero at each time step for central fluxes, and negative for the ERS. None of the statements
regarding Et or R (E) being negative are guaranteed to hold for Gauss points by theory.

The entropy time derivative evolution is presented in Fig. 2, and the entropy remainder (153) in
Fig. 3. Both are presented for three polynomial orders (N = 2, 3, 4), and for the three configurations

(a) N = 2 (b) N = 3 (c) N = 4

Fig. 2 Random chosen initial condition: evolution of the entropy time derivative Et for three polynomial orders
N = 2, 3, 4. We consider three schemes: Gauss–Lobatto points with the ERS and central fluxes, and Gauss points
with the ERS. For all the polynomial orders, using Gauss–Lobatto points is an entropy preserving scheme. The
dissipation is a result of physical viscosity and chemical potential for central fluxes, to which the dissipation by the
exact Riemann solver can added. On the contrary, the Gauss approximation entropy time derivative is not always
negative, which numerically diverges as a result

described: Gauss–Lobatto points with ERS, Gauss–Lobatto points with central fluxes, and Gauss points
with ERS. We find that the solutions follow the same pattern for the different polynomial orders. Gauss–
Lobatto points are always stable, and the ERS enhances the stability (i.e. the entropy time derivative is
always smaller or equal when compared to central fluxes). This is confirmed by looking at the entropy
remainder in Fig. 3, which is machine precision for central fluxes, and negative for the ERS. Whereas
for Gauss points, the solution is divergent (i.e. crashes) when t ≥ 1.53. We see that for this case, Gauss
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(a) N = 2 (b) N = 3 (c) N = 4

Fig. 3 Random initial condition: evolution of the entropy remainder (153) for three polynomial orders N = 2, 3, 4.
We consider three schemes: Gauss–Lobatto points with the ERS and central fluxes, and Gauss points with the ERS.
The remainder studies the dissipation introduced by the scheme without considering physical viscosity and chemical
potential. Thus, the Gauss–Lobatto scheme with the ERS is dissipative (always negative), the Gauss–Lobatto scheme
with central fluxes is conserving (always zero), and the scheme with Gauss points is unstable and crashes

points are more dissipative than Gauss–Lobatto points for the first steps, but then the opposite occurs
when t > 10−2.

With a random initial condition, the Gauss approximation is prone to diverge, but might not. We ran
another 100 random initial conditions with different seeds until a final time tF = 10.0, of which 30/100
crashed. For the 70 simulations that did not crash, most of them experienced growth of their entropy at
some points in time. We represent in Fig. 4 the number of simulations that crashed before the physical
time on the horizontal axis. Most often crashes occur early, i.e. times t ≈ 1.0, after which the simulation

Fig. 4 Random initial condition: we run 100 simulations modifying the random numbers sequence, of which 30
crashed with Gauss points. In this figure, the physical time in which the simulation diverged is represented. Although
the other test passed the final time tF = 10.0, their entropy time derivative was found to be positive in several
time–steps. None of the 100 simulations crashed with Gauss–Lobatto

is less likely to crash. None of the simulations crashed if they stayed stable for more than 4.0 seconds.
In other words, if it can be computed beyond the initial stages, it is more likely to continue.
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We repeated the experiment for the entropy stable Gauss–Lobatto variant, to confirm that none of
them crashed. There may be advantages to use Gauss points, because of higher accuracy per degree
of freedom [42, 43], and indeed the scheme presented herein allows us to use Gauss points in practice.
However, as it is not entropy stable, it might crash under certain conditions, perhaps severely under–
resolved simulations like high Reynolds turbulent flows, etc.

5.3 Static bubble

In this test problem we solve a steady two–dimensional bubble and validate the pressure jump that
results from surface tension. In the domain Ω = [0, 1]× [0, 1], the initial condition for the concentration
is

c(x, y; 0) =
1− tanh

(
− r−0.25

ζ

)
2 , r =

√
(x− 0.5)2 + (y − 0.5)2, ζ = 2.5 · 10−3, (154)

which approximates a circle with radius R0 = 0.25. Since we project the initial condition into our
polynomial ansatz, the radius obtained, Re, subtly differs to R0. The analytical pressure jump between
outside and inside of the bubble ∆pa is given by the Poisson law,

∆pa = pi − pe = p(0.5, 0.5)− p(1.0, 0.5) = σ

Re
. (155)

Note that we used the radius Re, which is estimated from the final solution contour c(x, y) = 0.5, to
compute the analytical solution. The rest of the parameters, including the surface tension σ = 1 N/m,
are given in Table 4. We apply periodic boundary conditions at the four physical boundaries, and use

Table 4 Parameters of the Static bubble test problem

Grid ρ1,2 (kg/m3) η1,2 (Pa·s) ε (m) tCH (s) c2
0 (m/s2)2 σ (N/m) ∆t (s)

162 1.0 1.0 0.16 7.0 1.0E3 1.0 10−5

322 1.0 1.0 0.08 7.0 1.0E3 1.0 5 · 10−6

642 1.0 1.0 0.05 7.0 1.0E3 1.0 2.5 · 10−6

the first order IMEX scheme (J = 1) until the residuals are kept lower than 10−7.

The results are summarized in Table 5, which are computed with polynomial order N = 2 and three
meshes 162, 322, and 642. For all meshes, we compute the solution radius Re, the analytical pressure
jump ∆pa, which are compared to the numerical solution interior pressure, pi, exterior pressure pe, and
pressure jump ∆p. Here we refer to the static pressure, and not the auxiliary pressure (16). The results
show that the pressure jump converges to that given by the Poisson law (155) as we refine the grid.

In the last column of Table 5 we represent the norm of the velocity, which is of the size of the
residuals. This implies that no parasitic currents are produced using this formulation, which are common
in alternative Navier–Stokes/Cahn–Hilliard formulations [44]. Usually, the size of the parasitic currents
is 10−3 for this problem, and since they do not disappear as the grid is refined, they can dominate in
low speed simulations.
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Table 5 Results of the Static bubble test problem

Grid Re (m) ∆pa pi pe ∆p (Pa) |∆p−∆pa|/∆pa ‖~v‖
162 0.220 4.546 0.033 -4.571 4.604 1.27 · 10−2 4.0 · 10−10

322 0.240 4.175 0.029 -4.120 4.150 6.09 · 10−3 2.4 · 10−8

642 0.244 4.100 0.173 -4.094 4.111 2.75 · 10−3 3.7 · 10−9

5.4 Rising bubble

The rising bubble problem has been widely used in the multiphase flow community to assess the space–
time accuracy and robustness of the methods [45, 23, 7]. The problem follows the trajectory of a bubble
submerged in a heavier fluid as it rises. We consider the domain (x, y) ∈ [0, 1] × [0, 2], and a circular
bubble with center in (0.5, 0.5) and diameter 0.5. The bubble is approximated with the initial condition,

c(x, y; 0) = 1− 1
2

(
tanh

(
−2 (r − 0.25)

ε

)
+ 1
)

, r =
√

(x− 0.5)2 + (y − 0.5)2, (156)

and the rest of the variables are initialized to zero. We consider a Cartesian mesh with element size h =
2−4, and a polynomial order N = 10. The physical parameters are taken from [45] and are summarized in
Table 6. We consider two tests: the first with moderate density ratio ρ1/ρ2 = 10, the second with large

Table 6 Physical parameters of the Rising bubble test problem

Test ρ1 ρ2 (kg/m3) η1 η2 (Pa·s) ε (m) tCH (s) c2
0 (m/s2)2 σ (N/m) g (m/s2)

1 1000.0 100.0 10.0 1.0 0.03 1.0E3 1.0E3 24.5 0.98
2 1000.0 1.0 10.0 0.1 0.04 1.0E4 1.0E3 1.96 0.98

density ratio ρ1/ρ2 = 1000. The boundary conditions are free–slip walls in x = 0 and x = 1, and no–slip
walls in y = 0 and y = 2. For the Test 1, the chemical characteristic time is not big enough to use the
explicit Runge–Kutta, and we use the second order IMEX BDF method, with time–step ∆t = 7.2 · 10−6.
For the Test 2, we use the explicit third order Runge–Kutta, with ∆t = 7.2 ·10−7. Although we use fixed
time–stepping, in both cases the CFL number (CFL = 16(N + 1) (|u|+ a)∆t) is maintained close to 0.2.

Although the model presented in this paper is diffuse interface, we compare it to a sharp inter-
face model. Moreover, in this test case we compare the artificial compressibility method to a pressure–
correction method that enforces the incompressible constraint in a transient simulation. Thus, we can
assess the validity of the model and its implementation.

The shape of the bubble at the final time t = 3.0 is represented in Fig. 5. First, in Fig. 5(a), we
represent the final shape of the interface by drawing three contour lines: c = 0.1 in dash–dot, c = 0.5 as
a solid line, and c = 0.9 as a dashed line. The sharp interface reference solution is represented with black
dots. We find a good agreement in both the position and the shape of the bubble, as the c = 0.5 contour
follows the shape of the bubble, and the dots are always found inside the c = 0.1 and c = 0.9 contours.
Next, in Fig. 5(b) we represent the concentration contour, with the velocity vectors on top. The solution
obtained is also in agreement with other diffuse interface works [7]. In Fig. 6 we represent the evolution
of the center of gravity (Fig. 6(a)) and the bubble rise velocity (Fig. 6(b)),
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(a) Final shape of the bubble. We represent the in-
terface with three contours: c = 0.1, c = 0.5, and
c = 1.0. The dots represent the sharp interface refer-
ence [45]

(b) Concentration contour at the final time t = 3.
The velocity field is also represented, showing the
currents that raise the bubble

Fig. 5 Rising bubble Test 1: position of the bubble and flow configuration at the final time t = 3.0

Xc = 1
A

∑
e

〈J (1− C),X〉E,N , Vc = 1
A

∑
e

〈J (1− C),U〉E,N , A =
∑
e

〈J (1− C), 1〉E,N . (157)

Both center of gravity position and rise velocity show good agreement with the sharp interface reference.
As for the rise velocity in Fig. 6(b), the oscillations are a result of the artificial compressibility pressure
waves. One can reduce the amplitude of these oscillations by increasing the artificial sound speed c0, but
we have only found small differences in the evolution when increasing this parameter above the value
used here.

Next, we solve the more challenging rising bubble Test 2 (see Table 6) with a higher density (ρ1/ρ2 =
1000) and viscosity (µ1/µ2 = 100) ratios. The evolution of the bubble and the flow configuration are
represented in Fig. 7 at each 0.5 second. Both the shape and position of the bubble are in agreement
with the sharp interface method [45], and other diffuse interface Cahn–Hilliard solvers [7]. Contrary to
the rising bubble Test 1, the bubble now leaves behind an elongated skirt, which influences the velocity
field. For completeness, we represent the center of gravity position and rise velocity as a function of time
in Fig. 8, compared to the sharp interface solution provided in [45]. Compared to the sharp interface
reference, there are visible differences. However, it has been noted in [45, 7] that the solution with



40 Juan Manzanero et al.

(a) Center of gravity (b) Rise velocity

Fig. 6 Rising bubble Test 1: evolution of the bubble center of gravity and rise velocity

different sets of equations might differ for this more challenging test case. Nonetheless, the evolution of
the center of gravity and the rise velocity presented here agree with other diffuse interface solvers [7].

5.5 Three–dimensional annular flow simulation

The last numerical experiment we present is a three–dimensional flow in a straight pipe (L = 10) with
circular section (D = 1). Depending on the flow rates of fluid 1 and 2, the flow regime can be of different
nature: stratified, slug, dispersed bubble, and annular. The last is the one we compute here, where one of
the fluids behaves as a coating around the pipe surface. More details of the flow can be found in [46, 47].

We construct a z–oriented mesh of the pipe with 8200 elements, and use a polynomial order N = 3
(for both solutions and physical boundary representation). Note that this is the first time in this work
that we use an unstructured curvilinear mesh. The cross section of the mesh is represented in Fig. 10(c).
The physical parameters are taken from the literature [46] and given in Table 7.

Table 7 Physical parameters of the annular flow

ρ1 ρ2 (kg/m3) η1 η2 (Pa·s) ε (m) tCH (s) c2
0 (m/s2)2 σ (N/m) g (m/s2) θw (deg)

1.0 5.0 5 · 10−3 10−2 0.0424 900.0 1.0E3 2.5 · 10−4 1.0 45o

For the inflow and outflow boundary conditions, we construct auxiliary ghost states,

Qin =

 cin√
ρ (cin)~uin
p

 , Qout =

 c
√
ρ~u

0

 , (158)
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(a) t = 0 s (b) t = 0.5 s (c) t = 1.0 s (d) t = 1.5 s

(e) t = 2.0 s (f) t = 2.5 s (g) t = 3.0 s

Fig. 7 Rising bubble Test 2: different snapshots showing the position of the bubble and the flow configuration

with

cin = 1
2 + 1

2 tanh
(
x− x0

ε
+ 1

10 sin (10z) + 1
10 sin (20y)

)
,

uin = 0,
vin = 0,

win = (V1cin + V2 (1− cin))
(

1− 4x
2 + y2

D2

)
,

pin = 0.

(159)

Furthermore, we use Qin as the initial condition. The velocities V1 and V2, and interface position x0 are
set so that the superficial velocities, defined as,

Vs1 = 1
πR2

∫
inlet

V1cin

(
1− 4x

2 + y2

D2

)
dS, Vs2 = 1

πR2

∫
inlet

V2(1− cin)
(

1− 4x
2 + y2

D2

)
dS, (160)
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(a) Center of gravity (b) Rise velocity

Fig. 8 Rising bubble Test 2: evolution of the bubble center of gravity and rise velocity

are those found in [46]. Precisely, we chose the velocities Vs1 = 4.9 m/s and Vs2 = 0.06 m/s, which
produce the annular flow regime. If we place the interface between both fluids at x0 = −0.262 m (which
yields a slip velocity V1 − V2 = 10 m/s), the inlet velocities are V1 = 11.06 m/s and V2 = 1.06 m/s. At
the walls, we also impose a contact angle θw = 45o. With this configuration, we can use the third order
Runge–Kutta scheme as time integrator with ∆t = 10−5. In this simulation, we take into account the
effect of gravity, which points in the negative x–direction.

The annular flow configuration is reached through an unstable mode, which makes the transient
problem under–resolved until this mode is non–linearly damped and the final annular flow configuration
is found. For that reason, we use a non–zero penalty parameter, β, on the Cahn–Hilliard equation.
Precisely, we use the definition (108) with κβ = 1. Otherwise, we have found the scheme to be stable, but
the solution obtained is mostly noise (i.e. it is not accurate). The introduction of the penalty parameter
enhances the accuracy when the flow is under–resolved [48].

We represent snapshots of the initial stages of the flow in Fig. 9. The fluid 2 is represented (c 6 0.5),
and colored by the vertical velocity (along the x–axis, u). We see that in the initial steps there is an
unstable mode that grows until it changes the flow configuration. The vertical velocity contour shows
that when fluid 2 rises above the interface it is dragged and accelerated by the quicker fluid 1, and the
contrary occurs when it is confined below the interface because of the wall. This produces a wavy pattern
at t = 0.3s, which eventually wraps the fluid to the wall and produces the annular flow. In the early
stages, the flow is highly under–resolved.

We represent a final snapshot for t = 4.0 s in Fig. 10, showing the contour c 6 0.5 (i.e. the region
occupied by fluid 2), colored by the longitudinal velocity (i.e. along the z–axis, w). Although the interface
is flat at the inlet, the flow is unstable and breaks down into the annular flow configuration. The heavy
fluid (fluid 2) is confined to the wall by the light fluid, which is introduced 82 times faster at the inlet.
In Fig. 10(c) we represent the front view of the pipe, with the mesh detailed on top of it. We see that
the flow gets smoother after the numerical and physical dissipation take over the mode breakdown after
the under–resolved stages in Fig. 10.
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(a) t = 0.1 s (b) t = 0.3 s

(c) t = 0.5 s (d) t = 0.7 s

(e) t = 0.9 s (f) t = 1.1 s

Fig. 9 Evolution of the physical mode that configures the annular flow. We have represented fluid 2 (i.e. c 6 0.5),
colored with vertical velocity, u. We see that during early times, there is an unstable physical mode that triggers the
annular flow. When fluid 2 rises above the interface, it is dragged and accelerated by the quicker fluid 1. When it is
confined below the interface, it is slowed down by the wall. This evolves non–linearly to the final state
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(a) Top view

(b) Side view

(c) Front view (d) Three dimensional view

Fig. 10 Annular flow simulation. We present four view angles to the simulation at t = 4.0 s. In the front view, the
mesh cross section is also represented

6 Summary and conclusions

We have derived a two–phase flow model that combines the Cahn–Hilliard equation (3), a skew–symmetric
version of the momentum equation (17), and an artificial compressibility method (18) to get the pressure.
Among the many available options, the versions were chosen to satisfy an entropy inequality, (60). The
entropy inequality bounds the mathematical entropy inside a finite domain Ω limited with wall boundary
conditions by the entropy of the initial condition. As time marches, the mathematical entropy decreases
as a result of the physical and the chemical potential dissipation.

We then constructed a DG approximation that satisfies the SBP–SAT property, which allowed us to
mimic the continuous entropy analysis discretely. As is usual in a DG approximation, we had choices for
the fluxes at inter–element and physical boundaries. We studied two options:

1. Entropy conserving, using central fluxes for the advective fluxes and the BR1 scheme for the diffusion.
This choice gives a bound that discretely mimics the continuous entropy bound (60). This scheme
is not of practical use, since some amount of numerical dissipation is required to provide accurate
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solutions when non–linear terms are present [18, 43, 49, 50]. However, it serves as a baseline model
to verify the stability proofs and to obtain a dissipation–free scheme.

2. Entropy stable, with an exact Riemann solver for the advective fluxes and the BR1 scheme for
diffusive, with additional interface dissipation for the Cahn–Hilliard equation. This scheme transforms
the entropy balance to an entropy inequality in the discrete version of (60), as a result of the numerical
dissipation at the inter–element faces. This scheme uses the exact Riemann solver presented in [25]
for the incompressible Navier–Stokes equations, with an appropriate choice of the diamond fluxes
that arise from the non–conservative terms, and a modification of the discrete entropy to account for
solution discontinuities in the concentration as interfacial energy in the numerical solution.

Both the scheme and the stability proofs hold for three–dimensional unstructured meshes with hexahedral
curvilinear elements.

We selected two choices to march the scheme in time: an explicit third–order Runge–Kutta method,
and an implicit–explicit BDF with first or second order or accuracy. The former is used when the mobility
is small enough to not severely restrict the time–step size, and the latter otherwise.

We test the scheme, addressing its accuracy with a manufactured solution convergence analysis, and
its robustness by initializing the flow with random initial conditions. We showed that the scheme con-
verges spectrally as expected, and that the scheme is robust in the sense that none of one hundred
simulations crashed from random initial conditions, a high density ratio (ρ2/ρ1 = 1000), and a high
Reynolds number (Re = 106). We compared the entropy–stable scheme with the more accurate Gauss
counterpart (which is not provably entropy stable) to find that the latter crashes in 30% of the simula-
tions. We also solved commonly used static and rising bubble test problems to assess the steady state
and transient accuracy of the solver. Finally we challenged the method by solving a three–dimensional
pipe flow in the annular regime.
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A Stability analysis of the alternative artificial compressibility model

We address the stability of the second artificial compressibility model (19). Since changes with respect to the original
model (18) only affect to time–derivative terms, the analysis performed for spatial terms hold in this model, and we
need only include the new time–derivative terms.

A.1 Continuous entropy analysis

The entropy analysis performed in Sec. 2.1 can be extended to the second artificial compressibility method (19). If
we maintain the same entropy variables, all of the steps performed for space operators hold, and only the temporal
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terms contraction needs to be recomputed. Doing so,

µct +√ρ~u · (√ρ~u)t −
p~∇2pt

ρ0c2
0

= Ft +Kt +
~∇p · ~∇pt
ρ0c2

0
+ ~∇ ·

(
~fEt −

p~∇pt
ρ0c2

0

)
= Ft +Kt +

|~∇p|2t
2ρ0c2

0
+ ~∇ ·

(
~fEt −

p~∇pt
ρ0c2

0

)
= E2,t + ~∇ · ~fE2

t ,

(161)

with

E2 = Ft +Kt +
|~∇p|2t
2ρ0c2

0
, ~fE2

t =
3
2
σεct ~∇c−

p~∇pt
ρ0c2

0
. (162)

The second artificial compressibility model is complemented with homogeneous Neumann boundary conditions for
the pressure time derivative [6],

~∇pt · ~n
∣∣∣
∂Ω

= 0, (163)

which makes the pressure term in ~fE2
t vanish at the boundaries. Hence, the entropy equation with physical boundary

conditions for the second artificial compressibility method is identical to the original model (60)

d

dt

(
Ē2 +

∫
∂Ω

fw(c) dS
)

= −
∫
Ω

(
M0|~∇µ|2 + 2ηS : S

)
d~x 6 0, Ē2 =

∫
Ω

E2 d~x. (164)

A.2 Discretization

The discretization of the original artificial compressibility method (93) translates to the second method, where only
the pressure time derivative terms need to be updated. We write the first order term using gp = ~∇p, transform the
operators to local coordinates, integrate by parts, and replace the interface fluxes by a numerical flux and integrals
by quadratures to get〈

J ~∇ · ~Gp,t,ϕq
〉
E

=
〈
~∇ξ · ~̃Gp,t,ϕq

〉
E

≈
∫
∂e,N

ϕq ~G
?
p,t · ~ndS −

〈
~̃Gp,t, ~∇ξϕq

〉
E,N

. (165)

For the interface fluxes, we use the BR1 method in interior faces,

P ? = {{P}}, ~G?p,t = {{ ~Gp,t}}, (166)

and a homogeneous Neumann boundary condition in physical boundaries,

P ? = P , ~G?p,t · ~n = 0. (167)

A.3 Semi–discrete stability

As in the continuous analysis, we maintain the results from the original model, but update the time derivative terms
(123),

〈JCt,µ〉E,N +
〈
J
(√

ρ~U
)
t

,√ρ~U
〉
E,N
−

1
ρ0c2

0

∫
∂e,N

P ~G?p,t · ~ndS +
1

ρ0c2
0

〈
~̃Gp,t, ~∇ξP

〉
E,N

. (168)

From the gradient definition (93b), with test function ~ϕg = ~Gp,t〈
J ~Gp, ~Gp,t

〉
E,N

=
∫
∂e,N

(P ? − P )
(
~Gp,t · ~n

)
dS +

〈
~̃Gp,t, ~∇ξP

〉
E,N

, (169)
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we get the time derivative terms,

〈JFt, 1〉E,N −
∫
∂e,N
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2
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(170)

We have now obtained the time derivative of the alternative discrete entropy E2 (162). The first boundary integral
belongs to the Cahn–Hilliard equation and was shown not to contribute at interior faces (Sec. 4.4.3) if β = 0, and
to modify the entropy if β > 0. The surface free–energy is obtained in physical boundary faces (Sec. 4.4.5). The last
integral was added by the discretization of the pressure time derivative Laplacian. The contribution from interior
edges with the BR1 scheme (166) is

IBT∇2pt
=
∑

interior
faces

∫
f ,N

(
JP K ~G?p,t +

r
~Gp,t

z
P ? −
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=
∑
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(171)

For physical boundaries, we apply the homogeneous Neumann boundary condition (167), so that

PBT∇2pt
=

∑
boundary

faces

∫
f ,N
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(172)

As a result, the alternative entropy (162) satisfies a continuous bound (164), and discrete entropy law,

d

dt

Ēβ2 +
∑

boundary
faces

∫
f ,N

fw(C)dS

 6 −
∑
e

〈
J
(
M0| ~Gµ|2 + 2ηS : S

)
, 1
〉
E,N

≤ 0, (173)

where, similarly to (149), the inequality depends on whether the ERS and or central fluxes are used, and the choice
of the interface penalty parameter β.
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B Entropy contraction of the inviscid fluxes

We show the contraction of the inviscid fluxes (47) for the iNS/CH system. To do so, we replace the entropy variables,
fluxes, and non–conservative terms,

wT

(
~∇ ·

↔
fe (q) +

5∑
m=1

↔
φm (q) · ~∇wm

)
=µ~∇ · (c~u) +

1
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1
2
v~∇ · (ρv~u) +

1
2
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+
1
2
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1
2
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1
2
ρw~u · ~∇w + c~u · ~∇µ+ p~∇ · ~u

=~∇ ·
((1

2
ρv2
tot + p+ cµ

)
~u

)
= ~∇ · ~fEe .

(174)

Thus, we see that the term ~∇ · (c~u) in the Cahn–Hilliard equation cancels the capillary pressure c~∇µ from the
momentum non–conservative terms when multiplied by their respective entropy variables. Similarly, it reveals that
momentum terms from the conservative and non–conservative parts cancel each other, and that the pressure term
in the momentum equation cancels the velocity divergence term by way of the artificial compressibility equation.

C Point–wise discretization

In this section we list the steps to compute the solution time derivative with the DG approximation, (93). To get
the point–wise values, we replace the test function by the Lagrange polynomials li (ξ) lj (η) lk (ζ). Details on the
extraction of point–wise values can be found in [35].

1. Compute the entropy variables, W. The first entropy variable is the chemical potential, µ, which is computed
from (93d) and (93c),

Jijk ~Gc,ijk = (C? − C)ijk

(
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δjm

wj
J~a2

ijk +
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3
c,ijm

)
,

(175)

where Dij = l′j(ξi) is the derivative matrix, and recall the definition of contravariant components (69). We then
get the entropy variables from the current values of the state vector, Q, and the chemical potential, µ computed
by (175),

Wijk =
(
µ,
Q2√
ρ

,
Q3√
ρ

,
Q4√
ρ

,
Q5

ρ0c2
0

)
ijk

, ρ = ρ1Ĉ + ρ2
(
1− Ĉ

)
, Ĉ = min (max (C, 0) , 1) . (176)

2. Compute the gradient of the entropy variables
↔
G from (93b),

Jijk
↔
Gijk =

(
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)
ijk

(
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(177)
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3. Compute the state vector time derivative,

JijkMijk

dQijk
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(178)
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