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Fast Evaluation of the Biot-Savart Integral using
FFT for Electrical Conductivity Imaging

Hassan Yazdanian , Guilherme B Saturnino , Axel Thielscher , Member, IEEE, and Kim Knudsen

Abstract—Magnetic resonance electrical impedance tomog-
raphy (MREIT) and current density imaging (MRCDI) are
emerging as new methods to non-invasively assess the electric
conductivity of and current density distributions within biological
tissue in vivo. The accurate and fast computation of magnetic
fields caused by low frequency electrical currents is a central
component of the development, evaluation and application of
reconstruction methods that underlie the estimations of the
conductivity and current density, respectively, from the measured
MR data. However, methods for performing these computations
have not been well established in the literature. In the current
work, we describe a fast and efficient technique to evaluate the
Biot-Savart integral based on the fast Fourier transform (FFT),
and evaluate its convergence. We show that the method can
calculate magnetic fields in realistic human head models in one
minute on a standard computer, while keeping error below 2%.

Index Terms—Biot-Savart Integral, Conductivity, FFT, For-
ward problem, Magnetic field

I. INTRODUCTION

NOVEL magnetic resonance (MR) methods have been
leveraging the high sensitivity of MR to inhomogeneities

in the main magnetic field of the scanner to image the electrical
impedance of biological tissue at low frequency (MR electric
impedance tomography - MREIT) [1] or to assess current den-
sity distributions inside the tissue (MR current density imaging
- MRCDI) [2] [3]. In these applications, an external current
source produces a static or quasi-static imaging current inside
a body part, and the MR scan is optimized to be sensitive to the
magnetic fields produced by these currents. Due to the nature
of MR imaging, typically only a single component of the
magnetic field can be measured. Therefore, inverse methods
are needed to reconstruct the electrical impedance (MREIT) or
the current flow (MRCDI) inside the volume conductor from
the measurements [4].

The inverse methods typically require the calculation of
magnetic fields caused by the externally applied imaging
current (the forward problem) [2], [5]–[8]. This can be done
by direct evaluation of the Biot-Savart integral [5], [9], [10],
solving a Poisson’s equation for magnetic field [9], [10], or
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using the fast fourier transform (FFT) to compute the Biot-
Savart integral [10], [11]. This last method has been shown to
be the fastest among the three [10]. Other methods such as Fast
multipole method (FMM) can also be applied to efficiently
compute the Biot-Savart integral [12], but can be difficult to
implement and is generally slower than FFT [13]. However, to
the best of our knowledge, the numerical accuracy of the FFT
method for the Biot-Savart integral calculations in MREIT
and MRCDI forward calculation applications has not been
evaluated in detail so far.

In the current work, we describe an FFT-based method for
calculating the Biot-Savart integral and assess its speed and
accuracy using both phantoms with analytical solutions and a
realistic head model. We show that the method performs well
in both conditions, being able to produce accurate solutions
in reasonable time, and is therefore a good candidate to
compute the magnetic field in forward simulation of MREIT
and MRCDI. The method will be integrated in the free
and open source software SimNIBS [14], which is currently
capable of simulating electrical potential, electrical field, and
current density field inside biological tissues, turning it into an
integrated tool for MREIT and MRCDI forward calculations.

II. METHODS

A. Low frequency current-injected bioelectromagnetic phe-
nomena

Assuming the human body to be an ohmic conductor with
electrical conductivity σ(x), the electric potential u(x) caused
by an externally injected low frequency current is governed by
the Laplace equation with the Neumann boundary conditions:

∇ · (σ(x)∇u(x)) = 0 in Ω,

−σ∇u · n = g on ∂Ω,
(1)

where the physical body corresponds to a bounded domain
Ω ⊂ R3 with a smooth boundary ∂Ω, x is a position vector in
R3, g is the normal current flux through the boundary, and n is
the outward unit normal vector on ∂Ω. A unique solution u for
(1) can be obtained by choosing a grounding of the potential,
for instance as u(x0) = 0 for x0 ∈ Ω.

The electric field inside Ω is given by

E = −∇u (2)

and the current density field inside Ω is given by Ohm’s law

J = σE = −σ∇u. (3)

Outside Ω we have J = 0.
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The presence of J inside Ω gives rise to a magnetic field
B obtained by the Biot-Savart integral

B(x) =
µ0

4π

∫
Ω

J(x′)× x− x′

|x− x′|3
dx′, (4)

where µ0 is the magnetic permeability of vacuum. Note that
the domain for integration is the bounded set Ω.

In complex geometries such as the ones found in the
human body, we must resort to numerical methods such as
the Finite Element Method (FEM) for computing the electric
potential caused by the injected currents, and therefore of
the other quantities derived from it (Eqs. (1)-(4)). There
are many readily available open source tools for calculating
electric potentials, electric fields and current density fields
in bioelectic applications such as SimNIBS [14], EIDORS
[15], and OpenMEEG [16]. However, the MREIT forward
problem is given in terms of the mapping from σ to B and the
MRCDI forward problem is given by the mapping J 7→ B,
and thus both require the evaluation of magnetic fields in
large sections of the domain (Eq. (4)), something which is not
readily available in an efficient form in the cited packages.

B. Fast Evaluation of the Biot-Savart Integral

Our approach for fast evaluation of the Biot-Savart integral
(Eq. (4)) using FFT is inspired by similar work for a 2D
problem [17].

We can rewrite (4) in Cartesian coordinate functions B =
(B1, B2, B3) as a convolution:

B1(x) =
µ0

4π

∫
Ω

(x3 − x′3)J2(x′)− (x2 − x′2)J3(x′)

|x− x′|3
dx′

= µ0(G3 ∗ J2 −G2 ∗ J3)(x),

B2(x) =
µ0

4π

∫
Ω

(x1 − x′1)J3(x′)− (x3 − x′3)J1(x′)

|x− x′|3
dx′

= µ0(G1 ∗ J3 −G3 ∗ J1)(x),

B3(x) =
µ0

4π

∫
Ω

(x2 − x′2)J1(x′)− (x1 − x′1)J2(x′)

|x− x′|3
dx′

= µ0(G2 ∗ J1 −G1 ∗ J2)(x),
(5)

where
Gn =

1

4π

xn
|x|3

, n = 1, 2, 3 (6)

are the Biot-Savart integral kernels and J = (J1, J2, J3) is the
current density field, which has compact support.

The convolutions in (5)

Cn,m(x) = µ0Gn(x) ∗ Jm(x), n 6= m (7)

can be calculated numerically in several ways. Consider we
have N sampling points where we have evaluated the current
density field and want to calculate the magnetic field in the
same set of points. Naı̈ve computation of the convolution
has the complexity O(N2). However, the computation can
be done more efficiently in the frequency domain. Using the

(s, s, s)

(s/2, s/2, s/2)

o

Ω

S1

S2

Figure 1. The large cube S2 determines the periodization of the function. The
small cube S1 shows that the function has compact support. Ω is bounded
by the small cube. Both of the cubes are centered at the origin.

Fourier transform F and the inverse Fourier transform F−1,
we obtain:

Cn,m(x) = µ0F−1{F{Gn} · F{Jm}}(x). (8)

In this domain, the computation than has linear complexity,
O(N). The Biot-Savart kernel Gn has an analytical form
(details are given in Appendix)

F{Gn} = −j kn
|k|2

. (9)

where k = (k1, k2, k3) is the spatial frequency in radian per
meter and j is the imaginary unity. The current density field J
does not generally have an analytical form, so we must resort
to numerical methods for computing the Fourier transform.
The FFT algorithm has a complexity of O (N log (N)), which
means that by performing the calculations using the Fourier
domain we are able to reduce complexity from O(N2) to
O (N log (N)).

There are, however, a few caveats that need to be addressed
in order to properly use the FFT to evaluate (7).

1) J needs to sampled on a regularly spaced grid. So, if
the original simulations were performed on an irregular
grid, they need to be interpolated to obtain a discretized
current density field J̄ on an equidistant grid. The res-
olution of such grid is directly related to the frequency
spectra captured by the FFT and therefore the accuracy
of the procedure, but also changes the computation
time. Therefore, finding an appropriate grid resolution is
an important step towards obtaining accurate, yet fast,
evaluations of the Biot-Savart integral.

2) The FFT calculates a circular convolution, and not the
linear convolution required for evaluating (7). However,
the linear convolution can be calculated by introducing
a periodization of the discretized current density field J̄
[18]. As the current density field is compactly supported
in the domain Ω, we define a cube S1 = (−s/2, s/2)3

in R3 centered at the origin o, such that Ω ⊂ S1. Then,
for x ∈ S1, the integral (7) only involves values of Gn

on S2, where S2 = (−s, s)3 is a domain with double
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size of S1 centered at the origin. Thus, to compute the
discrete linear convolution by FFT, we should calculate
the FFT of J̄ in S2, where the values for J̄ 6∈ Ω are set
to zero. The result of this operation for x ∈ S1, will
be identical to the linear convolution. See Fig. 1 for a
description of the domains defined above.

After the two steps above are taken into account, we obtain
the following equation for calculating the discrete convolution
values C̄n,m inside S2:

C̄n,m = µ0iFFT(F{Gn} · FFT(J̄m)}. (10)

where F{Gn} is the analytical Fourier transform (9) evaluated
at the spatial frequencies k present in the FFT transformation.
In order to avoid the singularity at k = 0, we set

F{Gi}[k = 0] = 0. (11)

III. NUMERICAL EXPERIMENTS

In this section we present some numerical examples for the
evaluation of the developed technique. In the first examples
we have an analytic expression of the fields J and B, and in
the final example we used a current density field calculated
on a realistic head model using SimNIBS.

A. Benchmark tests

In this section we employ two benchmark tests in order to
validate the technique developed to compute the Biot-Savart
integral. In both tests the magnetic flux density is known
analytically, and therefore the performance of the numerical
algorithm can be compared to a ground truth. The first example
is a smooth phantom, while the second phantom is piecewise
smooth.

We start with an explicit magnetic vector potential A(x) =
(A1(x), A2(x), A3(x)), which in the ball B(0, h) is given
analytically, and outside is set to 0. We then calculate the
magnetic field by B = ∇ × A. In this way, we obtain a
divergence-free magnetic field B, needed for consistency with
Gauss’s law for magnetism (∇ ·B = 0). We further calculate
the current density field J by∇×∇×A = J which is obtained
by using Ampere’s law, ∇×B = µJ, assuming µ = 1.

We consider two different functions A, both divergence-
free. The first A has a continuous second derivative every-
where and therefore leads to a smooth J, and was defined
as

A1(x) = x2x3 exp

(
−1

h2 − |x|2

)
,

A2(x) = x1x3 exp

(
−1

h2 − |x|2

)
,

A3(x) = −2x1x2 exp

(
−1

h2 − |x|2

)
.

Generally, however, the solutions for the Laplace equation
with Neumann boundary conditions (Eq. (1)) produces values
of J which can be discontinuous on the boundary ∂Ω and
where there are discontinuities in the conductivity σ(x). As the
Fourier components of discontinuous function fall off slowly

and we can only compute truncated terms of the Fourier trans-
form, we need to evaluate how the smoothness of J affects
the convergence of our computations. Therefore, we also used
a second A which has a discontinuous second derivative and
therefore a discontinuous J in the outer boundary |x| = h. It
was defined as

A1(x) = x2(h− |x|)2

A2(x) = x3(h− |x|)2

A3(x) = x1(h− |x|)2.

We used both phantoms to evaluate the FFT method by
calculating B̄ numerically based on analytical calculations of
the current field density J. We set h = 1, the computational
domain had a size s = 2 and was discretized using M =
32, 64, 128, 256, and 512 equally spaced voxels along each
dimensions.

B. Real head model and simulation setup

We use SimNIBS to simulate a current density field in a re-
alistic situation. The performance of SimNIBS for calculating
u and J has been previously validated in [19].

The realistic simulation was run on a head model of
a healthy volunteer from the SimNIBS example dataset
(www.simnibs.org). For more information regarding the gen-
eration of the head model, please see [20]. This model is a
tetrahedral head mesh with ≈ 7 × 105 nodes and ≈ 5 × 106

tetrahedral elements segmented into six tissue types: white
matter, gray matter, cerebrospinal fluid, skull, scalp and eyes,
with conductivities of 0.126 S/m, 0.275 S/m, 1.645 S/m, 0.01
S/m, 0.465 S/m and 0.5 S/m respectively [21].

We used SimNIBS to model two single layer rectangular
electrodes of 50mm×50mm×4mm and used them to deliver
deliver a 1 mA current. The anode was placed above the C6
position and the cathode above the C5 position according to
the EEG 10-20 system. For each electrode, the complete upper
surface was set to a common electric potential, corresponding
to a highly conductive top layer to distribute the currents [22].
The conductivity of the electrode bodies was set to 1 S/m.
[22].

All simulations were implemented in Python 2.7 and the
MKL-linked numpy package was used for the FFT evaluations.
The code was executed on a core i7 3.6 GHz desktop computer
with 16 GB RAM.

IV. RESULTS AND DISCUSSION

A. Benchmark tests

Fig. 2 shows slices of the B3 field calculated analytically
and numerically, as well as the errors in the phantoms with
smooth A, while Fig. 3 shows the same quantities for the
phantom with piecewise smooth A . We have chosen B3

because some MREIT and MRCDI are only sensitive to a
single component of the magnetic field, usually denoted Bz or
B3 [3], [23], [24]. Fig. 2a and Fig. 3a depict the analytical B3

corresponding to smooth and pieceweice smooth phantoms,
respectively. As can be seen, by increasing the number of grid
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(a) Analytical B3 of the smooth phantom

(b) B̄3(x1, x2, 0.25) for M = 128 (c) B̄3(x1, x2, 0.25) for M = 512

(d) B3 − B̄3 for M = 128 (e) B3 − B̄3 for M = 512

Figure 2. (a) Slice (x3 = 0.25) of the analytical B3 corresponding to the smooth phantom at x3 = 0.25. Numerical results for B̄3 for (b) M = 128 and
(c) M = 512. (d) and (e) are the difference images between B3 and B̂3 for M = 128 and M = 512, respectively.

(a) Analytical B3 of the piecewise smooth
phantom

(b) B̄3(x1, x2, 0.25) for M = 128 (c) B̄3(x1, x2, 0.25) for M = 512

(d) B3 − B̄3 for M = 128 (e) B − B̄3 for M = 512

Figure 3. (a) Slice (x3 = 0.25) of the analytical B3 corresponding to the piecewise smooth phantom at x3 = 0.25. Numerical results for B̄3 for (b)
M = 128 and (c) M = 512. (d) and (e) are the difference images between B3 and B̄3 for M = 128 and M = 512, respectively.

points from M = 128 in Fig. 2b and Fig. 3b to M = 512
in Fig. 2c and Fig. 3c, the quality of the computed field
is improved. By increasing M , the error in B̄3 dramatically

decreases in both the central region and near the boundary
region of the smooth phantom (Fig. 2d and Fig. 2e). As
expected, the error for the second (piecewise smooth A)
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Figure 4. Error analysis of the benchmark tests. Relative error of B versus
number of grid points along each axis (M ) using smooth J (blue dashed line)
and piecewise smooth J (green dashed line). The red line is computation time
versus M .

phantom decreases much slower than the error for the smooth
phantom, especially close to the discontinuos outer boundary
(Fig. 3d and Fig. 3e). This arises from the piecewise nature
of J which causes the Fourier transform to decay slowly.
Thus, truncation of the Fourier transform slows down the
convergence rate.

Fig. 4 shows the error analysis for the benchmark tests. The
dashed lines depict the relative error of B versus the number
of grid points along each axis (M ). The blue dashed line is
error for smooth phantom and the green dashed line with dots
one is error for piecewise smooth phantom. The error was
calculated by:

E(%) = 100× ‖B− B̄‖
‖B‖

(12)

where B and B̄ are the analytical and numerical magnetic
field, respectively, and ‖ · ‖ denotes the L2−norm calculated
in the discrete domain.

As can be seen from Fig. 4, the results are converging for
both tests. However, the convergence rate is different. It can
be said that convergence rate and smoothness are inversely
related. For M = 512, the error for smooth J was below
5 × 10−8 % and for piecewise smooth J was below 0.5%.
The computation time for this number of grid points (N =
M3 = 134217728) was around 27 seconds.

Table I
VOXEL SIZES AND CORRESPONDING NUMBER OF GRID POINTS FOR

CALCULATION ON THE REALISTIC HEAD MODEL

Voxel size (mm3) M N (M3)
3.2 160 4,096,000
2.56 200 8,000,000

2 256 16,777,216
1.6 320 32,768,000
1 512 134,217,728

0.5 (Ground-truth) 1,024 1,073,741,824

B. Realistic simulation

Fig. 5a shows the distribution of the norm of the current
density field, |J|, in an axial slice of the realistic head model.
The first row of Fig. 5b displays the corresponding B3 in
the same slice and for different voxel sizes. The second row
of Fig. 5b depicts the error in the computed B3 for each
voxel size compared to the magnetic field computed at a high
resolution with a voxel size of 0.5 mm3. As can be seen, the
error decreases by increasing the resolution. In addition, as
we expected, the maximum error occurred near the place of
electrodes due to discontinuity in the current density field.

To compute B by FFT-based methods, it is required to
convert J defined on the elements of the tetrahedral mesh to
the points of the defined regular grid. This was done using
the interpolate_to_grid function in SimNIBS, which
grids the data using the superconvergent patch recovery (SPR)-
based interpolation described in [19]. The computation time
for this function was approximately 40 seconds for all field
resolutions, as there is a high overhead (the nodal recovery
process) associated with the gridding at all resolutions.

To evaluate the FFT-based method in the realistic simulation
situation, we considered two approaches:

1) First, we tried different voxel sizes to see how the
method converges by decreasing the voxel size (Table
I). In this approach, we considered the voxel size of
0.5mm × 0.5mm × 0.5mm as a ground-truth and cal-
culated the error of magnetic field using (12).

2) In the second approach, we used a back-and-forth pro-
cedure. We computed the magnetic field using the FFT-
based method for the current density field produced by
SimNIBS, Jsim. Then, using Ampere’s law, we repro-
duced the current density distribution by numerically
applying the curl operator to the computed magnetic
field. However, the curl of a vector field is solenoidal (di-
vergence free) whereas the initial Jsim is non-solenoidal
due to the discontinuity at the electrode surfaces. To
resolve this problem, we used the Helmholtz decompo-
sition [25] to compute the solenoidal part of Jsim, Jso.
Based on the Helmholtz decomposition we can write
Jso = Jsim − Jir, where Jir is the irrotational (curl
free) part of Jsim. We calculated Jir in the frequency
domain as follows [25]

F{Jir} = k
k · F{Jsim}
|k|2

. (13)

Then, we subtracted (13) from F{Jsim} to obtain the
Fourier transform of Jso. By applying F−1{·} to the
result, we obtained an approximation of Jso. Finally, we
considered the resultant field as the input of the back-
and-forth procedure.

For both approaches, we considered a computation domain
of size 512mm × 512mm × 512mm, enough to encompass
the entire head and the periodization of the domain.

Fig. 6 shows the results for both approaches. The blue
dashed line with triangles is the error of magnetic field in
the first approach and the green dashed line with dots is the
error of current density field in the second one. As can be seen
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(a) Axial view of |J| produced by
SimNIBS
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(b) Third component of magnetic field B3 and its error ∆B3

Figure 5. Results of the realistic simulation. (a) Axial view of |J| produced by SimNIBS. (b) (First row) Third component of the magnetic field for voxel
sizes of 3.2 mm3 (first column), 2 mm3 (second column) and 1 mm3 (third column). (Second row) Corresponding error with relation to the B3 field computed
at a high resolution (0.5 mm3)

Figure 6. Relative error versus M using the first approach (blue dashed line)
and the second approach (green dashed line). The red line is computation
time versus M .

from Fig. 6, the results are converging for both approaches.
Furthermore, the convergence rates are approximately the
same. However, the error values for the second approach are
higher. We believe this is because of the error arising from
the additional numerical differentiation performed in the back-
and-fourth procedure.

The red line with squares in Fig. 6 show the computation
time of magnetic field B for different voxel sizes. The elapsed

time for a voxel size of 0.5 mm3 was about 1 minute while the
maximum memory usage in this resolution was 12.3 GB. For
a voxel size of 2 mm3 these amounts decrease dramatically
to a computation time of 8.5 seconds and a memory usage of
181 MB.

V. CONCLUSION

In this paper, we developed a computationally efficient
technique for evaluation of the Biot-Savart integral. This
integral has the form of a convolution, and thus lends itself
well to an efficient numerical evaluation by means of the
FFT algorithm. We performed three numerical experiments
to evaluate the technique, using two phantoms with known
analytical solutions and in addition a realistic head model.
The results show a good convergence in all three experiments,
suggesting that the method is appropriate to, for example,
forward modelling of MREIT and MRCDI applications.

By integrating this new feature in SimNIBS, a fast and com-
prehensive package for modeling of low frequency exogenic
bioelectromagnetic phenomena is available. It can compute the
electrical potential u, current density field J, and magnetic
field B in a realistic head domain with typical pixel sizes in
less than three minutes. This opens the door for the devel-
opment of new methods for current and tissue conductivity
reconstruction from imaging and tomography data based on
low-frequency electromagnetics, such as MREIT and MRCDI.

We can obtain further improvement for this technique by
using DSP techniques such as FFTW [26] to decrease the
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computation time or overlap add/save methods [27] to save
memory.

APPENDIX

FOURIER TRANSFORM OF THE BIOT-SAVART KERNEL

In this section the details for extraction of (9) are presented.
Applying the Fourier transform to Gi yields

F{Gi} = F
{

1

4π

xi
|x|3

}
= F

{
− ∂

∂xi

1

4π|x|

}
= −jkiF

{
1

4π|x|

}
.

(A1)

Now 1/4π|x| is the fundamental solution for the negative
Laplace operator and its Fourier transform is given by [28]

F
{

1

4π|x|

}
=

1

|k|2
. (A2)

By substituting (A2) into (A1), we obtain (9):

F{Gi} = − jki
|k|2

. (A3)
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