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Abstract

The shear shallow water model provides an approximation for shallow water flows by including the effect
of vertical shear in the model. This model can be derived from the depth averaging process by including
the second order velocity fluctuations which are neglected in the classical shallow water approximation.
The resulting model has a non-conservative structure which resembles the 10-moment equations from gas
dynamics. This structure facilitates the development of path conservative schemes and we construct HLL,
3-wave and 5-wave HLLC-type solvers. An explicit and semi-implicit MUSCL-Hancock type second order
scheme is proposed for the time integration. Several test cases including roll waves show the performance
of the proposed modeling and numerical strategy.

Keywords: Shear shallow water model, non-conservative system, path conservative scheme,
approximate Riemann solver, finite volume method.

1. Introduction

The shallow water equations, sometimes also called the Saint-Venant equations, are used to model
the flow of fluids in situations where the depth of fluid is small relative to the horizontal scale of the
flow field variations [25]. They have been used to model the flow on the scale of the atmosphere and
ocean, and have been applied for tsunami prediction, storm surges, flow around structures, etc. Because
the model has only two independent spatial variables and does not require tracking the free surface, it
provides a simpler approximation than the full three dimensional Euler equations with a free surface.
The shallow water equations are derived from the incompressible Euler or Navier-Stokes equations by
averaging them over the depth coordinate. The horizontal velocity is assumed to be weakly varying in the
vertical coordinate which implies that the vertical shear is negligible. This allows us to ignore the second
order velocity fluctuations and leads to a closed set of equations which we may be called the classical
shallow water equations and are given by

∂h

∂t
+∇ · (hv) = 0 (1a)

∂(hv)

∂t
+∇ ·

(
hv ⊗ v +

gh2

2
I

)
= −gh∇b− Cf |v|v (1b)

where h,v = (v1, v2) are the water depth and velocity, b is the bottom topography, see Figure (1),
g > 0 is the acceleration due to gravity, and we have included a frictional term to model the bottom
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friction with Cf being the Chezy coefficient. The horizontal velocity v is a depth average of the three
dimensional velocity field. Since the vertical shear is neglected, the classical shallow water equations
cannot model large scale eddies (’roller’) that appear near the surface and behind the hydraulic jump.
Under the assumption of smallness of horizontal vorticity, a more general model called the shear shallow
water (SSW) model can be derived [21, 19, 20, 12] which includes the second order velocity fluctuation
terms, and can be written as

∂h

∂t
+∇ · (hv) = 0 (2a)

∂(hv)

∂t
+∇ ·

(
hv ⊗ v +

gh2

2
I + hP

)
= −gh∇b− Cf |v|v (2b)

∂P
∂t

+ v · ∇P + (∇v)P + P(∇v)> = D (2c)

where the symmetric stress tensor P comes from the second order velocity fluctuations related to the
perturbations from the depth average, and comprises of three independent components P11,P12,P22, and
D is the dissipation tensor. Using Stokes type hypothesis, we can relate the dissipation tensor D linearly
with the stress tensor P, and furthermore if we want the model to reduce to the classical shallow water
model in the limit P = 0, we get [12]

D = −2α|v|3

h
P

where the coefficient α is a function of the invariants of P. The equations (2) lead to an equation for
“total energy”

∂

∂t
(he) +∇ ·

[
hev + (gh2/2 + hP)v

]
= −Cf |v|3 −Q (3)

where

e =
1

2
|v|2 +

1

2
trace(P) +

1

2
gh2, Q = −1

2
h trace(D)

Following [20, 12], the coefficient α in the dissipation term is given by

α = max

(
0, Cr

T − φh2

T 2

)
, T = trace(P) = P11 + P22

Moreover, the quantities Cf , Cr, φ are model constants that must be calibrated using experiments. The
equations for P would contain third order velocity fluctuations, see Appendix A, which can be ignored
if the horizontal shear is weak [21] or modeled in some way so as to close the set of equations. The depth
averaging process which is described in Appendix A reminds us of the well known Reynolds averaging of
Navier-Stokes equations for turbulent flows which leads to a hierarchy of equations due to the non-linear
nature and have to be closed with some turbulence model1. A similar model as above has been studied
for the Favre-averaged compressible Navier-Stokes equations used to model turblent flows [3]. The SSW
model (2) is non-conservative since the equations for P cannot be put in conservation form. The solution
of non-conservative equations is a tricky issue when discontinuities arise since we need a proper notion
of weak solution. The jump conditions will depend on the particular form of the equations and not all
forms may yield the same jump conditions.

The numerical solution of the set of equations (2) has been addressed in [12, 5], both of which use
a splitting approach. The approach in [12] splits the equations into two sub-systems called a-waves

1However, unlike the Reynolds average, the depth average does not commute with differentiation.
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(acoustic) and b-waves (shear), and develops an approximate Riemann solver for each one independently.
Each of these sub-systems is also augmented with the energy conservation equation (3) which is used to
derive some jump conditions required to develop the Riemann solvers. The approach in [5] also uses the
same acoustic and shear sub-systems and develops fluctuation splitting schemes for each sub-system on
unstructured grids, but does not make use of the total energy equation (3).

In the present work, we cast the SSW equations in a particular non-conservative form which is similar
to the 10-moment equations [17, 4] from gas dynamics. In this model, instead of equations for the
stress P, we have equations for an energy tensor E, while the mass and momentum equations remain
unchanged. This form of the equations naturally arises when we perform the depth averaging of the 3-D
Euler equations and the derivation is given in Appendix A. In fact, the equation for the energy tensor
appears in [21] but it has not been used by any of the researchers to develop a numerical approximation.
We suggest that the form of the equations is important and hence we retain the equation structure
arising from depth averaging to build a numerical approximation. The non-conservative terms in this
form contain only derivatives of the water depth h unlike model (2) which has derivatives of v,P in the
non-conservative terms. The presence of only the derivatives of h in the non-conservative terms facilitates
the construction of path conservative schemes [9]. By using the generalized Rankine-Hugoniot (RH) jump
conditions arising from taking a linear path in the state space, we build HLL-type Riemann solvers for
the new system. We construct the HLL, a 3-wave HLLC and a 5-wave HLLC solver, with the last one
including all the waves in the Riemann problem. Unlike previous works, we do not split the model in
several sub-systems but instead we construct a unified Riemann solver for the full system. A higher order
version of the scheme is constructed following the MUSCL-Hancock approach [23] where we make the
source terms implicit. The resulting semi-implicit scheme is solved exactly. While such path conservative
schemes provide a framework to construct stable numerical approximations, we should mention that the
theoretical analysis of such schemes is not well developed. The knowledge of the correct path may not be
known and even when it is known, it is not guaranteed that the numerical scheme will converge to the
correct solution, as shown in [1] in case of Euler equations.

The rest of the paper is organized as follows. The model form used in the current work is introduced
in Section (2). The notions of path conservative scheme are discussed in Section (3) and the first order
scheme is presented. The structure of the states across discontinuities using the generalized RH conditions
are presented in Section (4). Sections (5), (6), (7) present the HLL, 3-wave HLLC and the 5-wave HLLC
approximate Riemann solvers, respectively. The higher order versions of the scheme using MUSCL-
Hancock-type approach is given in Section (8) in 1-D and Section (9) in 2-D. Then we present a set of
test cases in Section (10). Section (11) makes a summary of the work and draws some conclusions. The
depth averaging of the shallow water equations that leads to the model form (4) is shown in Appendix
A and the solution of the semi-implicit scheme is presented in Appendix B.

2. Re-formulation of the SSW model

The SSW model (2) can be written in an almost conservative form. To do this, we define the symmetric
tensors

Rij := hPij , Eij :=
1

2
Rij +

1

2
hvivj , 1 ≤ i, j ≤ 2

The quantity Rij has units of stress while Eij has units of energy per unit volume. Then an elementary
computation shows that the set of equations (2) can be written as the following set of non-conservative
equations

∂U

∂t
+
∂F1

∂x1
+
∂F2

∂x2
+ B1

∂h

∂x1
+ B2

∂h

∂x2
= S (4)
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x3

x1, x2

b

h

x3 = ξ(x1, x2, t)

x3 = b(x1, x2, t)

Figure 1: Shallow water approximation: The free surface is given by x3 = ξ(x1, x2, t) and the bottom surface is given by
x3 = b(x1, x2, t).

where

U =


h
hv1

hv2

E11

E12

E22

 , F1 =


hv1

R11 + hv2
1 + 1

2gh
2

R12 + hv1v2

(E11 +R11)v1

E12v1 + 1
2 (R11v2 +R12v1)

E22v1 +R12v2

 , F2 =


hv2

R12 + hv1v2

R22 + hv2
2 + 1

2gh
2

E11v2 +R12v1

E12v2 + 1
2 (R12v2 +R22v1)

(E22 +R22)v2



B1 =


0
0
0

ghv1
1
2ghv2

0

 , B2 =


0
0
0
0

1
2ghv1

ghv2

 , S =



0
−gh ∂b

∂x1
− Cf |v|v1

−gh ∂b
∂x2
− Cf |v|v2

−ghv1
∂b
∂x1
− α|v|3P11 − Cf |v|v2

1

− 1
2ghv2

∂b
∂x1
− 1

2ghv1
∂b
∂x2
− α|v|3P12 − Cf |v|v1v2

−ghv2
∂b
∂x2
− α|v|3P22 − Cf |v|v2

2


The fluxes can be written in terms of U using the following transformation

h = U1, v1 = U2/U1, v2 = U3/U1, R11 = 2U4−U2
2 /U1, R12 = 2U5−U2U3/U1, R22 = 2U6−U2

3 /U1

Note that the vectors B1(U),B2(U) are linear in U and in fact depend only on the momentum density

m = hv

It is usual to write the non-conservative terms in terms of a matrix-vector product, but since only
the derivatives of h appear in the non-conservative terms of this model, it is more convenient to write
it in terms of the vectors B1,B2 as above. Coincidentally, this model is identical to the 10-moment
model [17, 4] from gas dynamics except for the presence of gravity terms and the non-conservative terms.
While the set of equations (4) can be obtained by manipulating equations (2), the more fundamental
way to obtain these equations is by the depth averaging process which is performed in Appendix A. It
is also known that the quantity

η = η(U) := −h log

(
detR
h4

)
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is a convex entropy function [4]. Using the SSW equations and ignoring the source terms, we can derive
the entropy equation

∂η

∂t
+∇ · (ηv) = 0 (5)

In fact [12], shows that the “total energy” equation (3) and the entropy equation (5) are the only two
additional conservation laws we can derive from the SSW model, but the “total energy” is not a convex
function of U . The fact that the entropy η is a convex function of U and this variable set arises
naturally when we perform the depth averaging, indicates that the set of variables U can be useful
for numerical modeling also. While any set of independent variables is fine for smooth solutions, the
computation of correct weak solutions will depend on jump conditions which can be different for different
set of independent variables. Hence we propose to construct numerical schemes starting from the SSW
equations as given in (4). The numerical strategy we use is based on the concept of path conservative
schemes [18] applied to system (4), and we recall the basic notions of path conservative schemes in a 1-D
version of the above model in the next section. We will assume throughout the paper that the bottom
topography b(x1, x2) is a continuous function and independent of time, in which case the terms containing
this quantity can be treated as source terms and need not be included in the Riemann solver.

3. Model in 1-D and notion of path conservative scheme

We will consider the 1-D SSW model which can be written as

∂U

∂t
+
∂F (U)

∂x
+ B(m)

∂h

∂x
= S(U) (6)

where F = F1, B = B1 and the source term is given by

S =


0

−gh ∂b∂x − Cf |v|v1

−Cf |v|v2

−α|v|3P11 − ghv1
∂b
∂x − Cf |v|v

2
1

−α|v|3P12 − 1
2ghv2

∂b
∂x − Cf |v|v1v2

−α|v|3P22 − Cf |v|v2
2


For simplicity of notation, we will sometimes write the velocity components as (u, v) = (v1, v2). The
system of equations (6) is a hyperbolic system with eigenvalues [12, 3]

λ1 = u−
√
gh+ 3P11, λ2 = u−

√
P11, λ3 = λ4 = u, λ5 = u+

√
P11, λ6 = u+

√
gh+ 3P11

The first and last eigenvalues correspond to genuinely non-linear characteristic fields in the sense of
Lax [13], while the remaining eigenvalues correspond to linearly degenerate characteristic fields [12].
Hence λ1, λ6 are associated with shock/rarefaction waves while the remaining eigenvalues give rise to
shear/contact waves.

Ignoring the source term for the moment as they do not contain derivatives of U , let us write the
non-conservative system as

∂U

∂t
+ A(U)

∂U

∂x
= 0

If we have discontinuous solutions, then we have to give a meaning to the derivative term which can be
done by integration by parts if A is the gradient of a flux function as in case of conservation laws. If A is

5



not the gradient of a flux, then the non-conservative product is interpreted as a Borel measure [9]. This
definition requires the choice of a smooth path Ψ : [0, 1]× U × U → U connecting the two states UL,UR

across the jump discontinuity at x = x0 such that

Ψ(0;UL,UR) = UL, Ψ(1;UL,UR) = UR

where U is the set of admissible states. Then the non-conservative product is defined as the Borel
measure [9, 14]

µ(x0) =

[∫ 1

0

A(Ψ(ξ;UL,UR))
dΨ

dξ
dξ

]
δ(x0)

where δ is the Dirac delta function. This viewpoint is equivalent to the definition of non-conservative
product proposed by Volpert [24]. Using this notion, a theory of weak solutions can be developed based on
which the Riemann problem has usual structure as for conservative systems, leading to shocks or rarefac-
tion waves corresponding to genuinely non-linear characteristic fields and contact waves corresponding
to linearly degenerate fields. Across a point of discontinuity moving with speed S, a weak solution has
to satisfy the generalized Rankinge-Hugoniot jump condition∫ 1

0

[A(Ψ(ξ;UL,UR))− SI]
dΨ

dξ
dξ = 0

The choice of the correct path is a difficult question and has to be derived from a regularized model
motivated from the physical background of the problem. In practice, it is usual to consider the linear
path

Ψ(ξ;UL,UR) = UL + ξ(UR −UL)

Then the jump condition for our model (6) becomes∫ 1

0

A(Ψ(ξ;UL,UR))
dΨ

dξ
dξ = FR − FL + B(mL,mR)(hR − hL) = S(UR −UL) (7)

where

B(mL,mR) = B

(
mL + mR

2

)
The source term does not make any contribution to the jump conditions since it does not contain derivative
of U . The Riemann problem is the building block of a finite volume method and this approach can
be used for non-conservative systems also [14, 18]. The main idea is to split the fluctuation into two
parts corresponding to left moving and right moving waves arising in the Riemann solution, where the
fluctuation is defined as

D(UL,UR) =

∫ 1

0

A(Ψ(ξ;UL,UR))
dΨ

dξ
dξ = D−(UL,UR) + D+(UL,UR)

The splitting of the fluctuation can be performed using a Roe-type Riemann solver or HLL-type Riemann
solver, the latter being the approach taken in the present work. Assume that there are m waves in the
Riemann solution with m− 1 intermediate states. Let us denote the wave speeds as Sj , j = 1, . . . ,m and
the intermediate states as U∗j , j = 1, . . . ,m− 1 with U∗0 = UL and U∗m = UR. The fluctuation splitting
is given by

D±(UL,UR) =

m∑
j=1

S±j (U∗j+1 −U∗j )

6



where
S− = min(0, S), S+ = max(0, S)

Let us consider a partition of the domain into disjoint cells of size ∆x. Let Un
j denote the approximation

of the cell average value in the j’th cell at time t = tn. The first order scheme is given by

Un+1
j = Un

j −
∆t

∆x
(D+,n

j− 1
2

+ D−,n
j+ 1

2

) + ∆tS(Un+θ
j ), D±,n

j+ 1
2

= D±(Un
j ,U

n
j+1)

For θ = 0 we obtain an explicit scheme and for θ = 1 we obtain a semi-implicit scheme; however the
coupling in the semi-implicit scheme is only local to the cell. An exact solution process for the semi-
implicit scheme is explained in the Appendix B. If the system is conservative, i.e., A = F ′(U) for some
F , then the above scheme can be written in conservation form with some numerical flux function [18].

4. Linear waves and jump conditions

In this section, we study the structure of the states forming the linearly degenerate waves. Let us
define the average and jump operators by

{{·}} =
(·)L + (·)R

2
, J·K = (·)R − (·)L

Then the jump conditions across a discontinuity moving with speed S lead to the following set of equations.

JhuK = S JhK
s
R11 + hu2 +

1

2
gh2

{
= S JhuK

JR12 + huvK = S JhvK
JE11u+R11uK + g{{hu}} JhK = S JE11K

s
E12u+

1

2
(R11v +R12u)

{
+

1

2
g{{hv}} JhK = S JE12K

JE22u+R12vK = S JE22K

When we construct the HLLC solvers in later sections, we will use the information deduced in the following
two sub-sections to decide the structure of the intermediate states.

4.1. Contact wave

Since the contact wave is linearly degenerate, the normal velocity u is continuous across the contact
wave, uL = uR = u, and equal to the speed of the contact wave S = u. The jump conditions across the
contact wave then yield the following four relations

s
R11 +

1

2
gh2

{
= 0, JR12K = 0, JR11vK + g{{hv}} JhK = 0, JR12vK = 0 (8)

From the first and third conditions, we obtain(
{{R11}}+

1

4
g JhK2

)
JvK = 0

Since we expect R11 to be positive, the first factor cannot be zero and hence we require that JvK = 0,
so that both velocity components are continuous across the middle wave. The second condition of (8)
shows that R12 is also continuous across the middle wave.

7



Remark. In the above derivation, we deduced that v is continuous across the contact wave but the jump
conditions admit another solution in some special cases. If the two states are such that

RL11 = RR11 = RL12 = RR12 = 0, hL = hR

then vL 6= vR is an admissible set of states that satisfies all the jump conditions. The assumption
RL11 = RR11 = 0 implies that there is no vertical shear which does not hold in practical situations that we
are interested in. Hence it is reasonable to ignore this solution in the construction of the Riemann solver.

4.2. Shear waves

Let us now consider the simple waves corresponding to the eigenvalues λ2, λ5, both of which correspond
to linearly degenerate eigenvectors. If the two states UL,UR correspond to a λ2 wave, then they lie on
the same integral curve of the eigenvector corresponding to the eigenvalue λ2 = u −

√
P11. In terms of

the variables (h, u, v,P11,P12,P22), the corresponding eigenvector is [12]

r2 = [0, 0, −c, 0, c2, 2P12]>

where c =
√
P11, and the integral curve is given by

dh

0
=

du

0
=

dv

−c
=

dP11

0
=

dP12

c2
=

dP22

2P12

We immediately see that h, u,P11 are constant along the integral curve and such constants are also called
Riemann invariants. This implies that λ2 has the same value in the two states which is consistent with
the fact that we have a linearly degenerate field. From the remaining equations, we can deduce that
v
√
P11 + P12 and detP are also invariant along the integral curve.
Similarly, if we consider a λ5 wave, the corresponding eigenvector is

r5 = [0, 0, c, 0, c2, 2P12]>

and the integral curve is given by

dh

0
=

du

0
=

dv

c
=

dP11

0
=

dP12

c2
=

dP22

2P12

We deduce that the quantities h, u,P11, v
√
P11 − P12,detP are invariant along the integral curve.

Remark. In contrast to the Euler equations, the contact and shear waves are here associated to different
eigenvalues when R11 > 0. In the limit when R11 goes to zero, the contact and shear waves merge and
the system loses its strict hyperbolicity since the eigenvectors r2, r5 become parallel. Then the tangential
velocity v is free to take any value along the integral curve. In order to capture the interactions between
contact and shear wave, as well as the transition when R11 becomes small, accurate numerical scheme
should also considered in these waves. Indeed, interactions of contact and shear waves seems to play an
important role for the considered model, as is observed in the two dimensional roll wave tests, where only
the five wave solver which includes all waves in the Riemann solver is able to produce realistic looking
solutions.
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5. HLL Riemann solver

The HLL Riemann solver [15, 10] includes only the slowest wave SL and fastest wave SR in the
Riemann problem. There is an intermediate state U∗ between the two waves. The jump conditions (7)
across the two waves are given by

F∗ − FL + B(mL,m∗)(h∗ − hL) = SL(U∗ −UL)

FR − F∗ + B(m∗,mR)(hR − h∗) = SR(UR −U∗)

Eliminating F∗ we obtain the intermediate state

U∗ =
1

SR − SL
[(URSR −ULSL)− (FR − FL)−B(mL,m∗)(h∗ − hL)−B(m∗,mR)(hR − h∗)] (9)

This looks like an implicit equation for the intermediate state due to the non-conservative terms, but we
can split this equation into two parts; define

U =

[
U (1)

U (2)

]
, U (1) =

[
h
m

]
=

 h
hv1

hv2

 , U (2) =

E11

E12

E22


with similar splitting of F ,B. The first three equations of (9) do not contain the non-conservative terms
and we obtain the corresponding intermediate state

U
(1)
∗ =

[
h∗
m∗

]
=

1

SR − SL

[
U

(1)
R SR −U

(1)
L SL − (F

(1)
R − F

(1)
L )

]
The last three equations of (9) then yield

U
(2)
∗ =

1

SR − SL

[
U

(2)
R SR −U

(2)
L SL − (F

(2)
R − F

(2)
L )−B(2)(mL,m∗)(h∗ − hL)−B(2)(m∗,mR)(hR − h∗)

]
Hence we have explicit solution for the full intermediate state. The split fluctuations are then obtained
from

D±(UL,UR) = S±L (U∗ −UL) + S±R (UR −U∗)

We estimate the minimum and maximum speeds in the Riemann problem as follows

SL = min{λ1(UL), λ1({{U}})}, SR = max{λ6(UR), λ6({{U}})}

which is similar to estimates used for Euler equations, see e.g., [10].

6. HLLC3 Riemann solver: 3 waves

The HLL solver does not include the linearly degenerate waves like the contact wave, which get
excessively diffused in the numerical results. In the HLLC solver [22], the contact wave of speed SM is
also included in the wave model so that we have three waves SL < SM < SR and two intermediate states
U∗L, U∗R. We will determine the two intermediate states by satisfying the jump conditions across the
three waves. Since the contact wave is linearly degenerate, the normal velocity in the two intermediate
states is same and equal to the speed of the contact wave

u∗L = u∗R = u∗ = SM

9



hL h∗L h∗R hR

uL u∗ u∗ uR

vL v∗ v∗ vR

RL11 SL R∗L11 u∗ R∗R11 SR RR11

EL11 E∗L11 E∗R11 ER11

RL12 R∗12 R∗12 RR12

EL22 E∗L22 E∗R22 ER22

Table 1: Intermediate states for the 3-wave solver. The wave speeds are shown in between the states.

From the discussion on jump conditions in section (4.1) we know that v and R12 are continuous across
this wave so that v∗L = v∗R = v∗ and R∗L12 = R∗R12 = R∗12. These states are shown in Table (1).

We first consider the jump conditions across the SL, SR waves. The jump conditions for the continuity
equation yield

h∗α = hα
Sα − uα
Sα − u∗

, α = L,R (10)

The jump conditions for the x-momentum equation yields

R∗α11 = Rα11 + (hαu
2
α − h∗αu2

∗) +
1

2
g(h2

α − h2
∗α) + Sα(h∗αu∗ − hαuα), α = L,R

Using (10), the above equation can be written as

R∗α11 = Rα11 + hα(Sα − uα)(u∗ − uα) +
1

2
g(h2

α − h2
∗α) (11)

Substituting (11) into the first jump condition in (8), we can find an expression for the contact wave
speed SM

SM = u∗ =
hRuR(SR − uR)− hLuL(SL − uL)− (RR11 −RL11)− 1

2g(h2
R − h2

L)

hR(SR − uR)− hL(SL − uL)
(12)

The jump conditions from the y momentum equation yield

R∗L12 = RL12 + hL(SL − uL)(v∗ − vL), R∗R12 = RR12 + hR(SR − uR)(v∗ − vL) (13)

and since R12 must be continuous across the contact wave, we obtain from R∗L12 = R∗R12 an expression for
v∗ as

v∗ =
hRvR(SR − uR)− hLvL(SL − uL)− (RR12 −RL12)

hR(SR − uR)− hL(SL − uL)

We can observe that u∗, v∗ are equal to the velocity of the intermediate state of the HLL solver. From

10



hL h∗L h∗L h∗R h∗R hR

uL u∗ u∗ u∗ u∗ uR

vL v∗L v∗∗ v∗∗ v∗R vR

RL11 SL R∗L11 S∗L R∗L11 u∗ R∗R11 S∗R R∗R11 SR RR11

EL11 E∗L11 E∗L11 E∗R11 E∗R11 ER11

RL12 R∗L12 R∗∗12 R∗∗12 R∗R12 RR12

EL22 E∗L22 E∗∗L22 E∗∗R22 E∗R22 ER22

Table 2: Intermediate states for the 5-wave solver. The wave speeds are shown in between the states.

the last three jump conditions corresponding to the energy equations, we obtain

E∗α11 =
1

Sα − u∗

[
(Sα − uα)Eα11 +R∗α11 u∗ −Rα11uα +

1

2
g(hαuα + h∗αu∗)(h∗α − hα)

]
(14)

E∗α12 =
1

Sα − u∗

[
(Sα − uα)Eα12 +

1

2
(R∗α11 v∗ +R∗12u∗)−

1

2
(Rα11vα +Rα12uα) +

1

4
g(hαvα + h∗αv∗α)(h∗α − hα)

]
(15)

E∗α22 =
1

Sα − u∗
[(Sα − uα)Eα22 +R∗12v∗ −Rα12vα] (16)

The intermediate states are finally given by

U∗α = [h∗α, h∗αu∗, h∗αv∗, E
∗α
11 , E

∗α
12 , E

∗α
22 ]
>

and the fluctuations are given by

D±(UL,UR) = S±L (U∗L −UL) + S±M (U∗R −U∗L) + S±R (UR −U∗R)

7. HLLC5 Riemann solver: 5-waves

The 3-wave HLLC solver improves upon the HLL solver by including the linearly degenerate contact
wave. But the SSW model contains two more linearly degenerate waves and we can try to construct a
multi-state HLL solver by including all linearly degenerate waves in the Riemann solution. When we
include all the five waves, there are four intermediate states which are shown in Table (2). Note that the
quantities h, u,R11 are continuous across the two shear waves S∗L, S∗R as deduced in Section (4.2).

Jump across SL, SR waves. The jump condition across SL, SR waves is

F∗α − Fα + B(mα,m∗α)(h∗α − hα) = Sα(U∗α −Uα), α = L,R

11



which can be written as

h∗αu∗

R∗α11 + h∗αu
2
∗ + 1

2gh
2
∗α

R∗α12 + h∗αu∗v∗α

E∗α11 u∗ +R∗α11 u∗

E∗α12 u∗ + 1
2 (R∗α11 v∗α +R∗α12 u∗)

E∗α22 u∗ +R∗α12 v∗α


︸ ︷︷ ︸

F∗α

−Sα



h∗α

h∗αu∗

h∗αv∗α

E∗α11

E∗α12

E∗α22


︸ ︷︷ ︸

U∗α

+



0

0

0

1
2g(hαuα + h∗αu∗)

1
4g(hαvα + h∗αv∗α)

0


(h∗α − hα) = Fα − SαUα

The first jump condition gives h∗α which is identical to equation (10). The second jump condition gives
R∗α11 and it is identical to equation (11). The third and fifth conditions are coupled and their solution
yields v∗α, R∗α12 . Define mα = hα(uα − Sα) and p = R11 + 1

2gh
2. There is a common value of p in all the

four intermediate states which is given by

p∗ = R∗L11 +
1

2
gh2
∗L = R∗R11 +

1

2
gh2
∗R =

mRpL −mLpR −mLmR(uR − uL)

mR −mL

where the last equality can be derived from the h and x-momentum jump conditions across the SL, SR
waves. Then the third and fifth jump conditions can be written as

mα(v∗α − vα) + h∗αP∗α12 = hαPα12[
p∗ −

1

2
ghαh∗α

]
(v∗α − vα) +mαP∗α12 = [mα + hα(uα − u∗)]Pα12

whose solution is given by

v∗α = vα+

[
mα(hα − h∗α)− hαh∗α(uα − u∗)

m2
α − h∗αp∗ + 1

2ghαh
2
∗α

]
Pα12, P∗α12 =

[
m2
α − hαp∗ + 1

2gh
2
αh∗α +mαhα(uα − u∗)

m2
α − h∗αp∗ + 1

2ghαh
2
∗α

]
Pα12

From the above solution, we can compute R∗α12 = h∗αP∗α12 and E∗α12 = 1
2R
∗α
12 + 1

2h∗αu∗v∗α. The fourth
jump condition gives E∗α11 which is identical to equation (14). The sixth jump condition gives E∗α22

E∗α22 =
1

Sα − u∗
[(Sα − uα)Eα22 +R∗α12 v∗α −Rα12vα]

The second and fourth wave speeds can now be estimated as

P∗α11 =
R∗α11

h∗α
, S∗L = u∗ −

√
P∗L11 , S∗R = u∗ +

√
P∗R11

Jump across u∗ wave. All the jump conditions are satisfied provided we choose u∗ as given in equa-
tion (12).

Jump across S∗L wave. The non-conservative terms are absent for this wave since h is continuous. The
first, second and fourth jump conditions are automatically satisfied. The third jump condition yields

(R∗∗12 + h∗Lu∗v∗∗)− (R∗L12 + h∗Lu∗v∗L) = (u∗ −
√
P∗L11 )(h∗Lv∗∗ − h∗Lv∗L)

12



R∗∗12 = R∗L12 − h∗L
√
P∗L11 (v∗∗ − v∗L)

The sixth jump condition yields

E∗∗L22 = E∗L22 −
1√
P∗L11

(R∗∗12v∗∗ −R∗L12 v∗L)

We can now check that the fifth jump condition is also satisfied.

Jump across S∗R wave. The non-conservative terms are absent for this wave since h is continuous. The
first, second and fourth jump conditions are automatically satisfied. The third jump condition yields

(R∗∗12 + h∗Ru∗v∗∗)− (R∗R12 + h∗Ru∗v∗R) = (u∗ +
√
P∗R11 )(h∗Rv∗∗ − h∗Rv∗R)

R∗∗12 = R∗R12 + h∗R

√
P∗R11 (v∗∗ − v∗R)

The sixth jump condition yields

E∗∗R22 = E∗R22 +
1√
P∗R11

(R∗∗12v∗∗ −R∗R12 v∗R)

We can now check that the fifth jump condition is also satisfied.
All the intermediate quantities have been determined except v∗∗; we have two estimates of R∗∗12 from

the jumps across S∗L, S∗R waves. Setting these equal to one another, we get an equation for v∗∗

v∗∗ =
h∗Lv∗L

√
P∗L11 + h∗Rv∗R

√
P∗R11 − (R∗R12 −R∗L12 )

h∗L
√
P∗L11 + h∗R

√
P∗R11

Finally, the fluctuations can be computed as

D±(UL,UR) = S±L (U∗L−UL)+S±∗L(U∗∗L−U∗L)+u±∗ (U∗∗R−U∗∗L)+S±∗R(U∗R−U∗∗R)+S±R (UR−U∗R)

8. Second order scheme in 1-D

We will follow a predictor-corrector approach like MUSCL-Hancock scheme which can also be thought
of as an ADER scheme. We have to reconstruct the solution variables in each cell in order to get a better
representation of the solution, and it is found to be beneficial in terms of getting non-oscillatory solutions
to reconstruct primitive variables, which are taken to be

Q = [h, v1, v2, R11, R12, R22]>

Step 1. The first step is to predict the solution at half time level using a local formulation, i.e., without
any information from neighbouring cells. We estimate the spatial variation of the solution by a limiter
function, e.g.,

∆Qn
j = minmod

(
β(Qn

j −Qn
j−1),

1

2
(Qn

j+1 −Qn
j−1), β(Qn

j+1 −Qn
j )

)
, β ∈ [1, 2]

and transform to conserved variables

∆Un
j =

∂U

∂Q
(Qn

j )∆Qn
j

13



Now we can estimate the solution at the faces by linear reconstruction,

Un
j− 1

2 ,R
= Un

j −
1

2
∆Un

j , Un
j+ 1

2 ,L
= Un

j +
1

2
∆Un

j

Then the solution in the cell is evolved by half a time step using the PDE

U
n+ 1

2
j = Un

j +
∆t

2
∂tU

n
j

where

∂tU
n
j = −

F (Un
j+ 1

2 ,L
)− F (Un

j− 1
2 ,R

)

∆x
−B(Un

j )
∆hnj
∆x

+ S(Un+θ
j )

The update equation is explicit if θ = 0 and is an implicit equation for U
n+ 1

2
j if θ = 1

2 ; once we obtain

U
n+ 1

2
j , then we estimate the solution at the cell faces at the half time level as

U
n+ 1

2

j− 1
2 ,R

= Un
j −

1

2
∆Un

j +
∆t

2
∂tU

n
j , U

n+ 1
2

j+ 1
2 ,L

= Un
j +

1

2
∆Un

j +
∆t

2
∂tU

n
j

Step 2. The second step uses the predicted solution at half time level to update the solution to next time
level

Un+1
j = Un

j + ∆t

− 1

∆x
(D̃+

j− 1
2

+ D̃−
j+ 1

2

)−
F (U

n+ 1
2

j+ 1
2 ,L

)− F (U
n+ 1

2

j− 1
2 ,R

)

∆x
−B(U

n+ 1
2

j )
∆hnj
∆x

+ S(U
n+ 1

2
j )


where

D̃+
j− 1

2

= D+(U
n+ 1

2

j− 1
2 ,L
,U

n+ 1
2

j− 1
2 ,R

), D̃−
j+ 1

2

= D−(U
n+ 1

2

j+ 1
2 ,L
,U

n+ 1
2

j+ 1
2 ,R

)

Note that the coupling between the cells occurs in this stage via the computation of fluctuations that
involve the solution from the neighbouring cells.

9. Two dimensional scheme

We consider a Cartesian mesh with cells of size (∆x,∆y) where the cell centers are indexed as (j, k)
and we use half indices (j + 1

2 , k) and (j, k + 1
2 ) to denote the cell faces. The MUSCL-Hancock type

scheme can now be naturally extended to two dimensions by the following two step process.

Step 1. We estimate the the spatial variation of the primitive variables along the two directions

∆xQ
n
j,k = minmod

(
β(Qn

j,k −Qn
j−1,k),

1

2
(Qn

j+1,k −Qn
j−1,k), β(Qn

j+1,k −Qn
j,k)

)
, β ∈ [1, 2]

∆yQ
n
j,k = minmod

(
β(Qn

j,k −Qn
j,k−1),

1

2
(Qn

j,k+1 −Qn
j,k−1), β(Qn

j,k+1 −Qn
j,k)

)
, β ∈ [1, 2]

and transform to conserved variables

∆xU
n
j,k =

∂U

∂Q
(Qn

j,k)∆xQ
n
j,k, ∆yU

n
j,k =

∂U

∂Q
(Qn

j,k)∆yQ
n
j,k

14



Now we can estimate the solution at the face centers by linear reconstruction,

Un
j− 1

2 ,k,R
= Un

j,k −
1

2
∆xU

n
j,k, Un

j+ 1
2 ,k,L

= Un
j,k +

1

2
∆xU

n
j,k

Un
j,k− 1

2 ,R
= Un

j,k −
1

2
∆yU

n
j,k, Un

j,k+ 1
2 ,L

= Un
j,k +

1

2
∆yU

n
j,k

Then the solution in the cell is evolved by half a time step using the PDE (4)

U
n+ 1

2

j,k = Un
j,k +

∆t

2
∂tU

n
j,k

where

∂tU
n
j,k =−

F1(Un
j+ 1

2 ,k,L
)− F1(Un

j− 1
2 ,k,R

)

∆x
−

F2(Un
j,k+ 1

2 ,L
)− F2(Un

j,k− 1
2 ,R

)

∆y

−B1(Un
j,k)

∆hnj,k
∆x

−B2(Un
j,k)

∆hnj,k
∆y

+ S(Un+θ
j,k )

The above update is explicit if θ = 0 and is an implicit equation for U
n+ 1

2

j,k if θ = 1
2 ; once we obtain

U
n+ 1

2

j,k , then we estimate the solution at the cell faces by a linear extrapolation from the cell centers

U
n+ 1

2

j− 1
2 ,k,R

= U
n+ 1

2

j,k − 1

2
∆xU

n
j,k, U

n+ 1
2

j+ 1
2 ,k,L

= U
n+ 1

2

j,k +
1

2
∆xU

n
j,k

U
n+ 1

2

j,k− 1
2 ,k,R

= U
n+ 1

2

j,k − 1

2
∆yU

n
j,k, U

n+ 1
2

j,k+ 1
2 ,L

= U
n+ 1

2

j,k +
1

2
∆yU

n
j,k

Step 2. The second step uses the predicted solution at half time level to update the solution to next time
level

Un+1
j,k = Un

j,k + ∆t

[
−

F1(U
n+ 1

2

j+ 1
2 ,k,L

) + D̃−
j+ 1

2 ,k
− F1(U

n+ 1
2

j− 1
2 ,R

) + D̃+
j− 1

2 ,k

∆x

−
F2(U

n+ 1
2

j,k+ 1
2 ,k,L

) + D̃−
j,k+ 1

2

− F2(U
n+ 1

2

j,k− 1
2 ,R

) + D̃+
j,k− 1

2

∆y

−B1(U
n+ 1

2

j,k )
∆xh

n
j,k

∆x
−B2(U

n+ 1
2

j,k )
∆yh

n
j,k

∆y
+ S(U

n+ 1
2

j,k )

]
This completes the description of the higher order scheme in 2-D. The first order scheme in 2-D is easily
obtained by eliminating the reconstruction step and the predictor step.

10. Numerical results

The methods developed in this paper are applied to some 1-D and 2-D test cases. The 1-D tests
are performed using a purely 1-D code. In all the test cases, we take the acceleration due to gravity as
g = 9.81 m/s2. The time step is chosen from a CFL condition of the form

∆t = CFL
1

maxj,k

[
λx(Uj,k)

∆x +
λy(Uj,k)

∆y

]
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where λx, λy are the maximum wave speeds along the x, y directrions respectively, and we use CFL =
0.5 in all test cases. During each computation, we monitor positivity of the values of h,P11,P22 and we
do not perform any artificial clipping of negative values. In the numerical tests, we compare the results
from the present method with those from [5] on a fine mesh. Both methods are based on Riemann solver
idea but the computational cost can be different. The current method is found to be about 8% more
expensive compared to the method in [5], since the new Riemann solver has more arithmetic operations
and due to the need to transform to conserved variables to calculate the fluctuations.

10.1. 1-D shear test problem

This is a Riemann problem without source terms which gives rise to two shear waves. The initial
depth, normal velocity and the stress tensor are constant in space and are given by

h = 0.01 m, v1 = 0, P11 = P22 = 10−4 m2/s2, P12 = 0 m2/s2

Only the transverse velocity has an initial discontinuity located at the middle of the domain and is given
by

v2 =

{
0.2 m/s, x < 0.5 m

−0.2 m/s, x > 0.5 m

The computations are performed at first and second order using different Riemann solvers and mesh
resolutions on the domain [0, 1]. The first order results on a coarse mesh (500 cells) and a fine mesh
(2000 cells) are shown in Figure (2). The second order results are shown in Figure (3) where a coarse
mesh of 200 cells and a fine mesh of 2000 cells are used. The reference results are obtained using the
method in [5] on a grid of 10000 cells. The solution consists of two shear waves with discontinuities only
in the transverse velocity, the P12 and the P22 components of the stress tensor. It is not surprising that
the numerical error is larger for solvers that do not have these waves in their intrinsic structure (HLL
and HLLC3). However, the differences are reduced when second order accurate schemes are used and
globally the mesh convergence is achieved for all schemes and are in accordance with the solution obtained
in [12], [5]. The plots of P22 in Figures (2), (3) show spurious spike in the middle of the computational
domain, which have also been observed with other methods in the literature. The HLLC5 solver gives
the solution with smallest amplitude of these spikes.

10.2. 1-D dam break problem

The dam break problem models a situation where a dam gate is suddenly opened. The initial condition
has a jump only for the depth variable and all the remaining variables are constant in space. We solve
the Riemann problem without source terms in which the initial velocity is zero everywhere and the
components of the stress tensor are P11 = P22 = 10−4 m2/s2, P12 = 0 m2/s2, while the initial depth has
a discontinuity given by

h =

{
0.02 m x < 0.5 m

0.01 m x > 0.5 m

The solution contains one rarefaction wave and one shock wave separated by a contact discontinuity. In
this context, the stress tensor is initially very small and almost at the limit where there is no shear and
det(P) is also small (here it is 10−8). The first order results are shown in Figure (4) and second order
results are shown in Figure (5). The numerical solutions show some differences depending on the Riemann
solver used. The HLLC3 and the HLLC5 solvers converge asymptotically to the same solution. However,
the HLL solver converges asymptotically to a slightly different solution. This is clearly visible in the
shape of P11. Moreover, none of these solutions matches with the solution obtained in previous works [5].
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Figure 2: 1-D shear test case from Section (10.1). Plots of y-velocity, stress tensor component P12 and P22 obtained using
first order scheme with HLL, HLLC3 and HLLC5 solvers for 500 and 2000 cells compared with reference solutions from [5].
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Figure 3: Plots of y-velocity, stress tensor components P12 and P22 obtained using second-order scheme with HLL, HLLC3
and HLLC5 solvers for 200 and 2000 cells with the reference solution from [5] for Example 10.1.
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Such differences can be expected since we are using different jump conditions for the non-conservative
system. There are also differences between the Riemann solvers developed in this work. The HLLC3 and
HLLC5 solvers converge to the same solution under grid refinement while the HLL solver shows some
differences compared to these two. In this sense, the inclusion of the intermediate linear waves in the
Riemann solver seems to be important.

10.3. 1-D modified dam break problem

This is a modified dam break problem where additional jump is initially introduced in the transverse
velocity component. The Riemann problem is solved without any source terms and the initial condition
is given by

h(x, 0) =

{
0.01 x < 0.5

0.02 x > 0.5
, v2(x, 0) =

{
0.2 x < 0.5

−0.2 x > 0.5

while the remaining quantities are constant in space and are given by v1 = 0.1, P11 = P22 = 4 ×
10−2, P12 = 10−8. The solution shown in Figure (6) is obtained from the second order scheme and
behaves similar to the dam break problem with two additional contact discontinuities. However, contact
discontinuities move slowly than for the dam break problem and det(P) is less close to zero (of order
10−3). With this modified problem, all the Riemann solvers asymptotically converge to the same solution.
As expected, the resolution is improved when the approximate solver contains more physical waves.

10.4. 1-D roll wave problem

This problem models the flow of a thin layer of liquid down an inclined bottom and we include all the
source terms. The initial condition is given by

h(x, 0) = h0 [1 + a sin(2πx/Lx)] , v1(x, 0) =

√
gh0 tan θ

Cf
, v2(x, 0) = 0

P11(x, 0) = P22(x, 0) =
1

2
φh2(x, 0), P12(x, 0) = 0

The bottom topography is given by b = −x tan θ and the boundary conditions are periodic. We consider
two sets of parameters as in [16]. In Case 1, the parameters are θ = 0.05011 rad the inclination angle,
Cf = 0.0036, h0 = 7.98 × 10−3 m, a = 0.05, φ = 22.76s−2, Cr = 0.00035, Lx = 1.3 m. In Case 2, the
parameters are θ = 0.119528 rad the inclination angle, Cf = 0.0038, h0 = 5.33 × 10−3 m, a = 0.05,
φ = 153.501s−2, Cr = 0.002, Lx = 1.8 m

The chosen parameters lead to the formation of 1-D roll waves starting from a uniform flow which
has the same structure as in Brock’s experiments [7, 8]. The water depth is compared with Brock’s
experimental data in Figure (7) for both Case 1 and Case 2, which shows a hydraulic jump around x/Lx =
1 but also a smooth profile immediately behind it which is the signature of a roll wave. The classical
shallow water model does not predict this roll wave profile but only gives rise to the hydraulic jump.
All the three Riemann solvers yield essentially similar results and the comparison with the experimental
data is good. Figure (8) shows a comparison of some other quantities for Case 1 and we observe that all
solvers yield essentially the same solution. A 2-D version of this test case is discussed in Section (10.6).
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Figure 4: 1-D dam break problem from Section (10.2). Plots of water depth h, x-velocity v1, and stress component P11

obtained using first order scheme with HLL, HLLC3 and HLLC5 solvers for 500 and 2000 cells compared with reference
solution from [5].
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Figure 5: 1-D dam break problem from Section (10.2). Plots of water depth h x-velocity v1 and stress component P11

obtained using second-order scheme with HLL, HLLC3 and HLLC5 solvers for 200 and 2000 cells compared with the
reference solution from [5].
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Figure 6: 1-D modified dam break problem from Section (10.3). Plots of water depth h x-velocity v1 and stress component
P11 obtained using second order scheme with HLL, HLLC3 and HLLC5 solvers for 200 and 2000 cells.
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10.5. 2-D analytical solution

The rate of convergence can be estimated from a 2-D exact solution developed in [12] which is linear
in space and non-linear in time. The exact solution is given by

h =
h0

1 + β2t2
, v =

β

1 + β2t2

 βtx+ y

−x+ βty

 , P =
1

(1 + β2t2)2

λ+ γβ2t2 (λ− γ)βt

(λ− γ)βt γ + λβ2t2


where the parameters are taken to be h0 = 1 m, λ = 0.1 m2/s2, γ = 0.01 m2/s2, β = 10−3/s. Previous
works [12], [5] have shown first order convergence of the error norm for this test case. We perform the
computations on the domain [0, 10] × [0, 10] upto the time t = 50 seconds using Dirichlet boundary
conditions where the solution in ghost cells is set to the exact solution. The HLL solver is run on
meshes 102, 202, 402, 802, 1602 while HLLC3 and HLLC5 solvers are run on meshes 102, 202, 402, 802. The
convergence of the error norm is shown in Figures (9) for all three Riemann solvers, which shows second
order convergence of our method. The HLL solver requires finer meshes before we see the second order
convergence probably due to its larger numerical dissipation as a consequence of not resolving the linear
waves.

10.6. 2-D roll wave problem

This problem is a 2-D extension of the 1-D roll wave problem described in Section (10.4) and models
the flow of a thin layer of liquid down an inclined plane. The initial conditions are given by

h(x, y, 0) = h0 [1 + a sin(2πx/Lx) + a sin(2πy/Ly)] , v1(x, y, 0) =

√
gh0 tan θ

Cf
, v2(x, y, 0) = 0

P11(x, y, 0) = P22(x, y, 0) =
1

2
φh2(x, y, 0), P12(x, y, 0) = 0
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Here θ = 0.05011 rad is the inclination angle of the bottom surface, Cf = 0.0036, h0 = 7.98 × 10−3 m,
a = 0.05, φ = 22.76s−2, Cr = 0.00035, Lx = 1.3 m, Ly = 0.5 m. The chosen parameters correspond
to those considered in [16] which leads to the formation of 1-D roll waves starting from a uniform flow
which has the same structure as in Brock’s experiments [7, 8]. A small two dimensional perturbation is
added to the water depth whose amplitude is controlled by the coefficient a in the initial condition. The
boundary conditions are periodic in both directions. Figure (10) shows the surface plots of the depth
field on a 1040× 400 mesh while Figure (11) shows similar plots on a finer mesh of 2080× 800 cells. The
first order scheme shows rather smooth solutions due to higher numerical dissipation while second order
scheme shows more features in the solution. The HLL and HLLC3 solvers also show somewhat smooth
solutions while HLLC5 shows a more turbulent-type of solution. However, even the HLL/HLLC3 solvers
show transverse wave structures in the second order scheme. The first order results from HLLC5 solver
look similar to the corresponding results in the literature [12], [5].

The development of the water depth profile with time using HLLC5 solver can be seen in Figure (12),
which shows three distinct phases. In the first phase, the profile develops a 1-D structure similar to the
1-D computation in Section (10.4) and is similar to Brock’s experimental profile. At around time t = 10,
the profile develops some perturbations at the hydraulic jump which generates transverse structures and
subsequently this spreads to the whole domain. In Figure (13), we compute the y-average of the solution
and also show the fluctuations around the y-average at time t = 36. The average profile still resembles
the 1-D profile with fluctuations superimposed on top of it. These fluctuations are more prominent in the
HLLC5 solver which is the most sophisticated solver as it includes all the waves in the Riemann solution.
Figure (14) shows a zoomed view in the region [0, 0.5] × [0, 0.5] where we show the fluctuations of the
height field relative to the y-average; the HLLC3 solver yields somewhat regular wave patterns while the
HLLC5 solver shows a more dis-organized behaviour in the solution.

We compute the spectrum E(k) of the kinetic energy of velocity fluctuations by first computing the
two dimensional discrete Fourier transform of each velocity component to obtain û(kx, ky), v̂(kx, ky), and

then integrating E(kx, ky) = 1
2 (|û|2 + |v̂|2) over the circle of radius k =

√
k2
x + k2

y. The DFT is computed

using the Fast Fourier Transform method available in Numpy. The fluctuation energy distribution over
the wave numbers is shown in Figure (15). Firstly, we see that the spectra at times t = 36 and t = 60 are
very similar which indicates that a statistically steady state has been reached. All the three solvers show
a k−4 spectrum in intermediate wave-numbers. This is in contrast to two dimensional hydrodynamic
turbulence which exhibits a k−3 energy spectrum [6]. We also show the k−5/3 line which is observed in
three dimensional turbulence. With the present computations, we are not able to definitely conclude on
the structure of the energy spectrum in the small and intermediate wave-numbers and a more refined
computation with a higher order scheme may be necessary to clearly identify the precise scaling law in
those wave-numbers. These results show that a higher order scheme is essential to capture the turbulent-
like structure in the solution. Also, there seems to be a critical dependence on the wave structure included
in the Riemann solver and the type of solutions observed in the computations. Only the five wave solver
that models all the waves and combined with a higher order scheme yields solutions which seem to
correspond better with observations in experiments [2].

Remark. The shape observed with the HLLC5 solver on coarse grid have some similarities with the
numerical instability named “carbuncle phenomena” that pollute the bow-shock upstream in hypersonic
flows. According to [11], “It is not known which numerical schemes are affected in which circumstances,
what causes carbuncles to appear and whether carbuncles are purely numerical artefacts or rather features
of a continuum equation or model”. And then to conclude that ”carbuncles can, in some circumstances,
be valid vanishing viscosity limits. Trying to suppress them is making a physical assumption that may be
false”. Therefore, we cannot get a definitive answer in this paper and further investigations are needed
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Figure 10: 2-D roll wave problem using 1040× 400 mesh. Depth field at time t = 36 units.
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Figure 11: 2-D roll wave problem using 2080× 800 mesh. Depth field at time t = 36 units.
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Figure 12: 2-D roll wave problem using second order HLLC5 scheme on 2080× 800 mesh. Depth field at different times.
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understand the origin of this behaviour in the present model. Moreover, in the context of shear shallow
water model proposed here, the equations are genuinely non-conservative and the classical analysis of
shock stability needs to be reconsidered. Nevertheless, results obtained here are consistent with previous
papers. The turbulent pattern is shared by the different numerical schemes, including the HLL scheme,
which is not expected to exhibit carbuncle-type solutions.

11. Summary and conclusions

The present work deals with the shear shallow water model which is a higher order version of the
classical shallow water model since it includes effects of vertical shear. The model has a non-conservative
structure which poses difficulties in its numerical solution. Previous works have developed Riemann
solvers by splitting the model into two parts, while in this work, we develop a unified Riemann solver
using a more fundamental form of the equations which arises directly from the depth averaging process
and is similar to the 10-moment equations in gas dynamics. By using a linear path in conservative
variables, we develop path conservative Riemann solvers for this model. In particular, we develop HLL,
3-wave and 5-wave HLLC solvers and apply them to a set of test problems in 1-D and 2-D. A second
order version of the scheme is developed using a predictor-corrector approach and the order of accuracy
is checked numerically, while existing works have only demonstrated first order results. Among the three
Riemann solvers, the results demonstrate that the HLLC5 solver is the most accurate in terms of resolving
all the waves that arise in the solution. The 1-D results compare well with results from previous 5-wave
solver available in the literature except in the 1-D dam break problem, where we see some differences in
the shock. Such differences can be expected due to different jump conditions in our model compared to
previous approaches. The 1-D roll wave problem develops the roll wave profile and compares well with
Brock’s experimental results. The 2-D roll wave problem shows significant differences in the performance
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Figure 15: Kinetic energy spectrum of fluctuations around the y-average for 2-D roll wave problem on 2080× 800 mesh.

32



of the Riemann solvers. Only the HLLC5 solver develops a turbulent-like solution which is similar to
previous results in the literature and such a solution seems to correspond to real flows, see e.g. [2]. The
solution has a well defined y-average with fluctuations super-imposed on top of this. Moreover, the
fluctuations have a kinetic energy spectrum with well-defined scaling laws being visible, though more
refined calculations are necessary to make definite statements on the precise structure of the solution.
The higher order scheme using the HLL-type solvers developed in this work is thus very promising for
further studies on shear shallow water flows.

Acknowledgments

The work reported in this paper was started when the first author was visiting Université Côte d’Azur,
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Appendix A. Derivation of the SSW model

The gravitational force is assumed to act in the negative x3 direction. Let x3 = ξ(x1, x2, t) denote the
height of the free-surface and x3 = b(x1, x2, t) denote the location of the bottom surface, see Figure (1).
Then the depth of water is h = ξ − b. The flow is assumed to be governed by the incompressible Euler
equations which are given by2

∂uk
∂xk

=0

∂ui
∂t

+ uk
∂ui
∂xk

+
1

ρ

∂p

∂xi
=− gδi3

where (u1, u2, u3) is the 3-D velocity field, p is the pressure and we assume that the density ρ is constant.
A material point on the free surface F (x1, x2, x3, t) = x3 − ξ(x1, ξ2, t) = 0 remains on the free surface
which means that3

dF

dt
= 0 =⇒ ∂ξ

∂t
+ uα

∂ξ

∂xα
− u3 = 0 on x3 = ξ (A.1)

Similarly, for the bottom surface, we get

∂b

∂t
+ uα

∂b

∂xα
− u3 = 0 on x3 = b (A.2)

Define the depth average φ = φ(x1, x2, t) of any quantity φ = φ(x1, x2, x3, t) by

φ(x1, x2, t) =
1

h

∫ ξ

b

φ(x1, x2, x3, t)dx3

The fluctuation with respect to the average value is

φ′ = φ− φ

2In this section, the subscripts like i, j, k take values in {1, 2, 3} and repeated subscripts indicate summation.
3Greek subscripts like α, β, γ will takes values in {1, 2} only and repeated subscripts indicate summation.
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and clearly
φ′ = 0

Moreover, we note the following identities∫ ξ

b

∂φ

∂xα
dx3 =

∂(hφ)

∂xα
− ∂ξ

∂xα
φ|x3=ξ +

∂ξ

∂xα
φ|x3=b (A.3)

∫ ξ

b

∂φ

∂t
dx3 =

∂(hφ)

∂t
− ∂ξ

∂t
φ|x3=ξ +

∂ξ

∂t
φ|x3=b (A.4)

Integrating the continuity equation over the depth of water and using (A.3) yields

∂

∂xα
(huα)− uα(x1, x2, ξ, t)

∂ξ

∂xα
+ uα(x1, x2, b, t)

∂b

∂xα
+ u3(x1, x2, ξ, t)− u3(x1, x2, b, t) = 0

and using (A.1), (A.2) we get
∂h

∂t
+

∂

∂xα
(huα) = 0 (A.5)

Let H,L denote the vertical and horizontal length scales; in the shallow water approximation, the vertical
scale is much smaller than the horizontal scale (long wave approximation), i.e.,

ε =
H

L
� 1

Let U denote the horizontal velocity scale; then the continuity equation implies that u3 = O(εU). Using
time and pressure scales as L/U and ρU2, the x3-momentum equation can be non-dimensionalized as

ε2Du
′
3

Dt′
+
∂p′

∂x′3
= − 1

Fr2 ρ
′

where D/Dt denotes material derivative, the prime quantities are non-dimensional and Fr = U/
√
gH is

Froude number. Ignoring terms of O(ε2), we obtain the hydrostatic approximation

∂p

∂x3
= −ρg =⇒ p− pa = −ρg(x3 − ξ)

where pa is the atmospheric pressure at the free surface which may be taken to be constant. Hence

∂p

∂xα
= ρg

∂ξ

∂xα
(A.6)

Now the horizontal momentum equation takes the form

∂uα
∂t

+ 2
∂Kαβ

∂xβ
+

∂

∂x3
(uαu3) + ρg

∂ξ

∂xα
= 0 where Kαβ =

1

2
uαuβ

Averaging this equation and using (A.1), (A.2), (A.3), (A.4), we obtain

∂(huα)

∂t
+ 2

∂Kαβ

∂xβ
+

∂

∂xα

(
1

2
ρgh2

)
= −ρgh ∂b

∂xα
(A.7)
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where Kαβ = 1
2uαuβ + 1

2u
′
αu
′
β is not completely known to us and hence the set of equations (A.5), (A.7)

does not form a closed system. If we set the second order velocity fluctuation term u′αu
′
β to zero, then the

equations are closed and we obtain the classical shallow water model. This simplification can be justified
if the vertical shear is small, i.e., ∂uα

∂x3
= O(εm) with m ≥ 1 [21].

If the vertical shear is not small, i.e. m < 1, then it is not justifiable to ignore the second order velocity
fluctuation terms, in which case these terms must be retained and we must derive additional equations
to model them. Starting from the momentum equation, we can derive the following set of equations,

2
∂Kij

∂t
+ 2

∂

∂xk
(Kijuk) +

ui
ρ

∂p

∂xj
+
uj
ρ

∂p

∂xi
= −g(ujδi3 + uiδj3)

and hence, using the hydrostatic condition (A.6), we obtain

2
∂Kαβ

∂t
+ 2

∂

∂xγ
(Kαβuγ) + 2

∂

∂x3
(Kαβu3) + guα

∂ξ

∂xβ
+ guβ

∂ξ

∂xα
= 0

Averaging the above equation over the depth and using (A.1), (A.2), (A.3), (A.4) yields

∂(hKαβ)

∂t
+

∂

∂xγ
(hKαβuγ) +

1

2
ghuα

∂h

∂xβ
+

1

2
ghuβ

∂h

∂xα
= −1

2
ghuα

∂b

∂xβ
− 1

2
ghuβ

∂b

∂xα
(A.8)

Let us identify Pαβ = u′αu
′
β and Eαβ = hKαβ . The remaining average term in the previous equation can

be written as

Kαβuγ =
1

2
uαuβuγ = Kαβuγ +

1

2
uαPβγ +

1

2
uβPαγ +

1

2
u′αu

′
βu
′
γ

The third order fluctuations are of O(ε3m) which are smaller than the second order fluctuations which
are of O(ε2m) [21]. This allows us to ignore the third order fluctuations in equation (A.8) and we obtain
a closed set of equations. The set of equations (A.5), (A.7) ,(A.8) is exactly the model given in (4).

Appendix B. Solution of semi-implicit scheme

The semi-implicit schemes take the form

Un+1 − θ∆tS(Un+1) = Ũn+1

where Ũn+1 is the explicit update without the source term, θ = 1 for the first order scheme and θ = 1
2 for

the second order scheme. There is no source term in the continuity equation and we obtain hn+1 = Ũn+1
1 .

The momentum equations have the form4

m1 +
θCf∆t

h2
m1

√
m2

1 +m2
2 =Ũn+1

2 − θghn+1 ∂b

∂x
∆t =: a1

m2 +
θCf∆t

h2
m2

√
m2

1 +m2
2 =Ũn+1

3 − θghn+1 ∂b

∂y
∆t =: a2

Squaring and adding the two equations we get

(m2
1 +m2

2)

(
1 + c

√
m2

1 +m2
2

)2

= a2
1 + a2

2, c =
θCf∆t

h2

4For simplicity of notation, we drop the superscript n+ 1 on some of the quantities in the following equations.
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This leads to a quartic equation for m =
√
m2

1 +m2
2

m2(1 + cm)2 − (a2
1 + a2

2) = 0 =⇒ cm2 +m−
√
a2

1 + a2
2 = 0

where we choose the positive square root. The positive solution of the quadratic equation is

m =
−1 +

√
1 + 4c

√
a2

1 + a2
2

2c

Then the momentum components are given by

m1 =
a1

1 + cm
, m2 =

a2

1 + cm

From the E11, E22 equations we obtain

1

2
hP11 + α|v|3θ∆tP11 =S11 := Ũn+1

4 − 1

2
hn+1(vn+1

1 )2 − θ∆t
[
ghn+1vn+1

1

∂b

∂x
+ Cf |vn+1|(vn+1

1 )2

]
(B.1)

1

2
hP22 + α|v|3θ∆tP22 =S22 := Ũn+1

6 − 1

2
hn+1(vn+1

2 )2 − θ∆t
[
ghn+1vn+1

2

∂b

∂y
+ Cf |vn+1|(vn+1

2 )2

]
(B.2)

Adding the two equations, we get

f(T ) :=
1

2
hT + α|v|3θ∆tT − (S11 + S22) = 0

which contains only the trace T as unknown. This is a non-linear equation since α = α(h, T ) is non-linear
and a necessary condition for existence of positive solution is that S11 + S22 > 0. For 0 < T ≤ φh2,
f(T ) = 1

2hT − (S11 + S22) is negative for T sufficiently small; for T � φh2 we have f(T ) > 0. Moreover
f(T ) is a continuous, monotonically increasing function in (0,∞); this is clear for T ∈ (0, φh2] and for
T > φh2

f(T ) =
1

2
hT +

Cr|v|3θ∆t
T

(T − φh2)− (S11 + S22), f ′(T ) =
1

2
h+

Cr|v|3θ∆tφh2

T 2
> 0

hence f(T ) = 0 has a unique positive solution. To solve this equation we first compute, T̂ from

1

2
hT̂ = S11 + S22

If T̂ ≤ φh2 then the solution is T̂ itself; otherwise we solve the quadratic equation f(T ) = 0 and choose the
unique positive root in (φh2,∞) as the solution. Once T is obtained, we get P11,P22 from (B.1), (B.2);
and also P12 can be determined from the E12 equation which is of the form

1

2
hP12 + α|v|3θ∆tP12 = S12 := Ũn+1

5 − 1

2
hn+1vn+1

1 vn+1
2

− θ∆t
[

1

2
ghn+1vn+1

2

∂b

∂x
+

1

2
ghn+1vn+1

1

∂b

∂y
+ Cf |vn+1|vn+1

1 vn+1
2

]
Since we know the tensor P, we can update the energy tensor E which completes the update of all the
quantities.
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