
A projection-based numerical integration scheme for
embedded interface: Application to fluid-structure

interaction

B. Liua,∗, R. K. Jaimanb, D. Tana,∗

aDepartment of Mechanical Engineering, National University of Singapore, Singapore
bDepartment of Mechanical Engineering, University of British Columbia, Vancouver,

Canada

Abstract

We present a projection-based numerical integration technique to deal with

embedded interface in finite element (FE) framework. The element cut by an

embedded interface is denoted as a cut cell. We recognize elemental matrices of a

cut cell can be reconstructed from the elemental matrices of its sub-divided cells,

via projection at matrix level. These sub-divided cells are termed as integration

cells. The proposed technique possesses following characteristics (1) no change

in FE formulation and quadrature rule; (2) consistency with the derivation of

FE formulation in variational principle. It can be considered as a re-projection

of the residuals of equation system in the test function space or a reduced-

order modeling (ROM) technique. These characteristics significantly improves

its scalability, easy-to-implementation and robustness to deal with problems

involving embedded discontinuities in FE framework. Numerical examples, e.g.,

vortex-induced vibration (VIV), rotation, free fall and rigid-body contact in

which the proposed technique is implemented to integrate the variational form

of Navier-Stokes equations in cut cells, are presented.

Keywords: Nitsche’s method, finite cell method, numerical integration,

quadratic form, reduced-order modeling

∗Corresponding author
Email addresses: a0098961@u.nus.edu (B. Liu), mpetds@nus.edu.sg (D. Tan)

Preprint submitted to Journal of LATEX Templates November 27, 2018

ar
X

iv
:1

81
1.

09
70

4v
1

 [
m

at
h.

N
A

]
 1

8
N

ov
 2

01
8

1. Introduction

The embedded interface FE formulation is an appealing approach in prob-

lems involving moving interfaces, e.g., fluid-structure interaction or free surface

flows, or situations in which efforts are made to eliminate the generation of

body-fitted meshes. A number of schemes, overall termed as unfitted finite el-

ement methods, were proposed to weakly imposed boundary conditions along

the embedded interfaces. For instance, partition of unity method [1, 2], eX-

tended/generalized finite element approach [3, 4, 5, 6, 7, 8], fictitious domain

method (FDM) [9, 10] and FCM, which is a combination of the fictitious domain

technique and the high-order finite element approach [11, 12].

The concept of distributing Lagrange points along the embedded interfaces

was well established and implemented in the aforementioned numerical ap-

proaches. However, an appropriate choice of Lagrange multiplier basis space

is critical to satisfy the Babǔska-Brezzi (BB) condition [13, 14]. Recently,

Nitsche’s method [15] gained attention among research community due to its

advantageous characteristics, e.g., variationally consistency and no increment in

system size. It had been implemented to investigate a number of fluid-structure-

interaction (FSI) problems, e.g., [16, 17, 18, 19, 20, 21]. In the present work,

we implement Nitsche’s method to weakly impose the Dirichlet boundary along

the embedded interface.

In all unfitted interface formulations, the numerical integration over the

cut cell requires a special attention. Without appropriate treatments to en-

sure accurate approximations around the interface, the idea of unfitted finite

element method becomes impractical. Overall, five important classes of integra-

tion methods consisting of embedded discontinuity in finite element formulation

can be listed as (1) tessellation, (2) moment fitting methods, (3) methods based

on the divergence theorem, (4) equivalent polynomial and (5) conformal map-

ping. Tessellation [22, 23] is a well-established method, in which the cut cell

is triangulated or quadrangulated into smaller integration cells. Its advantage

is the embedded discontinuity can be accurately captured by aligning with the

2

edge of integration cells. On the other hand, an uniform refinement [11] of

the cut cell can be implemented, to avoid the difficulty in aligning the em-

bedded discontinuities with integration cells for complex geometries. However,

the uniform refinement approach is computational expensive to obtain sufficient

accurate numerical results. To improve the computational efficiency, adaptive

refinement techniques, e.g., Quatree or smart Octree [24, 25], can be used to

minimize the integration error around the embedded interface. Nonetheless, the

computational cost is still high compared with tessellation. Another improve-

ment is to modify the integration weights of the standard Gauss quadrature [26],

in which the weights are scaled based on the ratio of cut area by the discontinu-

ity. The recent development in numerical integration techniques focuses on the

elimination of subdivision on the cut cell, e.g., finding equivalent polynomial

functions [27], constructing efficient quadrature rules for individual integration

cell (moment-fitting equations) [28], transforming the volume/surface integral

to surface/line integral (divergence theorem) [29] and Schwarz-Christoffel con-

formal mapping [30].

In the present work, we propose a projection-based numerical integration

technique for problems in unfitted FE formulation. It works for both tessellation

and adaptive refinement methods. Of particular we address the following issues:

(1) easy-of-implementation in FE formulations (simplicity and scalibility), (2)

capable to produce accurate numerical results (accuracy), (3) well-suited for FE

formulation (variationally consistency) and (4) applicable to various FSI appli-

cations (robustness). The proposed numerical integration technique is a variant

of tessellation method. In terms of algorithm, the primary differences are (1) no

change in FE formulation and quadrature rule for the elements with/without

embedded discontinuities, (2) the elemental matrices of subdivided integration

cell are assembled via transformation in a quadratic form, a projection proce-

dure. The transformation operation refers to the operation of changing the rep-

resentation of a matrix between different bases a transformation tensor, such

that the matrix retains equivalent. In finite element theorem, this assembly

procedure is rooted in Bubnov-Galerkin method, a re-projection of residuals of

3

equation system in the test function space. Alternatively, it can be considered

as a reduced-order modeling (ROM) technique, where a higher dimension prob-

lem is projected into a lower dimension space. It is proven in present work the

reconstructed elemental matrices via our proposed technique exactly recover the

original elemental matrices obtained by the standard Gauss quadrature on the

cut cell.

The manuscript is organized as follows. The mathematical formulation of

proposed numerical integration technique is discussed at first in Sect. 2. The

governing equations and FSI schemes are listed in Sect. 3. The complete vari-

ational formulation of our unfitted FSI solver is shown in Sect. 4. Following

that, the error analysis of this proposed numerical integration technique is dis-

cussed in Sect. 5. Subsequently, numerical examples and validation results are

presented in Sect. 6. Finally, we make the concluding remarks in Sect. 7.

2. Numerical integration (PGQ)

2.1. Computational procedure

There are two steps in the proposed numerical integration technique: (1)

compute numerical integral in each integration cell; (2) assemble the matrices

of integration cells to form the elemental matrices of the cut cell. FCM method

also incorporate similar computational procedures. In FCM method [12], the

Jacobian terms are modified to establish relationship and map between the

integration cell and the cut cell. On the other hand, in the proposed numeri-

cal integration technique, the FE formulation and Quadrature rule remain un-

changed. This characteristics significantly improves its scalability and easy-

to-implement to existing FEM solvers. The assembly procedure is computed

through quadratic form transformation [31]. Therefore, this technique is termed

as projection-based Gaussian quadrature (PGQ).

The detailed algorithm of PGQ is demonstrated based on a general FE

formulation below. Assuming the domain is spatially discretized by structured

4

quadrilateral elements in Fig. 1, the corresponding variational form of a general

partial differential equation (PDE) over a cut cell can be defined as

A(v,dh) = L(v) (1)

A(v,dh) =

∫
Ω

[L · v]′ ·D · [L · dh]dΩ

L(v) =

∫
Ω

[v′ · b]dΩ +

∫
ΓH

[v′ · h̃h]dΓ

where A(v,dh) and L(v) are respectively bilinear and linear functionals. In

Eq. (1), v, dh, D, b and h̃h are test function vector, nodal value vector, coeffi-

cient matrix, volume source vector and prescribed traction vector respectively.

L is denoted as a differential operator, where the prime symbol is a transpose

operator. The strain matrix B is defined as B = L ·N , where N is trial func-

tion matrix. In Bubnov-Galerkin method, the test function is chosen as trial

function, v = N . Hence the elemental stiffness matrix and force matrix of the

cut cell becomes,

Kc =

∫
Ω

[B′c ·D ·Bc]dΩ (2)

Fc =

∫
Ω

[N ′c · b]dΩ +

∫
ΓH

[N ′c · h̃h]dΓ (3)

where the subscript ”c” refers to a cut cell. The standard Gauss quadrature rule

is implemented in each integration cell with respect to its dummy nodes (black

circle) in detailed view of Fig. 1. The embedded interface in cut cell is assumed

to align with the edges of integration cell. Therefore, in each integration cell, the

variable values and their gradients on dummy nodes are approximated within a

finite space of continuous function.

Similar to the cut cell, the stiffness matrix and force vector of an integration

5

S1 S2

S3 S4

S2

ξ

η
s

t
e.g.

S: integration cell

T : transformation tensor

Ks: elemental matrix
of integration cell

Kr
s =T ′·Ks·T :

reconstructed
elemental matrix of
integration cell

Kc = Kr
c : elemental matrix of cut cell

Kr
c =

∑
Kr

s reconstructed elemental
matrix of cut cell

physical nodes (ni : i = 1, 2, 3, 4)

dummy nodes (si : i = 1, 2, 3, 4)s

s
s

s
s

︸ ︷︷ ︸
cut cell

︸ ︷︷ ︸
integration cell

Figure 1: Illustration of the general concept of PGQ in a bilinear quadrilateral element

cell are defined as

Ks =

∫
Ω

[B′s ·D ·Bs]dΩ (4)

Fs =

∫
Ω

[N ′s · b]dΩ +

∫
ΓH

[N ′s · h̃h]dΓ (5)

where the subscript ”s” refers to an integration cell. The second term in Eq. (5)

is Neumann boundary condition along the edge of an integration cell, which is

associated with embedded interface in the cut cell. As demonstrated in Fig. 1,

they are mapped via transformation tensor T and assembled to form the re-

constructed elemental matrices of a cut cell, e.g., Kr
c , where the superscript

”r” denotes a reconstructed matrix. The transformation procedure is based

on change of basis operation in a quadratic form. The elemental matrices are

mapped between basis vectors of integration cell and cut cell.

Two types of computational sequence, Algorithm 1 and 2, in PGQ are ap-

plicable, where the superscript ”as” denotes an assembled matrix based on

standard assembly procedure in FEM. Both Algorithms are equivalent. Algo-

rithm 1 is more computational efficient and preferred, because the operation of

low-order matrix is involved. Nonetheless, Algorithm 2 demonstrates an impor-

tant mathematical characteristics of PGQ, which will be discussed in Sect. 2.4.

In the next section, the construction of T is discussed.

6

Algorithm 1 transformation-assembly

1: sub-divide cut cell into integration cells

2: for i=no. of integration cell do

3: construct T for ith integration cell, Eq. 7

4: Gaussian quadrature for ith integration cell

5: Kr
s = T ′ ·Ks · T , Eq. 9 and 10

6: sum up as Kr
c+ = Kr

s , Eq. 11 and 12

7: end for

Algorithm 2 assembly-transformation

1: sub-divide cut cell into integration cells

2: construct T as (rectangular tensor) for all integration cells, Eq. 7

3: for i=no. of integration cell do

4: Gaussian quadrature for ith integration cell

5: assembly as Kas
s

6: end for

7: Kr
c = T as′ ·Kas

s · T as, Eq. 13 and 14

7

ds(s1) = Nc(i)(s1)dc(ni) ds(s2) = Nc(i)(s2)dc(ni)

ds(s4) = Nc(i)(s4)dc(ni) ds(s3) = Nc(i)(s3)dc(ni)

V (x1) =

Ns(i)(x1)ds(si)

V (x2) =

Ns(i)(x2)ds(si)

V (x4) =

Ns(i)(x4)ds(si)

V (x3) =

Ns(i)(x3)ds(si)

Figure 2: Transformation matrix: mapping procedure between integration cell and cut cell

2.2. Transformation tensor

A detailed construction procedure of T is demonstrated in Fig. 2. A scalar

value V at Gauss points inside an integration cell, the solid-circles in Fig. 2,

are approximated from the dummy nodes, si. Simultaneously, the values on

dummy nodes are approximated from the physical nodes, ni. As a result, the

scalar value on Gauss point xk, V (xk), can be approximated from the physical

nodes as shown in Eq. (6)..

V (xk) = Ns(j)(xk)Nc(i)(sj)dc(ni)

= Ñi(xk)dc(ni) (6)

8

where Ñ(x) is a composed trial function vector. To put the aforementioned

mapping procedure into a tensor form, a T can be defined in Eq. (7). The

column j of T refers to the weights from a physical node nj to the dummy

nodes sk of a cut cell. Therefore, Ñ can be re-casted as the form in Eq. (8).

Tkj = Nc(j)(sk) (7)

Ñij = Ns(k)(xi)Tkj (8)

This transformation tensor is subsequently used to map the elemental matrices

between the bases of integration cell and cut cell, as shown in Eq. (9) and (10).

Kr
s(ij) = TkiKs(kl)Tlj (9)

F rs(i) = TkiFs(k) (10)

where Kr
s(ij) and F rs(i) are the reconstructed elemental matrices of an integration

cell in component form.

Subsequently, the reconstructed elemental matrices of a cut cell is simply

formed by a summation operation, as shown in Eq. (11) and 12. The en param-

eter is the total number of integration cells in a cut cell.

Kr
c(ij) =

en∑
n=1

Kr
s(ij)(n) =

en∑
n=1

Tki(n)Ks(kl)(n)Tlj(n) (11)

F rc(i) =

en∑
n=1

F rs(i)(n) =

en∑
n=1

Tki(n)Fs(k)(n) (12)

The above demonstrates the computational procedure in Algorithm 1. As men-

tioned in Sect. 2.1, the assembly procedure can be performed before transfor-

mation operation in Algorithm 2. This assembly procedure the standard matrix

assembly procedure in FEM. The transformation operation in Algorithm 2 is

shown in Eq. (13) and 14.

Kr
c(ij) = T aski Kas

s(kl)T
as
lj (13)

F rc(i) = T aski F ass(k) (14)

where T as is a rectangular transformation tensor which has number of rows as

Kas
s and number of columns as Kr

c . The definition of T as is identical with T

in Eq. 7. In the next section, the implementation of PGQ is briefly discussed.

9

2.3. Implementation of PGQ

The proposed PGQ can be implemented via adaptive refinement in Fig. 3a,

or tessellation in Fig. 3b. In quadtree adaptive refinement method, the mesh

is locally refined along the embedded interface. It is able to capture embedded

interface with strong geometric nonlinearity. However, its computational cost is

relative high and the integration cells cannot accurately align with the embed-

ded interface. On the other hand, tessellation method is more computational

efficient. The tessellation method is well-established and considered as one of

the standard numerical integration techniques in embedded interface problem,

in which the integration cell is discretized such that its edges exactly align with

the embedded interface.

In quadtree adaptive refinement method, it is recommended to take Algo-

rithm 1, since it results into a huge number of integration cell. On the other

hand, both Algorithm 1 and 2 can be efficiently implemented in tessellation

method. In the next section, important characteristics of proposed PGQ will

be discussed in detail.

2.4. Characteristics of PGQ

In this section, important characteristics of proposed PGQ are discussed.

They are (1) partition of unity property, (2) recovery of Gauss quadrature (GQ),

(3) projection in quadratic form and (4) reduced-order modeling.

The partition of unity is one of the fundamental properties in FEM approxi-

mation. It can be simply proven that the composed trial function Ñ in Sect. 2.2

do satisfy the partition of unity property, as shown in Eq. (15).

4∑
i=1

Ñi(α) =

4∑
i=1

Nj(α)Ni(βj) =

4∑
i=1

Ni(α) = 1 (15)

The second characteristics is the exact recovery of Gauss quadrature by

reconstructed elemental matrices. The following mathematical derivation in

Eq. (16) shows that the reconstructed elemental matrices, e.g., Kr
c , exactly re-

covers the the elemental matrices computed from the standard Gauss quadrature

10

(a)

fluid domain

(b)

Figure 3: Implementation of PGQ: (a) quadtree refinement; (b) tessellation

11

numerical integration of the cut cell, e.g., Kc.

Kr
c =

en∑
n=1

T ′(n) ·Ks(n) · T (n)

=

en∑
n=1

T ′(n) ·
∫
Ω

[B′s(n) ·D ·Bs(n)]dΩ · T (n)

=

en∑
n=1

∫
Ω

[Ñ ′(n) ·L′ ·D ·L · Ñ(n)]dΩ

=

en∑
n=1

gp∑
g=1

[B̃′(n, g) ·D · B̃(n, g)|J(n, g)|W (g)]

=

en·gp∑
k=1

[B̃′(k) ·D · B̃(k)|J(k)|W (k)]

=

∫
Ω

B̃′ ·D · B̃dΩ

= Kc (16)

where B̃(k) = L · Ñ(k), J(k) and W (k) are composed strain matrix, Jacobian

matrix and the Gauss integration weights. The value of en · gp are the total

number of the Gauss integration points within a cut cell, in which en and gp

are respectively the total number of integration cell and the number of Gauss

points within each integration cell. Furthermore, the exact recovery of Gauss

quadrature is qualitatively shown by a lid-driven cavity flow problem in Sect. 5.

It highlights the robustness of the proposed PGQ. as it works together with

Gauss quadrature.

In addition, it is noticed that the composed strain matrix B̃ is derived based

on iso-parametric formulation over continuous function space in integration cell;

whereas its basis vector set is chosen as those of its cut cell. It guarantees an

accurate approximation of the gradients of variable within the integration cell

from the physical nodes of cut cell. Therefore, the stresses along the embed-

ded interface can be approximated as those within a standard element of FEM

formulation. Similar to B̃, the Jacobian matrix J is computed based on the

iso-parametric mapping of integration cell too. If there was an approximation

error induced by embedded interface in an infinitesimal integration cell, the in-

12

fluence of this error can be minimized owing to its small Jacobian value |J |.

This is particular true in quadtree adaptive refinement method by discretizing

sufficient small integration cells along the embedded interface.

The third characteristic of PGQ is about its quadratic form. It is known that

a matrix, e.g., Ks in Eq. (17), can be mapped back to its own basis function

space using its unit basis vectors, e.g., e1 = [1, 0, 0]′ in Cartesian coordinate

system of R3.

Ks(i,j) = e′i ·Ks · ej (17)

Similarly, it can be projected to other basis function spaces, provided an appro-

priate transformation tensor is defined. In PGQ, T is constructed based on its

trial functions, linearly independent vector set in Eq. (7), such that the nodal

values and their residuals are re-projected in the basis function space of the cut

cell.

In variational principle, to find a set of discrete solutions in FEM formulation,

which minimizes the residual of equation system in an integral sense over a

computational domain subjected to boundary conditions, can be treated as a

quadratic optimization problem. Because the FEM formulation results into a

symmetric matrix system 1 and a symmetric matrix can always be transformed

into a quadratic form, the proposed PGQ is mathematically-robust and well-

suited for FEM formulation. It is consistent with the origin derivation of FEM

theorem.

As shown in Algorithm 2, the proposed PGQ can be deemed as a ROM

technique. Recollecting Fig. 3b, a constant-strain triangular (CST) cut cell is

discretized into three CST integration cells, and two additional DoFs, dummy

nodes, are introduced. Therefore, the numerical integration of a cut cell with

embedded discontinuity, 3 DoFs, is projected to a higher-dimension space, 5

DoFs, where the nonlinear problem maybe linearly separable. After the numer-

1In Navier-Stokes equation, the resultant stiffness matrix K can be subdivided into sym-

metric matrix blocks

13

ical integrations are performed in a higher-dimension space, the resultant matrix

system is projected back to a lower-dimension space via an appropriate transfor-

mation tensor T in quadratic form. When the matrix system is projected back

to a lower-dimension space, the accuracy of results is subjected to a sufficient

number of DoFs. For the case in Fig. 3b, because there are only 3 DoFs in CST

cut cell, the embedded interface cannot be approximated accurately and result

into a local smoothing of the embedded discontinuity in a cut cell.

In this section, the introduction of our proposed PGQ technique is com-

pleted. In the next section, we are going to present the governing equations

which we are solving in our unfitted FSI solver together with implemented time

integration and FSI coupling schemes.

3. Governing equations and boundary conditions

3.1. Incompressible Navier-Stokes equations

In our developed FSI solver, we are solving for a moving rigid body sub-

merged in an incompressible Newtonian fluid. Therefore, the incompressible

Navier-Stokes equations, Eq. (18) to (22), are implemented.

ρf
(∂uf
∂t

+ uf · ∇uf
)
−∇ · σ{uf , p} = ρfgf ∀x ∈ Ωf (t) (18)

∇ · uf = 0 ∀x ∈ Ωf (t) (19)

uf = ũf ∀x ∈ ΓfD(t) (20)

σ{uf , p} · nf = h̃f ∀x ∈ ΓfH(t) (21)

uf = uf0 ∀x ∈ Ωf (0) (22)

where ρf , uf , uf0 , gf , ũf , h̃f and nf are respectively the fluid density, fluid ve-

locity vector, initial fluid velocity vector, fluid unit body force vector, prescribed

fluid velocity, prescribed fluid traction and outward normal vector of fluid do-

main. The supperscript f and s refer to fluid and solid respectively. The spatial

domain, Dirichlet and Neumann boundaries are respectively denoted as Ω, ΓD

and ΓH , where ΓD and ΓH are complementary subsets of Γ, Γ = ΓD ∪ΓH and

14

ΓD ∩ ΓH = Ø. The Dirichlet and Neumann boundary conditions respectively

are imposed along ΓD and ΓH as shown below.

uf = ũf ∀x ∈ ΓfD(t) (23)

hf = h̃f ∀x ∈ ΓfH(t) (24)

where h = σ ·n refers to the surface stresses. σ is the Cauchy stress tensor and

defined as

σ{uf , p} = −pI + 2µD(uf) (25)

D(uf) =
1

2

[
∇uf + (∇uf)′

]
(26)

The stress tensor is written as the summation of its isotropic and deviatoric

tensor (D(uf)) parts. Here, p, µ and I refer to the fluid pressure, dynamic

viscosity and identity matrix respectively.

3.2. Rigid-body dynamics

The equations governing dynamics of a rigid body is simply implemented as

Eq. (27).

msas + cs · us + ks · ds = hs ∀x ∈ Ωs(t) (27)

as =
∂2ds

∂t2
; us =

∂ds

∂t

cs = 2ξ
√
ksms; ks = 4π2f2

nm
s

Ur = U/(fnyD); ms = m∗(0.25πD2Lρf)

where ξ, m∗, fn = [fnx, fny]′, D and L are the damping ratio, mass ratio,

structural frequency vector, diameter of cylinder and spanwise length of cylinder

respectively. cs and ks refer to damping and stiffness coefficients respectively.

The reduced velocity of the cylinder, Ur, is based on the structural frequency

in the transverse direction, fny. In the present formulation, it is assumed that

the structural frequencies in transverse and streamwise direction are identical,

fnx/fny = 1.0. hs = [hsx, h
s
y]′ represents the external force exerted on the

cylinder surface. In FSI problems, these external forces are hydrodynamic forces

exerted by fluid around the surface of cylinder.

15

3.3. Interface constraints and Fluid-structure interaction

To couple fluid and structure, velocity and traction constraints should be

satisfied. The velocity constraint requires the fluid and structure interfaces

align and move at the same velocity, as shown in Eq. (28). On the other hand,

the equilibirum of stresses, Eq. (29), has to be enforced along the fluid-structure

interface to satisfy the traction constraint, where nf = −ns and the superscript

”fs” refers to fluid-structure interface.

uf = us ∀x ∈ Γfs(t) (28)

σf · nf + σs · ns = 0 ∀x ∈ Γfs(t) (29)

=⇒ hf + hs = 0 ∀x ∈ Γfs(t)

The fluid and structural governing equations can be coupled in either mono-

lithic or staggered-partitioned scheme. In monolithic/fully-implicit scheme [32],

the overall system equation consists of the variables of fluid and structure.

They are solved indiscriminantly and simultaneously. The monolithic formu-

lation is robust, stable at relative large time steps, and its solution converges

rapidly. Albeit monolithic schemes have the energy conservation property,

their computational cost is high and typically require a significant recast in

both existing fluid and structural solvers. On the other hand, the staggered-

partioned scheme can be conveniently implemented to existing fluid and struc-

tural solvers. The staggered-partitioned schemes can be further classified into

strongly-coupled [33, 34, 35] or weakly-coupled schemes [36, 37]. In this work,

a staggered-partitioned, weakly-coupled and second-order accurate scheme [36]

is implemented. Please refer to [36] for detailed algorithm.

3.4. Integration in time

To deal with moving embedded boundaries in FSI problems, the second-order

accurate and unconditional stable generalized-α method [38] and [39] are imple-

mented in time integration for structural equation and Navier-Stokes equations

respectively. The detailed formulation for structural equation can be summa-

rized as,

16

dsn+1 = dsn + ∆tusn + ∆t2
((1

2
− βs

)
asn + βsasn+1

)
(30)

usn+1 = usn + ∆t
(
(1− γs)asn + γsasn+1

)
(31)

dsn+αs
f

= (1− αsf)dsn + αsfd
s
n+1 (32)

usn+αs
f

= (1− αsf)usn + αsfu
s
n+1 (33)

asn+αs
m

= (1− αsm)asn + αsmasn+1 (34)

Fsn+αs
f

= (1− αsf)Fsn + αsfF
s
n+1 (35)

where dsn, usn and asn refer to the displacement, velocity and acceleration of

cylinder at time t = n. where αsm, αsf , γs and βs are defined by [38] as

αsm :=
2− ρs∞
ρs∞ + 1

; αsf :=
1

ρs∞ + 1

γs := 0.5 + αsm − αsf ; βs := 0.25(1 + αsm − αsf)2 (36)

Similarly, the generalized-α method for Navier-Stokes equations is listed

below,

ufn+1 = ufn + ∆t
[
(1− γf)

∂ufn
∂t

+ γf
∂ufn+1

∂t

]
(37)

uf
n+αf

f

= (1− αff)ufn + αffu
f
n+1 (38)

∂uf
n+αf

m

∂t
= (1− αfm)

∂ufn
∂t

+ αfm
∂ufn+1

∂t
(39)

αfm := 0.5
3− ρf∞
1 + ρf∞

; αff :=
1

1 + ρf∞
; γf := 0.5 + αfm − α

f
f (40)

Here ρs∞ ∈ [0,1] and ρf∞ ∈ [0,1] respectively are the spectral radius, which control

the amount of numerical high-frequency damping in the temporal schemes. In

this work. ρs∞ = ρf∞ = 0.2 are chosen for all numerical simulations.

4. Variational form of unfitted stabilized finite element formulation

The complete stabilized FE formulation of Navier-Stokes equations with an

embedded interface is summarized in Eq. 41, where AG([vf , q], [ufh, ph]) and

17

LG([vf , q], [ufh, ph]) are the bilinear and linear forms derived from classical

Galerkin method. AS([vf , q], [ufh, ph]) attributes to Pretrov-Galerkin formu-

lation, which enables equal approximation function spaces between velocity and

pressure. AN ([vf , q], [ufh, ph]) is the terms of Nitsche’s method for weakly im-

posing Dirichlet boundary condition along an embedded interface. In addition,

AGP ([vf , q], [ufh, ph]) is the ghost penalty terms to optimize the jump of quan-

tities across edges in the cut cell.

AG([vf , q], [ufh, ph]) +AS([vf , q], [ufh, ph]) +AN ([vf , q], [ufh, ph])

+AGP ([vf , q], [ufh, ph]) = LG([vf , q], [ufh, ph]) (41)

The detailed formulations of the terms in Eq. 41 are presented in the following

sections.

4.1. Stabilized variational form of Navier-Stokes equations

The variational form of incompressible Navier-Stokes, Eq. (18) and (19),

based on classical Galerkin formulation is in Eq. (42).

AG([vf , q], [ufh, ph]) = LG([vf , q], [ufh, ph])

=⇒
∫

Ωf (t)

vf
[
ρf
(∂ufh
∂t

+ (ufh · ∇)ufh

)
−∇ · σ{ufh, ph} − ρ

fgf
]
dΩ

+

∫
Ωf (t)

q[∇ · ufh]dΩ

=

∫
Γf
H(t)

vf · h̃fhdΓ ∀[vf , q] ∈ V̂h × Q̂h ⊂ V̂ × Q̂ (42)

where [vf , q]′ is the vector of test functions for velocity and pressure of fluid.

The vector-valued trial and test function spaces V and V̂ of velocity are defined

as

V = {vf ∈H1(Ωf (t)) : vf = ṽf ∀x ∈ ΓfD(t)}

V̂ = {vf ∈H1(Ωf (t)) : vf = 0 ∀x ∈ ΓfD(t)} (43)

18

On the other hand, the scalar-valued trial and test function spaces Q and Q̂ of

pressure are defined as

Q = {q ∈ H1(Ωf (t)) : q = p̃ ∀x ∈ ΓfD(t)}

Q̂ = {q ∈ H1(Ωf (t)) : q = 0 ∀x ∈ ΓfD(t)} (44)

where H1 refers to the Sobolev space, in which [(vf)2, q2] and [|∇vf |2, |∇q|2]

have finite integrals within Ωf (t) and allows discontinuous derivatives. Their

corresponding discrete function spaces are denoted with subscript ”h”, e.g.,

Q̂h. In this work, a residual-based stabilization technique, Petrov-Galerkin

method [40, 41, 42, 43], in Eq. (45) is implemented to ensure the residual of

equation system is minimized in a (weak) integral sense over each element. Here

G and CI are respectively element cotravariant metric tensor and a positive

constant independent upon mesh size [44].

AS([vf , q], [ufh, ph]) =

nel∑
e=1

∫
Ωf (t)

τm

[
ρf (ufh · ∇)vf − µ∇2vf +∇q

]
·
[
ρf (

∂ufh
∂t

+(ufh · ∇)ufh − g
f)− µ∇2ufh +∇ph

]
dΩ +

nel∑
e=1

∫
Ωf (t)

τcρ
f (∇ · vf)(∇ · ufh)dΩ (45)

∀[vf , q] ∈ V̂h × Q̂h ⊂ V̂ × Q̂

τm =
[(2ρf

∆t

)2
+ (ρf)2ufh ·Gu

f
h + CI(µ)2G : G

]−0.5

τc = (tr(G)τm)−1; G =
∂ξ′

∂x

∂ξ

∂x

4.2. Nitsche’s method

To weakly impose Dirichlet boundary condition along the embedded inter-

face, Nitsche’s method is implemented. The terms of Nitsche’s method are

19

shown in Eq. (46).

AN ([vf , q], [ufh, ph]) = γ1

∫
Γfs(t)

vf · (ufh − ũ
f
h)dΓ

−
∫

Γfs(t)

vf · (σ{ufh, ph} · n
f)dΓ− γ2

∫
Γfs(t)

(σ{vf , q} · nf) · (ufh − ũ
f
h)dΓ (46)

∀[vf , q] ∈ V̂h × Q̂h ⊂ V̂ × Q̂

Either symmetric-variant γ2 = 1 or unsymmetric-variant γ2 = −1 can be im-

plemented. The penalty term is chosen within an appropriate range γ1 ∈ [µ 102

L ,

µ 103

L] [45] for symmetric-variant, where L is the characteristic element length, or

γ1 = 0.0 for unsymmetric-variant [46]. As the solutions proceed to convergence

ufh ≈ ũ
f
h, the first and third penalty terms vanish.

4.3. Ghost Penalty Method

The cut cell is separated by an embedded interface, e.g., the blue circle in

Fig. 4, into a fluid domain and a fictitious domain respectively. If the physical

part is very small, some basis functions have little support inside the physical

domain. It leads to large system matrix condition numbers. The ghost penalty

method [47] is implemented along the edges of cut cells, the red edges in Fig. 4,

to alleviate the jumps of quantities in cut cells. A comprehensive study of the

performance of ghost penalty terms was reported by Dettmer et al, 2016 [48].

The specific terms are listed in Eq. (47).

AGP ([vf , q], [ufh, ph]) = βugpµG1(vf ,ufh) + βpgpµ
−1g3(q, ph) (47)

∀[vf , q] ∈ V̂h × Q̂h ⊂ V̂ × Q̂

gφ(q, ph) =

e∑
k=1

l
2(α−1)+φ
k

∫
Γf (t)

[[
∂αq

∂nf(α)
]][[

∂αph
∂nf(α)

]]dlk

Gφ(vf ,ufh) =

e∑
k=1

d∑
i=1

l
2(α−1)+φ
k

∫
Γf (t)

[[
∂αvf(i)

∂nf(α)
]][[
∂αufh(i)

∂nf(α)
]]dlk

where the penalty parameters is chosen as βugp = βpgp = 0.02 [48] for simulations

in this work. The superscripts ”u” and ”p” respectively refer to velocity and

20

fluid domain

fictitious domain

cut cell

edges with ghost penalty

Figure 4: Schematic diagrams of embedded interface with ghost penalty terms

pressure. The subscript ”gp” shows these terms attribute to ghost penalty

terms. e and d respectively are number edges of cut cell imposed with ghost

penalty terms and dimension of problem. α, φ and l are order of derivative, the

notation parameter and element characteristic length respectively. [[·]] denotes

the jump of quantity across the element edge.

Therefore, the overall numerical formulation of Navier-Stokes equations with

21

embedded interface is summarized as,∫
Ωf (t)

vf
[
ρf
(∂ufh
∂t

+ (ufh · ∇)ufh

)
−∇ · σ{ufh, ph} − ρ

fgf
]
dΩ

+

∫
Ωf (t)

q[∇ · ufh]dΩ +

nel∑
e=1

∫
Ωf (t)

τm

[
ρf (ufh · ∇)vf − µ∇2vf +∇q

]

·
[
ρf (

∂ufh
∂t

+ (ufh · ∇)ufh − g
f)− µ∇2ufh +∇ph

]
dΩ

+

nel∑
e=1

∫
Ωf (t)

τcρ
f (∇ · vf)(∇ · ufh)dΩ + γ1

∫
Γfs(t)

vf · (ufh − ũ
f
h)dΓ

−
∫

Γfs(t)

vf · (σ{ufh, ph} · n
f)dΓ− γ2

∫
Γfs(t)

(σ{vf , q} · nf) · (ufh − ũ
f
h)dΓ

+

e∑
k=1

l
2(α−1)+φ
k

∫
Γf (t)

[[
∂αq

∂nf(α)
]][[

∂αph
∂nf(α)

]]dlk

+

e∑
k=1

d∑
i=1

l
2(α−1)+φ
k

∫
Γf (t)

[[
∂αvf(i)

∂nf(α)
]][[
∂αufh(i)

∂nf(α)
]]dlk

=

∫
Γf
H(t)

vf · h̃fhdΓ ∀[vf , q] ∈ V̂h × Q̂h ⊂ V̂ × Q̂ (48)

5. Convergence analysis

The convergence analyses of proposed PGQ are conducted via simulations

of a classical lid-driven cavity flow and a rotating disk. The embedded interface

is represented by a level-set function. In the lid-driven cavity flow, no Dirichlet

boundary condition is weakly-imposed along the embedded interface, as shown

in Fig. 5a, where the subscripts ”e”, ”w”, ”n” and ”s” respectively refer to

the east, west, north and south wall boundaries. Its objective is to get rid of

influence by Nitsche’s method and barely investigate the convergence rate of

PGQ. The numerical results from the lid-driven cavity flow agree well with lit-

erature [49], as shown in Fig. 6. In Fig. 7, the resultant contours of velocity

and pressure are smooth across the elements implemented with PGQ and Gauss

quadrature numerical integrations. No odd values are observed in contours of

22

No boundary condition is

imposed on embedded interface

ũf
ews

= 0.0

ũf
n = (1.0, 0.0)

y

x

(a)

|ũf | = a(0.5D)

ũf
ewns

= 0.0

y

x

(b)

Figure 5: Schematic diagram of convergence analysis: (a) Lid-driven cavity flow; (b)

Rotating disk

(a) (b)

Figure 6: Velocity profile in classical lid-driven cavity flow at Re = 100: (a) u at x = 0.5; (b)

v at y = 0.5

23

(a) (b)

(c) (d)

Figure 7: Contour plots for lid-driven cavity flow at Re = 100: (a) x-component velocity

field; (b) y-component velocity field; (c) pressure field; (d) 3D contour of u-component

velocity field

24

variable across the embedded interface. It means that the proposed PGQ tech-

nique is well suited for working together with Gauss quadrature. On the other

hand, a prescribed velocity is weakly-imposed in the rotating disk case Fig. 5b.

Similar to the lid-driven cavity flow, no odd value is observed in the contours

of variable across the embedded interface in Fig. 8. In addition, prominent dis-

continuities in the value of pressure and the gradients of velocity are observed

along the embedded interface, as shown in Fig. 8c and 8d respectively.

The convergence analyses of the lid-driven cavity flow and rotating disk are

conducted for different element types, e.g., Q1Q1, Q2Q1 and Q2Q2. The results

are plotted in Fig. 9, where L2 and he denote the Euclidean 2 norm and the

element length respectively. L2 norm is computed based on Eq. (49), in which

E and ϕ are the relative error vector and measured quantity respectively, e.g,

x-component velocity. The superscript ”n” and subscript ”ref” respectively

denote the number of background nodes along a side and the numerical results

with a reference grid. The order of convergence is computed based on E in

Eq. (50).

||En
ϕ||L2

=
√

(En
ϕ)′ ·En

ϕ ; Enϕ(i) = ϕ(i)− ϕref (x(i)) (49)

order =
log(||En

ϕ||L2
/||E2n

ϕ ||L2
)

log(hne /h
2n
e)

(50)

The convergence rates are annotated in the plots. Those in parenthesis are as-

sociated with Q2Q2 element, the green line. In all simulations, the convergence

rates for higher order element is approximately one-order higher than linear

elements. In lid-driven cavity flow in Fig. 9a, the convergence rates are ap-

proximately 2 and 2.8 for bi-linear and bi-quadratic elements respectively. By

weakly-imposing a prescribed velocity along the embedded interface, the conver-

gence rates for bi-linear and bi-quadratic elements are approximately 1.45 and

2.0 respectively. It is approximately half-order lower than the case of lid-driven

cavity flow.

25

(a) (b)

(c) (d)

Figure 8: Contour plots for rotating disk at Re = 100 and a = 1.0: (a) x-component velocity

field; (b) y-component velocity field; (c) pressure field; (d) 3D contour of u-component

velocity field

26

(a) (b)

Figure 9: Order of accuracy with respect to Eulerian grid refinement: (a) Lid-driven cavity

flow at Re = 100; (b) Rotating disk at Re = 20 and a = 1.0

6. Numerical examples and Validations

In this section, a number of representative numerical examples are presented

to assess the accuracy and robustness of the proposed PGQ technique. The

performed simulations are (a) a stationary cylinder in cross-flow, (b) a rotating

cylinder in cross-flow, (c) a freely-vibrating cylinder in cross-flow, (d) a free-

falling particle and (e) six free-falling particles.

6.1. Stationary cylinder in cross-flow

The flow around a stationary cylinder in laminar flow, Re ≤ 200, is a classical

benchmark example. Its schematic diagram is shown in Fig. 10, where u∞ = 1.0,

D = 1.0, Lu = 50D, Ld = 50D and H = 100D denote the free stream velocity,

diameter of cylinder, upstream length, downstream length and width of fluid

domain. Traction free boundary condition is imposed on domain boundaries Γo,

Γt and Γb. The fluid density ρf = 1.0 and dynamic viscosity µ = 0.01 is chosen

for simulation.

The numerical results are compared with literature and summarized in Tab. 1

and 2. It shows the numerical results obtained from PGQ agree well with

27

x

y

u∞

D

Lu Ld

HΓo

Γt

Γb

Figure 10: Schematic diagram of a stationary cylinder in cross-flow

L/D Cd

Re = 20

Tritton [50] — 2.22

Coutanceau and Bouard [51] 0.73 —

Calhoun [52] 0.91 2.19

Russell and Wang [53] 0.94 2.13

Li et al. [54] 0.931 2.062

Present 0.94 2.171

Re = 40

Tritton [50] — 1.48

Coutanceau and Bouard [51] 1.89 —

Calhoun [52] 2.18 1.62

Russell and Wang [53] 2.29 1.60

Li et al. [54] 2.24 1.569

Present 2.27 1.608

Table 1: Flow around a fixed circular cylinder: L/D and Cd for Re = 20 and 40

28

Cmeand Crmsl St

Re = 100

Braza et al. [55] 1.364 ±0.25 —

Liu et al. [56] 1.350 ±0.339 0.164

Calhoun [52] 1.330 ±0.298 0.175

Russell and Wang [53] 1.380 ±0.300 0.169

Li et al. [54] 1.301 ±0.324 0.167

Kadapa et al. [57] 1.390 ±0.339 0.166

Present 1.365 ±0.301 0.164

Re = 200

Braza et al. [55] 1.40 ±0.75 —

Liu et al. [56] 1.310 ±0.69 0.192

Calhoun [52] 1.172 ±0.594 0.202

Russell and Wang [53] 1.390 ±0.50 0.195

Li et al. [54] 1.307 ±0.419 0.192

Kadapa et al. [57] 1.42 ±0.594 0.194

Present 1.372 ±0.648 0.194

Table 2: Flow around a fixed circular cylinder: Cmean
d , Crms

l and St for Re = 100 and 200

(a) (b)

Figure 11: ωz contour and streamline plot of a fixed circular cylinder: (a) Re = 20; (b)

Re = 40

29

(a) (b)

Figure 12: ωz contour and streamline plot of a fixed circular cylinder: (a) Re = 100; (b)

Re = 200

literature. The corresponding contour of z-component vorticity ωz are plotted

in Fig. 11 and 12.

6.2. Rotating cylinder in cross-flow

To simulate a rotating cylinder, a prescribed velocity ũ is imposed along

the embedded interface. Its schematic diagram is shown in Fig. 13a. ũ is

computed as [a(0.5D)]n, where a = 1.0, D = 1.0 and n respectively are angular

velocity, diameter of cylinder and basis vector. The corresponding contour of

ωz is plotted in Fig. 13b. The response of lift coefficient agrees well with results

from literature [58, 59], as shown in Fig. 13c.

The impulsive initial data poses a challenge of convergence in the initial stage

of simulation. To obtain a good convergence rate, the field data of a stationary

cylinder is chosen as the initial condition. Since a second-order Generalized-α

temporal integration scheme is implemented, accurate numerical results can be

obtained at a relative larger time step, e.g., dt = 0.02

30

x

y

u∞

D

Lu Ld

HΓo

Γt

Γb

a(0.5D)

(a) (b)

(c)

Figure 13: Rotating cylinder in cross-flow at Re = 200 and a = 1.0: (a) Schematic diagram;

(b) ωz contour and streamline plot; (c) Time trace of lift coefficient

31

x

y

u∞

D

Lu Ld

HΓo

Γt

Γb

(a)

x

y

u∞

D

Lu Ld

HΓo

Γt

Γb

(b)

Figure 14: Schematic diagrams of vibrating cylinder in cross-flow: (a) a transverse-vibrating

(1-DoFs) cylinder; (d) a freely-vibrating (2-DoFs) cylinder

6.3. Vibrating cylinder in cross-flow

In this section, two types of vibrating cylinder is chosen as benchmark exam-

ples, e.g., transversely-vibrating (1-DoFs) cylinder Fig. 14a and freely-vibrating

(2-DoFs) cylinder in x and y directions Fig. 14b. For transversely-vibrating

cylinder cases, Re = 100, m∗ = 10.0, ζ = 0.01 and Ur ∈ [3,8] are chosen to

set up the simulations. The obtained numerical results in Fig. 15a show a good

agreement with literature [60, 61]. In freely-vibrating cylinder case, the cylinder

can vibrate in both x and y directions. A representative case is chosen for vali-

dation at Re = 150, m∗ = 2.55, ζ = 0.0 and Ur = 5.0. Its trajectory results in

Fig. 15b match well with literature [61]. The contours of ωz for representative

cases are plotted in Fig. 15c and 15d respectively.

6.4. Free-falling: a single particle

Sedimentation is a classical benchmark example for fictitious domain meth-

ods. In this example, a circular particle is free-falling under gravitational force

in an incompressible Newtonian fluid. The particle is accelerated at rest and

subsequently achieve a terminal velocity ust . The chosen parameters in the

simulation are m∗ = 1.25, ζ = 0.01, ρf = 1000, µ = 0.01 and D = 0.25.

32

(a) (b)

(c) (d)

Figure 15: Vibrating cylinder in cross-flow: (a,c) Re = 100, m∗ = 10.0, ζ = 0.01, Ur = 7.0

and vibrating in y direction; (b,d) Re = 150, m∗ = 2.55, ζ = 0.0, Ur = 5.0 and vibrating in x

and y directions

33

D

2

6

x

y

?
g = 9.81

ũf
ews

= 0.0

h̃f = 0.0

(a) (b)

(c) (d)

Figure 16: Free-falling particle at Re = 13.75, m∗ = 1.25 and ζ = 0.01: (a) schematic

diagram; (b) ωz contour plot at t = 0.4; (c) time trace of y-component velocity; (d) time

trace of y-component displacement

34

The schematic diagram is shown in Fig. 16a. The subscript ”e”, ”w” and ”s”

denotes the east, west and south wall boundary respectively. ”no-slip” boundary

condition is imposed on the east, west and south walls ũfews = 0.0. Traction

free boundary condition is imposed on the output as h̃f = 0.0. The particle

falls from the rest at [x, y] = [1, 4]. The contour of ωz is plotted in Fig. 16b.

The numerical results is compared with literature [62, 63] in Fig. 16c and 16d.

The obtained numerical results can match with literature well.

6.5. Free falling: 6 particles

In this benchmark example, six particles are freely falling under gravity from

the rest. This problem is significantly differ from the single particle example in

Sect. 6.4, because of the complex interaction between particles, walls and wakes.

The objective is to demonstrate the robustness of proposed PGQ technique to

handle much more challenging circumstances, e.g., rigid-body contact. Since we

did not find literature of similar numerical or experimental setups, this example

is meant to qualitatively demonstrate the capability of proposed PGQ technique.

The width and height of domain are x/D = [−3D, 3D], y/D = [1D,−7D] re-

spectively, where D = 1.0 is particle diameter. The top layer particles are rest at

x/D = 0 at t = 0. The boundary conditions are identical to the benchmark ex-

ample in Sect. 6.4. The fluid density, dynamic viscosity, mass ratio respectively

are ρf = 1.0, µ = 0.01 and m∗ = 1.1.

The implemented contact model [62] ensures there is no penetration among

particle and wall. Complex vortex wakes are generated as particle falling through

the channel in Fig. 17 and 18. Eventually, all particles rest at the bottom of the

channel and vortex wakes vanish.

7. Conclusion

A projection-based numerical integration technique, PGQ, was proposed for

the application of FSI problems. This scheme is formulated based on tessella-

tion technique. It operates on the matrix level, after the standard numerical

35

(a) t = 3 (b) t = 6

(c) t = 9 (d) t = 12

Figure 17: ωz contour of six free falling particles (I)

36

(a) t = 15 (b) t = 18

(c) t = 21 (d) t = 24

Figure 18: ωz contour of six free falling particles (II)

37

integration rule, e.g., Gauss-Legendre Quadrature, is applied in each integration

cell.

Its main advantages are (1) no change in FE formulation and Quadrature

rule for elements with/without embedded discontinuity, which simplifies imple-

mentation and improves its scalability to other physical problems, (2) varia-

tionally consistent with the derivation of FE formulation and well-suited for

FE formulation, (3) approximation of the discontinuity with reduced dimension

space. It possesses important characteristics: (1) partition of unity property,

(2) exact recovery of Gauss quadrature, (3) projection in quadratic form and

(4) reduced-order modeling.

PGQ is implemented in various benchmark examples to assess its robustness

and accuracy. It was shown the obtained numerical results via PGQ matched

well with literature of various FSI applications. Therefore, the propose PGQ is

excellent for numerical integration over cut cell with embedded discontinuities

in FE framework for application of FSI problems.

Acknowledgments

The first author would like to thank for the financial support from National

Research Foundation through Keppel-NUS Corporate Laboratory. The conclu-

sions put forward reflect the views of the authors alone, and not necessarily

those of the institutions.

References

[1] J. M. Melenk, I. Babuška, The partition of unity finite element method:

basic theory and applications, Computer methods in applied mechanics and

engineering 139 (1-4) (1996) 289–314.

[2] I. Babuška, J. M. Melenk, The partition of unity method, International

journal for numerical methods in engineering 40 (4) (1997) 727–758.

38

[3] N. Moës, J. Dolbow, T. Belytschko, A finite element method for crack

growth without remeshing, International journal for numerical methods in

engineering 46 (1) (1999) 131–150.

[4] C. A. Duarte, I. Babuška, J. T. Oden, Generalized finite element methods

for three-dimensional structural mechanics problems, Computers & Struc-

tures 77 (2) (2000) 215–232.

[5] T. Strouboulis, I. Babuška, K. Copps, The design and analysis of the gen-

eralized finite element method, Computer methods in applied mechanics

and engineering 181 (1-3) (2000) 43–69.

[6] T. Strouboulis, K. Copps, I. Babuška, The generalized finite element

method, Computer methods in applied mechanics and engineering 190 (32-

33) (2001) 4081–4193.

[7] N. Sukumar, D. L. Chopp, N. Moës, T. Belytschko, Modeling holes and

inclusions by level sets in the extended finite-element method, Computer

methods in applied mechanics and engineering 190 (46-47) (2001) 6183–

6200.

[8] T. Belytschko, T. Black, Elastic crack growth in finite elements with mini-

mal remeshing, International journal for numerical methods in engineering

45 (5) (1999) 601–620.

[9] I. Ramière, P. Angot, M. Belliard, A general fictitious domain method

with immersed jumps and multilevel nested structured meshes, Journal of

Computational Physics 225 (2) (2007) 1347–1387.

[10] R. Glowinski, Y. Kuznetsov, Distributed lagrange multipliers based on ficti-

tious domain method for second order elliptic problems, Computer Methods

in Applied Mechanics and Engineering 196 (8) (2007) 1498–1506.

[11] J. Parvizian, A. Düster, E. Rank, Finite cell method, Computational Me-

chanics 41 (1) (2007) 121–133.

39

[12] A. Düster, J. Parvizian, Z. Yang, E. Rank, The finite cell method for three-

dimensional problems of solid mechanics, Computer methods in applied

mechanics and engineering 197 (45-48) (2008) 3768–3782.

[13] F. Brezzi, On the existence, uniqueness and approximation of saddle-

point problems arising from lagrangian multipliers, Revue française

d’automatique, informatique, recherche opérationnelle. Analyse numérique

8 (R2) (1974) 129–151.

[14] F. Brezzi, K. J. Bathe, A discourse on the stability conditions for mixed

finite element formulations, Computer methods in applied mechanics and

engineering 82 (1-3) (1990) 27–57.

[15] J. Nitsche, Über ein variationsprinzip zur lösung von dirichlet-problemen

bei verwendung von teilräumen, die keinen randbedingungen unterworfen

sind, in: Abhandlungen aus dem mathematischen Seminar der Universität

Hamburg, Vol. 36, Springer, 1971, pp. 9–15.

[16] E. Burman, P. Hansbo, Fictitious domain finite element methods using cut

elements: Ii. a stabilized nitsche method, Applied Numerical Mathematics

62 (4) (2012) 328–341.

[17] A. Massing, M. G. Larson, A. Logg, M. E. Rognes, A stabilized nitsche

fictitious domain method for the stokes problem, Journal of Scientific Com-

puting 61 (3) (2014) 604–628.

[18] W. G. Dettmer, C. Kadapa, D. Perić, A stabilised immersed boundary

method on hierarchical b-spline grids, Computer Methods in Applied Me-

chanics and Engineering 311 (2016) 415–437.

[19] D. Schillinger, I. Harari, M. C. Hsu, D. Kamensky, S. K. Stoter, Y. Yu,

Y. Zhao, The non-symmetric nitsche method for the parameter-free im-

position of weak boundary and coupling conditions in immersed finite el-

ements, Computer Methods in Applied Mechanics and Engineering 309

(2016) 625–652.

40

[20] C. Kadapa, W. G. Dettmer, D. Perić, A stabilised immersed boundary

method on hierarchical b-spline grids for fluid–rigid body interaction with

solid–solid contact, Computer Methods in Applied Mechanics and Engi-

neering 318 (2017) 242–269.

[21] Z. Zou, W. Aquino, I. Harari, Nitsche’s method for helmholtz problems

with embedded interfaces, International journal for numerical methods in

engineering 110 (7) (2017) 618–636.

[22] G. R. Liu, Mesh free methods: moving beyond the finite element method,

CRC press, 2002.

[23] T. Belytschko, R. Gracie, G. Ventura, A review of extended/generalized

finite element methods for material modeling, Modelling and Simulation in

Materials Science and Engineering 17 (4) (2009) 043001.

[24] H. Samet, Applications of spatial data structures.

[25] M. D. Berg, O. Cheong, M. V. Kreveld, M. Overmars, Computational

geometry: algorithms and applications, Springer-Verlag TELOS, 2008.

[26] T. Rabczuk, P. M. A. Areias, T. Belytschko, A meshfree thin shell method

for non-linear dynamic fracture, International Journal for Numerical Meth-

ods in Engineering 72 (5) (2007) 524–548.

[27] G. Ventura, On the elimination of quadrature subcells for discontinuous

functions in the extended finite-element method, International Journal for

Numerical Methods in Engineering 66 (5) (2006) 761–795.

[28] B. Müller, F. Kummer, M. Oberlack, Highly accurate surface and volume

integration on implicit domains by means of moment-fitting, International

Journal for Numerical Methods in Engineering 96 (8) (2013) 512–528.

[29] S. Hubrich, M. Joulaian, A. Düster, Numerical integration in the finite

cell method based on moment-fitting, in: Proceedings of 3rd ECCOMAS

Young Investigators Conference, 2015, pp. 1–4.

41

[30] S. Natarajan, D. R. Mahapatra, S. P. Bordas, Integrating strong and weak

discontinuities without integration subcells and example applications in

an xfem/gfem framework, International Journal for Numerical Methods in

Engineering 83 (3) (2010) 269–294.

[31] J. Gregory, Quadratic form theory and differential equations, Vol. 152,

Elsevier, 1981.

[32] F. J. Blom, A monolithical fluid-structure interaction algorithm applied to

the piston problem, Computer methods in applied mechanics and engineer-

ing 167 (3-4) (1998) 369–391.

[33] W. Dettmer, D. Perić, A computational framework for fluid–rigid body in-

teraction: finite element formulation and applications, Computer Methods

in Applied Mechanics and Engineering 195 (13-16) (2006) 1633–1666.

[34] R. K. Jaiman, M. Z. Guan, T. P. Miyanawala, Partitioned iterative and dy-

namic subgrid-scale methods for freely vibrating square-section structures

at subcritical reynolds number, Computers & Fluids 133 (2016) 68–89.

[35] C. Kadapa, W. G. Dettmer, D. Perić, A fictitious domain/distributed la-

grange multiplier based fluid–structure interaction scheme with hierarchical

b-spline grids, Computer Methods in Applied Mechanics and Engineering

301 (2016) 1–27.

[36] W. G. Dettmer, D. Perić, A new staggered scheme for fluid–structure inter-

action, International Journal for Numerical Methods in Engineering 93 (1)

(2013) 1–22.

[37] A. Placzek, J. F. Sigrist, A. Hamdouni, Numerical simulation of an oscil-

lating cylinder in a cross-flow at low reynolds number: Forced and free

oscillations, Computers & Fluids 38 (1) (2009) 80–100.

[38] J. Chung, G. M. Hulbert, A time integration algorithm for structural dy-

namics with improved numerical dissipation: the generalized-α method,

Journal of applied mechanics 60 (2) (1993) 371–375.

42

[39] K. E. Jansen, C. H. Whiting, G. M. Hulbert, A generalized-α method

for integrating the filtered navier–stokes equations with a stabilized finite

element method, Computer methods in applied mechanics and engineering

190 (3) (2000) 305–319.

[40] A. N. Brooks, T. J. R. Hughes, Streamline upwind/petrov-galerkin for-

mulations for convection dominated flows with particular emphasis on the

incompressible navier-stokes equations, Computer methods in applied me-

chanics and engineering 32 (1-3) (1982) 199–259.

[41] F. Shakib, T. J. R. Hughes, Z. Johan, A new finite element formulation for

computational fluid dynamics: X. the compressible euler and navier-stokes

equations, Computer Methods in Applied Mechanics and Engineering 89 (1-

3) (1991) 141–219.

[42] T. E. Tezduyar, S. Mittal, S. E. Ray, R. Shih, Incompressible flow computa-

tions with stabilized bilinear and linear equal-order-interpolation velocity-

pressure elements, Computer Methods in Applied Mechanics and Engineer-

ing 95 (2) (1992) 221–242.

[43] L. P. Franca, S. L. Frey, Stabilized finite element methods: Ii. the incom-

pressible navier-stokes equations, Computer Methods in Applied Mechanics

and Engineering 99 (2) (1992) 209–233.

[44] I. Harari, T. J. Hughes, What are c and h?: Inequalities for the analysis and

design of finite element methods, Computer Methods in Applied Mechanics

and Engineering 97 (2) (1992) 157–192.

[45] J. Benk, Immersed boundary methods within a pde toolbox on distributed

memory systems, Ph.D. thesis, Universitätsbibliothek der TU München

(2012).

[46] E. Burman, A penalty-free nonsymmetric nitsche-type method for the weak

imposition of boundary conditions, SIAM Journal on Numerical Analysis

50 (4) (2012) 1959–1981.

43

[47] E. Burman, Ghost penalty, Comptes Rendus Mathematique 348 (21-22)

(2010) 1217–1220.

[48] W. G. Dettmer, C. Kadapa, D. Perić, A stabilised immersed boundary

method on hierarchical b-spline grids, Computer Methods in Applied Me-

chanics and Engineering 311 (2016) 415–437.

[49] U. Ghia, K. N. Ghia, C. T. Shin, High-re solutions for incompressible flow

using the navier-stokes equations and a multigrid method, Journal of com-

putational physics 48 (3) (1982) 387–411.

[50] D. J. Tritton, Experiments on the flow past a circular cylinder at low

reynolds numbers, Journal of Fluid Mechanics 6 (4) (1959) 547–567.

[51] M. Coutanceau, R. Bouard, Experimental determination of the main fea-

tures of the viscous flow in the wake of a circular cylinder in uniform transla-

tion. part 1. steady flow, Journal of Fluid Mechanics 79 (2) (1977) 231–256.

[52] D. Calhoun, A cartesian grid method for solving the two-dimensional

streamfunction-vorticity equations in irregular regions, Journal of Com-

putational physics 176 (2) (2002) 231–275.

[53] D. Russell, Z. J. Wang, A cartesian grid method for modeling multiple

moving objects in 2d incompressible viscous flow, Journal of Computational

Physics 191 (1) (2003) 177–205.

[54] Z. Li, R. K. Jaiman, B. C. Khoo, An immersed interface method for flow

past circular cylinder in the vicinity of a plane moving wall, International

Journal for Numerical Methods in Fluids 81 (10) (2016) 611–639.

[55] M. Braza, P. H. H. M. Chassaing, H. H. Minh, Numerical study and physical

analysis of the pressure and velocity fields in the near wake of a circular

cylinder, Journal of Fluid Mechanics 165 (1986) 79–130.

[56] C. Liu, X. Zheng, C. H. Sung, Preconditioned multigrid methods for un-

steady incompressible flows, Journal of Computational physics 139 (1)

(1998) 35–57.

44

[57] C. Kadapa, W. G. Dettmer, D. Perić, A fictitious domain/distributed la-

grange multiplier based fluid–structure interaction scheme with hierarchical

b-spline grids, Computer Methods in Applied Mechanics and Engineering

301 (2016) 1–27.

[58] Y. M. Chen, Y. R. Ou, A. J. Pearlstein, Development of the wake behind

a circular cylinder impulsively started into rotatory and rectilinear motion,

Journal of Fluid Mechanics 253 (1993) 449–484.

[59] S. Mittal, B. Kumar, Flow past a rotating cylinder, Journal of Fluid Me-

chanics 476 (2003) 303–334.

[60] B. Liu, R. K. Jaiman, Interaction dynamics of gap flow with vortex-induced

vibration in side-by-side cylinder arrangement, Physics of Fluids 28 (12)

(2016) 127103.

[61] Y. Bao, C. Huang, D. Zhou, J. Tu, Z. Han, Two-degree-of-freedom flow-

induced vibrations on isolated and tandem cylinders with varying natural

frequency ratios, Journal of Fluids and Structures 35 (2012) 50–75.

[62] D. Wan, S. Turek, Direct numerical simulation of particulate flow via multi-

grid fem techniques and the fictitious boundary method, International Jour-

nal for Numerical Methods in Fluids 51 (5) (2006) 531–566.

[63] Y. Wang, C. Shu, C. J. Teo, J. Wu, An immersed boundary-lattice boltz-

mann flux solver and its applications to fluid–structure interaction prob-

lems, Journal of Fluids and Structures 54 (2015) 440–465.

45

	1 Introduction
	2 Numerical integration (PGQ)
	2.1 Computational procedure
	2.2 Transformation tensor
	2.3 Implementation of PGQ
	2.4 Characteristics of PGQ

	3 Governing equations and boundary conditions
	3.1 Incompressible Navier-Stokes equations
	3.2 Rigid-body dynamics
	3.3 Interface constraints and Fluid-structure interaction
	3.4 Integration in time

	4 Variational form of unfitted stabilized finite element formulation
	4.1 Stabilized variational form of Navier-Stokes equations
	4.2 Nitsche's method
	4.3 Ghost Penalty Method

	5 Convergence analysis
	6 Numerical examples and Validations
	6.1 Stationary cylinder in cross-flow
	6.2 Rotating cylinder in cross-flow
	6.3 Vibrating cylinder in cross-flow
	6.4 Free-falling: a single particle
	6.5 Free falling: 6 particles

	7 Conclusion

