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Abstract. We propose a high-order discontinuous Galerkin scheme for nonlinear acoustic
waves on polytopic meshes. To model sound propagation with and without losses, we use
Westervelt’s nonlinear wave equation with and without strong damping. Challenges in
the numerical analysis lie in handling the nonlinearity in the model, which involves the
derivatives in time of the acoustic velocity potential, and in preventing the equation from
degenerating. We rely in our approach on the Banach fixed-point theorem combined with
a stability and convergence analysis of a linear wave equation with a variable coefficient
in front of the second time derivative. By doing so, we derive an a priori error estimate
for Westervelt’s equation in a suitable energy norm for the polynomial degree p ≥ 2.
Numerical experiments carried out in two-dimensional settings illustrate the theoretical
convergence results. In addition, we demonstrate efficiency of the method in a three-
dimensional domain with varying medium parameters, where we use the discontinuous
Galerkin approach in a hybrid way.

1. Introduction

Nonlinear sound waves arise in many different applications, such as medical ultra-
sound [20, 35, 44], fatigue crack detection [46, 48], or musical acoustics of brass instru-
ments [10, 23, 38]. Although considerable work has been devoted to their analytical stud-
ies [29, 30, 33, 37] and their computational treatment [27, 34, 42, 51], rigorous numerical
analysis of nonlinear acoustic phenomena is still largely missing from the literature. The
goal of our work is to develop a high-order discontinuous Galerkin (DG) scheme for non-
linear sound waves that is rigorously justified through a stability and convergence analysis.

The DG method was first introduced in the seventies for the numerical approximation
of hyperbolic problems [41], and, independently, in the context of elliptic [19] and para-
bolic [4] equations. Since then DG methods have been successfully developed and applied
to a wide range of problems arising in computational sciences and engineering; cf. the books
[17, 26, 43] for a comprehensive overview. In relation to our setting, we point out in par-
ticular the works on the Euler and Navier–Stokes equations [8] and on a class of nonlinear
elliptic and second-order hyperbolic problems [40].

The finite-dimensional DG space consists of piecewise discontinuous polynomial functions
defined over a computational tessellation of the domain. As a consequence, the DG para-
digm can naturally support finite element spaces built upon meshes consisting of arbitrarily
shaped polygonal/polyhedral elements, thus generalizing the paradigm that stands at the
basis of classical Finite Elements on triangles, quadrilaterals, or their combinations in two
dimensions (2D), and tetrahedra, prisms, pyramids, and hexahedra or their combinations
in three dimensions (3D), and gaining flexibility in the process of mesh generation. DG
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methods on polygonal/polyhedral grids (PolyDG methods for short) have received a lot of
attention in the last years; we give here only an incomplete list [1, 6, 7, 12–14] and refer the
reader to the references therein for a comprehensive overview. In PolyDG methods, high
order accuracy can be achieved in any space dimension by introducing suitable modal basis
functions defined directly in the physical frame configuration. Finally, PolyDG methods
can be seen as extensions of the classical DG approach and they are naturally oriented
towards 3D scalable implementations.

We organize the rest of the paper as follows. In Section 2, we first discuss the continuous
initial-boundary value problem for a classical model of nonlinear acoustics–Westervelt’s
wave equation. Section 3 contains some theoretical preliminaries that are useful for the nu-
merical analysis. In Section 4, we propose and discuss a high-order discontinuous Galerkin
scheme for the Westervelt equation. Section 5 is devoted to the stability analysis of a
linearized semi-discrete problem and Section 6 to its a priori error analysis. In Section 7,
we use the Banach fixed-point theorem to prove an a priori estimate for the approximate
solution of the Westervelt equation. Section 8 describes in detail our numerical solver.
Finally, in Section 9, we carry out several numerical experiments, both in two and three
dimensions, to illustrate the theory from previous sections. In a three-dimensional setting,
we use the discontinuous Galerkin approach in a hybrid way to handle varying medium
parameters.

2. The continuous problem

We employ Westervelt’s wave equation [52] to model nonlinear sound propagation, given
in terms of the acoustic velocity potential ψ by

(2.1) (1− 2kψ̇)ψ̈ − c2∆ψ − b∆ψ̇ = 0.

The constant c denotes the speed of sound and b is the so-called sound diffusivity. The
constant k is given by k = βa/c

2, where βa is the coefficient of nonlinearity of the medium.
For the derivation of nonlinear acoustic models and their physical background, we refer
the interested reader to, e.g., [16, 21, 25]. After computing the acoustic velocity potential,

the acoustic pressure u can be obtained in a post-processing step via the relation u = %ψ̇,
where % denotes the mass density of the medium.

Westervelt’s equation is a nonlinear acoustic wave equation, which we couple with initial
conditions and homogeneous Dirichlet data, and investigate the following problem:

(1− 2kψ̇)ψ̈ − c2∆ψ − b∆ψ̇ = 0 in Ω× (0, T ],

ψ = 0 on ∂Ω× [0, T ],

(ψ, ψ̇) = (ψ0, ψ1) on Ω× {t = 0}
(2.2)

on a bounded domain Ω ⊂ Rd for d ∈ {2, 3} and for a given final time T > 0.
If b > 0, then Westervelt’s equation is strongly damped. With enough dissipation (i.e.,

b large enough), it exhibits a parabolic-like behavior. The initial-boundary value problem
(2.2) is then known to be globally well-posed for sufficiently small and smooth initial data
on regular domains, provided that appropriate compatibility conditions at the initial time
are satisfied. We refer to [33, Theorem 2.2], from which global well-posedness of (2.2)
follows as a special case. We mention also the local-in-time well-posedness result from [31,
Section 7] that relaxes the regularity assumptions on the initial data.

If we consider propagation in inviscid media, then b = 0 in (2.2). It is expected and
numerically observed [15, 32] that now smooth solutions of (2.2) exist only for a short
time before the shock develops due to nonlinear steepening. A rigorous proof of the short-
term well-posedness is available for propagation in unbounded domains as a particular case
of a general quasi-linear hyperbolic system of second order in [28, Theorem 1]. For the
inviscid Westervelt equation reformulated in terms of the acoustic pressure u, the local
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well-posedness on bounded domains follows from a special case of a general quasi-linear
wave equation studied in [18, Theorem 4.1].

In our numerical analysis, we intend to analyze both cases and assume that b is non-
negative. The analysis is valid as long as a sufficiently smooth solution of the original
problem exists, i.e., up to the (possible) shock formation. Because we employ an energy
method in the analysis, we have a delicate task of ensuring that all estimates we derive
remain valid also in the absence of the strong damping, i.e., when b = 0.

We point out here another important feature of Westervelt’s equation. The factor 1−2kψ̇
in front of the second time derivative can degenerate if the acoustic pressure is too high.
To avoid that this happens, we have to prove that ψ̇ stays below 1/(2k). In the continuous
analysis, this is commonly achieved by having sufficiently smooth data such that the so-
lution space for the pressure embeds continuously into L∞(Ω) almost everywhere in time
and by additionally assuming that the data are sufficiently small in an appropriate norm;
see [29–31, 37]. Our non-conforming discretization approach prevents this strategy. Since
our approximate solution is only piecewise smooth, we have to rely on an inverse inequality
to avoid degeneracy. On the other hand, we do not want a bound that degenerates as h
converges to 0, and so we will need to involve additionally the (local) interpolant in the
estimate and employ its approximation and stability properties.

3. Assumptions and preliminaries

Let Ω ⊂ Rd for d ∈ {2, 3} be a convex polygonal or polyhedral domain. We consider a
family of meshes Th made of disjoint open polygonal/polyhedral elements κ with diameter
hκ.

Following [1, 12, 14], we introduce the concept of mesh interface, defined as the inter-
section of the (d − 1)-dimensional facets of two neighboring elements. When d = 3, each
interface consists of a general polygon which we assume can be decomposed into a set of
co-planar triangles. We assume that a sub-triangulation of each interface is provided and
we denote the set of all these triangles by Fh. We then use the terminology face to refer
to one of the triangular elements in Fh. When d = 2, each interface simply consists of a
line segment, so that the concept of faces and interfaces coincides in this case. We denote
by Fh the set of all faces of Th, decomposed into the internal faces F ih and the boundary

faces Fbh so that Fh = F ih ∪ Fbh.
We assume a fixed uniform polynomial degree p ≥ 1 and introduce the following finite-

dimensional space:

Vh = {ψ ∈ L2(Ω) : ψ|κ ∈ Pp(κ) ∀κ ∈ Th},

where Pp(κ) is the space of polynomials if total degree p defined on κ, as well as the broken
Sobolev spaces

Hn(Th) = {ψ ∈ L2(Ω) : ψ|κ ∈ Hn(κ) ∀κ ∈ Th}

for n ≥ 1. It is natural to employ the broken gradient operator ∇h· on the space H1(Th);
see [17, Definition 1.21].

For sufficiently smooth ψ, we introduce jumps and averages on an interior face F ∈ F ih,
F ⊂ ∂κ+ ∩ ∂κ− with κ+ and κ− any two neighboring elements in Th, as follows:

JψK = ψ+n+ + ψ−n−, {{ψ}} =
ψ+ + ψ−

2
,(3.1)

where ψ± denotes the trace of ψ on F taken within the interior of κ±, and n± denotes the
unit normal vector to ∂κ± pointing outwards from ∂κ±. On the boundary face F ∈ Fb, we
set JψK = ψn and {{ψ}} = ψ. For a (smooth enough) vector-valued function ψ, definition
(3.1) extends analogously.
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For later use, we also define here the stabilization function χ ∈ L∞(Fh) as follows:

(3.2) χ|F =


c2 β max

κ∈{κ+,κ−}

p2

hκ
for all F ∈ F ih, F ⊂ ∂κ+ ∩ ∂κ−,

c2 β
p2

hκ
for all F ∈ Fbh, F ⊂ ∂κ,

The parameter β > 0 will be chosen in a convenient manner in the following proofs.
For an open subset D of R, where d = 1, 2, 3, and a function v ∈ Hn(D), where n ≥ 0,

we denote by ‖v‖Hs(D) and |v|Hs(D) the standard norm and seminorm, respectively, with

the convention that H0(D) ≡ L2(D). When D ≡ Ω, we simply write ‖∇v‖Hn and |v|Hn .
We use the short-hand notation

〈ψ, v〉F =
∑
F∈F

(ψ, v)L2(F ), ‖ψ‖F = 〈ψ,ψ〉1/2F

for a generic collection of faces F ⊂ Fh, and regular enough functions ψ and v. Here
(·, ·)L2(F ) denotes the inner product in L2(F ).

We occasionally use the notation x . y and x & y instead of x ≤ Cy and x ≥ Cy,
respectively, when the hidden constant C > 0 does not depend on the coefficients in the
equation c, b, and k, the mesh size, and the number of faces of a mesh element, but can
depend on the polynomial degree p and the final time T .

3.1. Grid assumptions and preliminary estimates

Throughout the paper, we make the following assumptions on the family of polytopic
decompositions Th, which allow to extend the trace-inverse and inverse inequalities on
simplices to polytopic elements.

Mesh assumptions. For any κ ∈ Th, we assume that

hdκ ≥ |κ| & hdκ
for d = 2, 3, where |κ| denotes the Hausdorff measure of κ ∈ Th. We also assume that
there exists a positive number m, such that every polytopic element κ ∈ Th admits a sub-
triangulation into at most mκ ≤ m shape-regular simplices si for i = 1, 2, . . . , mκ, such
that

κ̄ = ∪mκi=1s̄i and |si| & |κ|,
where the hidden constant is independent of κ and Th. Finally, we assume that

maxκ hκ
minκ hκ

. 1.

Under these mesh assumptions, the following trace-inverse and inverse inequalities hold
on polytopic domains.

Lemma 1. For any v ∈ Pp(κ), κ ∈ Th, the following trace-inverse and inverse inequalities
hold:

‖v‖L2(∂κ) . h
−1/2
κ ‖v‖L2(κ) ,(3.3)

‖v‖L∞(κ) . h
−d/2
κ ‖v‖L2(κ) .(3.4)

Proof. The statement follows from, e.g., [13, Lemma 6] combined with our mesh assump-
tions. �

Remark 1 (On the mesh assumptions). We choose to simplify our mesh assumptions
for the clarity of exposition. However, for the trace-inverse inequality (3.3) to hold, these
assumptions are slightly more restrictive than needed, and can be weakened by employing
the arguments of [11]. Indeed, the inequality holds provided that, for any κ ∈ Th, there
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exists a set of non-overlapping d-dimensional simplices κF[ ⊂ κ such that, for any face

F ⊂ ∂κ, F = ∂κ ∩ ∂κF[ , and
⋃
F⊂∂κ κ

F
[ ⊂ κ, and the diameter hκ of κ can be bounded by

hκ .
d|κF[ |
|F |

for all F ⊂ ∂κ, where |F | and |κF[ | denote the Hausdorff measure of F and κF[ , respectively.
This latter assumption does not put a restriction on either the number of faces that an
element possesses, or indeed the measure of a face of an element κ ∈ Th, relative to the
measure of the element itself; cf. also [1, 12–14]. As pointed out in [11], meshes obtained
by agglomeration of a finite number of polygons that are uniformly star-shaped with respect
to the largest inscribed ball will automatically satisfy the above weak requirement.

The inverse inequality (3.4) also holds under weaker assumptions: if, for any point
x ∈ κ, there exists a shape-regular simplex containing x and contained in κ, with diameter
comparable to that of κ. In other words, for any point x ∈ κ, there exists sκ(x), such that
x ∈ sκ(x) ⊆ κ and hs(x) & hκ. The proof follows by relying on the L∞ inverse estimates
on shape-regular simplexes; cf. [22, equation (3.8)], [47, Theorem 4.76].

3.2. Interpolation bounds on polytopic meshes

For future reference, we also state here the specific interpolation bounds on polytopic
meshes we will rely on in the proofs.

Lemma 2. Let v ∈ Hn(κ), where κ ∈ Th. Then, there exists Πκ,p : Hn(κ) → Pp(κ) such
that

(3.5)

‖v −Πκ,pv‖L2(κ) . hµκ|v|Hn(κ), n ≥ 0,

|v −Πκ,pv|H1(κ) . hµ−1
κ |v|Hs(κ), n ≥ 1,

‖v −Πκ,pv‖L∞(κ) . hµ−d/2κ |v|Hn(κ), n > d/2,

where µ = min{n, p+ 1}.

Proof. The statement follows by employing our mesh assumptions and classical interpola-
tion bounds on quadrilateral/hexahedral and simplicial elements; cf. [5, 9, 14]. �

We can now also state a result on the interpolation error for time-dependent piecewise
smooth functions. Let ψ ∈ C([0, T ];Hn(Th)), where n ≥ 2. For any time t ∈ [0, T ], we
define the global interpolant ψI element-wise as

ψI |κ = ψI,κ, κ ∈ Th,(3.6)

where ψI,κ = Πκ,pψ is the local interpolant of Lemma 2.

Lemma 3. Let ψ ∈ C([0, T ];Hn(Th)), where n ≥ 2. Then, there exists an interpolant
ψI ∈ C([0, T ];Vh), defined as in (3.6), such that the error eI = ψ − ψI satisfies

c2‖∇heI(t)‖2L2 + ‖√χJeI(t)K ‖2Fh . c2
∑
κ∈Th

h2µ−2
κ |ψ(t)|2Hn(κ),

for all t ∈ [0, T ], where µ = min{n, p+1} and χ is defined in (3.2). Moreover, the following
estimate holds:

(3.7) ‖χ−1/2{{∇heI(t)}} ‖2Fh .
1

c2

∑
κ∈Th

h2µ−2
κ |ψ(t)|2Hn(κ), for 0 ≤ t ≤ T.

Proof. The statement follows by relying on the mesh assumptions, estimates (3.5), and the
following multiplicative trace inequality on shape-regular simplices s:

‖η‖2L2(∂s) . ‖η‖L2(s) ‖∇η‖L2(s) + h−1
s ‖η‖

2
L2(s) for all η ∈ H1(s);

cf. [5] and [13, Lemma 33]. �
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4. The DG approximation in space of the Westervelt equation

In this section, we introduce and discuss the semi-discrete approximation of the initial-
boundary value problem (2.2) for the Westervelt equation. To motivate our approximate
weak form, we rewrite the Westervelt equation in (2.2)as

(1− 2kψ̇)ψ̈ − c2∆(ψ + b
c2
ψ̇) = 0.

Together with the fact that sound diffusivity b is relatively small in realistic applications,
this suggests to introduce an auxiliary state

(4.1) ψ̃ = ψ +
b

c2
ψ̇,

which allows us to formally write the Westervelt equation as

(4.2) (1− 2kψ̇)ψ̈ − c2∆ψ̃ = 0.

If wave propagates through inviscid media, then the auxiliary state ψ̃ is equal to the acoustic
velocity potential ψ and (4.2) reduces to the inviscid Westervelt equation. The auxiliary
state helps us to unify in our analysis propagation in inviscid and non-inviscid media and
assume that b ≥ 0.

We are interested in the solutions of this problem in the sense of the equation

(4.3) ((1− 2kψ̇)ψ̈, v)L2 + a(ψ̃, v) = 0

being satisfied for all v ∈ H1(Ω) and all times t ∈ (0, T ], with (ψ, ψ̇)|t=0 = (ψ0, ψ1). The
bilinear form a : H1(Ω)×H1(Ω)→ R is given by

a(ψ, v) = c2(∇ψ,∇v)L2 .

We introduce the corresponding DG bilinear form ah : H1(Th)× Vh → R by

ah(ψ, vh) = c2(∇hψ,∇hvh)L2 − 〈{{c2∇hψ}}, JvhK〉Fh
− 〈JψK, {{c2∇hvh}}〉Fh + 〈χJψK, JvhK〉Fh ,

where the stabilization function χ is defined as in (3.2). We then look for the approximate
solution ψh ∈ C2([0, T ];Vh) of equation (4.3), such that

(4.4) ((1− 2kψ̇h)ψ̈h, vh)L2 + ah(ψ̃h, vh) = 0

holds for all vh ∈ Vh, 0 < t ≤ T , supplemented with the approximate initial data

(ψh(0), ψ̇h(0)) = (ψ0,h, ψ1,h) ∈ Vh × Vh.

In equation (4.4), we have used, analogously to (4.1), the notation

(4.5) ψ̃h = ψh +
b

c2
ψ̇h,

and therefore our weak form (4.4) is equivalent to

(4.6)

((1− 2kψ̇h)ψ̈h, vh)L2 + c2(∇hψh,∇hvh)L2 + b(∇hψ̇h,∇hvh)L2

− 〈{{c2∇hψh}}, JvhK〉Fh − 〈{{b∇hψ̇h}}, JvhK〉Fh
− 〈JψhK, {{c2∇hvh}}〉Fh − 〈J bc2 ψ̇hK, {{c

2∇hvh}}〉Fh
+ 〈χJψhK, JvhK〉Fh + 〈χJ b

c2
ψ̇hK, JvhK〉Fh = 0.

Recall that in (3.2) the stabilization function χ has a c2 scaling, and thus the two stabi-
lization terms in (4.6) effectively scale by c2 and b.

We note that in the case of sound propagation without losses, where b = 0 in the
Westervelt equation, (4.4) corresponds to the standard DG formulations for second-order
undamped wave equations; see, for example, [24].
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5. Analysis of the linearized semi-discrete problem

As a first step in the analysis, we consider a non-degenerate linearization of (2.2) that
is given by the following initial-boundary value problem for a linear strongly damped wave
equation: 

α(x, t)ψ̈ − c2∆ψ̃ = 0 in Ω× (0, T ],

ψ = 0 on ∂Ω× [0, T ],

(ψ, ψ̇) = (ψ0, ψ1) on Ω× {t = 0},
(5.1)

where it is assumed that there exist α0, α1 > 0 such that

α0 ≤ α(x, t) ≤ α1 in Ω× [0, T ],

and the relation (4.1) holds. Sufficient conditions for the well-posedness of (5.1) in the case
that b > 0 can be found in, e.g., [31, Proposition 3.2]. The weak form of this problem is
given by

(αψ̈, v)L2 + a(ψ̃, v) = 0

for all v ∈ H1(Ω), 0 < t ≤ T with (ψ, ψ̇)|t=0 = (ψ0, ψ1). We analyze its semi-discrete
approximation, given by equation

(5.2) (αhψ̈h, vh)L2 + ah(ψ̃h, vh) = 0

which should hold for all vh ∈ Vh, 0 < t ≤ T , supplemented with the approximate initial
data

(ψh(0), ψ̇h(0)) = (ψ0,h, ψ1,h) ∈ Vh × Vh.
In equation (5.2), the coefficient αh denotes a discrete version of the coefficient α such that

α0 ≤ αh(x, t) ≤ α1 in Ω× [0, T ].(5.3)

The main idea behind studying this linearized problem is to later choose

αh = 1− 2kẇh

with wh in a neighborhood of ψ, and define a map J : wh 7→ ψh, where ψh solves the
linear semi-discrete problem (5.2). The fixed point of this map will be the solution of the
nonlinear problem (4.4). Our approach here follows, in spirit, the strategy taken in [40],
where nonlinear hyperbolic systems in divergence form are considered.

5.1. Existence and stability

Our first task is to prove that the semi-discrete problem (5.2) has a unique solution that
remains bounded in a suitable energy norm. We begin by recalling a useful inequality for
functions in Vh.

Lemma 4. For any vh ∈ Vh, the following inequality holds:

‖χ−1/2{{∇hvh}}‖Fh .
1

c
√
β
‖∇hvh‖L2 ,

where β > 0 is the stability parameter that appears in the definition (3.2) of the stabilization
function χ.

Proof. The statement follows by a straightforward modification of the arguments in [3,
Lemma 3.2]; cf. also [2]. �

By relying on Lemma 4, we can show that

(5.4)

c2‖〈{{∇hvh}}, JvhK〉Fh‖ . c
1√
β
‖∇hvh‖L2‖√χ JvhK ‖Fh

. c2 1

4ε

1

β
‖∇hvh‖2L2 + ε‖√χ JvhK ‖2Fh
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for functions vh ∈ Vh, which we will rely on in the upcoming proofs by choosing ε > 0 in a
convenient manner.

In order to state our results, we introduce the discrete energy function

E[ψh](t) := ‖
√
αh(t) ψ̇h(t)‖2L2 + b

c2

∫ t

0
‖
√
αh ψ̈h‖2L2 ds

+ c2‖∇hψ̃h(t)‖2L2 + ‖√χ Jψ̃h(t)K ‖2Fh ,

for t ∈ [0, T ]. We note that in the case b = 0, we have ψ̃h = ψh, and we recover the energy
of undamped linear wave equations.

Theorem 1. Let c > 0, b ≥ 0, and let T > 0 be a fixed time horizon. Let the coefficient
αh ∈ C1([0, T ];Vh) be such that the non-degeneracy condition (5.3) holds, where α0 and
α1 are independent of the discretization parameters. Moreover, assume that there exists
γ ∈ (0, 1) such that

(5.5) ‖α̇h/αh‖L1L∞ ≤ γ.

Then the semi-discrete problem (5.2) has a unique solution ψh such that it holds

(5.6) max
t∈[0,T ]

E[ψh](t) ≤ CTh1E[ψh](0),

provided that the parameter β in (3.2) is sufficiently large. The constant CTh1 > 0 does not
depend on the mesh size, the number of faces of a mesh element, or the coefficients in the
equation, but depends on the polynomial degree.

Proof. Because the problem is non-degenerate and αh ∈ C1([0, T ];Vh), local-in-time exis-
tence of a solution ψh ∈ C2([0, Th];Vh) for some Th ≤ T follows by relying on the standard
theory of linear ordinary differential equations; cf. [45, Theorem 1.44] and [39, Theorem
4.2]. The upcoming energy estimate will allow us to extend the existence interval to [0, T ].

We next focus on proving stability. In energy analysis of second-order wave equations,
the first time derivative of the solution is a natural choice of test function. However,
due to the presence of a varying coefficient αh in our case, we would need to additionally
test with a suitably scaled second time derivative. We combine these ideas and choose

vh =
˙̃
ψh = ψ̇h + b

c2
ψ̈h as a test function.

Taking vh =
˙̃
ψh in (5.2), integrating over (0, t), where t ≤ Th, and performing integration

by parts with respect to time leads to the identity

(5.7)

∫ t

0
(αhψ̈h,

˙̃
ψh)L2 ds+ 1

2c
2‖∇hψ̃h(s)‖2L2

∣∣∣t
0
+1

2‖
√
χ Jψ̃h(s)K‖2Fh

∣∣∣t
0

= 〈{{c2∇hψ̃h(s)}}, Jψ̃h(s)K〉Fh
∣∣∣t
0
.

Above, we have made use of the fact that

〈{{c2∇hψ̃h}}, J ˙̃
ψhK〉Fh + 〈Jψ̃hK, {{c2∇h ˙̃

ψh}}〉Fh =
d

dt
〈{{c2∇hψ̃h}}, Jψ̃hK〉Fh .

We can employ Lemma 4 and inequality (5.4) to obtain

1
2c

2‖∇hψ̃h‖2L2 + 1
2‖
√
χ Jψ̃hK ‖2Fh − c

2〈{{∇hψ̃h}}, Jψ̃hK〉Fh
≥C1(c2‖∇hψ̃h‖2L2 + ‖√χ Jψ̃hK ‖2Fh)

for all t ∈ [0, Th], provided that parameter β in (3.2) is sufficiently large. Similarly, we
obtain

1
2c

2‖∇hψ̃h(0)‖2L2 + ‖√χ Jψ̃h(0)K ‖2Fh − 〈{{c
2∇hψ̃h(0)}}, Jψ̃h(0)K〉Fh

≤C2(c2‖∇hψ̃h(0)‖2L2 + ‖√χ Jψ̃h(0)K ‖2Fh).
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The constants C1, C2 > 0 above are independent of c, b, or the mesh size, but depend on
the polynomial degree p. It remains to estimate the αh-term in (5.7). We recall how the

auxiliary state ψ̃h is defined in (4.5) and employ integration by parts with respect to time,
which results in∫ t

0
(αhψ̈h,

˙̃
ψh)L2 ds = b

c2

∫ t

0
‖
√
αh ψ̈h‖2L2 ds+

∫ t

0
(αhψ̈h, ψ̇h)L2 ds

=

∫ t

0

(
b
c2
‖
√
αh ψ̈h‖2L2 − 1

2‖
√
α̇hψ̇h‖2L2

)
ds

+ 1
2‖
√
αh(s)ψ̇h(s)‖2L2

∣∣∣t
0
.

From here, we can further estimate the last term to obtain∫ t

0
(αhψ̈h,

˙̃
ψh)L2 ds ≥ b

c2

∫ t

0
‖
√
αh ψ̈h‖2L2 ds+ 1

2‖
√
αh(s)ψ̇h(s)‖2L2

∣∣∣t
0

− 1
2

∫ t

0
max
x∈Ω

∣∣∣∣ α̇h(x)

αh(x)

∣∣∣∣ · ‖√αhψ̇h‖2L2 ds

≥ b
c2

∫ t

0
‖
√
αh ψ̈h‖2L2 ds+ 1

2‖
√
αh(s)ψ̇h(s)‖2L2

∣∣∣t
0

− 1
2 max
s∈[0,Th]

‖
√
αh(s)ψ̇h(s)‖2L2

∫ T

0
max
x∈Ω

∣∣∣∣ α̇h(x)

αh(x)

∣∣∣∣ ds,
where we have additionally employed the fact that t ≤ Th ≤ T in the last step. By
combining our previously derived estimates, we arrive at

(5.8)

1
2‖
√
αh(t)ψ̇h(t)‖2L2 + C1c

2‖∇hψ̃h(t)‖2L2

+ b
c2

∫ t

0
‖
√
αh ψ̈h‖2L2 ds+ C1‖

√
χ Jψ̃h(t)K‖2Fh

≤ 1
2‖
√
αh(0)ψ̇h(0)‖2L2 + C2

(
c2‖∇hψ̃h(0)‖2L2 + ‖√χ Jψ̃h(0)K ‖2Fh

)
+ 1

2 max
s∈[0,Th]

‖
√
αh(s)ψ̇h(s)‖2L2

∫ T

0
max
x∈Ω

∣∣∣∣ α̇h(x)

αh(x)

∣∣∣∣ ds
for all t ∈ [0, Th]. Taking the maximum of the above estimate over [0, Th] then yields

(5.9)

(1− γ) max
t∈[0,Th]

‖
√
αh(t)ψ̇h(t)‖2L2 + c2 max

t∈[0,Th]
‖∇hψ̃h(t)‖2L2

+ b
c2

∫ Th

0
‖
√
αh ψ̈h‖2L2 ds+ max

t∈[0,Th]
‖√χ Jψ̃h(t)K ‖2Fh

. ‖
√
αh(0)ψ̇h(0)‖2L2 + c2‖∇hψ̃h(0)‖2L2 + ‖√χ Jψ̃h(0)K ‖2Fh .

Since the right-hand side of (5.9) does not depend on Th, we are allowed to extend the
existence interval to [0, T ]; i.e., we can set Th = T . Uniqueness follows by linearity of the
problem and the derived stability bound. �

Before moving to the error analysis, let us discuss how to obtain a bound on c2|∇hψh(t)|L2

and b
c2
|∇hψ̇h(t)|L2 from the available bound on c2|∇hψ̃h(t)|L2 . From the energy estimate

(5.6), by recalling that ψ̃h = ψh + b
c2
ψ̇h, we have

(5.10)
c2‖∇hψ̃h(t)‖2L2 = c2‖∇hψh(t)‖2L2 + b2

c2
‖∇hψ̇h(t)‖2L2 − 2c2(∇hψh(t), b

c2
∇hψ̇h(t))L2

.E[ψh](0)
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for all t ∈ [0, T ]. We can rely on the Fundamental theorem of calculus to show that

(5.11)

‖∇hψh(t)‖L2 =

∥∥∥∥∫ t

0
∇hψ̇h ds+∇hψh(0)

∥∥∥∥
L2

≤
∫ t

0
‖∇hψ̇h‖L2 ds+ ‖∇hψh(0)‖L2

≤
√
t‖∇hψ̇h‖L2(0,t;L2) + ‖∇hψh(0)‖L2 .

By employing Young’s inequality together with inequality (5.11) in estimate (5.10), we
arrive at

c2‖∇hψh(t)‖2L2 + b2

c2
‖∇hψ̇h(t)‖2L2

. 2c2‖∇hψh(t)‖2L2 + 1
2
b2

c2
‖ψ̇h(t)‖2L2 + E[ψh](0)

. 4c2T

∫ t

0
‖∇hψ̇h‖2L2 ds+ 4c2‖∇hψh(0)‖2L2 + 1

2
b2

c2
‖ψ̇h(t)‖2L2 + E[ψh](0).

Therefore, we can conclude that

c2‖∇hψh(t)‖2L2 + 1
2
b2

c2
‖∇hψ̇h(t)‖2L2 . c2T

∫ t

0
‖∇hψ̇h‖2L2 ds+ c2‖∇hψh(0)‖2L2

+ E[ψh](0).

By making use of Gronwall’s inequality, we obtain

c2‖∇hψh(t)‖2L2 + b2

c2
‖∇hψ̇h(t)‖2L2 . c2‖∇hψ0,h‖2L2 + E[ψh](0),

where, compared to estimate (5.6), now the hidden constant depends on the final time T .

6. Error analysis of the linearization

In this section, we derive an a priori error estimate for the semi-discrete problem (4.4).
We note that we also have to take the error of the variable coefficient α into account to
be able to later employ a fixed-point argument and prove a convergence result for the
Westervelt equation as well.

6.1. Error estimate in the energy norm

We decompose the approximation error by involving the interpolant as follows:

e = (ψ − ψI)︸ ︷︷ ︸
eI

− (ψh − ψI)︸ ︷︷ ︸
eh

,

where ψ solves (5.1), ψh solves (5.2), and ψI is the interpolant introduced in Lemma 3. To
simplify the exposition, we introduce the following auxiliary variables:

ẽ = ψ̃ − ψ̃h, ψ̃I = ψI + b
c2
ψ̇I , ẽh = ψ̃h − ψ̃I , ẽI = ψ̃ − ψ̃I .

In order to formulate the convergence result, we also define the energy norm

||ψh||E :=

(
max
t∈[0,T ]

‖ψ̇h(t)‖2L2 + b
c2

∫ T

0
‖ψ̈h‖2L2 ds

+c2 max
t∈[0,T ]

‖∇hψ̃h(t)‖2L2 + max
t∈[0,T ]

|√χ Jψ̃h(t)K|2Fh

)1/2

.

Thanks to Lemma 3, we can estimate the interpolation error in this norm by

(6.1)

‖eI‖2E . max
t∈[0,T ]

∑
κ∈Th

h2µ−2
κ

(
c2|ψ(t)|2Hn(κ) + (1 + b2

c2
)|ψ̇(t)|2Hn(κ)

)
+ b

c2

∫ T

0

∑
κ∈Th

h2µ−2
κ |ψ̈|2Hn(κ) ds.
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We are now ready to state the convergence result.

Theorem 2. Let the assumptions of Theorem 1 hold. Let ψ ∈ C2([0, T ];H1
0 (Ω)∩Hn(Ω)),

where n ≥ 2, be the solution of the linear initial-boundary value problem (5.1). Let ψh be
the solution of the corresponding semi-discrete problem (5.2) with the approximate initial
data given by

(ψh(0), ψ̇h(0)) = ((ψ0)I , (ψ1)I),

and the parameter β in (3.2) chosen sufficiently large according to Theorem 1. Then the
following bound holds for the discretization error:

(6.2)

‖ψ − ψh‖2E ≤CTh2

h2µ−2 max
t∈[0,T ]

∑
κ∈Th

(
|ψ̇(t)|2Hn(κ) + |ψ(t)|2Hn(κ)

)
+ h2µ−2

∫ T

0

∑
κ∈Th

(
|ψ̈|2Hn(κ) + |ψ̇|2Hn(κ)

)
ds

+

∫ T

0
‖(α− αh)ψ̈‖2L2 ds

}
,

where µ = min{n, p+1} and h = maxκ∈Th hκ, provided that γ ∈ (0, 1) in (5.5) is sufficiently
small. The constant CTh2 > 0 depends on the polynomial degree, but not on the mesh size.

Proof. We begin the proof by observing that ψ satisfies the weak form (5.2) when αh = α.
Therefore, we can see the error e = ψ − ψh as the solution of the following problem:

(6.3) (αhë, vh)L2 + ah(ẽ, vh) = −((α− αh)ψ̈, vh)L2

for all vh ∈ Vh and all time t ∈ (0, T ], with

(e(0), ė(0)) = (ψ0 − ψ0,h, ψ1 − ψ1,h).

By involving the interpolant, we can then rewrite equation (6.3) as

(6.4) (αhëh, vh)L2 + ah(ẽh, vh) = (αhëI + (α− αh)ψ̈, vh)L2 + ah(ẽI , vh)

for t ∈ (0, T ] and all vh ∈ Vh. We next test equation (6.4) with vh = ˙̃eh ∈ Vh and estimate
the resulting terms. By treating all the terms arising from the left-hand side of (6.4) as
in the proof of Theorem 1, we arrive at the following counterpart of estimate (5.8) for the
energy of eh at time t:

(6.5)

‖
√
αh(t) ėh(t)‖2L2 + b

c2

∫ t

0
‖
√
αh ëh‖2L2 ds+ c2‖∇hẽh(t)‖2L2 + ‖√χ Jẽh(t)K ‖2Fh

.

∣∣∣∣∫ t

0

{
(αhëI + (α− αh)ψ̈, ˙̃eh)L2 + ah(ẽI , ˙̃eh)

}
ds

∣∣∣∣+ γ max
s∈[0,t]

‖
√
αh(s)ėh(s)‖2L2 ,

where we have additionally used that eh(0) = ėh(0) = 0 due to our choice of the approximate
initial data. By employing Hölder’s and then Young’s inequality with ε1 > 0 , we obtain∫ t

0
(αh ëI + (α− αh)ψ̈, ėh + b

c2
ëh)L2 ds

≤
∫ t

0
(‖
√
αhëI‖L2 +

∥∥∥α−αh√
αh
ψ̈
∥∥∥
L2

)(‖
√
αhėh‖L2 + b

c2
‖
√
αhëh‖L2) ds

≤ 1
4ε1

(1 + b
c2

)

∫ t

0

(
α1‖ëI‖2L2 + α−1

0 ‖(α− αh)ψ̈‖2L2

)
ds

+ 2ε1

∫ t

0
‖
√
αhėh‖2L2 ds+ 2ε1

b
c2

∫ t

0
‖
√
αhëh‖2L2 ds
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for all t ∈ [0, T ]. We note that the following useful estimate holds for the bilinear form
ah(·, ·):

(6.6)
|ah(φ, vh)| . c2‖∇hφ‖L2‖∇hv‖L2 + ‖χ−1/2{{c2∇hφ}} ‖Fh‖

√
χJvhK ‖Fh

+ c 1√
β
‖∇hvh‖L2‖√χJφK ‖Fh + ‖√χJφK ‖Fh‖

√
χJvhK ‖Fh ,

which we will use below with the choice of φ ∈ {ẽI , ˙̃eI}. The term ‖χ−1/2{{c2∇hφ}}‖Fh
appearing in (6.6) is the reason why we need the bound (3.7) on the interpolant error. To
estimate the ah(ẽI , ˙̃eh) term in (6.5), we employ integration by parts with respect to time
and then twice inequality (6.6),∫ t

0
ah(ẽI , ˙̃eh) ds = ah(ẽI(t), ẽh(t))−

∫ t

0
ah( ˙̃eI , ẽh) ds

. c2‖∇hẽI(t)‖L2 |∇hẽh(t)|L2 + ‖χ−1/2{{c2∇hẽI(t)}}‖Fh‖
√
χJẽh(t)K‖Fh

+ c 1√
β
‖∇hẽh(t)‖L2‖√χJẽI(t)K‖Fh + ‖χ1/2JẽI(t)K‖Fh‖χ

1/2Jẽh(t)K‖Fh

+

∫ t

0

(
c2‖∇h ˙̃eI‖L2‖∇hẽh‖L2 + ‖χ−1/2{{c2∇h ˙̃eI}}‖Fh‖

√
χJẽhK‖Fh

+c 1√
β
‖∇hẽh‖L2‖√χJ ˙̃eIK‖Fh + ‖√χJ ˙̃eIK‖Fh‖

√
χJẽhK‖Fh

)
ds.

From here by Young’s inequality with ε2 ∈ (0, ε1), we have∫ t

0
ah(ẽI , ˙̃eh) ds . ε1

(
c2(1 + 1

β )‖∇hẽh(t)‖2L2 + ‖√χJẽh(t)K‖2Fh
)

+ ε2

∫ t

0

(
c2(1 + 1

β )‖∇ẽh‖2L2 + ‖√χJẽhK‖2Fh
)

ds+ 1
4ε2

Ē[eI ](t),

where the modified energy of the interpolant error is given by

Ē[eI ](t) := c2‖∇hẽI(t)‖2L2 + ‖√χJẽI(t)K‖2Fh + ‖χ−1/2{{c2∇hẽI(t)}}‖2Fh
+

∫ t

0

(
c2‖∇h ˙̃eI‖2L2 + ‖√χJ ˙̃eIK‖2Fh + ‖χ−1/2{{c2∇h ˙̃eI}}‖2Fh

)
ds.

We fix ε1 > 0 sufficiently small and include the derived bounds in estimate (6.5), from
which we immediately have

(6.7)

E[eh](t) . ε2T max
t∈[0,T ]

(
‖
√
αh(t)ėh(t)‖2L2 + c2(1 + 1

β )‖∇hẽh(t)‖2L2

+‖√χJẽh(t)K‖2Fh
)

+ (1 + b
c2

)α−1
0

∫ t

0
‖(α− αh)ψ̈‖2L2 ds

+ 1
4ε2

(
Ē[eI ](t) + (1 + b

c2
)α1

∫ t

0
‖ëI‖2L2 ds

)
+ γ max

t∈[0,T ]
‖
√
αh(t)ėh(t)‖2L2

for all t ∈ [0, T ]. Above, we have also employed the inequality∫ t

0
‖v‖2L2 ds ≤ T max

t∈[0,T ]
‖v(t)‖2L2 ,

which holds for functions v ∈ C([0, T ];L2(Ω)). By possibly decreasing ε2 and γ, and then
taking the maximum over [0, T ] of (6.7), we obtain

(6.8)
max
t∈[0,T ]

E[eh](t) . (1 + b
c2

)α−1
0

∫ T

0
‖(α− αh)ψ̈‖2L2 ds+ max

t∈[0,T ]
Ē[eI ](t)

+ (1 + b
c2

)α1

∫ T

0
‖ëI‖2L2 ds.
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Recalling also the properties of the interpolant stated in Lemma 3 leads to

‖eh‖2E . h2µ−2 max
t∈[0,T ]

∑
κ∈Th

(
c2|ψ(t)|2Hn(κ) + b2

c2
|ψ̇(t)|2Hn(κ)

)
+ h2µ−2

∫ T

0

∑
κ∈Th

(
(α1 + b

c2
α1 + b2

c2
)|ψ̈|2Hn(κ) + c2|ψ̇|2Hn(κ)

)
ds

+ (1 + b
c2

)α−1
0

∫ T

0
‖(α− αh)ψ̈‖2L2 ds.

Together with estimate (6.1) for ‖eI‖E , this yields the desired bound (6.2) for the dis-
cretization error. We note that the constant CThm2 in the final estimate has the form

CThm2 = O
(
c2 + b2

c2
+ b

c2
+ 1
)
,

and so it does not degenerate as b approaches zero. �

7. Analysis of the nonlinear model

Our next aim is to analyze the semi-discretization of the Westervelt equation given by
(4.4). To this end, we will rely on our analysis of the linearized problem together with a
fixed-point argument.

Theorem 3. Let c > 0, b ≥ 0, and k ∈ R. Let the final time T ′ ≤ T be such that the
initial-boundary value problem (2.2) for the Westervelt equation has a solution

ψ ∈ C2([0, T ′];H1
0 (Ω) ∩Hn(Ω)), where n > 1 + d/2,

for which it holds that

0 < α0 ≤ 1− 2kψ̇ ≤ α1 in Ω× [0, T ′]

for some α0, α1 > 0. Assume that the polynomial degree p ≥ 2 and that the approximate
initial conditions are given by

(7.1) (ψh(0), ψ̇h(0)) = ((ψ0)I , (ψ1)I).

Then for sufficiently small h = max
κ∈Th

hκ and

M(ψ) = max
t∈[0,T ′]

|ψ(t)|2Hn + max
t∈[0,T ′]

|ψ̇(t)|2Hn + max
t∈[0,T ′]

‖ψ̇(t)‖2L∞

+

∫ T ′

0
(|ψ̈|2Hn + ‖ψ̈‖2L∞ + |ψ̇|2Hn) ds,

the corresponding semi-discrete problem (4.4) for the Westervelt equation has a unique
solution ψh ∈ C2([0, T ′];Vh) that satisfies the following error bound:

||ψ − ψh||2E ≤ CTh 3 h
2µ−2

∑
κ∈Th

{
max
t∈[0,T ′]

(
|ψ̇(t)|2Hn(κ) + |ψ(t)|2Hnκ)

)
+

∫ T ′

0

(
|ψ̈|2Hn(κ) + |ψ̇|2Hn(κ)

)
ds

}
,

with µ = min{n, p + 1}, provided that the parameter β in (3.2) is sufficiently large. The
constant CTh3 > 0 depends on M(ψ) and on the polynomial degree, but not on the mesh
size.

Proof. We conduct the proof by employing the Banach fixed-point theorem. Therefore, we
first need to define a fixed-point map. We begin by introducing the set

Bh =
{
wh ∈ C2([0, T ′];Vh) : ||ψ − wh||2E ≤ CTh3 h

2µ−2
∑
κ∈Th

max
t∈[0,T ′]

Eκ[ψ](t)

(wh(0), ẇh(0)) = (ψ0,h, ψ1,h)
}
,
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where we have used the notation

Eκ[ψ](t) = |ψ̇(t)|2Hn(κ) + |ψ(t)|2Hn(κ) +

∫ t

0

(
|ψ̈|2Hn(κ) + |ψ̇|2Hn(κ)

)
ds.

The constant CTh3 > 0 will be made precise below.

Step 1: Defining the fixed-point map.

For wh ∈ Bh, we then define the operator J : wh 7→ ψh, where ψh solves((1− 2kẇh)ψ̈h, vh)L2 + ah(ψ̃h, vh) = 0 for all vh ∈ Vh, t ∈ (0, T ′),

(ψh(0), ψ̇h(0)) = (ψ0,h, ψ1,h).
(7.2)

The operator J is well-defined thanks to the well-posedness result of Theorem 1, whose
assumptions we verify below. We note that the set Bh is non-empty because the global
interpolant ψI is in Bh. Moreover, Bh is closed with respect to topology induced by ‖ · ‖E .

Step 2: The self-mapping property.

We next want to verify that J (Bh) ⊂ Bh. Let wh ∈ Bh. To show that ψh = J (wh) ∈ Bh,
we rely on Theorems 1 and 2, which guarantee stability and convergence for the linearized
problem. We choose the variable coefficient in the linear model to be αh = 1 − 2kẇh and
check that all the assumptions of these theorems are satisfied. In particular, we have to
justify the non-degeneracy assumption (5.3) and the smallness of α̇h/αh in (5.5).

We already know that αh = 1 − 2kẇh ∈ C1([0, T ′];Vh). We next rely on the inverse
estimate given in Lemma 1 and properties of the interpolant stated in Lemma 3 to verify
the non-degeneracy assumption (5.3) on αh.

The coefficient αh does not degenerate. Fix t ∈ [0, T ′]. We can pick an element κ̂ ∈ Th,
such that

(7.3) max
x∈Ω
|ẇh(x, t)| = max

x∈κ̂
|ẇh(x, t)|.

By involving the local interpolant and then relying on the inverse estimate, we find that

(7.4)

max
x∈Ω
|ẇh(x, t)|2 = max

x∈κ̂
|ẇh(x, t)|2

triangle ineq.

. ‖ψ̇I,κ̂(t)− ẇh(t)‖2L∞(κ̂) + ‖ψ̇I,κ̂(t)‖2L∞(κ̂)

inverse est.

. h−dκ̂ ‖ψ̇I,κ̂(t)− ẇh(t)‖2L2(κ̂) + ‖ψ̇I,κ̂(t)‖2L∞(κ̂)

triangle ineq.

. h−dκ̂

(
‖ψ̇I,κ̂(t)− ψ̇(t)‖2L2(κ̂) + ‖ψ̇(t)− ẇh(t)‖2L2(κ̂)

)
+ ‖ψ̇I,κ̂(t)‖2L∞(κ̂).

We can estimate the last three terms on the right-hand side of (7.4) by employing the
stability and approximation properties of the interpolant, and the fact that wh ∈ Bh. By
doing so, we obtain

max
x∈Ω
|ẇh(x, t)|2 . h2µ−d

κ̂ |ψ̇(t)|2Hs(κ̂) + h−dκ̂ h2µ−dCTh3

∑
κ∈Th

max
t∈[0,T ′]

Eκ[ψ](t) + ‖ψ̇I,κ̂(t)‖2L∞(κ̂)

. h2µ−d|ψ̇(t)|2Hs(Ω) + CTh3

(
h

hκ̂

)d
h2µ−2−d

∑
κ∈Th

max
t∈[0,T ′]

Eκ[ψ](t)

+ ‖ψ̇I,κ̂(t)‖2L∞(κ̂),

recalling that due to our assumptions, we have µ = min{n, p+ 1} > 1 + d/2. By using the
L∞ stability of the interpolant and the assumption on quasi-uniformity of the mesh, we
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infer

(7.5) max
x∈Ω
|ẇh(x, t)|2 ≤ C1M(ψ)

(
h2µ−d + CTh3(M(ψ))h2µ−2−d + 1

)
:= m

for every t ∈ [0, T ′], where the constant C1 > 0 above does not depend on the mesh size.
We refer to (7.6) below for the exact form of CTh3(M(ψ)). By taking the maximum over
t ∈ [0, T ′] in (7.5), we further have

‖ẇh‖C(Ω×[0,T ′]) ≤
√
m.

We then choose M(ψ) and h sufficiently small so that

0 < α0 ≤ 1− 2|k|
√
m ≤ αh = 1− 2kẇh ≤ 1 + 2|k|

√
m ≤ α1

in Ω× [0, T ′].

The quotient α̇h/αh is sufficiently small. The assumption on α̇h/αh in Theorems 1 and 2
can be verified as follows:∥∥∥∥ α̇hαh

∥∥∥∥
L1L∞

=

∥∥∥∥ −2kẅh
1− 2kẇh

∥∥∥∥
L1L∞

≤ 2|k|
1− 2|k|

√
m
‖ẅh‖L1L∞

≤ 2|k|
1− 2|k|

√
m

√
T ′‖ẅh‖L2L∞ .

We can bound ‖ẅh‖L2L∞ in a similar fashion as (7.3)–(7.5) by relying on the interpolant
and inverse estimates. In particular, we have∫ T ′

0
max
x∈Ω
|ẅh(s)|2 ds . h2µ−d

∫ T ′

0
|ψ̈(s)|2Hs(Ω) ds+ CTh3h

2µ−2−d
∑
κ∈Th

max
t∈[0,T ′]

Eκ[ψ](t)

+

∫ T ′

0
‖ψ̈I,κ̂(s)‖2L∞(κ̂) ds,

from which it follows that ∫ T ′

0
max
x∈Ω
|ẅh(s)|2 ds ≤ C2m,

where the constant C2 > 0 does not depend on the mesh size. Therefore, for Theorem 2 to
hold, we need that

γ :=
2|k|

1− 2|k|
√
m

√
T ′C2m

is sufficiently small, which we can achieve by decreasing M(ψ) and h.

Choosing the constant CTh3 so that F is a self-mapping. We have therefore verified all
the assumptions of Theorems 1 and 2. On account of Theorem 2 and the resulting error
estimate (6.2), we conclude that problem (7.2) has a unique solution ψh ∈ C2([0, T ′];Vh)
that satisfies

||ψ − ψh||2E ≤ CTh2

h2µ−2
∑
κ∈Th

max
t∈[0,T ′]

Eκ[ψ](t) + max
t∈[0,T ′]

‖α(t)− αh(t)‖2L2

∫ T ′

0
‖ψ̈‖2L∞(Ω) ds

)
.

Noting that the error in α can be estimated according to

max
t∈[0,T ′]

‖α(t)− αh(t)‖2L2 = max
t∈[0,T ′]

‖2kψ̇(t)− 2kẇh(t)‖2L2

≤ 4k2CTh3 h
2µ−2

∑
κ∈Th

max
t∈[0,T ′]

Eκ[ψ](t),

since wh ∈ Bh, we obtain

||ψ − ψh||2E ≤CTh2 (1 + 4k2CTh3M(ψ))h2µ−2
∑
κ∈Th

max
t∈[0,T ′]

Eκ[ψ](t).
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For sufficiently small M(ψ) such that 1− 4k2CTh2M(ψ) > 0, we can choose CTh3 as

(7.6) CTh3 :=
CTh2

1− 4k2CTh2M(ψ)
.

This choice of the constant CTh3 implies that

||ψ − ψh||2E ≤ CTh3h
2µ−2

∑
κ∈Th

max
t∈[0,T ′]

Eκ[ψ](t);

in other words, ψh ∈ Bh.

Step 3: Contractivity.

To prove that the operator J is strictly contractive, take w
(1)
h , w

(2)
h ∈ Bh and set ψ

(1)
h =

J (w
(1)
h ), ψ

(2)
h = J (w

(2)
h ) ∈ Bh. Denote Wh = w

(1)
h − w

(2)
h . Then the difference Ψh =

ψ
(1)
h − ψ

(2)
h satisfies the problem

((1− 2kẇ
(1)
h )Ψ̈h, vh)L2 + ah(Ψ̃h, vh) = (2k Ẇh ψ̈

(2)
h , vh)L2 , vh ∈ Vh(7.7)

for all time, with zero initial data. This equation corresponds to equation (6.3) satisfied by

the approximation error in the proof of Theorem 2. Therefore, testing (7.7) with ˙̃Ψh and
proceeding analogously to the proof of Theorem 2 results in the estimate

||Ψh||2E . 4k2(1 + b
c2

)α−1
0

{∫ T ′

0
‖ψ̈(2)

h ‖
2
L∞(Ω) ds

}
max
t∈[0,T ′]

|Ẇh(t)|2L2 .

This inequality then corresponds to estimate (6.8) in the proof of Theorem 2 if we formally
set the interpolant error to zero. We further have

(7.8) ||Ψh||2E . 4k2(1 + b
c2

)α−1
0

{∫ T ′

0
‖ψ̈(2)

h ‖
2
L∞(Ω) ds

}
||Wh||2E .

We can bound ‖ψ̈(2)
h ‖

2
L2L∞ by proceeding in the same way as in (7.4)–(7.5). This term can

thus be made sufficiently small by reducing M(ψ) and h. From estimate (7.8), we then
conclude that J is contractive for sufficiently small M(ψ) and h.

On account of Banach’s contraction principle, the mapping J has a unique fixed-point
ψh = J (ψh) ∈ Bh, which is, in turn, the unique solution of the nonlinear semi-discrete
problem (4.4) with approximate initial data (7.1). �

8. Computational DG approach for nonlinear sound waves

Starting from the semi-discrete equation (4.4), this section describes the numerical treat-
ment and solution process involving the assembly of an equation in matrix-vector form
and the time-integration scheme that is used. Computational discontinuous Galerkin ap-
proaches for nonlinear acoustic waves that are based on developing a first-order conservative
system of equations are investigated in, e.g., [34, 49, 50].

8.1. The matrix form of the semi-discrete problem

For the purpose of carrying out our numerical experiments, we consider here a more
general case than before of having either a non-zero source term or inhomogeneous Dirichlet
boundary conditions. We present the numerical treatment of the latter case; the simpler
case of having a non-zero source term f can be treated in an analogous manner.

Let ψ = g on ΓD = ∂Ω, where the function g is assumed to be a sufficiently smooth
function on ΓD, compatible with initial data. The Dirichlet conditions are imposed in a
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weak sense; see [17, Chapter 4, Section 4.2.2] for a detailed explanation. Therefore, in our
semi-discrete weak form, the following terms arise additionally on the right-hand side:∫

ΓD

−c2 g̃ (∇v · n) dS +

∫
ΓD

χ g̃ v dS,

where, analogously to before, we have used the auxiliary notation g̃ = g + b
c2
ġ.

The semi-discrete form of (4.4) then reads as

(8.1) Mψ̈ +
(
K−D−D> + P

)
(ψ + b

c2
ψ̇)− T [·, ψ̇, ψ̈] = w,

where M denotes the standard mass matrix and K the stiffness matrix. In addition, we
assemble the nonlinearity tensor T , the DG penalty matrix P, the DG jump matrix D =,
and the Dirichlet data vector w.

We therefore have a second-order system of ordinary differential equations with a non-
linear term on the right-hand side, which now remains to be solved by a suitable time-
integration scheme. Herein the initial data approximations (ψh(0), ψ̇h(0)) = (ψ0,h, ψ1,h) ∈
Vh × Vh are represented in the finite element basis via the coefficient vectors ψ

0
and ψ

1

such that for the ODE-system we have ψ(0) = ψ
0

and ψ̇(0) = ψ
1
.

8.2. Time integration

In order to integrate the system of ordinary differential equations (8.1) in time, we em-
ploy either the Newmark scheme or the Newmark-type Generalized-α method; we refer
to [27, 32] for a similar strategy. The nonlinear term is resolved via a fixed-point iteration
during the solving stage of the predictor-corrector scheme. The termination criterion that
checks the relative change of the solution-vector between iteration steps is employed. In
the experiments with realistic physical data, where we observe the nonlinear steepening of
the wave front in our computational domain, we choose the Generalized-α scheme because
it allows to add targeted numerical damping to the higher modes and subdue Gibbs oscil-
lations.

The numerical parameters that are used in the forthcoming experiments can be found
in Table 1. The physical and discretization parameters for each experiment are given below
in their respective sections.

Test case 1 Test case 2 Test case 3

Newmark scheme
βnm = 0.25
γnm = 0.5

βnm = 4/9
γnm = 5/6

βnm = 4/9
γnm = 5/6

Generalized-α scheme
αm = 0
αf = 0

αm = 0
αf = 1/3

αm = 0
αf = 1/3

Nonlinear iteration
TOL = 10−5

κmax = 100
TOL = 10−5

κmax = 100
TOL = 10−5

κmax = 100

DG penalty β = 10 β = 10 β = 250

Table 1. Numerical parameters used in the experiments

In Table 1, βnm and γnm denote the parameters in the Newmark scheme. The numbers
αm and αf are the additional parameters that come from the Generalized-α scheme, while
TOL is the relative tolerance in the termination criterion of the fixed-point-iteration. The
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number κmax stands for the maximum number of iterations after which the algorithm should
abort. Finally, β is the DG-penalty term introduced in (3.2).

9. Numerical results

In this section, we perform numerical experiments to illustrate our theoretical findings.
The first two numerical tests are conducted in a two-dimensional computational setting
based on a MATLAB implementation. The final, three-dimensional experiment was imple-
mented in SPEED—a parallel, high-order spectral finite-element FORTRAN code [36].

9.1. Test case 1: Exact solution known

In our first example, we simulate the Westervelt equation (2.1) with a given source term
f on the right hand side, which we choose as

f =
[
16π2(c2 − 1) sin(4πt) + 64π3b cos(4πt)

]
sin(4πx)

+
[
64π3k sin(4πt) cos(4πt)

]
sin(4πx)2.

In this way, the exact solution is given by ψ = sin(4πx) sin(4πt), which we use in the error
analysis. In this numerical experiment, all the physical quantities involved are assumed to
be dimensionless. Our computational domain is given by the rectangle Ω = (0, 1)×(0, 2

3

√
3).

We tessellate it with Nelem polygonal elements in two ways: a regular hexagonal pattern
and a random way using polygons with different number of edges each; see Figure 1 for
exemplary depictions of the resulting grids. The initial conditions and Dirichlet boundary
data are set to correspond to the values of ψ at time zero and on the boundary, respectively.

We choose the coefficents in the equation to be c = 1, b = 10−5, βa = 10−4, and the
mass density is ρ = 1. The time-discretization is conducted with final time T = 0.8 and
the Newmark scheme, where the time stepsize is always adapted in such a way, that the
time-discretization error does not dominate in Figure 2 and the convergence with respect
to the number of elements can be observed.
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Figure 1. Computational domain with exemplary polygonal grids. (left)
regular hexagonal grid, (right) grid with arbitrary polygonal structure and
highlighting of a few exemplary “small” edges, making the grid only suitable
under the weaker assumptions discussed in Remark 1.

We perform this experiment on a sequence of regular grids that satisfy our mesh as-
sumptions and on an unstructured grid which might not; see Figure 1. Such unstructured
meshes satisfy the weaker assumptions discussed in Remark 1, which is why we want to
test if we still observe the same order of convergence when using them.
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Figure 2 displays convergence results for five sequentially refined polygonal meshes, where
we have employed polynomials of degree p = 2 and p = 3. As a reference, on the five levels
the unstructured grid consists out of 281, 827, 1828, 2998, and 4727 elements, respectively.
As expected in practice for DG methods, the L2-error of the acoustic velocity potential
converges with the order hp+1; see, e.g., [24].
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Figure 2. L2 and |∇h(·)|L2 errors of ψh at final time for four sequentially
refined polygonal meshes and second- and third-order polynomials, compar-
ing a sequence of regular polygonal grids (reg.) with a sequence of irregular
ones (rand.).

9.2. Test case 2: Exact solution unknown

Our second example features a more realistic setting. The computational domain is
chosen to be a rectangle with dimensions H = 0.02 m and L = 3√

3
· 0.02 m; see Figure 3

left. The physical parameters are now set to

c = 1500 m/s, b = 6× 10−9 m2/s, βa = 7, and ρ = 1000 kg/m3.

The time horizon is T = 2.4× 10−5 s, resolved by a step size of dt = 2× 10−9 s. Instead of
a non-zero source term f , we employ inhomogeneous Dirichlet conditions. The excitation
signal is given in the form g(x, y, t) = g(s)(x, y)·g(t)(t). Herein the temporal part responsible
for the initialization of the wave oscillations is given by

g(t)(t) =


(
ft
2

)2
A sin(ωt), t < 2

f s,

A sin(ωt), t ≥ 2
f s,

while the spatial part is given by a mollifier-type function in order to get a spatially smooth
transition between the inhomogeneous excitation and the homogeneous remaining boundary
data. In particular, we have

g(s)(x, y) =



0, x = 0 m, y = 0 m

exp

(
1− 1

1−| 1
0.005

(y−0.005)|2
)
, x = 0 m, 0 m < y < 0.005 m

1, x = 0 m, 0.005 m ≤ y ≤ 0.015 m

exp

(
1− 1

1−| 1
0.005

(y−0.015)|2
)
, x = 0 m, 0.015 m < y < 0.02 m

0, x = 0 m, y = 0.02 m

0, 0 m < x
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We therefore employ a spatially smooth, temporally modulated sinusoidal excitation
with driving frequency f = 210 kHz and amplitude A = 0.01 m2/s2, where ω denotes the

angular frequency ω = 2πf . Figure 3 displays a plot of the acoustic pressure uh = ρψ̇h
along the horizontal axis of symmetry of the channel at final time T . To better observe
the nonlinear steepening, the figure also contains a pressure wave obtained by solving the
linear damped wave equation (i.e., Westervelt’s equation with k = 0).
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ψ̇
h
(T

)
[P
a]

Linear solution
Nonlinear solution

Figure 3. (left) Computational domain with exemplary polygonal grid.
The left boundary is the excitation part, where the Dirichlet data g is
non-zero. At remaining boundary parts homogeneous Dirichlet data are
imposed. The blue line is the axis of symmetry over which the solution is
evaluated on the right. (right) Computed acoustic pressure field uh = ρψ̇h
over the horizontal axis of symmetry of the channel at final time T of a sim-
ulation with increased amplitude A = 0.0175 m2/s2, plotted together with
the pressure wave obtain by solving the linear damped wave equation with
same boundary and initial data.

We next want to analyze the behavior of the numerical solution with respect to h- and p-
refinement. However, in this more realistic setting an exact solution is unknown. Therefore,
instead of tracking the deviation from a given solution, we track a given quantity of interest.
Here we choose to compute

Q(ψh) := ‖ψh‖L∞(0,T ;L2(Ω)),(9.1)

on different discretization levels. We note that

Q(ψ)− ‖ψh − ψ‖L∞(0,T ;L2(Ω)) ≤ Q(ψh) ≤ Q(ψ) + ‖ψh − ψ‖L∞(0,T ;L2(Ω)),

and so we expect that, for p fixed, Q(ψh) behaves asymptotically as q1 + q2 · hp+1 for some
constants q1 and q2.

h-refinement. We restrict ourselves to structured, quasi-uniform polygonal meshes con-
sisting of Nelem ∈ {220, 312, 420, 544, 684, 840, 1104, 1740, 2664} elements. The polynomial
degree is set to p = 3. Values Q(ψh) for these levels of refinement are plotted in Figure 4
on the left. In order to observe the convergence order, we perform a least-square fit of the
(h,Q(ψh)) data pairs. We obtain a fitted curve

Qf (h) = q1 + q2 · h4,

where q1 and q2 are subject to the least-square fit. The fitted curve Qf with optimized
parameters reads approximately as

Qf (h) = 1.322735 · 10−4 − 504.613929 · h4
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and is plotted in Figure 4 on the left as well. As expected, we observe O(hp+1) conver-
gence. The extrapolated value for the quantity of interest Qf (0) evaluates to 1.322735·10−4.

p-refinement. We also perform a refinement analysis of the quantity of interest with re-
spect to the polynomial degree. Here we choose a fixed mesh with Nelem = 312 elements and
successively increase the polynomial degree p ∈ {1, 2, ..., 7}, where it should be mentioned
that even though our theory holds for p ≥ 2, the case p = 1 yields a similar result as well.
The deviations of the resulting quantities from a reference value are plotted in Figure 4
on the right. As the reference, we choose the extrapolated value of the h-refinement with
degree p = 4. For p = 7, the quantity of interest evaluates to 1.322730 · 10−4 with the
deviation from the extrapolated reference value below 7.6 · 10−5 %.
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Figure 4. (left) The quantity of interest Q(ψh) = ‖ψh‖L∞(0,T ;L2(Ω)) com-
puted on a sequence of polygonal meshes with third-order polynomials and
a least-square fitted extrapolation-curve of order h4. (right) Deviation of
the computed quantity of interest Q(ψh) from a reference value as a function
of p on a fixed mesh.

9.3. Test case 3: A three-dimensional example

Our final example is performed a three dimensional setting, where we use the discontin-
uous Galerkin approach in a hybrid way. Figure 5 shows an image of the computational
geometry consisting of six different material blocks. The blocks differ in all relevant ma-
terial parameters, given in Table 2. We therefore in this experiment solve Westervelt’s
equation

(1− 2kψ̇)ψ̈ − div(c2∇ψ)− div(b∇ψ̇) = 0

with coefficients in L∞(Ω). Now the stabilization function has the form

χ|F =


β max
κ∈{κ+,κ−}

c2
|κ
p2

hκ
for all F ∈ F ih, F ⊂ ∂κ+ ∩ ∂κ−,

βc2
|κ
p2

hκ
for all F ∈ Fbh, F ⊂ ∂κ.

To save computational power, the blocks are meshed and discretized individually via con-
forming spectral elements within each block, while the discontinuous Galerkin approach
deals with the non-matching grids on the interfaces.
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Figure 5. Test case 3: Computational domain with six different material
blocks. Each block has its own material parameters, mesh, and ansatz space.
Interface coupling is done via the DG approach.

Material block 1 • 2 • 3 • 4 • 5 • 6 •

c [m/s] 1500 1000 1000 3000 750 1500

b
[
m2/s

]
6× 10−9 4× 10−9 4× 10−2 4× 10−9 6× 10−9 6× 10−9

βa 5 4 4 7 4 5

ρ
[
kg/m3

]
1000 1250 1250 2000 1500 1000

Table 2. Physical parameters of different material blocks.

Setup of the experiment. Block 1 has a width and length of 0.025 m and a height of
0.01 m; see Figure 5. On its bottom surface, the wave excitation takes place. We use an
excitation signal in the form of a Dirichlet condition similarly to Section 9.2. The four walls
of the block are equipped with homogeneous Neumann/symmetry boundary conditions, its
top surface with a homogeneous Dirichlet condition, except at the interfaces to the blocks 2
to 5. Those are truncated four-sided pyramids which are aligned in a regular way between
blocks 1 and 6, each with a height of 0.01 m and homogeneous Dirichlet conditions on its four
walls. Block 6, with a height of 0.04 m and the remaining measures as for Block 1, covers
the upper part of the geometry, again equipped with homogeneous Neumann/symmetry
conditions on its four sides and homogeneous Dirichlet conditions at top and bottom, except
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for the interfaces with the blocks 2 to 5.
The excitation signal is given by

g(t, x, y, z) = g(t)(t) =


(
ft
2

)2
A sin(ωt), t < 2

f s

0, t ≥ 2
f s;

i.e., by a cut-off pulse-version of the continuous excitation signal used before. We use such
a signal here in order to avoid interference within the block 1 originating from reflections
off the walls between the interfaces to blocks 2 to 5. Amplitude and frequency are chosen as
before. For the time discretization again the Generalized-α-method is used with the final
time T = 2.217 · 10−5 s, resolved with a step size of dt = 10−9 s.

Figure 6 shows snapshots of the solution computed with p = 2 on 260730 elements. We
observe iso-volumina of the highest acoustic pressure amplitudes at different time steps
which show how the wave propagates through the four separate channels connecting the
base block with the top block. Especially the deviations in the speed of sound are visible
as the wave propagates much faster in block 4 (on the right) than, for example, in block 5
(on the left). This effect can also be seen in Figure 7, where the pressure signal is plotted
along the central axes of the four “pillars” at a given time step.

Figure 6. Iso-volumina at time steps (left) 12000 (middle) 19000 (right)
24600 of the highest acoustic pressure amplitudes (in absolute value) uh =

ρψ̇h during wave propagation through the four connecting channels of the
computational domain. The orientation of the images is the same as in
Figure 5.

While the signals corresponding to blocks 2 and 3 in Figure 7 are traveling with the same
speed (cf. Table 2), the signal in block 3 is much more damped compared to block 2, due
to the damping parameter b being much higher there. In contrast to that, the signal from
block 5 is slower, while also higher in amplitude due to the changes in material properties
and the signal in block 4 with the highest speed of sound has already passed through the
“pillar”-like structure and decayed in amplitude afterwards due to spreading into the empty
space of block 6.
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Figure 7. Pressure signal within the four connecting “pillar”-like blocks
2, 3, 4, and 5 of the computational domain at time step 24400, showing the
influence of different speeds of sound and damping parameters.

Figure 8 shows iso-volumina of the acoustic pressure field as well, this time focusing on
the wave propagation in the upper part of the computational domain, i.e., block 6 where the
four individual waves coming from the four connecting channels again merge together into
a single acoustic wave field. We observe decrease in the amplitude compared to Figure 6
due to the wave spreading.

Figure 8. Iso-volumina of the highest acoustic pressure amplitudes at time
step 24600 within the upper part of the computational domain, where the
individual waves coming from the connecting channels merge. (left) Same
orientation of the domain as in Figure 6 (right) View rotated by ≈ 90◦ at
the same time step.

As before, exact solution is not available. Therefore, we again track the quantity of
interest given by (9.1). We evaluate it over an h-refinement with quadratic shape functions

on meshes with mesh-sizes of hj = 0.001
3
√

2−j , j = 0, ..., 7. The results are depicted in
Figure 9.
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Figure 9. Quantity of interest over an h-refinement with quadratic shape
functions. (left) L2(Ω) norm of the numerical solution over the course of
time for all tested levels of refinement (right) Respective L∞(0, T ;L2(Ω))-
norm results on all 8 mesh levels in order to observe convergence.

We observe a convergence of the quantity of interest towards a value of around 1.064·10−5

as h approaches zero; see Figure 9 on the right. We note, however, that allowing for the
jumping material coefficients lies beyond the theory presented in this work. Therefore,
we can conclude that the application of the spectral discontinuous Galerkin method on a
problem with varying coefficients is feasible, while a rigorous convergence analysis is left
for future work.
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[46] M. Ryles, F. Ngau, I. McDonald, and W. Staszewski. Comparative study of nonlinear
acoustic and lamb wave techniques for fatigue crack detection in metallic structures.
Fatigue & Fracture of Engineering Materials & Structures, 31(8):674–683, 2008.

[47] C. Schwab. p- and hp-finite element methods. Numerical Mathematics and Scientific
Computation. The Clarendon Press, Oxford University Press, New York, 1998. Theory
and applications in solid and fluid mechanics.

[48] H. Sohn, H. J. Lim, M. P. DeSimio, K. Brown, and M. Derriso. Nonlinear ultrasonic
wave modulation for online fatigue crack detection. J. Sound Vib., 333(5):1473–1484,
2014.

[49] B. Tripathi. Discontinuous Galerkin method for propagation of acoustical shock waves
in complex geometry. PhD thesis, 2015.

[50] B. B. Tripathi, A. Luca, S. Baskar, F. Coulouvrat, and R. Marchiano. Element centered
smooth artificial viscosity in discontinuous Galerkin method for propagation of acoustic
shock waves on unstructured meshes. J. Comput. Phys., 366:298–319, 2018.

[51] T. Tsuchiya and Y. Kagawa. A simulation study on nonlinear sound propagation by
finite element approach. Journal of the Acoustical Society of Japan (E), 13(4):223–230,
1992.

[52] P. J. Westervelt. Parametric acoustic array. J. Acoust. Soc. Am., 35(4):535–537, 1963.
E-mail address: paola.antonietti@polimi.it

E-mail address: ilario.mazzieri@polimi.it

E-mail address: muhr@ma.tum.de

E-mail address: vanja.nikolic@ru.nl

E-mail address: wohlmuth@ma.tum.de

paola.antonietti@polimi.it
ilario.mazzieri@polimi.it
mailto:muhr@ma.tum.de
mailto:vanja.nikolic@ru.nl
mailto:wohlmuth@ma.tum.de

	1. Introduction
	2. The continuous problem
	3. Assumptions and preliminaries
	3.1. Grid assumptions and preliminary estimates
	3.2. Interpolation bounds on polytopic meshes

	4. The DG approximation in space of the Westervelt equation
	5. Analysis of the linearized semi-discrete problem
	5.1. Existence and stability

	6. Error analysis of the linearization
	6.1. Error estimate in the energy norm

	7. Analysis of the nonlinear model
	8. Computational DG approach for nonlinear sound waves
	8.1. The matrix form of the semi-discrete problem
	8.2. Time integration

	9. Numerical results
	9.1. Test case 1: Exact solution known
	9.2. Test case 2: Exact solution unknown
	9.3. Test case 3: A three-dimensional example

	Acknowledgements
	References

