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Abstract

A second-order L-stable exponential time-differencing (ETD) method is developed by com-
bining an ETD scheme with approximating the matrix exponentials by rational functions
having real distinct poles (RDP), together with a dimensional splitting integrating factor
technique. A variety of non-linear reaction-diffusion equations in two and three dimensions
with either Dirichlet, Neumann, or periodic boundary conditions are solved with this scheme
and shown to outperform a variety of other second-order implicit-explicit schemes. An ad-
ditional performance boost is gained through further use of basic parallelization techniques.
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1. Introduction

Many applications, for example in biology [50–52], pattern formation [38], or medicine
[21, 59] can be modelled with a system of s time-dependent non-linear reaction-diffusion
equations in d dimensions given by

∂u

∂t
= D∆u + F(u) , x ∈ Ω ⊂ Rd , t ∈ (0, T ) (1)

with appropriate initial and boundary condition for the domain Ω and the time interval
(0, T ). The numerical computation of such systems in two or three dimensions is challeng-
ing due to its high dimensionality, coupling, stiffness of the reaction and diffusion terms,
and since the function F may be non-linear. Additionally, spurious oscillations in the ap-
proximate solution might occur if the initial data are non-smooth or are incompatible with
the boundary data.

Many algorithms have been proposed to solve such systems after discretization in space.
For example, linearly implicit methods [4, 33, 64], semi-implicit methods [12], projection
methods [22], stabilized explicit Runge-Kutta methods such as ROCK2 and ROCK4 [1,
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2], PIROCK [3], SERK, SERK2V2, and SERK2V3 [36, 37, 41, 42], its extrapolated vari-
ants [43–45], explicit Runge-Kutta-Chebyshev (RKC) [60], implicit-explicit Runge-Kutta-
Chebyshev (IRKC) [58] (one of many implicit-explicit methods (IMEX) [28,56]), factorized
Runge-Kutta-Chebyshev (FRKC) or Runge-Kutta with Gegenbauer polynomials [53, 54],
integration factor methods [66, 69] in combination with Krylov subspace methods [14, 39],
and exponential propagation iterative methods of Runge-Kutta type (EPIRK) [61] and its
variants such as IMEXP [40], to mention a few.

One important family to solve the problem at hand is exponential time differencing
(ETD), which uses the Duhamel principle and solves the resulting initial value problem
by approximating the integral appropriately [32, 46]. A class of ETD schemes based on
Runge-Kutta methods has been introduced by Cox and Matthews [17]. Since then, many
researchers have considered this scheme (see for example [19, 26, 27, 30, 32, 47]). However,
the challenge of how to effectively approximate the matrix exponentials remains. Kleefeld,
Khaliq, and Wade [31, 35] considered an ETD Crank-Nicolson (ETD-CN) scheme; that is,
the matrix exponential has been approximated through a second-order Padé-(1, 1) approx-
imation. Their fully discrete scheme is of second-order and highly efficient, but it is not
L-stable. Other schemes use Krylov subspace methods to approximate the matrix exponen-
tial [10] or use higher order Padé approximations [34].

To speed up computations and to decrease memory demand, various dimensional split-
ting techniques such as, Strang simple and Strang symmetric splitting, as well as an inte-
grating factor method have been considered by Asante-Asamani and Wade [8] for a variety
of examples with Dirichlet and Neumann boundary conditions in two dimensions as a com-
petitive alternative to the locally one-dimensional splitting of Bhatt and Khaliq [9]. It has
been observed empirically that the integrating factor approach outperforms other splitting
techniques.

An extension of the work for ETD-CN with Padé-(1, 1) is given by Yousuf, Khaliq, and
Kleefeld [67] using a Padé-(0, 2) approximation of the matrix exponential leading to a second-
order L-stable scheme. However, one has to use complex arithmetic in the implementation
due to the two complex-valued poles in the Padé approximation. To avoid this, one can
use a rational (non-Padé) approximation of second-order with real distinct poles (see [65]),
which has recently been applied by Asante-Asamani, Khaliq and Wade [7] to the second-
order ETD scheme, named hereafter ETD-RDP. It is shown that ETD-RDP is a competitive
alternative to BDF2 [64] and ETD-Padé-(0, 2) for a variety of examples with Dirichlet and
Neumann boundary conditions in two dimensions. Further, it has been remarked by the
authors that the ETD-RDP algorithm is easily parallelizable.

Contribution

In this work, we apply a splitting technique using an integrating factor (IF) approach to
the second-order L-stable ETD-RDP scheme, lifting the derivation from two dimensions to
d dimensions, which we call ETD-RDP-IF. We show that besides Dirichlet and Neumann
boundary conditions, also the periodic boundary condition case can be handled. Further,
the algorithm can deal with non-smooth boundary conditions as well as with mismatching
boundary conditions. Additionally, we explain how to solve the sparse linear systems in
higher dimensions efficiently using an extension of the Thomas algorithm for Dirichlet and
Neumann boundary conditions and using the Fourier transformation for periodic boundary
conditions. Further, we describe how to implement a parallelization strategy in Fortran, and
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show that we developed a second-order L-stable method that is able to outperform other
second-order IMEX schemes as well as ETD-RDP.

Organization of the paper

In Section 2, the mathematical model of a system consisting of s non-linear reaction-
diffusion equations is detailed. Section 3 illustrates how this system is discretized in d-
dimensional space. The dimensional splitting using the integrating factor approach is given
in Section 4. The discretization with respect to time using exponential time differencing is
described in Section 5. In Section 6, we develop the approximation of the matrix exponen-
tial. The implementation and parallelization of the fully discrete ETD-RDP-IF scheme is
given in Section 7. Extensive numerical results in two and three dimensions with Dirichlet,
Neumann, and periodic boundary conditions are given in Section 8, which show the second-
order accuracy and the efficiency of the new ETD-RDP-IF scheme. A short summary and
a conclusion together with an outlook for possible future research is given in Section 9.

2. Time-dependent non-linear reaction-diffusion equation

The mathematical model of a system of s time-dependent non-linear reaction-diffusion
equations in d dimensions is given as

∂u

∂t
= D∆u + F(u) , x ∈ Ω ⊂ Rd , t ∈ (0, T ) (2)

where the vector-valued concentration function u = u(x, t) = (u1(x, t), . . . , us(x, t))
> de-

pends on the spatial variable x = (x1, . . . , xd) ∈ Ω and the temporal variable t ∈ (0, T ).
Here, Ω ⊂ Rd is a bounded domain with Lipschitz continuous boundary. Each compo-
nent of the vector-valued function F(u) = (f1(x), . . . , fs(x))> is assumed to be a suf-
ficiently smooth and bounded function which may be non-linear. The diagonal matrix
D = diag(D1, . . . , Ds) ∈ Rs×s contains given constant diffusion coefficients and ∆u is the
d-dimensional Laplacian taken component-wise. The boundary conditions on ∂Ω are either
homogeneous Dirichlet u(· , t) = 0, homogeneous Neumann ∂

∂νu(· , t) = 0 where ν denotes
the exterior normal of Ω, or periodic boundary conditions. The initial condition is given by
u(x, 0) = u0(x) for x ∈ Ω.

3. Discretizing in space

As a first step, we discretize the spatial domain assuming an equidistant grid size h
along all d directions. The parameter p denotes the number of spatial grid points along each
direction. Then, the second-order derivatives within the expression −D∆u are discretized
by centered differences with second-order accuracy. As a result, one obtains for (2) the
system of non-linear ordinary differential equations

∂U

∂t
+ AU = f(U) , U(0) = U0 (3)

where U is a vector of size m = s· pd, A is a matrix of size s· pd times s· pd, f(U) is a
vector-valued function of size s· pd (F(u) evaluated at the pd spatial points), and the initial
condition U0 is a vector of size s· pd (u0(x) evaluated at the pd spatial points). The entries
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of the matrix A depend on the particular boundary condition. Three cases are given in the
following two examples.

Example 1. The one-dimensional approximation of the −∆u is given by

Bp = − 1

h2


−2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
1 −2

 ∈ Rp×p , h =
1

p+ 1
,

Bp = − 1

h2


−2 2

1 −2 1
. . .

. . .
. . .

1 −2 1
2 −2

 ∈ Rp×p , h =
1

p− 1
,

Bp = − 1

h2


−2 1 1

1 −2 1
. . .

. . .
. . .

1 −2 1
1 1 −2

 ∈ Rp×p , h =
1

p
,

for homogeneous Dirichlet, homogeneous Neumann, and periodic boundary conditions, re-
spectively. Hence, in one dimension A in (3) approximating −D∆u is given by A = A1

with A1 = Bp ⊗D ∈ R(s·p)×(s·p). Here, ⊗ denotes the Kronecker product (see [63] for the
definition and its properties).

Example 2. In two dimensions, A in (3) is given by A = A1 + A2 with

A1 = Ip ⊗Bp ⊗D ∈ R(s·p2)×(s·p2) ,

A2 = Bp ⊗ Ip ⊗D ∈ R(s·p2)×(s·p2) ,

where Ip denotes the identity matrix of size p (see also pp. 1345–1346 in [8] for the Dirichlet
and Neumann case). The extension to three dimensions reads A = A1 + A2 + A3 with

A1 = Ip ⊗ Ip ⊗Bp ⊗D ∈ R(s·p3)×(s·p3) ,

A2 = Ip ⊗Bp ⊗ Ip ⊗D ∈ R(s·p3)×(s·p3) ,

A3 = Bp ⊗ Ip ⊗ Ip ⊗D ∈ R(s·p3)×(s·p3) . (4)

Note that the extension to four dimensions or even higher follows an obvious pattern. Pre-
cisely, we have A =

∑d
i=1 Ai with

Ai = Ip ⊗ · · · ⊗ Ip︸ ︷︷ ︸
(d−i)times

⊗ Bp︸︷︷︸
pos d−i+1

⊗ Ip ⊗ · · · ⊗ Ip︸ ︷︷ ︸
(i−1)times

⊗D ∈ R(s·pd)×(s·pd) . (5)
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4. Dimensional splitting

In this section, we explain how to apply a dimensional splitting technique to solve (3).
Precisely, we here use A = A1 + A2 + A3. Consider a new time-dependent function of the
form V = eA1tU (here the term eA1t is called an integrating factor). The matrix exponential
is described in [49]. Then, the derivative with respect to time t of V = eA1tU is given by

Vt = eA1tUt + A1eA1tU (6)

recalling that U depends on t as well. Inserting (3) into (6) yields

Vt = eA1t (f(U)−AU) + A1eA1tU

= eA1tf(U)− eA1tAU + A1eA1tU

= eA1tf(U)−AeA1tU + A1eA1tU

= eA1tf(U)− (A2 + A3) eA1tU

= eA1tf(e−A1tV)− (A2 + A3) V

where we used in the third step that A and A1 commute, hence it follows that A and eA1t

commute. This is proved below. Hence, we obtain

Vt + (A2 + A3) V = g(V) , V(0) = U0 (7)

with g(V) = eA1tf(e−A1tV) and the initial condition V(0) = eA10U0 = ImU0 = U0 with
m = s· p3. Similarly, we now define W = eA2tV, compute Wt, insert Vt from (7) into Wt,
and use the fact that eA2 commutes with A2 + A3 which is true since A2 and A2 + A3

commute as shown below. We obtain

Wt + A3W = h(W) , W(0) = U0 , (8)

where h(W) = eA2tg(e−A2tW). Once W(t) is found, we can obtain V(t) using the formula
V(t) = e−A2tW(t) and U(t) via U(t) = e−A1tV(t). Hence, the original three-dimensional
problem is converted to a problem involving only one-dimensional components.

Remark 1. The solution of (3) with A =
∑d
i=1 Ai where Ai is given by (5) can be obtained

via splitting through

Zt + AdZ = k(Z) , Z(0) = U0 ,

where k(Z) =
(
eAd−1t • . . . • eA1t

)
F(
(
e−A1t • . . . • e−Ad−1t

)
Z), where • denotes matrix

multiplication (whenever needed for clarity). Then, the function U(t) is given by the ex-
pression U(t) =

(
e−A1t • . . . • e−Ad−1t

)
Z(t) where it is assumed that the operators commute

accordingly. We will see later that this is the case for our examples.

All that is left to show is that A and A1 commute as well as that A2 and A2 + A3

commute for the three-dimensional case.

Lemma 1. Let A = A1 + A2 + A3, where Ai is defined in (4). Then A and A1 commute.
Also A2 and A2 + A3 commute.

Proof. It suffices to show that A2A1 = A1A2, A1A3 = A3A1, and A2A3 = A3A2. Using
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the product property of the Kronecker product, we obtain

A1A2 = (Ip ⊗ Ip ⊗Bp ⊗D)(Ip ⊗Bp ⊗ Ip ⊗D)

= IpIp ⊗ IpBp ⊗BpIp ⊗D2

= Ip ⊗Bp ⊗Bp ⊗D2

and similarly

A2A1 = (Ip ⊗Bp ⊗ Ip ⊗D)(Ip ⊗ Ip ⊗Bp ⊗D)

= IpIp ⊗ IpBp ⊗BpIp ⊗D2

= Ip ⊗Bp ⊗Bp ⊗D2 .

We also have

A1A3 = (Ip ⊗ Ip ⊗Bp ⊗D)(Bp ⊗ Ip ⊗ Ip ⊗D)

= Bp ⊗ Ip ⊗Bp ⊗D2

A3A1 = (Bp ⊗ Ip ⊗ Ip ⊗D)(Ip ⊗ Ip ⊗Bp ⊗D)

= Bp ⊗ Ip ⊗Bp ⊗D2

A2A3 = (Ip ⊗Bp ⊗ Ip ⊗D)(Bp ⊗ Ip ⊗ Ip ⊗D)

= Bp ⊗Bp ⊗ Ip ⊗D2

A3A2 = (Bp ⊗ Ip ⊗ Ip ⊗D)(Ip ⊗Bp ⊗ Ip ⊗D)

= Bp ⊗Bp ⊗ Ip ⊗D2 .

Lemma 2. For any i, j ∈ {1, 2 . . . , d}, the matrices Ai commute with Aj, where they are
given in (5).

Proof. We have on the one hand

AiAj

=

Ip ⊗ · · · ⊗ Ip︸ ︷︷ ︸
(d−i)times

⊗ Bp︸︷︷︸
pos d−i+1

⊗ Ip ⊗ · · · ⊗ Ip︸ ︷︷ ︸
(i−1)times

⊗D


•

Ip ⊗ · · · ⊗ Ip︸ ︷︷ ︸
(d−j)times

⊗ Bp︸︷︷︸
pos d−j+1

⊗ Ip ⊗ · · · ⊗ Ip︸ ︷︷ ︸
(j−1)times

⊗D


= Ip ⊗ · · · ⊗ Ip ⊗ Bp︸︷︷︸

pos d−min(i,j)+1

⊗Ip ⊗ · · · ⊗ Ip ⊗ Bp︸︷︷︸
pos d−max(i,j)+1

⊗Ip ⊗ · · · ⊗ Ip ⊗D2

= Ip ⊗ · · · ⊗ Ip ⊗ Bp︸︷︷︸
pos d−min(j,i)+1

⊗Ip ⊗ · · · ⊗ Ip ⊗ Bp︸︷︷︸
pos d−max(j,i)+1

⊗Ip ⊗ · · · ⊗ Ip ⊗D2
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and on the other hand

AjAi

=

Ip ⊗ · · · ⊗ Ip︸ ︷︷ ︸
(d−j)times

⊗ Bp︸︷︷︸
pos d−j+1

⊗ Ip ⊗ · · · ⊗ Ip︸ ︷︷ ︸
(j−1)times

⊗D


•

Ip ⊗ · · · ⊗ Ip︸ ︷︷ ︸
(d−i)times

⊗ Bp︸︷︷︸
pos d−i+1

⊗ Ip ⊗ · · · ⊗ Ip︸ ︷︷ ︸
(i−1)times

⊗D


= Ip ⊗ · · · ⊗ Ip ⊗ Bp︸︷︷︸

pos d−min(j,i)+1

⊗Ip ⊗ · · · ⊗ Ip ⊗ Bp︸︷︷︸
pos d−max(j,i)+1

⊗Ip ⊗ · · · ⊗ Ip ⊗D2

which finishes the proof.

5. Discretization in time

What remains is to discretize (8) with respect to time. We now focus on the three-
dimensional case, but the results easily extend to higher dimensions. The case for two
or even one-dimension is then a special case of the results for the three-dimensional case.
Consider solving (8) using Duhamel’s principle (see Theorem 2.5.4 in [70]); that is

W(t) = e−A3tW(0) +

∫ t

0

e−A3(t−s)h(W(τ)) ds

which satisfies the semi-discrete equation in the interval [tn, tn+1] with k = tn+1 − tn the
positive time step. Thus,

W(tn+1) = e−kA3W(tn) +

∫ tn+1

tn

e−A3(tn+1−s)h(W(s)) ds .

and, upon change of variables s = tn + kτ for τ ∈ [0, 1], we have

W(tn+1) = e−kA3W(tn) + k

∫ 1

0

e−kA3(1−τ)h(W(tn + kτ)) dτ . (9)

Set ĥ(τ) = h(W(tn+kτ)) and note that the linear approximation of the non-linear function

ĥ(τ) is given by ĥ(0) + (ĥ(1)− ĥ(0))τ for τ ∈ [0, 1]. Substituting this linear approximation
into (9) yields

W(tn+1) = e−kA3W(tn) + k

∫ 1

0

e−kA3(1−τ) dτ ĥ(0) + k

∫ 1

0

e−kA3(1−τ)τ dτ(ĥ(1)− ĥ(0)).

(10)
Now, we rewrite the integrals in (10) using the following lemma.
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Lemma 3. Let A be an arbitrary non-singular square matrix, then

k

∫ 1

0

e−kA(1−τ) dτ = A−1(I− e−kA) , (11)

k

∫ 1

0

e−kA(1−τ)τ dτ = k−1A−2(kA− I + e−kA) . (12)

Proof. We have

d

dτ

(
A−1e−(1−τ)kA

)
= kAA−1e−(1−τ)kA = ke−(1−τ)kA

and therefore

k

∫ 1

0

e−kA(1−τ) dτ =

∫ 1

0

d

dτ

(
A−1e−(1−τ)kA dτ

)
= A−1(I− e−kA).

To show equation (12), we use the change of variable s = (1− τ)k, which yields

k

∫ 1

0

e−kA(1−τ)τ dτ =

∫ k

0

e−sA(1− k−1s) ds =

∫ k

0

e−sA ds− k−1
∫ k

0

e−sAs ds . (13)

The first integral of the right-hand side of (13) can be transformed to∫ k

0

e−sA ds = −
∫ k

0

d

ds
(A−1e−sA) ds = A−1(I− e−kA)

using
d

ds
(A−1e−sA) = −A−1Ae−sA = −e−sA .

We have
d

ds
(k−1sA−1e−sA) = k−1A−1e−sA − k−1e−sAs

and hence, we obtain for the second integral of the right-hand side of (13)

k−1
∫ k

0

e−sAs ds = k−1
∫ k

0

A−1e−sA ds−
∫ k

0

d

ds
(k−1sA−1e−sA) ds

= k−1A−2
(
I− e−kA

)
−A−1e−kA

= k−1A−2
(
I− e−kA − kAe−kA

)
.

Thus, equation (13) can be written as

k

∫ 1

0

e−kA(1−τ)τ dτ = A−1(I− e−kA)− k−1A−2
(
I− e−kA − kAe−kA

)
= k−1A−2

(
kA− I + e−kA

)
.
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Applying the results of Lemma 3 to (10), we obtain

W(tn+1) = e−kA3W(tn) + A−13 (Im − e−kA3)h(W(tn))

+ k−1A−23 (kA3 − Im + e−kA3)(h(W(tn+1))− h(W(tn))) (14)

which we write as

Wn+1 = e−kA3Wn + A−13 (Im − e−kA3)h(Wn)

+ k−1A−23 (kA3 − Im + e−kA3)(h(Wn+1)− h(Wn)) . (15)

Note, however that the current scheme (15) is fully implicit and hence one would need to
employ Newton-type solvers. We therefore use the (easy to derive) first order approximation
of (15) given by

W∗
n+1 = e−kA3Wn + A−13 (Im − e−kA3)h(Wn) (16)

known as ETD1 (exponential time differencing of order one which is the same as the IMEX
backward Euler method). Next, we set h(Wn+1) = h(W∗

n+1). Hence, our second-order
semi-discrete exponential time differencing (ETD) scheme is (see also p. 25 in [7])

Wn+1 = e−kA3Wn + A−13 (Im − e−kA3)h(Wn)

+ k−1A−23 (kA3 − Im + e−kA3)(h(W∗
n+1)− h(Wn))

W∗
n+1 = e−kA3Wn + A−13 (Im − e−kA3)h(Wn) . (17)

Finally, the unwinding back to U is needed. However, we explain this later, since we first
concentrate on the approximation of the matrix exponential.

6. Approximating the matrix exponential

The final step is to approximate the matrix exponential. There are several ways to
achieve this (see [35,48,49,67]). However, we focus on the second-order L-acceptable rational
approximation with simple real distinct poles (RDP) originally proposed in [65] and used
in [6, 7] to derive the ETD-RDP scheme. A second-order approximation of the matrix
exponential using rational approximation [7, p. 26] is given by

RRDP(kA3) =

(
Im −

5k

12
A3

)[(
Im +

k

3
A3

)(
Im +

k

4
A3

)]−1
≈ e−kA3 (18)

and the Padé-(0, 1) first-order approximation is given by

R01(kA3) = (Im + kA3)
−1 ≈ e−kA3 . (19)

Using (18) and (19) for (17) yields

Wn+1 = RRDP(kA3)Wn + A−13 (Im −RRDP(kA3))h(Wn)

+ k−1A−23 (kA3 − Im + RRDP(kA3))(h(W∗
n+1)− h(Wn))

W∗
n+1 = R01(kA3)Wn + A−13 (Im −R01(kA3))h(Wn) . (20)

9



The first-order predictor W∗
n+1 can be simplified to

W∗
n+1 = R01(kA3)Wn + A−13

(
R01(kA3)−1R01(kA3)−R01(kA3)

)
h(Wn)

= R01(kA3)Wn + A−13 (Im + kA3 − Im)R01(kA3)h(Wn)

= R01(kA3) (Wn + kh(Wn))

= (Im + kA3)
−1

(Wn + kh(Wn)) .

Next, we focus on the corrector Wn+1. We have

A−13 (Im −RRDP(kA3))

= A−13

(
Im −

(
Im −

5k

12
A3

)[(
Im +

k

3
A3

)(
Im +

k

4
A3

)]−1)

= A−13

((
Im +

k

3
A3

)(
Im +

k

4
A3

)
−
(

Im −
5k

12
A3

))
•

(
Im +

k

4
A3

)−1(
Im +

k

3
A3

)−1
= A−13

(
kA3 +

k2

12
A2

3

)(
Im +

k

4
A3

)−1(
Im +

k

3
A3

)−1
= k

(
Im +

k

12
A3

)(
Im +

k

4
A3

)−1(
Im +

k

3
A3

)−1
and likewise

k−1A−23 (kA3 − Im + RRDP(kA3))

= k−1A−23

[
kA3

(
Im +

k

3
A3

)(
Im +

k

4
A3

)
−
(

Im +
k

3
A3

)(
Im +

k

4
A3

)
+

(
Im −

5k

12
A3

)](
Im +

k

4
A3

)−1(
Im +

k

3
A3

)−1
= k−1A−23

[
6k2

12
A2

3 +
k3

12
A3

3

](
Im +

k

4
A3

)−1(
Im +

k

3
A3

)−1
=

k

2

(
Im +

k

6
A3

)(
Im +

k

4
A3

)−1(
Im +

k

3
A3

)−1
.

The corrector can now be written as

Wn+1 =

(
Im −

5k

12
A3

)(
Im +

k

4
A3

)−1(
Im +

k

3
A3

)−1
Wn

+
k

2

(
Im +

k

4
A3

)−1(
Im +

k

3
A3

)−1
h(Wn)

+
k

2

(
Im +

k

6
A3

)(
Im +

k

4
A3

)−1(
Im +

k

3
A3

)−1
h(W∗

n+1) .
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These three terms can be nicely rewritten using the following three partial fraction decom-
positions (cf. [6, p. 32] for the details)(

Im −
5k

12
A3

)
Sm,kTm,k = 9Tm,k − 8Sm,k

Sm,kTm,k = 4Tm,k − 3Sm,k(
Im +

k

6
A3

)
Sm,kTm,k = 2Tm,k − 1Sm,k ,

where we used the abbreviations

Sm,k =

(
Im +

k

4
A3

)−1
Tm,k =

(
Im +

k

3
A3

)−1
to shorten the notation for these decompositions. We have

Wn+1 = (9Tm,k − 8Sm,k) Wn +
k

2
(4Tm,k − 3Sm,k) h(Wn)

+
k

2
(2Tm,k − Sm,k) h(W∗

n+1)

which can be written as

Wn+1 = Tm,k

(
9Wn + 2kh(Wn) + kh(W∗

n+1)
)

− Sm,k

(
8Wn +

3k

2
h(Wn) +

k

2
h(W∗

n+1)

)
Hence, the fully discrete ETD-RDP scheme is given by

Wn+1 =

(
Im +

k

3
A3

)−1 [
9Wn + 2kh(Wn) + kh(W∗

n+1)
]

−
(

Im +
k

4
A3

)−1 [
8Wn +

3k

2
h(Wn) +

k

2
h(W∗

n+1)

]
W∗

n+1 = (Im + kA3)
−1

(Wn + kh(Wn)) . (21)

Note that the stability regions of this second-order L-stable scheme (see [6, Theorems 4.0.2–
4.0.4] for the detailed proof of second order accuracy and [7, p. 26] for the L-stability,
respectively) are given in [6, Figure 2.2] and compared against ETD-CN, ETD-Padé-(0, 2),
and implicit-explicit Adams-Moulton/Bashforth scheme.

Now, we substitute W = eA2tV and h(W) = eA2tg(V), which means we have the
expressions Wn = eA2nkVn, Wn+1 = eA2nkeA2kVn+1, h(Wn) = eA2nkg(Vn), and further
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h(Wn+1) = eA2nkeA2kg(Vn+1). Then, (21) can be written as

Vn+1 =

(
Im +

k

3
A3

)−1 [
e−A2k {9Vn + 2kh(Vn)}+ kg(V∗n+1)

]
−

(
Im +

k

4
A3

)−1 [
e−A2k

{
8Vn +

3k

2
h(Vn)

}
+
k

2
h(V∗n+1)

]
V∗n+1 = (Im + kA3)

−1
e−A2k (Vn + kh(Vn)) .

Now, we approximate e−A2k in the corrector with RRDP and in the predictor with R01.
This gives

Vn+1 =

(
Im +

k

3
A3

)−1 [{
9

(
Im +

k

3
A2

)−1
− 8

(
Im +

k

4
A2

)−1}
• {9Vn + 2kg(Vn)}+ kg(V∗n+1)

]
−

(
Im +

k

4
A3

)−1 [{
9

(
Im +

k

3
A2

)−1
− 8

(
Im +

k

4
A2

)−1}

•
{

8Vn +
3k

2
g(Vn)

}
+
k

2
g(V∗n+1)

]
V∗n+1 = (Im + kA3)

−1
(Im + kA2)

−1
(Vn + kg(Vn)) . (22)

Next, we recall the substitution V = eA1tU and g(V) = eA1tf(U), which means we
have Vn = eA1nkUn, Vn+1 = eA1nkeA1kUn+1, g(Vn) = eA1nkf(Un), and g(Vn+1) =
eA1nkeA1kf(Un+1). We approximate e−A1k in the corrector with RRDP and in the predic-
tor with R01, which finally yields the fully discrete iterative scheme given in the following
frame.

ETD-RDP-IF scheme in three dimensions
For n = 0, 1, 2, . . . , T/k − 1 compute

Un+1 =

(
Im +

k

3
A3

)−1 [{
9

(
Im +

k

3
A2

)−1
− 8

(
Im +

k

4
A2

)−1}

•

{
9

(
Im +

k

3
A1

)−1
− 8

(
Im +

k

4
A1

)−1}
{9Un + 2kf(Un)}+ kf(U∗n+1)

]

−
(

Im +
k

4
A3

)−1 [{
9

(
Im +

k

3
A2

)−1
− 8

(
Im +

k

4
A2

)−1}

•

{
9

(
Im +

k

3
A1

)−1
− 8

(
Im +

k

4
A1

)−1}{
8Un +

3k

2
f(Un)

}
+
k

2
f(U∗n+1)

]
U∗n+1 = (Im + kA3)

−1
(Im + kA2)

−1
(Im + kA1)

−1
(Un + kf(Un))

(23)

with U0 = U(0).

This procedure easily extends to arbitrary dimensions d. We derive the fully discrete
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iterative ETD-RDP-IF scheme in d dimensions. It is given in the following frame.

ETD-RDP-IF scheme in d dimensions
For n = 0, 1, 2, . . . , T/k − 1 compute

Un+1 =

(
Im +

k

3
Ad

)−1 [{
9

(
Im +

k

3
Ad−1

)−1
− 8

(
Im +

k

4
Ad−1

)−1}
• . . .

•

{
9

(
Im +

k

3
A1

)−1
− 8

(
Im +

k

4
A1

)−1}
{9Un + 2kf(Un)}+ kf(U∗n+1)

]

−
(

Im +
k

4
Ad

)−1 [{
9

(
Im +

k

3
Ad−1

)−1
− 8

(
Im +

k

4
Ad−1

)−1}
• . . .

•

{
9

(
Im +

k

3
A1

)−1
− 8

(
Im +

k

4
A1

)−1}{
8Un +

3k

2
f(Un)

}
+
k

2
f(U∗n+1)

]
U∗n+1 = (Im + kAd)

−1 • . . . • (Im + kA1)
−1

(Un + kf(Un)) .

with U0 = U(0).

7. Implementation and parallelization of the fully discrete scheme

An implementation of this scheme given by (23) in parallel utilizing only three threads
for the three-dimensional case is illustrated in the flow chart given in Figure 1. One could
theoretically also use five threads to speed up the computations. However, we use for the
numerical results a computer which has at most four threads as explained in the next section.
The two-dimensional case is illustrated in Figure 2 and can be derived using the system given
in (22) replacing W with U, g with f , A2 with A1 and A3 with A2.

The most time consuming part is the numerical solution of the large linear systems of
the form (Im + k

γAi)x = b with γ ∈ {1, 3, 4} and Ai given by (4) for the three-dimensional

case and (5) for the general case. We focus our explanations directly on the matrices
Ai ∈ Rm×m with m = s· pd. These are sparse having only a few diagonals occupied with
non-zero elements. Hence, only those diagonals have to be stored. In fact, it is easy to
see that the matrix A1 has three diagonals for both the Dirichlet and Neumann boundary
condition case. Precisely, it has a main diagonal (the location is zero) as well as an upper
and lower diagonal located at ±s elements apart from the main diagonal, written compactly
here as A1 = sparse(T, [−s, 0, s]) where the matrix T contains the three vectors `(1) =
(0, . . . , 0, `s+1, . . . , `m)>, d(1) = (d1, . . . , ds)

>, and u(1) = (u1, . . . , um−s, 0, . . . , 0)> all of
size s· p3 padded with zeros accordingly. Similarly, the matrices A2 and A3 for the Dirichlet
and Neumann boundary case are sparse and of the form A2 = sparse(T, [−s· p, 0, s· p])
and A3 = sparse(T, [−s· p2, 0, s· p2]), respectively. For the periodic boundary condition
case, we have sparse matrices with five diagonals of the form A1 = sparse(T, [−s· (p −
1),−s, 0, s, s· (p − 1)]) with T = [`(2), `(1), d(1), u(1), u(2)]. Similarly, we have the matrix
A2 = sparse(T, [−s· p(p−1),−s· p, 0, s· p, s· p(p−1)]), and finally A3 = sparse(T, [−s· p2(p−
1),−s· p2, 0, s· p2, s· p2(p− 1)]).

The band structure for the d-dimensional case is now obvious. For i ∈ {1, . . . , d}, we
have Ai = sparse(T, [−s· pi−1, 0, s· pi−1]) for the Dirichlet and Neumann boundary case and
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1st thread 2nd thread 3rd thread

f(Un)

w∗ = Un + kf(Un)

(Im + k
3A1)a1 = Un (Im + k

4A1)b1 = Un (Im + kA1)w∗∗ = w∗

c1 = 9a1 − 8b1

(Im + k
3A1)a2 = f(Un) (Im + k

4A1)b2 = f(Un) (Im + kA2)w∗∗∗ = w∗∗

c2 = 9a2 − 8b2

(Im + k
3A2)a3 = c1 (Im + k

4A2)b3 = c1 (Im + kA3)U∗n+1 = w∗∗∗

c3 = 9a3 − 8b3

(Im + k
3A2)a4 = c2 (Im + k

4A2)b4 = c2

c4 = 9a4 − 8b4

f∗ = f(U∗n+1)

f1 = 9c3 + 2kc4 + kf∗

f2 = −8c3 + 3
2kc4 + k

2f
∗

(Im + k
3A3)d1 = f1 (Im + k

4A3)d2 = f2

Un+1 = d1 + d2

T
im

e

Figure 1: Flow chart for the implementation of the ETD-RDP-IF scheme in parallel using three threads for
the three dimensional case.

Ai = sparse(T, [−s· pi−1(p−1),−s· pi−1, 0, s· pi−1, s· pi−1(p−1)]) for the periodic boundary
case.

A straight-forward LU-decomposition of the matrices Im+ k
γA1, Im+ k

γA2, and Im+ k
γA3

without pivoting gives lower and upper matrices with the same structure without any fill-ins,
since the matrices are all diagonal dominant if k is small enough. Hence, we can adapt the
well-known Thomas algorithm to solve tridiagonal systems of the form sparse(T, [−1, 0, 1])
(see for example [16]) to derive the following algorithm in order to solve systems of the form
sparse(T, [−w, 0, w]).

Precisely, we have to compute for the sparse matrices from above with given diagonals
`(1), d(1), and u(1) with offset w and given right-hand side b the following steps. For i =

1, . . . , w, we compute αi = u
(1)
i /d

(1)
i and βi = bi/d

(1)
i as well as for i = w + 1, . . . ,m −

w we have αi = u
(1)
i /{d(1)i − αi−w· l(1)i } and for i = w + 1, . . . ,m we have βi = {bi −

βi−w· l(1)i }/{d
(1)
i − αi−w· l(1)i }. Then, we assign xm−i+1 = βm−i+1 for i = 1, . . . , w and

compute xi = βi − αi·xi+w for the decreasing i = m− w, . . . , 1.
Now, we focus on the periodic boundary case. As shown above, the matrices have five
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1st thread 2nd thread 3rd thread

f(Un)

w∗ = Un + kf(Un)

(Im + k
3A1)a1 = Un (Im + k

4A1)b1 = Un (Im + kA1)w∗∗ = w∗

c1 = 9a1 − 8b1

(Im + k
3A1)a2 = f(Un) (Im + k

4A1)b2 = f(Un) (Im + kA2)U∗n+1 = w∗∗

c2 = 9a2 − 8b2

f∗ = f(U∗n+1)

f1 = 9c1 + 2kc2 + kf∗

f2 = −8c1 − 3
2kc2 −

k
2f
∗

(Im + k
3A2)d1 = f1 (Im + k

4A2)d2 = f2

Un+1 = d1 + d2

T
im

e

Figure 2: Flow chart for the implementation of the ETD-RDP-IF scheme in parallel using three threads for
the two dimensional case.

diagonals. If the diagonals have the same distance from each other, one could derive the
factorization explicitly, and use forward and backward substitution similar to the variant
of the Thomas algorithm explained before. However, this is not the case here. Using an
LU-decomposition shows that a few fill-ins are generated and therefore a variant of the
Thomas algorithm is not applicable. One could use the well-known Sherman-Morrison-
Woodbury formula (see [24]), since the periodic case in 1D with s = 1 is a rank-2 update
of the Dirichlet case. Hence, in this special situation, it is possible to obtain an algorithm
to compute explicitely (Im + k

γA1) using the variant of the Thomas algorithm as explained

before. But the extension to 2D already gives a rank-2p update (that means one has to solve
a linear systems with 2p right hand sides using the variant of the Thomas algorithm). The
situation gets even more complicated considering (Im+ k

γA2) in 2D or in higher dimensions
with s > 1.

If we consider s = 1 and d = 2, then it is easy to see that (Im + k
γA1) is a diagonal

block matrix, where each block is a cyclic Toeplitz matrix. Likewise, (Im + k
γA2) is a cyclic

Toeplitz matrix. That means, we can apply the Fourier transformation to efficiently solve
the linear system. Precisely, if a is the first colum of a cyclic Toeplitz matrix, then it holds
(Fma)· (Fmx) = Fmb and hence x is given by x = F−1m ((Fmb)./(Fma)) (see for example
[13]). Here, ./ means component-wise division. This is faster in computation than using the
variant of the Thomas algorithm after applying the Sherman-Morrison-Woodbury formula.
Likewise, we have for s = 1 and d = 3 that (Im + k

γA1) and (Im + k
γA2) are cyclic block

Toeplitz matrices and (Im + k
γA3) is a cyclic Toeplitz matrix.

Remark 2. Again, we would like to stress the fact that we never store the complete matrices
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in memory, but instead only the elements from the three or five diagonals depending on the
problem at hand. The solution of the linear systems for the Dirichlet and Neumann boundary
case can be directly obtained through the use of a generalization of the Thomas algorithm
taking a serious advantage of the dimensional splitting altogether. Hence, we can avoid to
solve the sparse linear systems iteratively through Jacobi, Gauß-Seidel or Krylov methods.
However, the situation is different for the periodic boundary case in the general setting. For
the special case s = 1, we use the Fourier transform to efficiently solve the sparse linear
system instead of applying the Sherman-Morrison-Woodbury formula and solving directly by
a variant of the Thomas algorithm.

8. Numerical results and comparison

In this section, numerical results are presented for a variety of examples both in two
and three dimensions and compared with existing methods. All numerical results are per-
formed on a PC equipped with four Intel cores (i7-4790 CPU @ 3.60GHz) on a socket each
of which can have two threads (architecture: x86 64, CPU operation modes: 32-bit and
64-bit, and byte order: little endian). The machine has 32GB of memory. We use the gfor-
tran Fortran compiler gcc version 7.4.0 on SUSE Linux (version 15.1) with the optimization
option -O3 -march=native and the OpenMP (version 4.5) option -fopen mp and the Mat-
lab version R2018a. More information of the mentioned compiler, software, and operation
system can be obtained at the following links: https://www.intel.de https://gcc.gnu.org
https://www.suse.com https://www.openmp.org https://de.mathworks.com Additionally,
we used the Fortran library FFTPACK5.1 for the fast Fourier transformation available
under https://people.sc.fsu.edu/∼jburkardt/f77 src/fftpack5.1/fftpack5.1.html

8.1. Enzyme kinetics of Michaelis-Menten type

The enzyme kinetics of Michaelis-Menten type reaction-diffusion equation in one dimen-
sion has been considered in [15] and since then researchers have considered it in higher
dimensions as a testing scenario (see for example [9]). It is of the form

∂u

∂t
= γ∆u− u

1 + u

where the positive constant γ is given. The domain Ω is assumed to be a unit square
and the time interval is [0, 1]. The initial condition is prescribed to be constant one and
the boundary condition is assumed to be homogeneous Dirichlet. Solving this problem
numerically is known to be challenging due to the discontinuity of the initial and boundary
conditions as it can cause spurious oscillations in the solution (cf. [9]). Clearly, the problem
at hand fits into the format (2) with s = 1, D = γ, and f(u) = −u/(1 + u).

First, we show in Table 1 that the new method ETD-RDP-IF is indeed second-order
as ETD-RDP without splitting (see [7] for ETD-RDP). We use D = 0.2, fix h quite small
as 0.0125, and vary k from 0.05 to 0.00625 to compute the error ε(k) measured in the L∞

norm and the estimated order of convergence EOC = log(ε(k)/ε(k/2))/ log(2) for the final
time T = 1. Additionally, we include the CPU times. As we see in Table 1, we obtain
a second-order convergence rate with comparable errors for both methods. Above all, we
notice a much better performance of the ETD-RDP-IF compared to ETD-RDP. We obtain
a speed-up factor of 20.
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k ε(k)ETD-RDP EOC CPU Time ε(k)ETD-RDP-IF EOC CPU time
0.05000 5.3337× 10−3 0.38305 7.1838× 10−3 0.02738
0.02500 1.5935× 10−3 1.74 0.76822 1.5829× 10−3 2.18 0.04211
0.01250 4.3420× 10−4 1.88 1.51854 3.6926× 10−4 2.10 0.07334
0.00625 1.1356× 10−4 1.93 3.02891 8.8718× 10−5 2.06 0.13775

Table 1: Estimated order of convergence EOC for both the ETD-RDP and ETD-RDP-IF for the enzyme
kinetics example using the parameters D = 0.2, h = 0.0125, T = 1 within the unit square. Additionally, the
CPU times in seconds of the Matlab program are listed.

Next, we show in Figure 3 the efficiency of the new method ETD-RDP-IF compared
with other second-order methods such as ETD-RDP, IMEX-BDF2, IMEX-TR, and IMEX-
Adams2 (all methods are implemented in Matlab and run serial).
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Figure 3: Log-Log efficiency plot comparing ETD-RDP and ETD-RDP-IF with different second-order IMEX
schemes implemented in Matlab running serial for the enzyme kinetics example using the parameters D = 0.2
and T = 1 within the unit square.

As we see in Figure 3, the ETD-RDP method has a comparable efficiency as the different
second-order IMEX schemes for this problem. However, the application of dimensional
splitting outperforms the IMEX schemes. Hence, the ETD-RDP-IF is the most efficient
method for this enzyme kinetics example.

Note also that we tried other splitting techniques for the enzyme kinetics example, such
as Strang simple splitting and Strang symmetric splitting (see [6]). It turns out that the
integrating factor outperforms the other two splitting techniques (as this was also the case
in [8]).

Now, we show in Table 2 the performance of the ETD-RDP-IF method implemented
in Matlab in comparison with the Fortran implementation without and with parallelization
for a variety of parameter choices for h and k using the parameters D = 0.2 and T = 1.
Although the algorithm ETD-RDP-IF is already very efficient in serial compared to other
methods, it can be greatly improved first through conversion to Fortran and then through
parallelization. We obtain a speed-up factor of two. Note that we list the timings of the
complete program, i.e. the preparation of matrices (allocation, initialization, etc.) and the
timing of the ETD-RDP-IF algorithm.

17



k = h Matlab Fortran (1 thread) Fortran (3 threads)
1/100 0.16 0.14 0.06
1/200 1.20 1.19 0.48
1/400 9.76 9.87 4.54
1/800 83.26 73.80 35.81

Table 2: CPU times in seconds for the ETD-RDP-IF method implemented in Matlab and Fortran (serial
and parallelized version) for the enzyme kinetics example using the parameter D = 0.2 and T = 1 within
the unit square.

Note that one could further increase the performance of the Fortran program by using
floating point arithmetic with single precision instead of double precision as used above.
Using three threads and single precision arithmetic within the Fortran program, we obtain
the timings 0.04, 0.33, 2.76, and 23.65 seconds, respectively. This gives a total speed-up
factor of four compared to the Matlab implementation.

8.2. The Brusselator system

In this section, we consider the two- and three-dimensional generalization of the one-
dimensional reaction-diffusion Brusselator system. For more explanations regarding the
well-studied model for a hypothetical tri-molecular reaction, we refer the reader to [68, p.
526] and the references cited therein for the details and the background of this model. The
system in two dimensions reads

∂u1
∂t

= D∆u1 + u21u2 − (A+ 1)u1 +B

∂u2
∂t

= D∆u2 − u21u2 +Au1

where the constants D, A, and B are given. In our experiment, we consider the domain
Ω = [0, 1]2 and t ∈ (0, 2) and the parameters D = 2 × 10−3, A = 3.4, and B = 1 as done
in [7]. We prescribe homogeneous Neumann boundary conditions for both u1 and u2. The
initial condition is given by

u1(x, y, 0) = 1/2 + y u2(x, y, 0) = 1 + 5x .

Again, we can see in Table 3 that the estimated order of convergence agrees with the
theoretical convergence order of two where we fixed h = 0.0125. In Figure 4 we also show

k ε(k)ETD-RDP EOC CPU Time ε(k)ETD-RDP-IF EOC CPU time
0.1000 2.3309× 10−1 0.19429 2.3852× 10−1 0.03740
0.0500 5.8468× 10−2 2.00 0.38407 4.8944× 10−2 2.28 0.06368
0.0250 1.5750× 10−2 1.89 0.76545 1.2898× 10−2 1.92 0.12128
0.0125 4.0884× 10−3 1.95 1.53955 3.3223× 10−3 1.96 0.24152

Table 3: Estimated order of convergence EOC for both the ETD-RDP and ETD-RDP-IF for the Brusselator
example using the parameters D = 2×10−3, A = 3.4, B = 1, h = 0.0125, and T = 2 within the unit square.
Additionally, the CPU times in seconds of the Matlab program are listed.

that the ETD-RDP-IF outperforms ETD-RDP and the second-order IMEX schemes IMEX-
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BDF2, IMEX-TR, and IMEX-Adams2 (all methods are implemented in Matlab and run
serial). The CPU timings can be greatly improved through the Fortran implementation and
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Figure 4: Log-Log efficiency plot comparing ETD-RDP and ETD-RDP-IF with different second-order IMEX
schemes implemented in Matlab running serial for the Brusselator example using the parameters D =
2 × 10−3, A = 3.4, B = 1, and T = 2 within the unit square.

additionally through parallelization. The CPU timings are listed in Table 4. As we can see,

k = h Matlab Fortran (1 thread) Fortran (3 threads)
1/100 0.51 0.36 0.16
1/200 3.87 3.32 1.60
1/400 34.05 28.99 13.92
1/800 286.06 190.75 114.19

Table 4: CPU times in seconds for the ETD-RDP-IF method implemented in Matlab and Fortran (serial
and parallelized version) for the Brusselator example using the parameters D = 2 × 10−3, A = 3.4, B = 1,
and T = 2.

the serial Fortran program is faster than the Matlab program as expected. The parallelized
version is almost twice as fast as the serial version.

Finally, we also consider the three-dimensional Brusselator example on the domain
Ω = [0, 1]3 with the same initial and boundary conditions and parameters as in test problem
4 within [9]. Precisely, we use homogeneous Neumann boundary conditions and as initial
conditions u1(x, y, z, 0) = 1 + sin(2πx) sin(2πy) sin(2πz) and u2(x, y, z, 0) = 3. The param-
eters are D = 0.02, A = 1, B = 2, and T = 5. The spatial and time step are given by
h = 1/10 and k = 1/1000. In Figure 5, we show a 2D slice through the 3D domain of u1 and
u2 for z = 1 and the final time T = 5. The two plots agree with the theory of the terminal
behavior of the equation proposed in the paper [62] since 1−A+B2 ≥ 0 holds. Note that
the Matlab program needs 2.87 seconds to compute the result. The serial and parallelized
Fortran version only need 1.27 and 0.65 seconds, respectively. In Figure 6 (left) we also show
the solutions u1 and u2 at the point (0.3, 0.3, 0.3) for the time interval [0, 5] using the same
parameters as before. Additionally, we also show in Figure 6 (right) the solutions u1 and
u2 at the point (1/3, 1/3, 1/3) for the time interval [0, 40] using the parameters D = 0.02,
A = 3, B = 1, h = 1/10 and k = 1/1000. Hence, the equation 1 − A + B2 ≥ 0 is vio-
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Figure 5: The concentration profiles of u1 and u2 for z = 1 at T = 5 using the parameters D = 0.02, A = 1,
B = 2, h = 1/10 and k = 1/1000.

lated. As expected, the values approach B and A/B (here 2 and 1/2) as t increases, since
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Figure 6: Left: profile of u1 and u2 at the point (1/3, 1/3, 1/3) for the time interval [0, 5] using the parameters
D = 0.02, A = 1, B = 2, h = 1/10 and k = 1/1000. Right: profile of u1 and u2 at the point (1/3, 1/3, 1/3)
for the time interval [0, 40] using the parameters D = 0.02, A = 3, B = 1, h = 1/10 and k = 1/1000.

1− A+ B2 ≥ 0 is satisfied. However, if we choose A = 3 and B = 1, then 1− A+ B2 ≥ 0
is violated and we obtain an oscillatory solution. This again is in agreement with [62] that
the solution does not converge to a fixed concentration. The plots shown in Figure 6 are
also in agreement with Figures 10 and 11 within [9].

8.3. The complex Ginzburg-Landau equation on a periodic domain

The complex Ginzburg-Landau equation [23] has been extensively studied in the physics
community. It describes a variety of phenomena such as non-linear waves to second-order
phase transitions, from superconductivity, superfluidity, and Bose-Einstein condensation to
liquid crystals and strings in field theory (see [5] for a general overview). The complex
Ginzburg-Landau equation is given by

∂u

∂t
= u+ (1 + iα)∆u− (1 + iβ)u |u|2
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where the constants α and β are given real-valued parameters describing linear and non-
linear dispersion, respectively. Here, the prescribed initial condition is given by a normal
random field with mean zero and standard deviation one, but could also be a smooth function
such as a series of Gaussian pulses. The boundary condition is assumed to be periodic.
Hence, it fits into the format (2) with s = 1, D = 1 + iα, and f(u) = u− (1 + iβ)u |u|2.

For our experiment, we consider the domain Ω = [0, 200]2 and t ∈ (0, 100) and the
parameters α = 0 and β = 1.3. For the discretization in space, we use p = 400 (h = 1/2).
For the time step, we use k = 1/20. To produce the result that is shown in Figure 7,
we need about 96 seconds with our implementation in Matlab without any parallelization.
Thus, we obtain a comparable performance with the numerical method that is based on
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Figure 7: Real (left image) and imaginary part (right image) of the solution of the complex Ginzburg-Landau
equation on the periodic domain Ω = [0, 200]2 for time T = 100 with the parameters α = 0, β = 1.3, p = 400,
and k = 1/20 using a standard normal random field as initial condition.

Fourier spatial discretization and a fourth-order exponential time differencing Runge-Kutta
(ETDRK4) method that is usually faster than the standard finite difference scheme (see
[30]). However, special attention has to be drawn to the time stepping in Fourier space
to avoid aliasing effects. The implementation of the Fourier spectral ETDRK4 method in
Matlab with the same set of parameters as above needs only 28 seconds (see p. 11 for the
Matlab implementation within [29]). Of course, we have only compared the timing and
not the approximation quality of the solution as one should. Further, our method is L-
stable in comparison to the EDTRK4 and one could create a situation where ETD-RDP-IF
outperforms ETDRK4 in the sense of approximation quality or more precisely in the sense
of CPU time versus accuracy.

In sum, we obtain a stable solution although the initial data are non-smooth. We obtain
similar solution patterns, when we use smooth initial boundary conditions such as a series of
Gaussian pulses in the form u(x, y, 0) = e−((x−50)

2+(y−50)2)/1000−e−((x−100)
2+(y−100)2)/1000+

e−((x−100)
2+(y−50)2)/1000 with the same set of parameters as before. We again need about

96 (95.65 to be precise) seconds in Matlab without parallelization to produce the images
shown in Figure 8. The serial Fortran version needs 4.99 seconds and the parallelized Fortran
version needs only 2.76 seconds. Refer also to the last row in Table 5.

A similar situation arises when we consider the three-dimensional case. The ETDRK4
using a spectral method needs only 27 seconds in Matlab with the parameters α = 0, β = 1.3,
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Figure 8: Real (left image) and imaginary part (right image) of the solution of the complex Ginzburg-Landau
equation on the periodic domain Ω = [0, 200]2 for time T = 100 with the parameters α = 0, β = 1.3, p = 400,
and k = 1/20 using a series of Gaussian pulses field as initial condition.

p h Matlab Fortran (1 thread) Fortran (3 threads)
50 4 1.24 1.23 0.51

100 2 5.17 4.95 2.04
200 1 23.11 20.85 10.34
400 1/2 95.65 86.66 53.98

Table 5: CPU times in seconds for the ETD-RDP-IF method implemented in Matlab and Fortran (serial
and parallelized version) for the Ginzburg-Landau example on periodic domain Ω = [0, 200]2 using the
parameters α = 0, β = 1.3, k = 1/20, and T = 100.

p = 50 (h = 2), and k = 1/20 for time T = 100 and Ω = [0, 100]3 whereas our method in
Matlab (without any parallelization) needs about 119 seconds, which is longer as expected
due to the second-versus-fourth order of the schemes. The serial and parallelized Fortran
program need 108.21 and 57.87 seconds, respectively.

We now consider Ω = [0, 200]3 with the same parameters as before and increase the
parameter p to 200. That means, we have 8, 000, 000 spatial discretization points. Gaus-
sian pulses as initial condition of the form u(x, y, z, 0) = e−((x−50)

2+(y−50)2+(z−50)2)/1000 −
e−((x−100)

2+(y−100)2+(z−100)2)/1000 are used, which yields Figure 9. The Matlab program
needs 9673.13 seconds whereas the serial and parallelized Fortran program need 8260.91
and 5287.64 seconds, respectively. Refer also to the last row in Table 6.

p h Matlab Fortran (1 thread) Fortran (3 threads)
50 4 119.61 108.37 57.94

100 2 1033.63 912.41 585.91
200 1 9673.13 8260.91 5287.64

Table 6: CPU times in seconds for the ETD-RDP-IF method implemented in Matlab and Fortran (serial
and parallelized version) for the Ginzburg-Landau example on periodic domain Ω = [0, 200]3 using the
parameters α = 0, β = 1.3, k = 1/20, and T = 100.
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Figure 9: Real (left image) and imaginary part (right image) of the solution of the complex Ginzburg-Landau
equation on the periodic domain Ω = [0, 200]3 for time T = 100 with the parameters α = 0, β = 1.3, p = 200,
and k = 1/20 using a series of Gaussian pulses field as initial condition.

8.4. Schrödinger equation

The Schrödinger equation [57] is a linear PDE and it describes a state function of a
quantum-mechanical system (see for example [25] for more details). However, in this section,
we consider an extension of it. Precisely, we focus on the d-dimensional non-linear cubic
Schrödinger equation of the form

iΨt + ∆Ψ = q
(
|Ψ|2

)
Ψ , x ∈ [0, 1]d , t ∈ (0, T ) (24)

with given initial condition Ψ0(x) = Ψ(x, 0) and homogeneous Neumann boundary con-
dition. Here, q is a given function of |Ψ|2. The wave function Ψ(x, t) can be written as
v(x, t) + iw(x, t) and hence, we obtain the coupled system of equations

vt + ∆w = q(v2 + w2)w

wt −∆v = −q(v2 + w2)v

which can be written as(
vt
wt

)
+

(
0 1
−1 0

)(
∆v
∆w

)
= q(u2 + w2)

(
0 1
−1 0

)(
v
w

)
.

By setting u =

(
v
w

)
and D =

(
0 1
−1 0

)
we can rewrite the system as

ut + D∆u = q(|u|2)Du

which fits into the format (2). However, note that D is not a diagonal matrix. Using
the approximation of the Laplacian as in Example 1 and Example 2, one can again verify
similarly to Lemma 2 that the dimensional splitting commutes and hence the ETD-RDP-IF
method can be used.

First, we present numerical results for the one-dimensional non-linear cubic Schrödinger
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equation of the form (see also [11, Section 4])

iΨt + Ψxx + |Ψ|2Ψ = 0 , −L0 < x < L1 , 0 < t < T (25)

with initial condition
Ψ(x, 0) =

√
2a exp

(
i
c

2
x
)

sech(
√
ax)

and homogeneous Neumann boundary condition. The function

Ψ(x, t) =
√

2a exp

[
i

(
c

2
x−

{
c2

4
− a
}
t

)]
sech(

√
a(x− ct))

satisfies the Schrödinger equation and the Neumann boundary condition as |x| approaches
infinity. The total mass M(t) and energy E(t) of the wave function are given by

M(t) =

∫
R
|Ψ(x, t)|2 dx ,

E(t) =

∫
R

(
|Ψx(x, t)|2 − 1

2
|Ψ(x, t)|4

)
dx ,

respectively. For the purpose of numerically verifying the conservation of these quantities,
we approximate the integrals by the trapezoidal rule (as in [11, Section 4.4])

M(tn) ≈ h

2

[
|Un

0 |2 + 2

p∑
i=1

|Un
i |2 + |Un

p+1|2
]

E(tn) ≈ h

2

[
−1

2
(|Un

0 |4 + |Un
p+1|4) + 2

p∑
i=1

(∣∣∣∣Un
i+1 −Un

i−1
2h

∣∣∣∣2 − 1

2
|Un

i |4
)]

.

For the numerical results we used the parameters a = 0.01, c = 0.1, T = 108, h = 1/2, and
∆t = 1/100 within the interval [L0, L1] = [−80, 100]. A plot of the exact solution (defined on
R) and the approximated solution (defined on [−80, 100]) with computing time less than five
seconds in Matlab reveals visually no difference and agrees with the one given in [11, Figure
4.1]. The exact values for M(0) and M(108) can be obtained by basic integration techniques
from calculus. They are both 2/5 = 0.4. Numerically, we obtain 0.399 999 954 123 281 and
0.399 999 954 128 036, respectively. For the energy E(0) and E(108), we obtain the exact
value −1/3000 ≈ −0.000 333 333 333 333. We obtain numerically −0.000 336 760 546 294 and
−0.000 336 768 976 796. Hence, the mass and the energy are conserved asymptotically for
the approximated solution obtained via ETD-RDP-IF.

Next, we consider the two-dimensional Schrödinger equation within the unit square and
the function q(|u|2) = B(x, y) +C(x, y)|u|2 with B(x, y) = (1− 2π2)(1− cos2(πx) cos2(πy))
and C(x, y) = (1 − 2π2). The exact solution is given by Ψ(x, y, t) = e−it cos(πx) cos(πy)
(see also [18, p. 754]). We use the parameters T = 1, k = 0.0125, and h = 1/78 to
create the same plot as in [18, Figure 5] within one second. Note that we obtain similar
timing improvements for the parallelized Fortran version in comparison to the serial Matlab
program as in the Brusselator example. For some recent results on more complex domains,
we refer the reader to [55].
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9. Conclusion

In this article, we have combined the second-order exponential time differencing method
(ETD) of second-order with approximating the matrix exponential through (non-Padé) ra-
tional approximation having real simple and distinct poles (RDP) and the integrating fac-
tor (IF) dimensional splitting technique to obtain the second-order L-stable ETD-RDP-IF
scheme in two and three dimensions. With this scheme, one can solve non-linear reaction-
diffusion equations with either Dirichlet, Neumann, or periodic boundary conditions in either
two or three dimensions. The new scheme outperforms other second-order IMEX schemes
such as IMEX-BDF2, IMEX-TR, and IMEX-Adams2 as well as ETD-RDP. The excellent
performance for 2D and above all 3D examples can be further enhanced through the conver-
sion from Matlab to Fortran. Using basic parallelization techniques increases the efficiency
further. The source code is available under the link

https://github.com/kleefeld80/ETDRDPIF

In the future, we intend to extend these ideas to develop methods with higher order. Addi-
tionally, incorporating an adaptive time selection procedure to these methods might further
increase the performance. As an alternative one might want to consider and apply parallel-
in-time procedures (see for example [20] for an overview).
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