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Abstract
A novel method is proposed to infer Bayesian predictions of computationally expensive models. The
method is based on the construction of quadrature rules, which are well-suited for approximating the
weighted integrals occurring in Bayesian prediction. The novel idea is to construct a sequence of nested
quadrature rules with positive weights that converge to a quadrature rule that is weighted with respect to
the posterior. The quadrature rules are constructed using a proposal distribution that is determined by
means of nearest neighbor interpolation of all available evaluations of the posterior. It is demonstrated
both theoretically and numerically that this approach yields accurate estimates of the integrals involved
in Bayesian prediction. The applicability of the approach for a fluid dynamics test case is demonstrated
by inferring accurate predictions of the transonic flow over the RAE2822 airfoil with a small number of
model evaluations. Here, the closure coefficients of the Spalart–Allmaras turbulence model are considered
to be uncertain and are calibrated using wind tunnel measurements.

Keywords: Bayesian prediction, Quadrature and cubature formulas, Adaptivity, Interpolation

1 Introduction
Computer simulation with uncertainties often requires calculating the expectation with respect to a probability
distribution of a complex and computationally costly function. Various approaches exist to numerically estim-
ate such integrals, for example Monte Carlo approaches [15] or deterministic quadrature rule approaches [10].
In these approaches it is often assumed that samples from the probability distribution can be constructed
straightforwardly or are readily available. However, this is not always the case, for instance in the case of
Bayesian calibration problems [26, 36] the probability distribution encompasses the computationally costly
model and is highly non-trivial. This is known as Bayesian prediction and is the main topic of this article.

A commonly used approach to calculate weighted integrals with respect to such non-trivial distributions
is importance sampling [8, 18, 58]. In this approach samples are drawn from a proposal distribution and
by means of weighting these samples are used to determine integrals with respect to a target distribution,
i.e. the distribution for which it is difficult to construct samples. If the proposal distribution is chosen
well, the constructed samples yield similar convergence rates as samples constructed directly with the target
distribution. A major disadvantage is that constructing the proposal distribution is not trivial and often
requires a priori knowledge about the target distribution. A well-known extension of importance sampling
to a Bayesian framework is formed by Markov chain Monte Carlo methods [31, 41], where the proposal
distribution is chosen such that the samples form a Markov chain. In this case the proposal distribution is not
constructed beforehand, though a large number of costly evaluations of the posterior is typically necessary
to construct the sequence of samples.

There exist various approaches to improve the performance of Monte Carlo techniques in Bayesian
inference. For example, using preconditioning based on Laplace’s method [51], where an approximation of the
posterior is constructed using the maximum a-posteriori estimate and a Gaussian distribution; using transport
maps [46], where a low-fidelity model is used to precondition a Markov chain Monte Carlo sampler; or by
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adaptively tuning the proposal distribution [59]. However, many preconditioning methods are significantly
less efficient if the posterior cannot be represented well using a Gaussian distribution. Techniques from
the field of machine learning can also be applied [1], though the focus of those techniques is mostly on the
treatment of large data sets.

Even if samples can be drawn from the posterior (possibly by using any of these improvements), the
error of estimating an integral by means of random sampling decays as O(1/

√
K) (with K the number of

samples). For example, to double the accuracy of the estimate the number of samples must be quadrupled.
Therefore using importance sampling techniques, or Monte Carlo techniques in general, in conjunction with
a computationally costly model is often infeasible. In summary, estimating integrals by directly sampling
from the posterior is often difficult or very expensive with existing methods.

A commonly used approach to alleviate the high computational cost of sampling and the slow convergence
is to construct a surrogate (or “response surface”) and use the surrogate instead of the complex model for
inferring the relevant statistics. Well-known approaches include Gaussian process regression [3, 56] and
polynomial approximation [4, 6, 40, 50, 52]. If the weighting distribution is not known explicitly, it is difficult
to construct an optimal surrogate (and moreover it often requires analyticity or smoothness), so often the
surrogate is constructed such that it is globally accurate (or the distribution is tempered [6, 38], which yields
a similarly accurate surrogate). It has been demonstrated rigorously that a posterior determined with a
globally accurate surrogate converges to the true posterior [14, 67].

At the same time, in the context of Bayesian prediction the interest is not directly in accurately approx-
imating the model, but in calculating moments of the model with respect to the posterior. These moments
are integral quantities and there exist many efficient numerical integration techniques for this purpose that
do not explicitly construct a surrogate. In this article, the focus is specifically on quadrature rules due to
their high accuracy and flexibility in the location of the nodes. Existing quadrature rule approaches [10]
provide rapid converging estimates of the integral for smooth functions, without suffering from a deteriorated
convergence rate if the integrand is not smooth (as often observed in interpolation approaches). However,
the state-of-the-art quadrature rule approaches such as Gaussian quadrature rules [28], multivariate sparse
grids [32, 44, 54], or heuristic optimization approaches [35, 42] also require much knowledge about the
distribution under consideration, so these are not directly applicable to the problems of interest discussed
here.

Therefore, the main goal of this work is to propose a novel flexible method for Bayesian prediction
that combines the high convergence rates of quadrature rules with the flexibility of adaptive importance
sampling. The idea is to construct a sequence of quadrature rules and a sequence of proposal distributions,
where the proposal distributions are constructed using all available model evaluations. The sequence of
quadrature rules converges to a quadrature rule that incorporates the (expensive) probability distribution
(i.e. the posterior). By ensuring that all constructed quadrature rules have high degree and have positive
weights, high convergence rates are obtained (depending on the smoothness of the integrand). The rules are
specifically tailored to determine moments weighted with a posterior and require a small number of nodes to
obtain an accurate estimation. Moreover it can be demonstrated rigorously that estimations made with the
sequence of quadrature rules converge to the exact integral for a large class of integrands and distributions.

This article is structured as follows. In Section 2 the problem of Bayesian prediction with a quadrature
rule is briefly introduced, with a main focus on quadrature rule methods and their relevant properties. In
Section 3 our main contribution is discussed: a method to construct a quadrature rule that converges to
a quadrature rule of the posterior. The method is analyzed theoretically in Section 4 and to demonstrate
the applicability of the quadrature rule to computational problems, the technique is applied to some test
functions in Section 5. Moreover the calibration of the turbulence closure coefficients of the RAE2822 airfoil
is discussed. The article is summarized and concluded in Section 6.

2 Preliminaries
2.1 Bayesian prediction
The key goal of this article is to propose an efficient method to infer Bayesian predictions involving a
computationally expensive model. However, the setting where the proposed methods can be applied is
slightly more general than that. Let u : Ω→ Rn be a continuous function with Ω ⊂ Rd (d = 1, 2, 3, . . . ) that
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describes the quantity of interest and let ρ : Ω → [0,∞) be a continuous and bounded probability density
function (PDF). Throughout this work, it is assumed that u can be evaluated exactly without any significant
numerical error. Even though this is not a realistic assumption in practice, the stability of the methods
proposed in this work guarantees that any numerical error present in the computational model does not affect
the accuracy of the proposed approaches (i.e. errors “do not blow up”). Consequently determining Bayesian
predictions can be described as determining the expectation of a function f : Ω→ R, with f(X) = F (u(X))
where X is a d-variate random vector with PDF ρ (so F is a function defined on the range of u). This integral
will be denoted by the operator Iρ throughout this article, i.e.

Iρf := E[f(X)] =
∫

Ω
f(x) ρ(x)dx =

∫
Ω
F (u(x)) ρ(x)dx. (2.1)

Integrals of this type have been studied many times in the framework of uncertainty propagation and
many efficient methods exist to approximate them [37, 57, 66]. The approach taken in this work is based
on a nearest neighbor interpolant of ρ(x), which is used to construct quadrature rules for approximating
the integral of (2.1). Geometric approaches based on nearest neighbor interpolation and the closely related
Voronoi tessellation have been used succesfully to construct estimates of integrals as considered in this
article [13, 19, 30, 39]. However, in these cases the distribution ρ is known explicitly or is computationally
tractable beforehand (possibly up to constant). In this article, the computationally challenging part is that
ρ(x) is obtained by Bayesian analysis, i.e. it is, up to a constant, a posterior :

ρ(x) := q(z | x) q(x),
where z, q(z | x), and q(x) are the measurement data, the likelihood, and the prior respectively. The posterior,
denoted by q(x | z), is obtained by scaling ρ(x) such that it is a distribution:

q(x | z) = q(z | x) q(x)∫
Ω q(z | x) q(x)dx = ρ(x)∫

Ω ρ(x)dx .

The scaling factor (often called the evidence) that is present in this definition of ρ is neglected throughout
this article, as it is not of importance for the proposed method. It will be shown that the method proposed
in this work is stable (see Section 2.2.1) regardless of the exact value of the evidence. Moreover, this is also
demonstrated numerically, by considering an example of a case with small evidence (see Section 5.1.2).

Bayesian prediction consists of assessing the posterior predictive distribution, which describes the probab-
ility of observing new data ẑ given the existing data z. It is obtained by marginalizing over the posterior as
follows [22]:

q(ẑ | z) =
∫

Ω
q(ẑ,x | z)dx =

∫
Ω
q(ẑ | x, z) q(x | z)dx =

∫
Ω
q(ẑ | x) q(x | z)dx.

Here, we assume that ẑ and z are conditionally independent given x. Moments of the posterior predictive
distribution can be used among others to obtain point predictions. These moments can often be expressed
explicitly as integrals over the computational model u.

In general we require throughout this article that the distribution ρ is such that an evaluation of ρ(x)
requires an evaluation of u(x). Moreover if u has been evaluated for a specific value of x, the value of ρ(x)
can be determined without any significant computational cost. This is often the case if ρ(x) forms a posterior
in a Bayesian framework and this property is the key observation that will be leveraged to approximate (2.1).

A well-known example of a prior and a likelihood for a scalar model u are a uniform prior, defined as
q(x) ∝ 1 for x ∈ Ω, and a Gaussian likelihood, defined as follows for given standard deviation σ:

q(z | x) ∝ exp
[
−1

2

∑m
k=1(u(x)− zk)2

σ2

]
, with measurement data z = (z1, . . . , zm)T known.

In this particular case, the expectation of the posterior predictive distribution can be explicitly expressed as
follows:

E[ẑ | z] =
∫
Z

ẑ q(ẑ | z)dẑ =
∫

Ω

∫
Z

ẑ q(ẑ | x) q(x | z)dẑdx

=
∫

Ω
q(x | z)

∫
Z

ẑ q(ẑ | x)dẑdx =
∫

Ω
q(x | z)E[ẑ | x]dx =

∫
Ω
q(x | z)u(x)dx. (2.2)
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Here, Z denotes the space that contains all possible values of the data. It is not necessary to derive this space
formally, as it is only used in an intermediate step of the derivation. Notice that the obtained integral is the
expectation of the computational model with the parameters distributed according to the posterior. Various
statistical models that combine measurement error and model error exist for the purpose of Bayesian model
calibration. We refer the interested reader to Kennedy and O’Hagan [36] and will consider such an extensive
model in a numerical example discussed in Section 5. Vector-valued u can be incorporated straightforwardly
in the framework of this article, since only the posterior distribution q(x | z) is used to construct numerical
integration techniques.

Throughout this article, two assumptions are imposed on the statistical setting. Firstly, we assume that
the statistical moments of the prior are finite, i.e.∫

Ω
ϕ(x) q(x)dx <∞, for all polynomials ϕ.

This implies among others that the prior is not improper. Secondly, it is assumed that the posterior is
continuous and bounded. These two assumptions are not restrictive, e.g. statistical models with Gaussian
random variables fit in this setting. Moreover, these assumptions are only necessary for the theoretical
analysis of the approach discussed in this article. The approach requires only straightforward modifications
for applying it to cases where an improper prior or discontinuous posterior is considered, and an example of
the latter is discussed in more detail in Section 5.1.

2.2 Quadrature rules
The integral from (2.1) is approximated by means of a quadrature rule, consisting of nodes {xk}Nk=0 ⊂ Ω and
weights {wk}Nk=0 ⊂ R: ∫

Ω
f(x) ρ(x)dx ≈

N∑
k=0

wkf(xk). (2.3)

Notice that the distribution ρ(x) does not appear explicitly on the right hand side of this approximation,
but that it is implicitly incorporated in the values of the nodes xk and the weights wk. We will denote the
quadrature rule approximation by means of the linear operator AρN , i.e.

AρNf :=
N∑
k=0

wkf(xk).

If ρ(x) = q(z | x) q(x), a quadrature rule with respect to the posterior q(x | z) can be obtained by rescaling
the weights of a quadrature rule of ρ such that

∑N
k=0 wk = 1, provided that AρN1 = Iρ1.

Three properties are relevant for quadrature rules that are applied to computationally expensive models:
the exactness of the quadrature rule, positivity of the weights, and nesting. The first two properties ensure
numerical stability of the quadrature rule and make that the quadrature rule converges. These two properties
and their relevance are discussed in Section 2.2.1. Nesting allows for straightforward refinement of the
quadrature rule approximation, and is briefly discussed in Section 2.2.2.

2.2.1 Exactness and positive weights

Often the exactness of a quadrature rule is related to the degree of the polynomials it integrates exactly. We
choose to define the exactness slightly more general to facilitate refinements of arbitrary numbers of nodes.

To this end, let ϕ0, . . . , ϕD be D + 1 d-variate polynomials defined on Ω and consider the space ΦD =
span{ϕ0, . . . , ϕD}. Then the goal is to construct a quadrature rule such that it integrates all functions
ϕ ∈ ΦD exactly. This is, due to linearity, equivalent to

AρNϕj = Iρϕj for j = 0, . . . , D.

Without loss of generality, we assume throughout this article that the polynomials are sorted graded lexico-
graphically. This ensures that referring to ϕk for any k is well-defined and that ΦD ⊂ ΦD+1 for any D, but
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other monomial orders that are a well-order can be used straightforwardly. Moreover we assume that ϕ0 is
the constant polynomial, as that allows to straightforwardly scale the quadrature rule weights to incorporate
the evidence. In the univariate case, this implies that D is the degree of the quadrature rule, since ΦD
contains all polynomials of degree D and less. In the multivariate case, the degree of the quadrature rule
equals Q if dim ΦD = dimP(Q, d) where P(Q, d) denotes all d-variate polynomials of a degree Q.

The close relation between the nodes and the weights of a quadrature rule is described by the (D + 1)×
(N + 1) Vandermonde matrix VD(XN ):ϕ0(x0) · · · ϕ0(xN )

... . . . ...
ϕD(x0) · · · ϕD(xN )


︸ ︷︷ ︸

VD(XN )

w0
...
wN

 =

µ0
...
µD

 ,

where µj = Iρϕj . If ϕj are monomials, µj are the raw moments of the distribution ρ. If N = D the
quadrature rule is called interpolatory and the linear system can be used to determine the weights given the
nodes, provided that the Vandermonde matrix is non-singular. In the univariate case, this holds if and only
if the nodes are distinct. In the multivariate case, it is less straightforward to ensure that the Vandermonde
matrix is non-singular, but all quadrature rules constructed in this work have a non-singular Vandermonde
matrix.

If the weights are non-negative (i.e. wk ≥ 0 for all k), the dimension of ΦD is a measure for the accuracy
of the quadrature rule and increasing D yields a converging estimate for sufficiently smooth functions. To
see this, assume that Ω is bounded and let ϕ̂ be the best approximation of the function u in ΦD measured
in the ∞-norm (assuming without loss of generality that it exists):

ϕ̂ := arg min
ϕ∈ΦD

‖u− ϕ‖∞, with ‖u− ϕ‖∞ := sup
x∈Ω
|u(x)− ϕ(x)|.

Then:

|Iρu−AρNu| ≤ ‖Iρ‖∞‖u− ϕ̂‖∞ + ‖AρN‖∞‖u− ϕ̂‖∞ = (‖Iρ‖∞ + ‖AρN‖∞) inf
ϕ∈ΦD

‖u− ϕ‖∞, (2.4)

where

‖Iρ‖∞ =
∫

Ω
1ρ(x)dx =

N∑
k=0

wk ≤
N∑
k=0
|wk| = ‖AρN‖∞.

The inequality (2.4) is commonly known as the Lebesgue inequality, see e.g. Brass and Petras [10, The-
orem 3.1.1]. It is arguably best known for its usage in polynomial interpolation [11, 33], but it straight-
forwardly carries over to the setting of quadrature rules (then the operator norm ‖AρN‖∞ is the Lebesgue
constant).

If all weights are positive, then |wk| = wk and therefore ‖AρN‖∞ = ‖Iρ‖∞. Hence

|Iρu−AρNu| ≤ 2‖Iρ‖∞ inf
ϕ∈ΦD

‖u− ϕ‖∞.

As explained before, the weights of the quadrature rule can be scaled such that ρ forms a probability density
function. In that case, it holds that ‖Iρ‖∞ = ‖AρN‖∞ = 1 and therefore (2.4) simplifies to

|Iρu−AρNu| ≤ 2 inf
ϕ∈ΦD

‖u− ϕ‖∞.

It is well-known that the right hand side of this inequality decays for increasing D if u can be approximated
by a polynomial. This is among others the case if u is absolutely continuous and in general the rate of decay
of the right hand side of this inequality depends on the smoothness of u. If the function u is univariate and
u ∈ Cr, i.e. u is r times differentiable, the error usually decays with rate r, or in other words:

‖u− ϕ‖∞ ≤ AD−r,
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where A is a constant that solely depends on u. If u is smooth (i.e. infinitely many times continuously
differentiable), the error decays exponentially. The exact rate of decay can be derived using Jackon’s
inequality [34], but many more results on this topic exist. We refer the interested reader to Watson [60]
and the references therein for more information. The upper bound of the Lebesgue inequality is not sharp,
as for unbounded Ω and discontinuous u the estimate of a quadrature rule might converge, even though
infϕ ‖u− ϕ‖∞ is unbounded. It is out of the scope of this article to fully discuss all convergence properties
of quadrature rules (but see e.g. Brandolini et al. [9] or Brass and Petras [10]).

Notice that the bound described by the Lebesgue inequality depends on the dimension of Ω. For
multivariate u, the quantity ‖u − ϕ‖∞ decays significantly slower. In general, it holds that if u is r times
differentiable, the error decays at least with rate r/d, where d is the dimension of the space Ω. Estimating
the decay of this quantity in multivariate space is significantly less straightforward than estimating it in
univariate spaces, since computing the best approximation becomes significantly more difficult. Nonetheless,
the convergence rates as stated here are sufficient for the analysis conducted in this work.

A quadrature rule with positive weights and
∑
wk = 1 is stable regardless of the computational and

statistical model under consideration [10]. In other words, small variations in the integrand do not affect the
accuracy of the rule as a whole. In particular, if u is perturbed by a small error ε > 0, say ũ = u± ε, then

|AρNu−AρN ũ| ≤ ‖AρN‖∞‖u− ũ‖∞ ≤ ε.

This stability result is particularly important for the usage of quadrature rules in a Bayesian setting, as it
ensures that the rule yields stable estimates regardless of the exact value of the evidence (recall that the
evidence is the scaling factor neglected in the definition of ρ). However, a small evidence will result in slow
convergence, as will be demonstrated numerically in Section 5.1.2.

2.2.2 Nesting

Nesting means that smaller sets of quadrature rule nodes are contained in larger sets of quadrature rule
nodes, i.e. XN1 ⊂ XN2 for N1 < N2. Strictly speaking this forms a sequence of quadrature rules, but we will
call this with a little abuse of nomenclature simply a nested quadrature rule.

A nested quadrature rule allows for straightforward refinement of the quadrature rule approximation,
as computationally costly function evaluations are being reused upon considering a larger quadrature rule.
Moreover, if the weights of the quadrature rule are non-negative, it provides a straightforward way to assess
the accuracy of a quadrature rule approximation by comparing two consecutive quadrature rule levels. This
can be seen as follows:

|AρN1
u−AρN2

u| ≤ |AρN1
u− Iρu|+ |AρN2

u− Iρu| ≤ 4‖Iρ‖∞ inf
ϕ∈ΦD

‖u− ϕ‖∞,

where D is such that AρN1
ϕ = AρN2

ϕ = Iρϕ for all ϕ ∈ ΦD. The difference between two consecutive
quadrature rules also forms an upper bound:

|AρN1
u−AρN2

u| ≥ |AρN1
u− Iρu| − |AρN2

u− Iρu|,

which is the difference between the errors of the two quadrature rules. This difference vanishes forN1, N2 →∞
if a converging sequence of quadrature rule is used.

3 Bayesian predictions with an adaptive quadrature rule
The main problem addressed in this article is accurate numerical estimation of Bayesian predictions. To this
end, the main interest is the construction of quadrature rules to approximate integrals weighted with the
posterior, a problem that was summarized in (2.3) as follows:

Iρf =
∫

Ω
f(x) ρ(x)dx ≈

N∑
k=0

wkf(xk) = AρNf.

Here, both f and ρ are functions of u, denoted by f(x) = F (u(x)) and ρ(x) = G(u(x)) for suitable F and G.
The functions F and G are such that they can be evaluated efficiently and quickly.
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Refine XN+M , WN+M given ρN
(nodes are added to quadrature rule)

Refine ρN+M given XN+M , WN+M

(interpolant is reconstructed)

Initialization:

• x0 ∈ Ω random

• w0 ← 1

• ρ0(x)← q(x)

• X0 = {x0}

• W0 = {w0}

M nodes are added (large circles) M new model evaluations
N ← N +M

Figure 1: Schematic overview of the two main steps of the method to construct the quadrature rules
proposed in this article.

The focus of this article is mainly on using a quadrature rule to accurately infer Bayesian predictions, but
various other statistical quantities that are not considered in this article can be inferred straightforwardly
without additional model evaluations. For example, moments of the posterior distribution can be determined
by integrating suitably chosen polynomials or an empirical cumulative distribution function can be constructed
by considering the discrete probability density function p(xk) = wk for all k (which is well-defined because
all weights are non-negative).

3.1 Constructing an adaptive quadrature rule
The proposed procedure consists of iteratively refining a pair consisting of a quadrature rule and a distribution.
A typical iteration consists of two steps. Firstly, a quadrature rule based on the current estimate of the
distribution ρ is constructed. Secondly, the estimate of the distribution is refined using all available model
evaluations of ρ. The quadrature rules are constructed such that a sequence of nested rules is obtained.
These steps are illustrated in Figure 1.

More specifically, at the start of the i-th iteration a distribution ρN is given, accompanied by evaluations of
the model u and distribution ρ at nodes x0, . . . ,xN . The first step consists of constructing a new quadrature
rule with N + M nodes that incorporates ρN and reuses the available model evaluations, i.e. it is nested.
Hence the goal is to determine xN+1, . . . ,xN+M and w0, . . . , wN+M with M as small as possible such that

N+M∑
k=0

wk ϕj(xk) =
∫

Ω
ϕj(x) ρN (x)dx, for all j = 0, . . . , Di.

Here, Di is a free parameter which defines the exactness of the rule, i.e. the dimension of ΦDi
. The second

step of the iteration consists of constructing a refined approximation of the distribution ρ using all available
evaluations of the model u and distribution ρ (including the M nodes that have been added this iteration).
In this work, this is done by nearest neighbor interpolation. Consequently ρN+M is obtained, which is used
for the next iteration. The procedure can be initialized using a quadrature rule consisting of a single random
node and a proposal distribution ρ0(x) ≡ q(x), i.e. by using the prior. The convergence can each iteration be
assessed by comparing the current quadrature rule estimate with that of a previous iteration. The algorithm
is sketched in Figure 1.

The only free parameter in this construction is Di, which can be chosen heuristically. For convergence, it
is essential to enforce that Di →∞ for i→∞. In this work, we will mainly use two variants: linear growth,
i.e. Di = O(i), and exponential growth, i.e. Di = O(2i).
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The distribution ρN is constructed by interpolation of all available point evaluations of ρ. It can be
interpreted as a proposal distribution, as often used in importance sampling strategies. The efficiency of the
approach can be demonstrated mathematically by reusing techniques from importance sampling.

The construction of a quadrature rule that incorporates the distribution ρN is non-trivial. We will
employ the recently introduced implicit quadrature rule [7] for this purpose, though we emphasize that any
methodology to construct quadrature rules for a given distribution can be used in our approach. The implicit
quadrature rule is a nested quadrature rule with positive weights that is constructed solely using samples
from the distribution ρN . We discuss its construction in Section 3.2. Given the quadrature rule nodes, the
distribution that is used to refine the quadrature rule is constructed using nearest neighbor interpolation,
which is explained in Section 3.3.

3.2 Implicit quadrature rule
The implicit quadrature rule [7] is a quadrature rule constructed using samples from a distribution. Hence let
K+ 1 samples y0, . . . ,yK be given, denoted as the set YK . In the iterative procedure considered in this work
(i.e. Figure 1), these are a large number of samples from ρN . Moreover, some model evaluations have been
performed in previous iterations, so let XN ⊂ Ω be N + 1 nodes in Ω where the value of u (and therefore ρ)
is known. These nodes are denoted by x0, . . . ,xN . Notice that ρN is typically obtained by nearest neighbor
interpolation of these nodes, which we will discuss in more detail in Section 3.3.

The goal is to find for given D (we omit the subscript i in this section) a subset of M samples from YK ,
say xN+1, . . . ,xN+M , with M � K such that

N+M∑
k=0

wk ϕj(xk) = 1
K + 1

K∑
k=0

ϕj(yk), for j = 0, . . . , D. (3.1)

The rule is constructed such that the weights wk are non-negative, i.e. wk ≥ 0 (for all k). This ensures that
the quadrature rule error is bounded, which can be seen by applying the Lebesgue inequality from (2.4).

Notice that only samples from ρN are necessary to construct this quadrature rule, from which the
approximate moments are computed. This is an advantage, since in higher dimensional spaces it is often
computationally costly to exactly determine the moments of ρN .

The nodes x0, . . . ,xN do generally not form a subset of the samples YK . Ideally we would like to have
that M = 0, which would imply that no new costly model evaluations are required, but this is often not
possible as D increases with each iteration. However, we ensure that the following bound is valid:

0 ≤M ≤ D + 1, (3.2)

such that we add at most D + 1 nodes to the quadrature rule, consequently obtaining a rule of at most
N +D + 2 nodes.

The first step in obtaining such a quadrature rule is to consider the following quadrature rule:

XN+K+1 = {x0, . . . ,xN ,y0, . . . ,yK},

WN+K+1 =
{

0, . . . , 0︸ ︷︷ ︸
N+1

,
1

K + 1 , . . . ,
1

K + 1︸ ︷︷ ︸
K+1

}
. (3.3)

It is trivial to see that this quadrature rule is such that (3.1) holds, but it is not such that (3.2) holds. The
idea is to iteratively remove nodes from this quadrature rule keeping (3.1) as an invariant, which can be done
until (3.2) holds. All constructed intermediate quadrature rules have positive weights.

To start off, notice that (3.3) in conjunction with (3.1) can be rewritten as the following linear system:

ϕ0(x0) · · · ϕ0(xN ) ϕ0(y0) · · · ϕ0(yK)
... . . . ...

... . . . ...
ϕD(x0) · · · ϕD(xN ) ϕD(y0) · · · ϕD(yK)




w0
...
wN
wN+1

...
wN+K+1


=

µ0
...
µD

 ,
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or denoted equivalently by:
VD(XN+K+1)w = µ.

Here µj are the moments determined by means of sampling (“sample moments”): µj = 1/(K+1)
∑K
k=0 ϕj(yk).

The Vandermonde matrix of this linear system (see Section 2.2.1) is a (D + 1)× (N +K + 2)-matrix, so it
has J := (N +K + 2)− (D + 1) linearly independent null vectors c1, . . . , cJ , with

VD(XN+K+1)cj = 0, for j = 1, . . . , J.

Hence it holds that
VD(XN+K+1)(w− c) = µ, for any c ∈ span{c1, . . . , cJ}.

These null vectors can be used to remove J nodes from the quadrature rule XN+K+1, WN+K+1 [5], which is
done by constructing a c ∈ span{c1, . . . , cJ} such that:

w− c ≥ 0, (3.4a)
wkj
− ckj

= 0, for J distinct indices k1, . . . , kJ . (3.4b)

Condition (3.4a) describes that all weights should be non-negative and condition (3.4b) describes that there
should be J weights that equal zero. If such a vector c is constructed, the nodes k1, . . . , kJ can be removed
from the quadrature rule without loss of accuracy. Then the weights can straightforwardly be determined by
w← w− c.

The algorithm to determine such a c is initiated with c = 0 and C = {c1, . . . , cJ}. At each iteration,
c is updated such that firstly (3.4a) is still valid and secondly such that one more weight is equal to zero.
Therefore, consider c1, an element (and without loss of generality, the first element) of C. Since c1 is a null
vector, it holds that c + αc1 is a null vector for any α ∈ R. The goal is to determine α such that conditions
(3.4a) and (3.4b) hold. Condition (3.4a) translates to

w− c− αc1 ≥ 0,

which is equivalent to

αmin ≤ α ≤ αmax, with

αmin = max
(
wk − ck
c1,k

| c1,k < 0
)

and αmax = min
(
wk − ck
c1,k

| c1,k > 0
)
.

Here wk, ck, and c1,k denote the elements of w, c, and c1, respectively. Notice that αmin < 0 < αmax, since
c1,k < 0 for αmin and c1,k > 0 for αmax. Hence α is well-defined in this way. By choosing either α = αmin or
α = αmin, there exists one k0 such that

wk0 − ck0 − αc1,k0 = 0.

Therefore, c is updated such that c← c + αc1 with α = αmin or α = αmax.To ensure that the k0-th weight
remains zero in subsequent iterations, all other null vectors in C are updated as follows:

cj = cj −
cj,k0

c1,k0

c1, for all j > 1.

This is essentially a Gaussian reduction with pivot c1,k0 and ensures that cj,k0 = 0 for all j > 1, which yields
that wk0 − ck0 = 0 in all subsequent iterations (independently of the chosen α in that iteration). Finally c1
is removed from C and the process is repeated until C is empty. If C is empty, a c is obtained that satisfies
both conditions (3.4a) and (3.4b).

By determining such a c, the vector w − c has J coefficients that are equal to 0. We do not want to
remove all J nodes and weights, since the first N + 1 weights belong to nodes where the costly computational
model has been evaluated. A straightforward solution to this is to construct the following quadrature rule:

XN+M = {xk | k ≤ N or wk − ck 6= 0},
WN+M = {wk − ck | k ≤ N or wk − ck 6= 0}.

9



The vector w − c has at least J zero elements. So it has at most D + 1 nonzero elements. Hence the
quadrature rule based on XN+M and WN+M has at most (N + 1) + (D + 1) nodes. Notice that therefore
this is a quadrature rule that satisfies (3.1) and (3.2).

It is not necessary to compute the full null space of the (D + 1)× (N +K + 2)-matrix. Each iteration a
null vector of the full matrix can be obtained by computing a null vector of a (D + 1)× (D + 2) submatrix
using D + 2 columns that represent nodes that are still present in the quadrature rule, and subsequently
padding the obtained vector with elements equal to 0.

There is freedom in the value of α, i.e. both α = αmax and α = αmin yield a valid quadrature rule with
positive weights. We use this freedom to determine for each null vector ck the α that yields the smallest
quadrature rule (i.e. wk − ck = 0 for as many k > N as possible).

3.3 Construction of the proposal distribution
By using the quadrature rule constructed using the techniques from the previous section, a Bayesian prediction
can be inferred by evaluating the model at the quadrature rule nodes and assessing the accuracy using
the nesting of the quadrature rules. By using Bayes’ rule, evaluations of the (unscaled) posterior are
readily available, that is ρ(xk) for k = 0, . . . , N + M . The goal is to use these evaluations to construct an
approximation of the posterior.

Constructing an approximation of a distribution is non-trivial and there are some specific requirements on
the interpolation algorithm used in this work. These requirements are further discussed in Section 3.3.1. In
this article, all results are obtained using nearest neighbor interpolation, which is explained in Section 3.3.2.
There exist various alternative approaches, with varying advantages and disadvantages that warrant our
choice for nearest neighbor interpolation. These alternatives are reviewed in Section 3.3.3.

3.3.1 Prerequisites of the interpolant

The goal is to construct an approximate posterior ρN+M such that the available N +M + 1 point evaluations
of ρ are taken into account. These point evaluations of the posterior are exact, so in this work we construct
ρN+M such that it is interpolatory, i.e.

ρN+M (xk) = ρ(xk), for all k = 0, . . . , N +M.

Obviously, the interpolant should be constructed such that ρN+M (x) ≈ ρ(x) for all x 6= xk (for any k). It is
not necessary that ρN+M is interpolatory for the construction of the quadrature rule, but it is assumed to
be the case in the analysis discussed in Section 4.

It is known that ρ is a probability density function, possibly up to a finite constant. Therefore the
interpolant should be such that ρN+M (x) ≥ 0 for all x. Moreover, since a quadrature rule is constructed
using this distribution, all moments must be finite, i.e.∫

Ω
ϕ(x) ρN+M (x)dx <∞, for all polynomials ϕ.

These two conditions ensure that ρN+M is again a probability density function (possibly up to a constant).
We emphasize that in general it is not preferable that the moments of ρN+M are equal to the moments

of the quadrature rule, i.e. in general it should hold that

IρN+Mϕj =
∫

Ω
ϕj(x) ρN+M (x)dx 6=

∫
Ω
ϕj(x) ρN (x)dx =

N+M∑
k=0

wk ϕj(xk) = AρN

N+Mϕj , for j = 0, . . . , Di.

Here, we use the notation IρN+M and AρN

N+M as defined in Section 2.2, i.e.

IρN+Mu =
∫

Ω
u(x) ρN+M (x)dx,

AρN

N+Mu =
N+M∑
k=0

wk u(xk).
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Figure 2: Nearest neighbor interpolations of random samples based on two distributions. In both cases, x1
and x2 are identically and independently distributed.

The moments estimated by the quadrature rule are generally not equal to the exact moments of the true
distribution ρ. Hence forcing that the moments of ρN+M are equal to the moments of the (current) quad-
rature rule does not lead to a converging sequences of distributions (as all moments would be equal to the
approximation of the first quadrature rule).

3.3.2 Nearest neighbor interpolation

In this work, ρN+M is constructed by means of nearest neighbor interpolation of the likelihood and multiplying
the obtained interpolant with the prior. Hence for any x ∈ Ω the interpolant ρN+M (x) is defined as follows:

ρN+M (x) = q(z | xk) q(x), with xk = arg min
xj∈XN+M

‖x− xj‖2, with XN+M = {x0, . . . ,xN+M}.

The advantages of this approach are among others that the obtained interpolant is always non-negative and
globally bounded, i.e. for all x it holds that

0 ≤ ρN+M (x) ≤
(

sup
x∈Ω

q(z | x)
)(

sup
x∈Ω

q(x)
)
.

If an improper prior on an unbounded domain is considered, it might be the case that ρN+M is not a
well-defined distribution. This can be alleviated by restricting the nearest neighbor interpolant to a compact
set that is larger than the convex hull of the quadrature rule nodes.

Moreover, for the purposes of this article it can be implemented very efficiently, as the number of
interpolation points is relatively small and the exact structure of the interpolant is not of importance:
sampling from ρN+M can simply be done by means of acceptance rejection sampling using the prior as
proposal distribution (which requires that the prior is not improper).

In particular, for the nearest neighbor interpolant it is not necessary to construct the Voronoi diagram of
the nodes, but only to implement a routine that can find the closest node for any given input sample. This
can be done very fast and efficiently for large numbers of samples. Moreover, searching for the nearest node
has only a weak dependence of the dimension on the space (contrary to constructing the Voronoi diagram,
which is very costly in higher dimensional spaces), which allows to use this approach in high dimensions.

Nearest neighbor interpolation is being used often in statistics [2], especially with a focus on classification
problems. It belongs to the broader class of scattered data interpolation methods [24] and is arguably one of
the most straightforward methods to use in this regard. Moreover, it is a local interpolation method, whereas
the quadrature rule is a global integration method, which naturally balances exploitation of locality with
exploration of the space without any free parameters that have to be tuned.
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As mentioned briefly before, a nearest neighbor interpolant can also be applied directly to the integral for
the construction of quadrature rules [13, 19, 30, 39]. Many of these approaches focus on explicitly constructing
the nodal set such that the nodes are the centroids (centers of mass) of the cells of the Voronoi diagram.
These approaches cannot be extended straightforwardly to the setting to this article, since it is often assumed
that the distribution is computationally accessible. Moreover, it is usually necessary to construct the Voronoi
diagram, which hinders the applicability to higher dimensional spaces.

The idea of using a nearest neighbor interpolant to construct a surrogate has been explored successfully
before and various improvements can be considered to enhance the accuracy of the interpolant [20, 49]. The
advantages of constructing a surrogate in this way are among others that the surrogate exploits locality, as
mentioned above. The main difference between the approaches used in [20, 49] and the approach considered
in this article is that in this work a surrogate of a probability distribution is generated, which adds several
constraints to the approach (see Section 3.3.1).

Nearest neighbor interpolation has been illustrated in Figure 1 (see page 7).Two other examples of
interpolated probability density functions are depicted in Figure 2. For sake of illustration, the interpolation
nodes of Figure 2 are based on random samples.

3.3.3 Alternative distribution approximation methods

It is non-trivial to consider more accurate interpolation methods in this framework, as assuring that the
obtained interpolant is a PDF is difficult. For example, many global methods such as Lagrange interpolation
and Gaussian process regression do not yield an interpolant that is non-negative. Extensions to enforce
positivity exist, for example for Lagrange interpolation [25, 29]. Often these approaches only work in
univariate cases. Gaussian process regression can possibly be used by using a strictly positive prior that is
not improper and enforcing finiteness of integrals over the obtained approximation [48], but this is rather
involved and conflicts with the convenient Bayesian framework behind Gaussian processes.

Another well-known method to construct a suitable approximation is the kernel density estimate, or
more general, the family of methods based on radial basis functions [12]. However, in the cases in this
article explicit values of the probability density function are known, which cannot be incorporated in a
straightforward fashion in these methods: enforcing specific values of a function in a radial basis function
setting does not necessarily yield a positive interpolant.

A promising method that balances the accuracy of polynomial interpolation and piecewise behavior of
nearest neighbor interpolation is the Simplex Stochastic collocation method [23, 63, 64, 65], where piecewise
high order polynomial interpolation is combined with a Delaunay triangulation of the nodal set. This method
converges exponentially for sufficiently smooth functions and is non-oscillatory (i.e. it is bounded from below
and above by the minimum and maximum of the model), so it is very suitable for the interpolation of a PDF.
However, it requires the explicit construction of the interpolant with the underlying Delaunay triangulation,
which severely limits its applicability to multi-dimensional spaces.

Concluding, it is nontrivial to consider a more efficient alternative approach to nearest neighbor interpol-
ation that yields a positive interpolant with similar efficiency as nearest neighbor interpolation. It is out of
the scope of this work to derive such a new interpolation approach. Moreover, nearest neighbor interpolation
is sufficiently accurate for the examples considered in this work, as demonstrated in Section 5.

4 Error analysis
The accuracy of the proposed method is studied by assessing the convergence of the sequence of quadrature
rules. The overall error we are interested in is the integration error, defined for a given continuous function
f : Ω→ R as follows:

eN (f) := |Iρf −AρN

N f |.

Here the operator AρN

N has been constructed using the methods outlined in Section 3, i.e. for known Di we
have

AρN

N ϕj =
N∑
k=0

wk ϕj(xk) =
∫

Ω
ϕj(x) ρN (x)dx = IρNϕj , for j = 0, . . . , Di,
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where we neglect the effect of using samples for the construction of the quadrature rule.
It can be demonstrated that eN → 0 if N →∞, provided that f is sufficiently smooth and Di →∞ for

i→∞. The details of this are discussed in Section 4.1.
A central question is whether this error decays faster than the integration error of a conventional quadrat-

ure rule constructed using the prior. As constructing such a quadrature rule does not require interpolation
or sampling, there are significantly fewer sources of error. This topic can be addressed by using principles
from importance sampling, which is outlined in Section 4.2.

The error analysis based on importance sampling neglects any error that occurs due to the usage of
samples of ρN+M instead of the full distribution. We do not consider this a severe limitation, since sampling
from ρN+M does not require costly model evaluations and therefore many samples can be used to minimize
this error. Nonetheless, this error will be briefly considered in Section 4.3.

4.1 Decay of the integration error
Notice that the integration error eN (f) can be decomposed into three components: an interpolation error, a
sampling error, and a quadrature rule error:

eN (f) = |Iρf −AρN

N f | = |Iρf − IρN f + IρN f −AρN

N f |
≤ |Iρf − IρN f |+ |IρN f −AρN

N f |
= |Iρf − IρN f |+ |IρN f − IρN

K f + IρN

K f −AρN

N f |
≤ |Iρf − IρN f |︸ ︷︷ ︸
Interpolation error IN

+ |IρN f − IρN

K f |︸ ︷︷ ︸
Sampling error SK

+ |IρN

K f −AρN

N f |︸ ︷︷ ︸
Quadrature error QN

= IN + SK +QN . (4.1)

IρN

K f := 1
K + 1

K∑
k=0

f(yk).

By introducing this operator, the quadrature rule error QN can be bounded using the Lebesgue inequality
from (2.4) as discussed in Section 2.2.1:

QN ≤
(

1 +
N∑
k=0
|wk|

)
inf

ϕ∈ΦDi

‖f − ϕ‖∞.

Since all quadrature rules constructed in this work have positive weights, this error decays if Di →∞ (with
i→∞) for sufficiently smooth f .

The interpolation error IN depends on the specific procedure used to construct the interpolant. It holds
that IN → 0 for N →∞ if ‖ρN − ρ‖∞ → 0. The latter can be demonstrated straightforwardly for nearest
neighbor interpolants by demonstrating that the quadrature rule nodes distribute across the space, i.e. the
mutual distance between two closest nodes decays to zero. A nearest neighbor interpolant yields a converging
interpolant in that case.

To demonstrate that quadrature rule nodes distribute across the space, let x0, . . . ,xk, . . . be a sequence
of nodes such that {x0, . . . ,xN} form the nodes of a quadrature rule with positive weights with respect to a
distribution ρ for all N . Moreover assume that xk ∈ Ω for all k ∈ N. Suppose S ⊂ Ω is such that there is no
k ∈ N such that xk ∈ S. To demonstrate that the nodes distribute across the space, we will show that S as
considered here is a null set, i.e. ∫

S

ρ(x)dx = 0,

which implies that the mutual distance between the quadrature rule nodes vanishes. To demonstrate that S
is a null set, let uS ∈ C∞(Ω) be a smooth function such that uS(x) = 0 for all x 6∈ S and such that∫

Ω
uS(x) ρ(x)dx > 0.
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Such a uS only exists if S is not a null set. A univariate example of such a function is the bump function,
e.g. if S = [−1, 1] then

uS(x) =
{

exp
(
− 1

1−x2

)
if |x| < 1,

0 otherwise.
Similarly, multivariate bump functions can be constructed by products of univariate bump functions defined
on a hypercube in S. Due to the smoothness of uS , there exists a sequence of polynomials ϕN such that
‖uS − ϕN‖∞ → 0 for N → ∞. Hence any quadrature rule operator AρN with positive weights yields a
converging estimate of IρuS , i.e.

AρNuS =
N∑
k=0

wk uS(xk)→
∫

Ω
uS(x) ρ(x)dx, for N →∞.

We assumed that the sequence of nodes is such that there is no xk ∈ S for any k ∈ N. Since the quadrature
rule converges, this yields that the integral of uS must vanish:∫

Ω
uS(x) ρ(x)dx =

∫
S

uS(x) ρ(x)dx = 0.

This holds for any smooth function defined in this way, which is only possible if∫
S

ρ(x)dx = 0.

Notice that positivity of the weights is essential here, as otherwise it is not guaranteed that the quadrature
rule approximation of any smooth function converges.

A similar derivation can be formulated for the nodes deduced with the methodology proposed in this
article. To see this, notice that for uS , as introduced above, it holds that∣∣∣∣∣

N∑
k=0

wk uS(xk)−
∫

Ω
uS(x) ρN (x)dx

∣∣∣∣∣ ≤ inf
ϕ∈ΦDi

‖uS − ϕ‖∞,

which simplifies to (recall that uS(xk) = 0 for all k)∣∣∣∣∫
S

uS(x) ρN (x)dx
∣∣∣∣ ≤ inf

ϕ∈ΦDi

‖uS − ϕ‖∞. (4.2)

These inequalities hold for any N . Recall that ρ(x) > 0 for all x, and therefore ρN (x) > 0 for all x and N .
Hence, if

∫
S
ρ(x) dx > 0, the left hand side of (4.2) is bounded from below by a positive constant that is

independent of N . Following the same argument as above, we therefore conclude that S is a null set.
The sampling error SK is independent from N , and can therefore be reduced without any additional

costly model evaluations by considering more samples from ρ. The exact convergence rate depends on the
constructed sequence of samples, which will be further discussed in Section 4.3.

Concluding, if i → ∞ and N → ∞, it holds that eN (f) → SK provided that infϕ∈ΦDi
‖ϕ − f‖∞ → 0.

Moreover, if also K → ∞, it holds that eN (f) → 0. This demonstrates the convergence of our method
for sufficiently smooth functions, but this does not demonstrate that our method converges faster than
constructing a conventional quadrature rule with respect to the prior, since such a rule does not have an
interpolation error. This is the main topic of Section 4.2.

4.2 Importance sampling
The proposed quadrature rule of this article has three sources of error: an interpolation error IN , a sampling
error SK , and a quadrature rule error QN . A quadrature rule constructed using the prior (e.g. by means of
a sparse grid) only has the quadrature rule error, i.e. (4.1) simplifies to eN (f) = QN .

The main difference is that a rule that only uses the prior requires a different integrand, i.e. Iρf is
approximated by means of Aq(.)N (q(z | x)f(x)), whereas the quadrature rule proposed in this work uses
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ρ
ρN
ρ∗N

x0

Figure 3: A sketch of the motivation why ρ∗N is introduced. In this particular case, ρ(x)/ρN (x) is unbounded
for x → 0. Therefore, a ρ∗N is introduced that yields a bounded fraction near x = 0. Small
corrections are necessary to enforce that the raw moments do not change.

f(x) as integrand. In this section we derive in which cases the proposed quadrature rule needs fewer model
evaluations than a conventional quadrature rule to reach a similar accuracy. Without loss of generality, we
assume that ρ and ρN are both probability density functions, which yields that ‖Iρ‖∞ = ‖IρN ‖∞ = 1.

The analysis is based on the main principle of importance sampling, a technique that is used to estimate
integrals with respect to a target distribution if samples from a proposal distribution are known. Even though
the main interest is not in drawing samples from the posterior, the following key idea of importance sampling
can be readily used: let ψ(x), the so-called proposal distribution, be a probability density function with the
same support as ρ. Then

Iρf =
∫

Ω
f(x) ρ(x)dx =

∫
Ω
f(x) ρ(x)

ψ(x) ψ(x)dx = Iψ
(
f
ρ

ψ

)
.

Hence it is not necessary to calculate a possibly expensive integral with respect to the distribution ρ, but to
calculate one with respect to the proposal distribution ψ.

It is a natural idea to use the proposal distribution ψ = ρN for the analysis, but this can severely limit
the applicability of the Lebesgue inequality from (2.4), as ‖ρ/ρN‖∞ can be large even if ‖ρ− ρN‖∞ is small.
In many cases, ρ/ρN can be globally bounded. For example, if a uniform prior and a Gaussian likelihood is
considered, ρN can be used as proposal distribution. An example where this is not the case is if ρ is a Beta
distribution and a node is placed on the boundary of Ω. In that case ρ/ρN is unbounded on the boundary.

To alleviate this, we choose a slightly different approach, and use a proposal distribution ρ∗N such that it
is interpolatory and integrates the same moments as ρN , i.e.

ρ∗N (xk) = ρN (xk) = ρ(xk), for k = 0, . . . , N, (4.3a)

and
Iρ∗

Nϕj = IρNϕj , for j = 0, . . . , Di. (4.3b)
These two conditions define a set of possible proposal distributions, which we will call R in this section, i.e.
ρ∗N ∈ R if it solves (4.3a) and (4.3b). See Figure 3 for a sketch how such a ρ∗N can be interpreted. In this
example, ρ∗N is discontinuous and roughly following ρN , but this is not necessary for the analysis. The only
conditions on ρ∗N are (4.3a), (4.3b), and ‖ρ/ρ∗N‖∞ < ∞. It is actually not necessary to construct a ρ∗N to
use the method proposed in this work: only samples from ρN are used. The distribution ρ∗N is only a tool in
the analysis discussed in this section. Notice that ρN ∈ R, so R is a well-defined non-empty set. However, as
explained above it is not desirable to use ρ∗N = ρN in the subsequent analysis as that leads to a potentially
large ‖ρ/ρ∗N‖∞.

The two conditions stated above ensure firstly that the moments of ρN are equal to the moments of ρ∗N .
Secondly, integrating ρN , ρ, or ρ∗N using a quadrature rule with nodes x0, . . . ,xN yields the same result. The
latter is especially useful in importance sampling, since this implies that for all k = 0, . . . , N :

1 = ρ(xk)
ρN (xk) = ρ(xk)

ρ∗N (xk) .

15



This property will be used extensively in the remainder of this section. To this end, choose a ρ∗N ∈ R, i.e.
one that satisfies (4.3a) and (4.3b), as proposal distribution. Then

Iρf = IρN

(
f
ρ

ρN

)
= Iρ∗

N

(
f
ρ

ρ∗N

)
. (4.4)

A similar argument can be applied to rewrite AρN

N :

AρN

N f =
N∑
k=0

wkf(xk) =
N∑
k=0

wk
ρ(xk)
ρN (xk)f(xk) = AρN

N

(
f
ρ

ρN

)
,

where it is being used that ρN (xk) = ρ(xk) for all k = 0, . . . , N . Hence the following is obtained:

AρN

N f = AρN

N

(
f
ρ

ρN

)
= AρN

N

(
f
ρ

ρ∗N

)
. (4.5)

These expressions, i.e. the defining properties of ρ∗N , as described by (4.3a) and (4.3b), and the derived
relations for the integral and quadrature rule operator, as described by (4.4) and (4.5), form sufficient
ingredients to bound eN (f). The derivation is similar to the derivation of the Lebesgue inequality (recall
(2.4)), but some bookkeeping is required to keep track of the correct proposal distribution:

eN (f) = |Iρf −AρN

N f |

=
∣∣∣∣Iρf −AρN

N

(
f
ρ

ρ∗N

)∣∣∣∣
=
∣∣∣∣Iρf − Iρ∗

Nϕ+ Iρ∗
Nϕ−AρN

N

(
f
ρ

ρ∗N

)∣∣∣∣ .
Here, ϕ ∈ ΦDi

. Hence the quadrature rule is exact for ϕ and the following is obtained:

eN (f) =
∣∣∣∣Iρ∗

N

(
f
ρ

ρ∗N

)
− Iρ∗

Nϕ+AρN

N ϕ−AρN

N

(
f
ρ

ρ∗N

)∣∣∣∣ ,
where we use that Iρ∗

Nϕ = IρNϕ = AρN

N ϕ for ϕ ∈ ΦDi
, which follows from (4.3b). Concluding, the following

inequality is obtained:

eN (f) ≤
∣∣∣∣Iρ∗

N

(
f
ρ

ρ∗N

)
− Iρ∗

Nϕ

∣∣∣∣+∣∣∣∣AρN

N ϕ−AρN

N

(
f
ρ

ρ∗N

)∣∣∣∣
≤
(
‖Iρ∗

N ‖∞ + ‖AρN

N ‖∞
)∥∥∥∥f ρ

ρ∗N
− ϕ

∥∥∥∥
∞

= 2
∥∥∥∥f ρ

ρ∗N
− ϕ

∥∥∥∥
∞
. (4.6)

Notice that in a Bayesian framework the ratio ρ/ρ∗N can be expressed independently from the prior:

ρ(x)
ρ∗N (x) = q(z | x) q(x)

q∗N (z | x) q(x) = q(z | x)
q∗N (z | x) .

Here, with a little abuse of notation, q∗N (z | x) is the nearest neighbor interpolant of the likelihood. Similarly
to ρ∗N , it is not necessary to gain any knowledge about q∗N (z | x), since it is only used here to demonstrate
independence from the prior.

By choosing ρ∗N ∈ R and ϕ ∈ ΦDi
such that the obtained norm from (4.6) is minimal, an inequality

similar to the Lebesgue inequality from (2.4) is obtained:

eN (f) = |Iρf −AρN

N f | ≤ 2 inf
ρ∗

N

inf
ϕ∈ΦDi

∥∥∥∥f ρ

ρ∗N
− ϕ

∥∥∥∥
∞

= 2 inf
q∗

N

inf
ϕ∈ΦDi

∥∥∥∥f q(z | ·)
q∗N (z | ·) − ϕ

∥∥∥∥
∞
. (4.7)
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Here, ρ∗N (x) = q∗N (z | x) q(x) ∈ R is according to (4.3a) and (4.3b).
It is instructive to compare the obtained inequality with that of a conventional quadrature rule constructed

with respect to the prior. If such a quadrature rule, say Aq(·)N , is given, then by using the Lebesgue inequality
its error can be bounded as follows (notice the difference with (4.6)):

|Iρf −Aq(·)N (f q(z | ·)) | = |Iq(·) (f q(z | ·))−Aq(·)N (f q(z | ·)) | ≤ 2 inf
ϕ∈ΦDi

‖f q(z | ·)− ϕ‖∞, (4.8)

where we use that the prior is not improper (as otherwise ‖Iq(·)‖∞ 6= 1).
It is not generally true that the right hand side of (4.7), i.e. the error of our proposed adaptive rule, is

smaller than the right hand side of (4.8), i.e. the error of conventional rules with respect to the prior. For
example, the latter is smaller if both f and q(z | ·) are polynomials (which is rarely the case in Bayesian
model calibration). In general, it is the case that a quadrature rule constructed using the iterative procedure
of this article outperforms a quadrature rule constructed using the prior if f can be approximated much
more efficiently by polynomials than fq(z | ·). To see this, we assume that the approximation of f converges
strictly faster than the approximation of fq(z | ·), so using little-o notation:

inf
ϕ∈ΦDi

‖f − ϕ‖∞ = o

(
inf

ϕ∈ΦDi

‖f q(z | ·)− ϕ‖∞
)
. (4.9)

To compare both quadrature rules, recall that ρN is constructed such that ρN → ρ. Then there exists a
ρ∗N ∈ R such that

‖ρ/ρ∗N‖∞ → 1, for N →∞.
Hence there exist sequences {aN}N and {bN}N such that aN ≤ ‖ρ/ρ∗N‖∞ ≤ bN for all N with aN ↑ 1 and
bN ↓ 1 for N →∞∗. Hence

inf
ϕ∈ΦDi

∥∥∥∥f ρ

ρ∗N
− ϕ

∥∥∥∥
∞
≤ max

(
inf

ϕ∈ΦDi

‖aNf − ϕ‖∞; inf
ϕ∈ΦDi

‖bNf − ϕ‖∞
)

≤ max
(
aN inf

ϕ∈ΦDi

‖f − ϕ‖∞; bN inf
ϕ∈ΦDi

‖f − ϕ‖∞
)
.

So for all ε > 0 there exists an N1 such that

inf
ϕ∈ΦDi

∥∥∥∥f ρ

ρ∗N
− ϕ

∥∥∥∥
∞
≤ (1 + ε) inf

ϕ∈ΦDi

‖f − ϕ‖∞, for all N ≥ N1.

Thus, for N ≥ N1 the following bound is obtained:

eN (f) ≤ 2(1 + ε) inf
ϕ∈ΦDi

‖f − ϕ‖∞. (4.10)

By combining this bound with (4.9), it follows that (4.7) is sharper than (4.8). In other words, we have
shown that the decay of the error of the adaptive quadrature rule proposed in this work, denoted by eN (f)
in (4.10), depends solely on whether f can be approximated well by polynomials. Recall that whether f can
be approximated well using polynomials depends mostly on its smoothness properties, see Section 2.2.1 for
more discussion on this topic.

Concluding, if incorporating the likelihood in the integrand (obtaining fq(z | ·)) yields an integrand
that is difficult to approximate using polynomials, the proposed adaptive method has a sharper error bound
than conventional rules. This is described by (4.9) and is often the case if the likelihood is informative
(i.e. it has small standard deviation) or if the model is irregular (which yields an even more irregular
likelihood). For large N the error of the adaptive quadrature rule proposed in this work behaves similar to
that of a conventional quadrature rule constructed with respect to the posterior, as described by (4.10), even
though this conventional quadrature rule can usually not be determined without requiring large numbers of
evaluations of the posterior.

∗In other words, aN converges to 1 from below and bN converges to 1 from above for N → ∞.
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4.3 Sampling error
As an arbitrary sized sample set can be easily drawn from the distribution ρN for any N , the sampling error
at least decays with rate

√
K, i.e. for K →∞, the error converges to a Gaussian distribution as follows:

|IρN f − IρN

K f | ∼ N (0, σ2),

with σ = σ(f)/
√
K. Here, σ(f) is the standard deviation of f with respect to ρN , i.e.

(σ(f))2 = IρN
(
(f − IρN f)2).

In this article, acceptance rejection sampling is used to draw large numbers of samples from ρN . Sev-
eral improvements exist to construct sequences that convergence faster, for example quasi-Monte Carlo
sequences [15, 43]. We emphasize that these approaches can be used straightforwardly in the framework
explained in this article.

The number of samples K can be chosen independently from the number of nodes N under consideration,
so the sampling error can be made arbitrarily small without any costly model evaluations. Choosing a larger
sample set does however mean that it takes more computational effort to determine the implicit quadrature
rule. In practice, the interpolation and quadrature rule error dominate both the error of the quadrature rule
and the cost of the procedure (through model evaluations). Only if the model is analytic and the likelihood is
not informative, the quadrature rule error and interpolation error decay rapidly enough to make the sampling
error dominate.

5 Numerical experiments
The properties of the method derived in this work are illustrated using various numerical examples. Two
types of cases are discussed.

In Section 5.1 four different classes of analytical test cases are discussed to illustrate the key properties of
our method. Firstly, in Section 5.1.1 a univariate case is discussed, where the sampling and interpolation error
as introduced in (4.1) can be observed well. Secondly, in Section 5.1.2 three two-dimensional test functions
are calibrated using numerically generated data. The test functions, based on Genz test functions [27], are
chosen such that the likelihood is very informative. Thirdly, in Section 5.1.3 the six Genz test functions
are calibrated using numerically generated data. The domain of these functions is five-dimensional and a
comparison is made with conventional quadrature rules such as the tensor grid and the Smolyak sparse
grid. Finally, it is instructive to assess the affect of varying dimension on the error of the quadrature rule.
Therefore, in Section 5.1.4 the calibration of the six Genz test functions is considered for varying dimension
of Ω.

The main motivation for this work is to apply Bayesian calibration to the closure coefficients of turbulence
models. To demonstrate the applicability of our method to this case, we calibrate the closure coefficients
of the Spalart–Allmaras one-equation model using measurement data from the flow over a transonic airfoil.
This problem is further considered in Section 5.2.

5.1 Analytical test cases
5.1.1 Effect of sampling and interpolation error

Let Ω = [0, 1] and consider a uniformly distributed prior in conjunction with a Beta(40, 60)-distributed
likelihood, which yields:

ρ(x) ∝ x40(1− x)60.

To assess the effect of the sampling error, the proposed adaptive quadrature rule is constructed using K = 10n
samples with n = 2, 3, 4, 5. The obtained quadrature rule is used to approximate the mean of ρ(x):∫

Ω
ϕ1(x) ρ(x)dx =

∫
Ω
x ρ(x)dx ≈

N∑
k=0

wk xk =
N∑
k=0

wk ϕ1(xk). (5.1)
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Figure 4: Integration error as a function of the number of nodes. In the left figure, the error of an adaptive
quadrature rule is depicted for various numbers of samples. In the right figure, the error of an
implicit quadrature rule constructed using various distributions is depicted, for fixed K = 105.

The obtained estimate is compared to the true mean (which is 2/5). The sampling error depends on the
randomly generated samples, so the experiment is repeated 50 times and the obtained errors are averaged to
illustrate general behavior of the error. The results are gathered in Figure 4a, where the averaged error is
denoted by ēN .

For small N , it is clear that the errors of all quadrature rules converge geometrically, which implies that
the quadrature error or the interpolation error dominates. For large N , the error does not decay further
due to the limited number of samples. The point where the error stops decaying depends on the number of
samples used, i.e. a larger number of samples results in a smaller overall error.

To assess the effect of the interpolation error, three different implicit quadrature rules are constructed.
The first rule is constructed using the adaptive method proposed in this work, i.e. using ρN (x) like in
Figure 4a. This quadrature rule has a sampling error and interpolation error, but no quadrature error since
we are comparing the first moment (see (5.1)). The second rule is constructed using the exact distribution,
i.e. ρ(x), which results in a rule that only has a sampling error. The third rule is constructed using the
uniform distribution, i.e. using q(x). This rule has a sampling error and a quadrature error, as the likelihood
needs to be incorporated in the integrand. All three quadrature rules are used to approximate the mean of
the posterior. The rules constructed using ρN (x) and ρ(x) can estimate the mean using (5.1), whereas the
rule that is constructed using q(x) requires integration of f(x) = ρ(x) · x. All rules are constructed using 105

samples and again the experiment is repeated 50 times to demonstrate general behavior of the rules. The
results are gathered in Figure 4b.

The rule constructed using samples from ρ(x) immediately saturates to a level where the sampling error
dominates, as no interpolation is used and the quadrature rule error vanishes since the error estimate from
(5.1) is based on the mean (i.e. the first moment). The rule constructed using the prior q(x) converges
geometrically, as the PDF of the Beta(40, 60)-distribution is a polynomial. A significant improvement is
noticed by using our proposed adaptive proposal distribution ρN (x). Initially a larger rate of convergence
is obtained (up to approximately N = 10), as the interpolant provides rapid convergence. For large N , the
quadrature error starts dominating and the rate of convergence equals the rate of the rule constructed using
q(x).

This test case demonstrates that using samples that have been obtained directly from ρ(x) is preferable,
but this is intractable in practice. The adaptive proposal distribution has a clear advantage over using a rule
that only incorporates the prior.
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Figure 5: Convergence of the mean error determined with the new adaptive implicit quadrature rule or
a quadrature rule determined using the prior. Equal colors refer to the same quadrature rule.
Equal symbols refer to the same function.

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

x1

x
2

0

0.05

0.1

0.15

0.2

(a) u1

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

x1

x
2

0

0.1

0.2

(b) u2

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

x1

x
2

0

0.05

0.1

(c) u3

Figure 6: Examples of quadrature rules with D = 65 (exact for all polynomials up to degree 10) obtained
by the adaptive implicit quadrature rule. The colors indicate the weights of the quadrature rule
nodes. The nodes of a quadrature rule of the same polynomial degree, but constructed with
respect to the prior, are depicted in gray.
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5.1.2 Two-dimensional Genz test functions

The previously considered test case of Section 5.1.1 demonstrates the advantages of using an adaptive
quadrature rule. To illustrate the nodal placement of this rule and to further compare this rule to conventional
quadrature rules constructed with respect to the prior, the calibration of three two-dimensional Genz test
functions [27] with artificially generated data is considered. Therefore let d = 2, x∗ = (1/2, 1/2)T, and
consider the following functions:

u1(x) =
d∏
i=1

[
1
4 +

(
xi −

1
2

)2
]−1

, (Product Peak)

u2(x) = exp
(
−

d∑
i=1

∣∣∣∣xi − 1
2

∣∣∣∣
)
, (C0 function)

u3(x) =
{

0 if x1 > 3/5 and x2 > 3/5,
exp

(∑d
i=1 xi

)
otherwise.

(Discontinuous function)

These functions are specifically crafted such that they have difficult characteristics for numerical integration
routines at or around x = x∗. The statistical model under consideration is

zk = ug(x) + ε, with ε ∼ N (0, σ2) and σ2 = 1/5, for k = 1, . . . , 20. (5.2)

Here, ug (with g = 1, 2, 3) denotes one of the functions under consideration and z = (z1, . . . , z20)T are 20
“measurements” obtained by zk = ug(x∗) + nk with nk a sample from N (0, σ2). Hence the data is centered
around the defining (“difficult”) characteristics of the test functions.

The goal is to infer x from (5.2), or equivalently, characterize the posterior q(x | z) with a uniform prior
and Gaussian likelihood defined in Ω = [0, 1]d, i.e. we use ρ(x) = q(z | x) q(x) with

q(x) =
{

1 if x ∈ Ω,
0 otherwise,

q(z | x) ∝ exp
[
−1

2

∑20
k=1(u(x)− zk)2

σ2

]
.

(5.3)

The quantity used to measure the error of the quadrature rules is the maximum error of the mean of the
posterior, i.e.

eN =
{

max (|ANϕ1 − Iρϕ1|, |ANϕ2 − Iρϕ2|) if AN w.r.t. ρN (x),
max

(∣∣∣AN(ϕ1q(z | x1)
)
− Iρϕ1

∣∣∣ , ∣∣∣AN(ϕ2q(z | x2)
)
− Iρϕ2

∣∣∣) if AN w.r.t. q(x),

where AN denotes a quadrature rule operator constructed using the adaptive method proposed in this article
(i.e. with respect to ρN ) or solely using the prior (i.e. with respect to q(x)). In both cases the weights are
scaled such that

∑
k wk = 1. All quadrature rules are constructed using a linearly growing Di, i.e. in iteration

i it is enforced that the quadrature rule integrates all ϕ ∈ Φi exactly (with Φi as introduced in Section 2.2.1).
Recall that if x = (x1, x2) we have that ϕ1(x) = x1 and ϕ2(x) = x2.

There is randomness both in the generation of the quadrature rules and in the generation of the measure-
ment data. Therefore, the error eN is determined 25 times and the obtained errors are averaged, which is
denoted by ēN . The convergence results are summarized in Figure 5. Examples of quadrature rules obtained
by applying the proposed procedure are depicted in Figure 6. There are still oscillations visible, regardless
of the averaging, though the error decay can clearly be observed.

Notice that the adaptive implicit quadrature rule outperforms the conventional quadrature rule in all three
cases. The scatter plots of the nodes illustrate that the quadrature rules are indeed tailored specifically to the
posterior under consideration. Since all rules have positive weights, estimates determined using these rules
are unconditionally stable. This is an aforementioned advantage of the proposed method: the quadrature
rules exhibit both exploitation (due to the interpolant) and exploration (due to the spread of the nodes)
without suffering from instability.
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5.1.3 Five-dimensional Genz test functions

In this section, the calibration of the five-dimensional Genz test functions is considered. The setting is similar
to the one of the previous section, i.e. let d = 5, x∗ ∈ Rd with x∗k = 1/2, and consider the following functions:

u1(x) = cos
(

2πb1 +
d∑
i=1

aixi

)
, (Oscillatory)

u2(x) =
d∏
i=1

(
a−2
i + (xi − bi)2)−1

, (Product Peak)

u3(x) =
(

1 +
d∑
i=1

aixi

)−(d+1)

, (Corner Peak)

u4(x) = exp
(
−

d∑
i=1

a2
i (xi − bi)2

)
, (Gaussian)

u5(x) = exp
(
−

d∑
i=1

ai|xi − bi|
)
, (C0 function)

u6(x) =
{

0 if x1 > b1 or x2 > b2,

exp
(∑d

i=1 aixi

)
otherwise.

(Discontinuous)

The vectors a = (a1, . . . , ad)T and b = (b1, . . . , bd)T are shape and translation vectors, respectively, and
are chosen randomly in this test case. The elements of a enlarge the defining “difficult” property of the
function and b translates the function in space. The statistical model under consideration is the same model
considered in the previous section, see (5.2) and (5.3). Notice that, due to the random nature of b, the
probability that the difficult property of the functions is around x = x∗ is small.

Four quadrature rules are considered to determine the mean of the posterior. Firstly, the proposed
quadrature rule with a nearest neighbor interpolant is used. At each iteration the exactness of the quadrature
rule is doubled, starting with D0 = 20 up to D10 = 210. In other words, subsequent quadrature rules
integrate larger numbers of polynomials (recall that ΦD denotes the space of D + 1 polynomials, sorted
graded lexicographically). Secondly, an implicit quadrature rule without interpolation is used, generated
using solely the prior. Finally, to compare the results with conventional quadrature rules, a tensor grid and a
Smolyak sparse grid generated with a Clenshaw–Curtis quadrature rule are used. A linearly growing sequence
of Clenshaw–Curtis quadrature rules is considered, so the tensor grid and the Smolyak sparse grid do not
form a sequence of nested quadrature rules. This is done to keep the number of nodes of the multivariate
quadrature rules tractable. We do not present the results obtained with Markov chain Monte Carlo, since
the number of model evaluations considered here is too small to obtain a “burned-in” sequence.

For each quadrature rule, the experiment is repeated 25 times and the reported errors are averaged. For
each experiment, the vectors a and b are drawn randomly from the five-dimensional unit hypercube and
a is subsequently scaled such that ‖a‖2 = 5/2. Moreover, for each experiment different samples are used
to generate the implicit quadrature rules. To introduce randomness in the tensor grid and Smolyak sparse
grid, the “exact” value x∗ is randomized in the domain. This improves the results of calibration with the
Clenshaw–Curtis rules, as it otherwise would have a node at x = x∗ and therefore significantly overestimate
the moments. The quantity used to measure the error of the quadrature rules is the same as in the previous
test case, i.e. eN is the maximum error of all first-order raw moments (which are ϕ1, . . . , ϕ5). The “exact”
mean is determined using a Monte Carlo sample from the prior. The number of samples used is the same
number used to generate the implicit quadrature rules, such that the sampling error can be observed well
(in that case all errors saturate). The obtained results are depicted in Figure 7.

The first four test functions are analytic, so for these test functions the quadrature rules perform best.
The flattening of the error of the third test function occurs due to the sampling error of the exact mean
(and not due to the sampling error of the quadrature rule). Moreover, the results of the third test function
are best, since the corner peak varies only near a corner (hence the name) and therefore yields an almost
uniform posterior.
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Figure 7: Convergence of the mean of the posterior determined using three different quadrature rules. The
six functions under consideration are the Genz test functions.
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Figure 8: The integration error of the mean, averaged over 100 runs, considering the Genz test functions
for varying dimension.

The fifth Genz test function is only continuous (and not smooth), so should theoretically yield inferior
performance. However, it is not differentiable only at a single point in the five-dimensional domain, so it is
very unlikely that that point is of importance for the accuracy of the quadrature rules.

The sixth Genz test function is discontinuous and all rules do not yield a rapidly converging estimate.
This is expected, since the quadrature rules are based on approximation using smooth functions. Notice
that the convergence of the proposed adaptive procedure is significantly worse than in the two-dimensional
case considered in Section 5.1.2, since detecting the discontinuity in the posterior using nearest neighbor
interpolation in five dimensions requires significantly more model evaluations than in two dimensions. However,
the accuracy remains similar to the other quadrature rules.

Overall, the adaptive quadrature rule proposed here consistently performs better or on the same level
as the other quadrature rules. This demonstrates that the proposed procedure works for non-informative
posteriors, since it is rarely the case that the posterior of the Genz test functions in conjunction with the
randomized parameters is informative. Intuitively one would expect that piecewise interpolation is in these
cases not necessarily beneficial, but the results demonstrate that it does not deteriorate the performance.

The Smolyak sparse grid performs significantly worse than the other quadrature rules for u1 and u6. This
happens due to the negative weights of the sparse grid, or more specifically, due to the large positive weights
present in the Smolyak sparse grid. These large weights significantly deteriorate the accuracy for a small
number of the 25 runs, which is reflected in the averaged errors presented in Figure 7. Notice that this
effect can be significantly alleviated with an adaptive Smolyak sparse grid, as considered by Schillings and
Schwab [50], though negative weights will remain present.

5.1.4 d-dimensional Genz test functions

It is well-known that the convergence rate of quadrature rules based on polynomial approximation deteriorates
in larger dimensional spaces. This follows among others from the Lebesgue inequality, see (2.4), since
approximating multivariate functions requires larger numbers of basis polynomials. It is not straightforward
to precisely assess the effect of the dimension on the accuracy of the quadrature rule, since the properties of
the statistical model and the Genz test functions also depend on the dimension. However, if the accuracy
of the quadrature rule deteriorates rapidly, the quadrature rule error will dominate the overall integration
error, which is the quantity reported in this work.

Therefore, the Genz test functions are reconsidered in combination with the previously discussed statistical
model, see (5.3). The key difference is that the experiment is repeated for different dimensions d. Again
the mean integration error ēN is computed, but contrary to the previous cases the error is determined by
averaging over 100 experiments, since the error varies significantly less (and otherwise noise would pollute the
results). The mean integration error is computed using a quadrature rule of degree 20, which is determined
iteratively using a linearly growing sequence Di = i (hence 20 iterations of the algorithm are necessary to

24



construct a quadrature rule). All other parameters are chosen as in Section 5.1.3. The results are reported
in Figure 8, where the error is scaled with the integration error of the bivariate case (i.e. d = 2).

The effect of the dimension on the statistical model and the Genz test functions is clearly visible. For u2
and u3, the error is decreasing for increasing dimension, which conflicts with the theoretical expectations.
This is due to the region that encompasses the defining properties of the product peak (i.e. u2) and corner
peak (i.e. u3), which becomes smaller in multivariate spaces. A similar effect is also observed in the results
of Section 5.1.3. The other functions yield a rapidly increasing error for d ≤ 5, but the error stagnates (or
even decreases slightly) for larger d. Again, this is the result of the varying properties of the test functions
and the statistical model.

Even though it is not straightforward to isolate the error of the quadrature rule, this test case demonstrates
that the growth of the quadrature error for increasing dimension does not dominate the growth of the
integration error. In other words, the effect of dimension on the quadrature rule is significantly less than the
effect of dimension on the test functions and the statistical model. Therefore the quadrature rules yield a
viable approach for Bayesian prediction in multivariate spaces.

5.2 Transonic flow over an airfoil
The applicability of the approach to complex test cases is demonstrated by considering the transonic flow
over the RAE2822 airfoil. The problem under consideration is the calibration of the closure parameters of
the Spalart–Allmaras turbulence model using wind tunnel measurements. It is computationally expensive to
determine an accurate numerical solution of this problem, so the usage of efficient calibration approaches is
of importance.

This section is split into three parts. Firstly, the problem of modeling the transonic flow over an airfoil
and the measurement data under consideration is briefly introduced in Section 5.2.1. Secondly, the statistical
model under consideration that relates the measurement data to the model output is discussed in Section 5.2.2.
The obtained Bayesian predictions are presented in Section 5.2.3.

5.2.1 Modeling the flow over an airfoil

The flow over the airfoil under consideration is modeled using the Reynolds-averaged Navier–Stokes (RANS)
equations, which only model the time-averaged mean flow over the airfoil. These equations do not form
a closed system and require a closure model. For this purpose, the Boussinesq hypothesis is used, which
introduces an eddy viscosity, which is subsequently modeled using a turbulence model. The details of this
derivation are out of the scope of this article and we refer the interested reader to Wilcox [61]. The turbulence
model under consideration is the Spalart–Allmaras model [55], which is commonly used to model the flow
over an airfoil. Various variants of the model exists, though in this work the original most commonly used
variant from Spalart and Allmaras [55] is considered. The model has 10 constants, which are typically defined
as follows:

σ 2/3 Cb1 0.1355 Cb2 0.622
κ 0.41 Cw2 0.3 Cw3 2.0

Ct3 1.2 Ct4 0.5 Cv1 7.1

Here Cw1 is omitted, since it depends on the other coefficients by the following expression:

Cw1 = Cb1/κ
2 + (1 + Cb2)/σ.

The closure coefficients of turbulence models are usually obtained by fitting the model using canonical
test cases, for which analytical or accurate numerical solutions are available. There is no clear physical
interpretation of many of these coefficients. A more structured approach to obtain values for these coefficients
is to calibrate these coefficients statistically using Bayesian model calibration [6, 16, 22], which has been
discussed in this article. The posterior can be used to infer credible intervals of the parameters and can be
propagated to infer Bayesian predictions.

A major advantage of the approach discussed in this article is that the determined quadrature rule can
directly be used to infer prediction of the flow incorporating the uncertainty of the closure coefficients. The
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costly model evaluations have already been performed during the construction of the rule. No Markov chain
Monte Carlo routines are necessary to obtain the predictions.

In this article, SU2 [45] is employed to numerically solve the RANS equations. It uses a second-order
finite volume discretization and has support for the Spalart–Allmaras turbulence model. Moreover, it has
been tested extensively to model the flow over an airfoil and the turbulence model parameters can be made
configurable due to its freely available source code. As mentioned before, the airfoil under consideration is
the RAE2822. Measurements of this airfoil for various values of the Reynolds number, Mach number, and
angle of attack are freely available [17]. We consider Case 6 (see Cook et al. [17] for the other cases), with
Reynolds number 6.5 · 106, Mach number 0.725, and angle of attack 2.92◦. The measurements encompass
nz = 103 point measurements of the pressure coefficient on the surface of the airfoil. To use these values
in conjunction with SU2, we correct these values to incorporate wind tunnel effects [53]. The flow over the
RAE2822 airfoil is transonic in this case and there is shock formation with a supersonic regime on the upper
part of the airfoil.

5.2.2 Statistical model

The quantity of interest used for the calibration is the pressure coefficient on the surface of the airfoil.
Following Edeling et al. [22], the parameters considered for calibration are ϑ = [κ, σ, Cb1, Cb2, Cv1, Cw2,
Cw3]T. Let s ∈ [0, 2] be the spatial parameter that runs from the trailing edge in anticlockwise direction over
the airfoil. Then u(ϑ; s) denotes the mapping that yields the pressure coefficient at s using the turbulence
parameters ϑ. We denote the calibration parameters by ϑ (instead of x) to avoid confusion between ϑ and
the usual spatial coordinates x and y. A single evaluation of SU2 yields the pressure coefficient at all spatial
coordinates in the discrete mesh for given ϑ and we use linear interpolation to obtain the pressure coefficient
at the measurement locations.

The statistical model under consideration incorporates both model uncertainty, denoted by δ, and meas-
urement error, denoted by ε. It is, following Kennedy and O’Hagan [36], as follows:

zk = u(ϑ; sk) + δ(sk) + εk, with εk ∼ N (0, σ2) for k = 1, . . . , nz. (5.4)

Here, zk denotes the measured pressure coefficient at location sk. The random process δ(s) ∼ N (0,Cov(s, s′ |
A, l)) models the discrepancy between the model and the truth by means of a Gaussian process with zero
mean and squared exponential covariance:

Cov(s, s′ | A, l) = A exp
[
−
(
s− s′
L10l

)2
]
.

The values of A and l are hyperparameters and are being inferred from calibration, whereas L is a fixed
parameter whose value is provided later. Measurement error is modeled by εk, which is Gaussian distributed
with known standard deviation σ = 0.01. This value is based on the measurement errors reported by Cook
et al. [17].

The model from (5.4) yields the following likelihood:

q(z | ϑ, A, l) ∝ exp
[
−1

2dTK−1d
]
, (5.5)

with d the misfit and K the covariance matrix, i.e.

dk = zk − u(ϑ; sk),
K = Σ + C, with Ci,j = Cov(si, sj | A, l) and Σ = σI.

The prior of the turbulence closure parameters is as follows:
κ [0.205, 0.615]
σ [1/3, 1]

Cb1 [0.0678, 0.2033]
Cb2 [0.311, 0.933]
Cv1 [3.55, 10.65]
Cw2 [0.2, 0.4]
Cw3 [1, 3]
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Figure 9: Left: convergence of consecutive differences, Right: Mean and standard deviation of Cp − x
determined using the proposed approach (solid line and red area), compared to using canonical
coefficients (dashed) and measurement data (scattered)

These values are such that they encapsulate all commonly used variants of the turbulence model and are
such that SU2 converges for all possible combinations.

The hyperparameters A and l are also being calibrated and therefore also require a prior. These are
respectively A ∼ U(0, 0.01) and l ∼ U(0, 1). We choose L = 0.01, such that the maximal covariance length is
significantly larger than the length of a single numerical cell on the surface of the airfoil. The computational
model does not depend on A, l, and L, so given ϑ the distribution of these parameters is fully known
analytically.

By combining the prior with the likelihood from (5.5), Bayes’ law yields the posterior:

q(ϑ, A, l | z) ∝ q(z | ϑ, A, l) q(ϑ) q(A) q(l).

We are not interested in the exact distribution of the hyperparameters and the evidence can be neglected by
rescaling the quadrature rule weights. Hence we apply the adaptive implicit quadrature rule to the following
distribution:

ρ(ϑ) =
∫∫

q(z | ϑ, A, l) q(ϑ) q(A) q(l)dl dA.

Afterwards, the quadrature rule weights are scaled such that
∑N
k=0 wk = 1 and the rule is used to infer

Bayesian predictions, e.g. as derived in (2.2):

E[ẑ | z](s) =
∫

Ω
u(ϑ, s) q(ϑ | z)dϑ ≈

N∑
k=0

wk u(ϑk, s), with q(ϑ | z) ∝ ρ(ϑ).

5.2.3 Results

The quadrature rule constructed in this test case has polynomial degree 3, which constitutes a polynomial
space with 120 basis polynomials. This number of polynomials is a good balance between accuracy in the
predictions and overall running time. The quadrature rules are constructed with linearly increasing exactness,
so at the i-th iteration a quadrature rule of degree i is constructed that incorporates all available model
evaluations (up to iteration i− 1).

The obtained rule incorporates an approximation of the posterior. There is no exact solution available,
so it is not straightforward to assess the accuracy of the quadrature rule. For this purpose, each iteration
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the mean of the pressure coefficient is determined and these are consecutively compared using the 2-norm,
i.e. if Ni is the number of nodes of the quadrature rule after i iterations, then the error measure is

eNi = ‖ANiu−ANi−1u‖2.

We will denote this with a little abuse of notation simply as

eN = ‖ANu−AN−1u‖2.

The obtained errors are depicted in Figure 9a.
The quadrature rule clearly yields a converging mean and the error converges approximately linearly to

zero. The oscillations are the result of the random sampling of the proposal distributions in combination
with the fact that this test case was run only once. Obtaining a smoother decay would require repeating
the experiment various times and averaging the obtained error (as done in the previous test cases), but this
is too computationally costly in this case. In practical computations, the error decay can be assessed by
regressing the convergence rate by means of least squares (i.e. by fitting analytic error decay).

Each iteration SU2 is evaluated for each additional quadrature rule node, so obtaining Bayesian predictions
of the pressure coefficient is a straightforward post-processing step. The obtained predictions of the pressure
coefficient are depicted in Figure 9b. The measurement data, uncertainty bounds, and the deterministic
pressure coefficient determined using the canonical turbulence coefficients are also depicted. It is clearly visible
that the largest uncertainty occurs near the shock on top of the airfoil, which is in line with existing results on
uncertain transonic flows around the RAE2822 airfoil, either using uncorrelated prescribed distributions [47,
62] or calibrated parameters in a Bayesian setting [6]. Notice that the number of evaluations of SU2 needed
to infer these predictions is of similar order of magnitude as is common for uncertainty propagation with
prescribed distributions. It is a significant reduction compared to commonly used Markov chain Monte Carlo
methods [16, 21, 22].

SU2 yields the full flow field around the airfoil and therefore it is also possible to predict the statistical
moments of the pressure coefficient away from the airfoil surface, as depicted in Figure 10. We want to
emphasize the importance of positive weights, since these ensure that the prediction of the variance is positive.
Notice that the pressure coefficients depicted in these figures (i.e. away from the airfoil) have not been used
in the calibration process, as only measurement data on the airfoil surface is available. So technically it not
evident whether these results are correct or not. It is not straightforward to make general claims about this,
since the specific properties (such as smoothness) of the model under consideration determine to a large
extent whether it is viable to infer predictions of quantities using parameters that have been calibrated with
a different quantity.

6 Conclusions
In this article a new methodology is proposed to construct quadrature rules with positive weights and high
degree for the purpose of inferring Bayesian predictions. It consists of two steps. Firstly a quadrature rule
is constructed using an approximation of the posterior. For this step the so-called implicit quadrature rule
has been used. Secondly the approximation of the posterior is refined using all available model evaluations.
For the second step nearest neighbor interpolation has been used. It has been demonstrated rigorously that
our approach yields a quadrature rule whose error behaves like a quadrature rule with respect to the exact
posterior for increasing number of nodes.

The performance of the quadrature rule has been demonstrated by calibrating the Genz test functions in a
Bayesian framework. The results demonstrate that the quadrature rules consistently outperform (or perform
as well as) conventional numerical integration approaches. The performance gains are most significant if
the posterior is very informative, e.g. if its standard deviation is small. If, on the other hand, the posterior
resembles approximately the prior, the performance is comparable to a quadrature rule determined using
solely the prior.

The applicability of the approach to an expensive fluid dynamics model has been demonstrated by using
the quadrature rule to calibrate the transonic flow over the RAE2822 airfoil. It has been demonstrated
numerically that estimates of the rule converge and predictions of the mean and standard deviation of the
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Figure 10: Predictions of pressure coefficients in vicinity of the airfoil using calibrated coefficients.

pressure coefficient have been inferred. The results are in line with existing research, though significantly
less model evaluations are necessary compared to existing Bayesian calibration approaches.

There are various opportunities to further extend the approach. The nearest neighbor interpolation
procedure does not leverage smoothness in either the distribution or the posterior. A major opportunity
is replacing nearest neighbor interpolation by a more efficient interpolation approach, which could allow
for more rapid convergence. This is however far from trivial, since our method requires that the obtained
interpolant is a distribution.
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