
Data driven approximation of parametrized PDEs by Reduced
Basis and Neural Networks

Niccolò Dal Santo1, Simone Deparis1, Luca Pegolotti1

July 2, 2019

1 SCI-SB-SD, École Polytechnique Fédérale de Lausanne (EPFL),
Station 8, 1015 Lausanne, Switzerland.

Abstract

We are interested in the approximation of partial differential equations with a data-driven
approach based on the reduced basis method and machine learning. We suppose that the
phenomenon of interest can be modeled by a parametrized partial differential equation, but
that the value of the physical parameters is unknown or difficult to be directly measured. Our
method allows to estimate fields of interest, for instance temperature of a sample of material or
velocity of a fluid, given data at a handful of points in the domain. We propose to accomplish
this task with a neural network embedding a reduced basis solver as exotic activation function
in the last layer. The reduced basis solver accounts for the underlying physical phenomenonon
and it is constructed from snapshots obtained from randomly selected values of the physical
parameters during an expensive offline phase. The same full order solutions are then employed
for the training of the neural network. As a matter of fact, the chosen architecture resembles
an asymmetric autoencoder in which the decoder is the reduced basis solver and as such it
does not contain trainable parameters. The resulting latent space of our autoencoder includes
parameter-dependent quantities feeding the reduced basis solver, which – depending on the
considered partial differential equation – are the values of the physical parameters themselves
or the affine decomposition coefficients of the differential operators.

1 Introduction

During the last decade, machine learning (ML) techniques have gained considerable attention for
their ability to exploit data abundance in problems that are typically difficult to be solved through
classic algorithmic paradigms. This success is partly motivated by the recent exponential growth
in the size of available data, which is due to the technological advancements in consumer devices,
and by the increase in computational power of parallel architectures, such as supercomputers and
graphics processing units (GPUs). Deep learning (DL) [17, 4] currently represents one of the most
active and promising areas of research in machine learning. Notable applications of DL include
classification tasks, for instance image recognition [27, 34, 46], text categorization [28, 25] and
natural language processing [48, 8], and regression tasks [42], which play an important role e.g. in
computer vision [29], object detection [43], stock prediction [13], and cancer detection [24].

In the context of the numerical solution of partial differential equations (PDEs), DL has only
lately become an alternative to standard approximation techniques. This is arguably due to the
reluctancy of the community to adopt these algorithms because of the lack of a solid theoretical
foundation, which instead characterizes classical numerical methods – e.g. the finite element (FE)
method – and provides error bounds and stability conditions. In fact, the approximation properties
of neural networks (NNs), which are the basis of every DL algorithm, have been well-known for at
least thirty years; for example, in [9, 10, 33] the authors show that feed-forward neural networks with
one hidden layer are universal approximators. However, these results do not address fundamental
aspects regarding the application of neural networks in practice; for example, they do not provide

1

ar
X

iv
:1

90
4.

01
51

4v
2

 [
cs

.N
A

]
 2

9
Ju

n
20

19

guidelines on how to design optimal architectures retaining a sufficient level of expressiveness with
a minimal number of parameters and they do not focus on the trainability of such algorithms. Some
of the recent efforts oriented towards defining a mathematical theory of neural networks and which
give insights on the aformentioned critcal issues are e.g. [14, 5, 36, 18, 19, 20].

In this paper, we address the problem of approximating the solution of parametrized PDEs by
combining the reduced basis (RB) method [37, 22] and NNs. We refer the reader to [30, 23, 47]
for other applications of DL to reduced order modelling with the RB method. We set ourselves
in the scenario in which we are given data at some input physical points – e.g. the value of the
variable of interest – and we are interested in determining the solution itself (or functions thereof)
at output locations or even in the whole domain. Moreover, we suppose that the values of the
physical parameters characterizing the PDE be either unknown or difficult to be measured (e.g.
with non-invasive procedures). The key idea of our approach is to design a NN to learn the input-
output mapping by exploiting the knowledge of the underlying physical phenomenon. This concept
has already been introduced in the works by E et al. [15], Raissi et al. [38, 39], and Schwab and Zech
[41]. In these cases, the authors propose to include the knowledge of the PDE in the functional that
is minimized during training: in the former work, the loss function to be minimized is identified
as the energy functional of the corresponding differential problem, whereas in the latter the classic
mean squared error loss function is modified to account for the residual of the PDE (in strong
form) and the initial and boundary conditions. The novelty of this paper consists in including the
physical knowledge directly in the NN by considering as output layer a RB solver that, given the
input of the previous layers, assembles and solves the reduced system, projects the reduced solution
onto the original full-order space, and computes the solution at the desired output locations. We
refer to this type of architecture as PDE-aware deep neural network (PDE-DNN). This can be
interpreted as a standard multi-layer perceptron (MLP) in which the output layer is equipped with
a non-linear activation function – i.e. the RB solver – in the sense that it does not contain any
trainable parameters. Contrarily to standard activation functions, however, the RB solver maps
vectors – which in our case contain either the physical parameters of the PDE or the coefficients of
the affine decomposition – to (typically larger) vectors, i.e. the values of the solution at the output
locations. Alternatively, PDE-DNNs can be regarded as asymmetric autoencoders in which the
MLP and the RB solver play the roles of the encoder and the decoder, respectively. In this view,
the latent space coincides with either the space of physical parameters or of the space of coefficients
of the affine decomposition, depending on the structure of the underlying PDE.

This paper is structured as follows. In Section 2, we recall basic concepts of NNs and set the
notation and the terminology that will be extensively adopted throughout the rest of the paper.
In Section 3, we provide a (non-exhaustive, but sufficiently detailed for our purposes) introduction
to the reduced order modeling of parametrized PDEs through the RB method. In Section 4, we
introduce the concept of PDE-DNN. In Section 5, we present numerical experiments on a three-
dimensional example of advection-diffusion allowing for an affine decomposition (Section 5.1) and
on two-dimentional non-affine examples, namely a diffusion problem with a non-affine diffusion
coefficient (Section 5.2) and the steady Navier-Stokes equations in a bifurcation with a resistive
term modelling a stenosis (Section 5.3). Finally, in Section 6 some conclusions are drawn.

2 Deep Neural Networks

Artificial neural networks, often simply denoted neural networks (NNs) in the literature, are bio-
logically inspired ML algorithms which are able to learn from observational data [21]. Similarly to
other ML techniques, NN models are described by means of a collection of trainable parameters.
These parameters are inferred during a process whose goal is to find a locally (in the parameter
space) optimal choice that leads to an “accurate” input-output mapping of the network on a dataset
– usually called training dataset – for which the expected result is known.

Deep Neural Networks (DNNs) are a class of NNs in which simple nonlinear modules are com-
posed together in multiple layers. The first layer is the input layer and processes the raw data which

2

Input #1

Input #2

Input #3

Output #1

Output #2

Hidden
layer

Input
layer

Output
layer

Figure 1: Example of DNN with one fully connected hidden layer

feeds the network, while the last layer is the output layer which provides the output of the network;
the ones located between the two are called hidden layers, see Figure 1. A common choice for the
architecture of the DNN is given by ordered fully connected layers of perceptrons, i.e. multi-layer
perceptrons (MLPs). Perceptrons are simple computational units containing a set of nodes (the
neurons) processing the data coming from the previous layer, and a non-linear activation function.
MLPs are often preferred over other architectures for statistical regression, because of their ability
to approximate non-trivial functions. It has been shown that MLPs with at least one hidden layer
and differentiable activation functions are universal function approximators; in particular, MLPs
with one hidden layer are able to approximate any continuous function, and MLPs with two hidden
layers or more are able to approximate any function [9, 10].

Let us denote with L the number of trainable layers in a MLP (i.e. to the hidden and output
layers) and let us use the index 0 to chatacterize the input layer. The input layer performs a trivial
mapping of the input of the neural network x(0) ∈ RNin into itself. The lth layer of a MLP, with
l > 0, is a mapping of the form

y(l) = σ(l)(W (l)x(l) + b(l)), (1)

where x(l) ∈ RN
(l)
in is the input, y(l) ∈ RN

(l)
out is the output, W (l) ∈ RN

(l)
out×N

(l)
in is a matrix of

parameters (weights), b(l) ∈ RN
(l)
out is a vector of parameters (biases), and σ(l) : RN

(l)
out → RN

(l)
out

is a non-linear activation function; note that x(l) = y(l−1). In this work, we restrict ourselves to
two of the most commonly used activation functions: ReLU(x) = max(0, x) and sigmoid(x) =
(1 + exp(−x))−1; applied to multidimensional inputs, these must be intended as component-wise
functions. Equation 1 can be trivially extended to the case in which Ns samples are processed at the
same time; in such scenario, the input and output of the layer are matrices – that is X(l) ∈ RNs×N(l)

in

and Y(l) ∈ RNs×N(l)
out – where each sample is stored row-wise.

We indicate θ(l) = (W (l),b(l)) the weights-biases pair of the lth layer, and Θ = {θ(1), . . . , θ(L)}
the set of all the parameters of a MLP. Moreover, we denote Nout = N

(L)
out the size of the output

of the neural network. The goal of the training process for a MLP is to find suitable values of
the parameters W (l) and b(l) for l = 1, . . . , L such that the function modeled by the network,
f : RNin → RNout defined as f(x(0)) := y(L), well approximates the actual input-output relationship.
During the training process, the discrepancy between the real output y and the one of the network
y(L) is measured by a loss function LΘ(y,y(L)), which clearly depends on the parameters and is
minimized during the training process. A common choice of loss function, which we also consider
in this work, is given by the mean squared error (MSE). In the case of multiple samples, this is
defined as

MSEΘ(Y,Y(L)) =

Ns∑
i=1

Nout∑
j=1

(
Yij − Y (L)

ij

)2
, (2)

3

where Y is the matrix storing the desired outputs for all the samples. The minimization is typically
performed via (stochastic) gradient descent or variations such as the Adam algorithm [26], which
all require the computation of the gradients of the loss function with respect to the parameters. In
modern DL frameworks, these quantities are automatically computed by backpropagation, which is
a specialization of the chain rule for derivatives to the functionals modeled by such architectures.

3 Parametrized partial differential equations

In this section we introduce the general framework of parametrized PDEs and we describe the
fundamental principles of the reduced basis method.

3.1 Parametrized PDEs

Let us consider a parameter space D ⊂ Rp, p ≥ 1, and denote by µ ∈ D a parameter vector
encoding physical and/or geometrical properties of the problem. Furthermore, let us introduce an
open and bounded domain Ω ⊂ Rd, d = 2, 3, and denote by ∂Ω its boundary. We consider the
following equation

N [u;µ] = f(µ) in Ω (3)

where N [·;µ] is a µ-differential operator which models a physical phenomenon. For any µ ∈ D, we
are interested in the solution u = u(µ). Equation (3) is provided with proper boundary conditions
on ∂Ω.

A numerical approximation to the solution u of (3) can be obtained by means of a full order
model (FOM). The latter is derived, e. g., starting from the variational formulation of (3) and
employing a (Petrov-)Galerkin projection onto a finite-dimensional space. Examples of such FOMs
are the spectral element method, the finite volume method and the finite element (FE) method.
In our numerical experiments we consider the FE approximation as our reference true solution.
Solving the FE problem is equivalent to solving a nonlinear algebraic system of (generally) large
dimension

N[u,µ]u = f(µ), (4)

where N[u,µ] ∈ RNh×Nh is the parametrized nonlinear matrix, f(µ) ∈ RNh the right hand side
and u = u(µ) ∈ RNh is the FE vector containing the value of the solution at the mesh nodes.
The dimension Nh is in general very large when facing real-world applications, and can easily
reach millions. When facing parameter dependent problem, i.e. when the solution of the PDE (3)
is sought for many instances of the physical parameter µ, the computational load entailed by
repeatedly solving the FE problem (4) can be unbearable. This issue can be overcome by Reduced
Order Modelling (ROM) techniques, which allow to exploit the parameter dependence to boost the
solution of the parametrized-problem at hand.

3.2 The reduced basis method for parametrized PDEs

Among all the ROM approaches, the RB method has been one of the most studied and exploited in
the field of parametrized PDEs, and represents a convenient framework for the modeling reduction
of differential problems. In the following, we briefly recall the basic ideas of the RB method, we
refer to [37, 22] for full reviews and additional details.

The RB method relies on the idea that the µ-dependent solution of the Nh ×Nh FE problem
can be well approximated by a linear combination of N basis functions obtained as solution of the
same problem for (suitably chosen) parameter values, with N � Nh. The computation is usually
based on an offline/online splitting. The offline phase computes a reduced space (the RB space),
which is algebraically represented by the matrix V ∈ RNh×N , V = [ξ1| . . . |ξN]. The goal of the
RB method is to find a vector of weights uN ∈ RN such that VuN is an accurate approximation

4

to the FE solution, that is u ≈ VuN . This is done by solving an empirical algebraic RB problem
of (small) dimension N for any new instance of the parameter µ

NN [uN ,µ]uN = fN (µ), (5)

where NN ∈ RN×N is the RB matrix and fN (µ) ∈ RN the RB right hand side, respectively obtained
as Galerkin projection of the orginal FE arrays, where the nonlinear operator is computed at the
approximation VuN

NN [uN ,µ] = VTN[VuN ;µ]V, fN (µ) = VT f(µ). (6)

We notice that Petrov-Galerkin projections are also viable ways to obtain a robust RB approxima-
tion, especially for noncoercive problems, see e.g. [1, 11].

3.2.1 Constructing the RB space

The RB matrix V can be obtained by employing either a greedy or proper orthogonal decomposition
(POD) technique. We briefly remind the latter as we will employ it in the numerical experiments,
for further reading we refer to [45]. Let us consider a set of ns parameter values {µi}ns

i=1 and FE
vectors {u(µi)}ns

i=1 ⊂ RNh (called snapshots) collected as columns of a matrix S = [u1| . . . |uns],
S ∈ RNh×ns . For any prescribed dimension N , the POD allows to find an orthonormal basis
{ξi}ns

i=1 and the corresponding N -dimensional subspace, spanned by the columns of the matrix
V = [ξ1| . . . |ξN] which best approximates {u(µi)}ns

i=1 up to a tolerance εPOD with respect to the
Euclidean norm. POD takes advantage of the singular value decomposition (SVD) of S

S = UΣZT ,

with U ∈ RNh×Nh and Z ∈ Rns×ns orthogonal matrices and Σ = diag(σ1, . . . σns), Σ ∈ RNh×ns ,
containing the singular values σ1 ≥ σ2 ≥ · · · ≥ σns ≥ 0. Then, V is provided by the first N columns
of U, which form by construction an orthonormal basis for the best N -dimensional approximation
subspace. In practical applications, N is usually not set a priori by the user but for a fixed tolerance
εPOD, N is found as the minimum j such that

1−
∑j

i=1 σ
2
i∑ns

i=1 σ
2
i

≤ ε2
POD. (7)

3.2.2 Affine decompositions of RB arrays

It is clear that the solution of the RB problem (5) yields a number of operations which depends
on the number of RB degrees of freedom N , hence independent of the FE dimension Nh. However,
the assembly (6) of problem (5) requires the projection of the FE matrix and right hand side on
the RB space, thus entailing operations with a complexity dependent on Nh and preventing an
efficient offline/online splitting. To overcome this bottleneck, the RB method relies on the affine
dependence of the RB arrays, that is N[u,µ] and f(µ) can be written as sum of Qn and Qf terms
independent of uN and µ, as follows

N[VuN ,µ] =

Qn∑
q=1

θqn(uN ;µ)Nq, f(µ) =

Qf∑
q=1

θqf (µ)f q, (8)

with Nq ∈ RNh×Nh , q = 1, . . . , Qn and f q ∈ RNh , q = 1, . . . , Qf . From (8) it easily follows that

NN [uN ,µ] =

Qn∑
q=1

θqn(uN ;µ)Nq
N , fN (µ) =

Qf∑
q=1

θqf (µ)f qN , (9)

5

with Nq
N = VTNqV ∈ RN×N , q = 1, . . . , Qn, and f qN = VT f q, q = 1, . . . , Qf . Being the RB

affine arrays in (8) uN - and µ-independent, they can be preassembled in the offline phase. Then
the assembly of NN [uN ,µ] and fN (µ) in the online phase entails only the sums in (9), whose
operations are Nh-independent.

When we are facing a PDE problem which does not feature by construction an affine decompo-
sition as in (8), we cannot directly split the computation in an offline and online phase. However, an
approximated affine decomposition can be computed by using the Empirical Interpolation Method
(EIM) [3] or its discrete variants Discrete EIM (DEIM) and Matrix DEIM (MDEIM), where the
latter is specific for matrices [7, 35]. During the offline phase, these algorithms are provided with a
set of vector (DEIM) or matrix (MDEIM) snapshots and a tolerance which encodes the accuracy
of the resulting affine approximation and return a basis of affine components which is computed
through an internal POD. Then, during the online phase an interpolation problem is solved to
compute the coefficients θqn(uN ;µ) and θqf (µ) for each new instance of the PDE problem.

Depending on the problem at hand and the chosen accuracy, the number of affine components
can largely vary, from tens to hundreds or even thousands, which may largely affect the speedup
provided by the RB approximation compared with the FE one. This issue is prominent when facing
nonlinear unsteady problems where the time-dynamics plays a relevant role for the creation of the
RB approximation, see e.g. [12] in the case of the Navier-Stokes equations, where the number of
affine components is large even for a relatively modest Reynolds number (about 400).

(M)(D)EIM techniques provide a satisfactory tool to deal with nonlinear and nonaffine PDE
problems, however they present two significant bottlenecks:

• the underlying FE mesh must always be available both in the offline and online phase; in
particular, in the latter the mesh is essential for assembling the right hand side of the in-
terpolation problem for computing θqn(uN ;µ) and θqf (µ). When the RB method is used to
speedup the solution of large FE problems, the storage of the mesh can be significantly de-
manding and can prevent from using the RB approximation outside of a HPC environment.

• Given the (M)(D)EIM basis, the interpolation problem solved to produce the affine decompo-
sition does not necessarily provides the best combination of basis functions, and in practice,
for complex problems, this happens only if a significantly large number of basis is employed.

4 PDE-aware deep neural networks

In this section we introduce an original framework for approximating parametrized PDEs by cou-
pling a DNN and a RB solver.

We focus on the following class of problems. Let us consider a physical system, mathematically
modeled by a parametrized PDE as that in Equation (3), for which we know the value of the
solution u at certain points Pin = {~pi}Nin

i=1; in realistic scenarios, these measurements could be
obtained from multiple sensors positioned in Ω or on its boundary ∂Ω. In this work, we restrict
ourselves to steady physical phenomena, since unsteady cases need further developments. The PDE
is parametrized by a vector of parameters µ ∈ D ⊂ Rp, p ≥ 1 (following the notation introduced
in Section 3.1). We assume that the values of the parameters are not known, or that their direct
measurements is either complex, expensive or invasive. We want to define a neural network which,
starting from measurements, is able not only to predict values on different parts of the domain,
but also to provide the related parameter vector µ or the coefficients of the affine decomposition
of the reduced system in Equation (9). The train samples are generated by varying the parameters
µ, whose value is not included in the dataset. We are interested in predicting the values of the
solution at a set of points Qout = {~qi}Nout

i=1 , given u(~pi;µ), ~pi ∈ Pin for i = 1, . . . , Nin, and at the
same time to infer the value of the underlying parameter vector µ. In our numerical applications,
we will explore the cases in which Pin ∩Qout = ∅ and Pin ≡ Qout.

We attempt the solution of such problems with PDE-aware deep neural networks (PDE-DNNs).
The key idea of PDE-DNNs lies on the use of a PDE solver as building block of a DNN. This is

6

uµ
103

uµ
144

uµ
456

Oµ
1

Oµ
2

uµ
143

uµ
167

uµ
236

Hidden
layer

Input
layer

Output
layer

σRB

Figure 2: Example of PDE-DNN with one hidden layer in the MLP.

motivated by the fact that standard DNNs employed for solving PDE problems do not exploit the
underlying physics, and, to the best of our knowledge, the PDE plays a relevant role only in the
definition of the loss function, as in [38, 39]. In particular, our proposition is to consider a MLP
with L trainable layers in which the output layer encodes the discrete mathematical model.

The first L − 1 trainable layers of the network are mappings of the form of Equation (1) in
which σ(l) = ReLU for l = 1, . . . , L− 1. The mapping of the output layer takes the form

y(L) = σRB(W (L)x(L) + b(L)), (10)

where σRB : Rs → RNout represents the function of a RB solver acting from a s-dimensional
representation of the solution space to the space of the solution values at the output locations Qout.
The RB solver σRB constructs such mapping as follows. Let us assume without loss of generality
that s = Qn+Qf and that ξ = [θ1

n, . . . , θ
Qn
n , θ1

f , . . . , θ
Qf

f] ∈ Rs is the vector of the coefficients of the
affine decomposition in Equation (9). As a matter of fact, in the case the PDE allow for an affine
decomposition, ξ could contain the physical parameters themselves. Given ξ, the reduced solution
is simply obtained by solving the linear system efficiently assembled as in Equation (9); we remark
that the matrices Nq

N and the vectors f qN appearing in Equation (9) must be computed a priori in
the offline phase. Then, the desired output is found by projecting the reduced solution onto the FE
space, i.e. u = VuN , and by interpolating the FE solution at the points of interest in Qout. In our
tests, for simplicity, the input and the outputs are taken as values of the FE solution at the nodes
of the mesh; since we employ standard Lagrangian basis functions, no actual interpolation of the
solution is needed, and, eventually, we can write the PDE-DNN activation function as follows

σRB(ξ) = RT
outVuN (ξ) = RT

outVN−1
N (ξ)fN (ξ), (11)

where Rout ∈ RNh×Nout restricts the FE representation of the RB approximation to the output
locations.

We remark that, as we observed in our numerical simulations, taking ξ ∈ [0, 1]s considerably
improves the convergence rate of the optimization through gradient descent. For this reason, in
our numerical simulations we actually consider σ̃RB = σRB ◦ sigmoid as activation function in the
output layer. The choices of ReLU and sigmoid as activation functions for the hidden layers and as
preprocessing of the RB solver in the output layer respectively has been determined adequate after
empirical observation. We aknowledge, however, that other architectures could lead to different and
possibly better results than the ones reported in this paper.

Figure 2 shows the schematic representation of a PDE-DNN with two trainable layers (L = 2)
and with s = 2.

Remark 4.1. Activation functions play a relevant role when training a network, since both the
forward and backward propagation stages depend on them. In particular, in the latter the derivatives
of the activation function with respect to the latent space ξ = [θ1

n, . . . , θ
Qn
n , θ1

f , . . . , θ
Qf

f], that is ∂σRB

∂θqn

7

and ∂σRB

∂θqf
, enter into play. Following the definition of the affine decompositions (9), we can compute

them as follows

∂σRB

∂θqn
= RT

outV
∂
(
N−1
N (ξ)fN (ξ)

)
∂θqn

= RT
outV

∂(N−1
N (ξ))

∂θqn
fN (ξ)

= −RT
outVN−1

N (ξ)
∂(NN (ξ))

∂θqn
N−1
N (ξ)fN = −RT

outVN−1
N (ξ)Nq

NN−1
N (ξ)fN (ξ), (12)

for q = 1, . . . , Qn, and, for q = 1, . . . , Qf ,

∂σRB

∂θqf
= RT

outV
∂
(
N−1
N (ξ)fN (ξ)

)
∂θqf

= RT
outVN−1

N (ξ)
∂
(
fN (ξ)

)
∂θqf

= RT
outVN−1

N (ξ)f qN .

Let us assume that we are able to build, either from direct measurements or – as we consider in
this paper – from numerical simulations, a training dataset composed ofNs input vectors of the form
xi = [u(~p1;µi), . . . , u(~pNin ;µi)] and Ns output vectors of the form yi = [u(~q1;µi), . . . , u(~qNout ;µi)],
possibly arranged in matrix form in X ∈ RNs×Nin and Y ∈ RNs×Nout respectively; the parameters
µi ∈ D, for i = 1, . . . , Ns, are sampled in D to well represent the whole set. In this regard, we note
that in the case the training dataset be obtained from numerical simulation, the computational
burden of the RB offline phase is partially mitigated by the fact that the numerical solutions
corresponding to each µi for i = 1, . . . , Ns can be used as snapshots to build the RB basis by POD.
For the training of the network, we consider the MSE loss function defined as in Equation (2). For
each sample, our loss function does not consider at all the values of the corresponding parameters
µi. However, µi or the coefficients of the affine decomposition are internally estimated by the MLP.
Such additional information is extracted in our code by combining in the output tensor the solution
by the RB solver with the result of the linear operation in the output layer (i.e. the input required
by σRB). We stress that the latter is not used in the computation of the loss function.

5 Numerical experiments

5.1 Affinely parametrized elliptic problems

Let us consider the domain Ω = (0, 1)3 and the parametrized advection-diffusion problem{
−∇ · (ν∇u) +~b(~x;α) · ∇u = 0 in Ω,

+b.c.
(13)

with parameters µ = (ν, α) ∈ D = (0.5, 10) × (0, π/6) ⊂ R2. The former defines the diffu-
sivity of the problem and the latter is the angle defining the direction of the advection field
~b(~x;α) = sin(α)~b1(~x) + cos(α)~b2(~x), which is obtained as linear combination of two divergence free
α-independent vector fields ~b1(~x) and ~b2(~x). These are computed as solutions of the Navier-Stokes
equations with viscosity 1 and equipped with non-homogeneous Dirichlet boundary conditions on
one face of the cube – specifically, ~b1(~x) = [100, 0, 0] and ~b2(~x) = [0, 100, 0] for every ~x ∈ ∂Ω having
x3 = 1 – and homogeneous Dirichlet boundary conditions everywhere else. Fig. 3 (left) shows the
streamlines of the vector field obtained by choosing α = 0.48. The boundary of the domain ∂Ω
is partitioned in ΓD = {~x ∈ ∂Ω : x1 = 0 or x1 = 1} and ΓN , such that ∂Ω = ΓD ∪ ΓN with
◦
ΓD ∩

◦
ΓN = ∅. We impose non-homogeneous Dirichlet boundary conditions on ΓD, in particular

u = 1 for every ~x ∈ ΓD with x1 = 1 and u = 0 otherwise, and homogeneous Neumann conditions
on ΓN . Such problem could model, for instance, the temperature of a fluid in steady regime in
which the values at the two Dirichlet boundaries are kept fixed and heat is freely exchanged at
the Neumann boundaries. Fig. 3 (left) shows the solution of Eq. (13) over the streamlines of the
advecting vector field.

8

Figure 3: On the left, streamlines of the vector field ~b(~x;α), colored with respect to the solution of
Eq. 13. On the right, absolute error on the prediction of a PDE-DNN with 20 input points (white
spheres) and 20 output points (colored spheres). Both figures refer to ν = 2.22 and α = 0.48.

After the discretization of problem 13 by the FE method (which we consider for all of the high
fidelity models presented in this paper), the system is rewritten in algebraic form as

Au = F, (14)

where A = νA1 + sin(α)A2 + cos(α)A3 ∈ RNh×Nh is the affine decomposition of the finite element
matrix; F ∈ RNh accounts for the boundary conditions and admits a similar affine decomposition.

5.1.1 PDE-DNNs for affinely parametrized PDEs

We aim at evaluating the performance of a PDE-DNN in predicting solutions of Eq. (13) for several
instances of µ in a set of output points in terms of the following hyperparameters: i) the number
of input points Nin, ii) the number of output points Nout, iii) the tolerance for the POD of the RB
solver εPOD, and iv) the number of samples in the training dataset Ns.

For this test case we randomly sample the input and output points in the partitions of Ω
corresponding to x2 ≤ 1/2 and x2 > 1/2 respectively, as depicted in Fig. 13 (right); this choice is
motivated by the fact that, if two sets Pin and Qout were obtained from sampling over the entire
Ω, then also simple interpolation between points in the input set could potentially provide a rough
approximation of the solution in the output points. As mentioned in Section 4, the sampling is
done over the nodes of the mesh which is used in the computations by taking care of not selecting
nodes on the Dirichlet boundaries; we consider a computational mesh composed of tetrahedra with
P1 finite elements and a total of Nh = 12416 degrees of freedom.

In order to build a PDE-DNN, we first need to perform the offline phase of the RB method. This
entails the collection of a predetermined number of snapshots ns, which are obtained by solving
the problem by FOM – in our case, the FE method with linear Lagrangian basis functions – for
µi ∈ D, i = 1, . . . , ns. In this example, ns = 350 and the parameters are sampled from a uniform
distribution in D. Performing the POD of the snapshots matrix S with tolerances εPOD = 10−4,
εPOD = 10−5, εPOD = 10−6 and εPOD = 10−7 yields bases of sizes N = 12, N = 19, N = 28 and
N = 38 respectively.

The ns = 350 snapshots generated during the RB offline phase are also used as samples in
the training dataset, which is performed through Adam algorithm with learning rate 10−3. We
decide to enlarge such dataset by exploiting the ability of the RB method to generate solutions
corresponding to new parameters in D at a negligible cost. The largest training dataset we consider

9

0 100 200 300 400 500
epochs

10−8

10−7

10−6

10−5

10−4
lo
ss

0 100 200 300 400 500
epochs

10−4

10−3

m
ea

n
ab

so
lu
te
 e
rro

r

train
validation

Figure 4: On the left, decaying of the MSE function during 10 trainings of PDE-DNN model with
choice of hyperparameters Nin = 20, Nout = 20, εPOD = 10−5 and Ns = 10000. On average, the
training has taken 1366 s. On the right, decaying of the mean absolute of error (averaged on the
10 runs) for train and validation datasets. The validation is obtained from the training dataset by
selecting 20% of the samples.

is composed of 20000 samples: 350 full order solutions and 19650 RB solutions obtained with POD
tolerance εPOD = 10−7. As we wish to investigate the role of the number of samples on the training
process and performance of the network, we also consider smaller training datasets by selecting the
first Ns samples of the largest training dataset. We remark that in our tests we actually select 20%
of the training samples for the validation of the model, that is, the training process is based on
the remaining 80% samples and the loss and other performance metrics are computed also on the
validation dataset. In the deep learning community, such practice is adopted to prevent common
issues such as over- or underfitting ; we refer the reader to [17] for more information on these topics.
In the following, we will refer to training dataset as the subset of the total number of samples
that is used during training. The test dataset is composed of 600 FE solutions at different random
parameter values.

The PDE-DNN consists of 4 hidden layers. In this test case, each hidden layer consists of
256 neurons. The linear part of the output layer is in charge of estimating a two dimensional
vector, which is interpreted by the RB solver as an estimation of the physical parameters of the
problem. The training of the PDE-DNN is performed through minimization of the loss in Eq. (2)
by gradient descent for 500 epochs; such number has been determined as adequate after empirical
observations. Fig. 4 depicts the decaying of the MSE loss over 10 trainings of a PDE-DNN; we
remark that the evolution of the loss function is not deterministic because the initialization of
the trainable parameters of the MLP is random. In Fig. 4 (right), we focus on the mean absolute
error – averaged over the 10 runs – as metric of the performance of the network. Since the mean
absolute error reaches a plateau at around 500 epochs, we safely conclude that underfitting does
not affect the training and this number of epochs is sufficient. Moreover, as the mean average
error on the training and the validation dataset follow the same trend, overfitting does not occur
during training. This is also true for the other choices of hyperparameters that we have considered.
Our interpretation of this pheonomenon is that, as the train samples are obtained from numerical
simulations, there are no “hidden parameters” that could characterize only the training dataset and
penalize the performance over the validation. In other words, well representing the training data
automatically leads to good approximation of the validation dataset.

Fig. 5 displays the estimation of the normalized parameters ν and α performed by the PDE-NN
for different values of the POD tolerance and different number of training samples. The findings
are obtained by averaging the performance of 30 networks (trained over 500 epochs) on the test
dataset. The effect of the two hyperparameters εPOD and Ns is the following. Given a sufficiently
high number of input samples, for instance Ns = 20000, the RB tolerance does not significantly
affect the accuracy of the estimation for neither of the two physical parameters (the tolerance
regions corresponding to Ns = 20000, indeed, do not change significantly across the two rows of

10

0.0 0.5 1.0
expected ν

0.0

0.5

1.0
pr
ed

ict
ed

 ν
εPOD = 1e-04

Ns = 1000
Ns = 10000
Ns = 20000

0.0 0.5 1.0
expected ν

εPOD = 1e-05
Ns = 1000
Ns = 10000
Ns = 20000

0.0 0.5 1.0
expected ν

εPOD = 1e-07
Ns = 1000
Ns = 10000
Ns = 20000

0.0 0.5 1.0
expected α

0.0

0.5

1.0

pr
ed

ict
ed

 α

Ns = 1000
Ns = 10000
Ns = 20000

0.0 0.5 1.0
expected α

Ns = 1000
Ns = 10000
Ns = 20000

0.0 0.5 1.0
expected α

Ns = 1000
Ns = 10000
Ns = 20000

Figure 5: Estimation of the two (normalized over the respective ranges) physical parameters of the
problem, ν (top row) and α (bottom row), for different POD tolerances of the RB problem and
different number of samples. The results refer to the test dataset, which is composed of 600 data
points, and are average over 30 trainings of the PDE-DNN network. The regions between dashed
lines display the 95% confidence intervals corresponding to the average lines with the matching
colors.

plots of Fig. 5). If, however, the training dataset is scarce, decreasing the tolerance of the POD
leads to more uncertain results (i.e. larger confidence regions) without an appreciable increase
of the precision on average. In other words, based on these results we conclude that the choice
εPOD = 10−4 or εPOD = 10−5 is sufficient to get accurate results regardless of the size of the
training dataset.

The estimation of the diffusion coefficient ν appears more challenging than the one of the angle
α: for values approaching ν = 10 the networks are not able to distinguish accurately diffusivity
coefficients close to each other, and in particular the predicted values are on average underestimating
the correct ones (this is particularly true for Ns = 1000). The estimation of the parameter α is
quite accurate for all the considered configurations.

Table 1 and 2 show the errors on the prediction of ν and α respectively for different configura-
tions of the PDE-DNN, averaged over 10 trainings of the network; all the results are obtained with
εPOD = 10−5.

As a comparison, we consider three neural networks, denoted MLPµ, MLPout and MLP. These
are are designed and trained to compute the parameter µ (MLPµ), or the value of u at the given
output locations (MLPout) or both (MLP). The hidden layers of these networks are the same as
those in the considered PDE-DNN, whereas the output layer is a perceptron equipped with sigmoid
and with dimension dim(µ), Nout and Nout + dim(µ) for MLPµ, MLPout and MLP, respectively.

As we noted in Fig. 5, the number of samples plays a relevant role in the approximation of the
physical parameters, whereas the number of input and output locations does not affect significantly
the results. We remark that the PDE-DNN is able to obtain the approximately same accuracy of
the other two neural networks, even though the parameters are only found as a byproduct (i.e. it
is not necessary to train the model by providing the value of the parameters).

Table 3 shows the error on the output normalized with respect to the norm of the expected
output (to take into account the different output sizes) in the same configurations considered in

11

(Nin, Nout)

Ns (20, 20) (40, 40) (100, 100) (20, 40) (20, 100) (40, 20) (100, 20)

PDE-NN
1000 2.18e-02 2.64e-02 2.00e-02 2.03e-02 2.31e-02 2.29e-02 7.05e-02
10000 3.62e-03 5.28e-03 5.00e-03 1.11e-02 9.99e-03 4.60e-03 3.87e-03
20000 2.87e-03 7.33e-03 5.69e-03 2.24e-03 4.23e-03 4.81e-03 3.50e-03

MLP
1000 2.37e-02 1.91e-02 1.78e-02 2.24e-02 1.62e-02 1.75e-02 1.56e-02
10000 5.81e-03 7.49e-03 3.69e-03 6.84e-03 4.46e-03 4.70e-03 5.32e-03
20000 4.71e-03 3.96e-03 3.53e-03 4.17e-03 3.55e-03 4.07e-03 4.08e-03

MLPµ
1000 2.39e-02 2.51e-02 3.04e-02 1.87e-02 2.01e-02 2.61e-02 2.02e-02
10000 7.99e-03 4.13e-03 5.80e-03 4.93e-03 6.50e-03 9.62e-03 6.12e-03
20000 2.97e-03 1.30e-02 2.82e-03 5.56e-03 8.53e-03 5.95e-03 3.17e-03

Table 1: Average error on ν over 600 test samples and over the outputs of 10 independently trained
networks.

(Nin, Nout)

Ns (20, 20) (40, 40) (100, 100) (20, 40) (20, 100) (40, 20) (100, 20)

PDE-NN
1000 8.42e-03 1.58e-02 9.16e-03 9.52e-03 1.09e-02 1.30e-02 3.93e-02
10000 3.05e-03 2.36e-03 2.91e-03 4.71e-03 3.30e-03 1.69e-03 2.07e-03
20000 2.66e-03 4.28e-03 2.30e-03 1.02e-03 1.71e-03 4.54e-03 1.41e-03

MLP
1000 8.44e-03 7.62e-03 1.46e-02 1.02e-02 8.10e-03 7.03e-03 8.61e-03
10000 7.10e-03 3.02e-03 4.49e-03 4.22e-03 1.81e-03 4.41e-03 2.43e-03
20000 2.31e-03 1.67e-03 1.34e-03 1.85e-03 2.46e-03 2.27e-03 1.85e-03

MLPµ
1000 1.57e-02 1.07e-02 2.20e-02 8.79e-03 1.04e-02 1.21e-02 1.49e-02
10000 3.03e-03 1.95e-03 4.83e-03 2.08e-03 2.09e-03 2.67e-03 6.47e-03
20000 2.09e-03 3.64e-03 1.96e-03 2.11e-03 3.88e-03 4.26e-03 3.03e-03

Table 2: Average error on α over 600 test samples and over the outputs of 10 independently trained
networks.

12

(Nin, Nout)

Ns (20, 20) (40, 40) (100, 100) (20, 40) (20, 100) (40, 20) (100, 20)

PDE-NN
1000 7.59e-04 8.72e-04 5.75e-04 5.74e-04 6.35e-04 1.57e-03 4.84e-03
10000 2.08e-04 2.70e-04 3.77e-04 3.18e-04 3.30e-04 1.80e-04 1.28e-04
20000 1.63e-04 2.21e-04 1.78e-04 7.88e-05 1.24e-04 2.66e-04 1.40e-04

MLP
1000 1.54e-03 1.37e-03 2.56e-03 1.17e-03 9.85e-04 1.03e-03 1.41e-03
10000 8.93e-04 5.58e-04 5.34e-04 5.47e-04 3.48e-04 5.66e-04 4.34e-04
20000 2.98e-04 3.39e-04 2.89e-04 2.43e-04 2.28e-04 3.51e-04 3.93e-04

MLPout

1000 1.05e-03 8.47e-04 1.45e-03 1.01e-03 1.34e-03 1.22e-03 1.12e-03
10000 5.99e-04 4.51e-04 1.81e-04 2.82e-04 1.56e-04 2.80e-04 1.99e-04
20000 1.63e-04 8.50e-05 1.78e-04 3.68e-04 1.33e-04 1.37e-04 1.11e-04

Table 3: Average error – normalized with respect to the output norm – on yi over 600 test samples
and over the outputs of 10 independently trained networks.

0.0 0.5 1.0
predicted ν

1e-4

3e-4

1e-3

H
1 e

rro
r

Nin=Nout = 20

0.0 0.5 1.0
predicted ν

Nin=Nout = 40

0.0 0.5 1.0
predicted ν

Nin=Nout = 100

0.2

0.4

0.6

0.8

Figure 6: H1 error against the 600 full order solutions in the test dataset when employing 20, 40
and 100 input locations in the dataset. Each point has x-component equal to the estimated value
of the normalized physical parameter ν and it is colored with respect to the estimated value of
the normalized physical parameter β; these and the errors have been obtained as averages over 10
trainings (500 epochs) of PDE-DNNs corresponding to εPOD = 10−5 and Ns = 20000.

the previous tables. Also in the case of MLPout, the three networks perform similarly for any choice
of the hyperparameters.

Finally, we consider the case in which the physical input and output location coincide. In other
words, we train the network such that the RB solution coming from the output layer is as close as
possible to the full order solution at the input locations(x ≤ 1/2). In this scenario, the PDE-NN is
trained to model the identity function and the architecture is effectively an autoencoder in which
the encoder is the MLP, the decoder is the RB solver, and the latent space is the space of physical
parameters. In order to evaluate the performance of the network, we consider as metrics the H1

error against the full order solution. We recall that this is possible because, given the estimation
of the physical parameters by the MLP, the RB solver is able to approximate the solution at any
point in the domain.

Fig. 6 shows the H1 error averaged over 10 trainings of PDE-DNNs when employing 20, 40
and 100 physical points. The average H1 errors over the whole test dataset in the three cases is
3.0× 10−4, 2.3× 10−4 and 2.4× 10−4. As a comparison, we report that the average error achieved
with the RB method alone with the same POD accuracy εPOD = 10−5 is 1.1 × 10−5. We observe
that increasing the number of input locations has the effect of slightly decreasing the average error

13

Figure 7: Examples of solutions of problem (15) for the parameters µ1 = (0.42, 0.42, 0.06) (left)
and µ2 = (0.45, 0.59, 0.09) (right).

performed over the test dataset. Moreover, Fig. 6 highlights that the prediction of the networks is
considerably worse when the normalized ν approaches 0. This phenomenon and the fact that the
loss function we consider is only concerned with the accuracy on the solution could explain the
tendency of the networks to be considerably more precise in the estimation of ν when it is small
(as displayed in Fig 5).

5.2 Nonaffinely parametrized elliptic problems

In the second test case, we consider a second-order diffusion problem where the diffusion coefficient
is nonaffinely parametrized. Let us consider the domain Ω = (0, 1)2 describing a square beam and
a diffusion problem of the form{

−∇ · (α(µ)∇T) = 1 in Ω,

+b.c.
(15)

where T is the temperature of the beam. We define the following boundaries

ΓN =
{
~x ∈ Ω̄ : y = 1

}
, Γ1

D =
{
~x ∈ Ω̄ : y = 0

}
, Γ0

D = ∂Ω\ΓN\Γ1
D,

such that ∂Ω = Γ̄D0 ∪ Γ̄D1 ∪ Γ̄N , and we set homogeneous Neumann boundary conditions on ΓN ,
homogeneous Dirichlet conditions on Γ0

D and the solution to be equal to 1 on Γ1
D. We introduce

the parameter vector

µ = (x1
0, x

2
0, σ) ∈ [0.4, 0.6]2 × [0.05, 0.1] ⊂ R3

and the coefficients

α(µ) = σ +
1

σ
exp

(
−‖~x− ~x0(µ)‖2

σ

)
, ~x0(µ) = (x1

0, x
2
0).

Examples of solutions for two different physical parameters µ are reported in Figure 7.
We employ a lifting function Tl = Tl(~x) to deal with the nonhomogeneous Dirichlet boundary

conditions, and we use a structured mesh with Nh = 10201 vertices and the FE method with first
order polynomial piecewise basis functions to discretize the variational problem corresponding to
(15). This leads to the following parametrized linear system of dimension Nh

A(µ)T = F(µ), (16)

14

MLP architecture layers description

A1
na 4 hidden layers with sizes 1024, 512, 256, 128
A2

na 4 hidden layers with all sizes equal to 256
A3

na 4 hidden layers with all sizes equal to 64

Table 4: Architectures employed for Nonaffine test case.

where A(µ) ∈ RNh×Nh and T = T(µ), F(µ) ∈ RNh . A significant difference with respect to the
previous test case is the nonaffine dependence of the FE matrix A(µ) and right hand side F(µ)
(the latter due to the lifting function) with respect to the parameters, i.e. assumptions (8) do not
hold. Hence, to build a RB model independent of dimension Nh, we employ MDEIM and DEIM
leading to Qa sand Qf affine basis for the FE matrix and right hand side, respectively, that is

A(µ) ≈
Qa∑
q=1

θaq (µ)Aq, F(µ) ≈
Qf∑
q=1

θfq (µ)Fq. (17)

We recall that given a new parameter µ, the coefficients {θaq (µ)}Qa
q=1 and {θfq (µ)}Qf

q=1 are computed
by solving an interpolation problem which enforces the true values of some preselected entries of the
matrix (or right hand side) in its approximation. Clearly, the higher the number of affine components
Qa and Qf , the more accurate the resulting affine approximation and the corresponding RB model.
Notice that the underlying parametrization of α(µ) results in a complex parameter dependence,
especially related to the approximate affine approximation of A(µ). This is due to the Gaussian-like
shape of the diffusion coefficient, which changes its centre and amplitude according to the value of
the parameter µ and requires MDEIM to compute a large number of basis functions to obtain an
accurate affine approximation. This fact can hamper the online efficiency of the RB method and
lead to a less competitive approximation with respect to compute the full FE solution. Finally, we
highlight that being the problem linear, the coefficients θaq (µ) do not depend on uN (µ).

5.2.1 PDE-DNNs for nonaffinely parametrized PDEs

Given the measurements of the FE solution at Nin = 40 physical points located on the boundary
ΓN (green in Figure 8a), we are interested in predicting the value of the same solution at Nout = 100
physical points located in the top left quadrant of the domain (red in Figure 8a). To this aim, we
employ a PDE-DNN with 4 hidden layers, for which we investigate three different architectures,
reported in Table 4. The fifth and last layer combines the outputs of the forth layer into the
coefficients {θaq (µ)}Qa

q=1 and {θfq (µ)}Qf

q=1 of the affine approximations (17). These coefficients are
used to assemble the RB matrix and right hand side. After solving the small dense linear problem,
the layer recovers the values of the temperature at the output locations.

With respect to the PDE-DNN in Figure 2, Oµ
i represent the following values:

Oµ
i =

{
θai (µ) if i = 1, . . . , Qa

θfi−Qa
(µ) if i = Qa + 1, . . . , Qa +Qf .

The number of employed affine components is fixed to Qf = 10 for the right hand side, yielding an
accuracy of ≈ 10−6 for the approximation of the right hand side. On the other hand, the considered
parametrization leads to a large number of terms for the affine approximation of A(µ) to obtain its
accurate representation (up to about 40 for an accuracy of ≈ 10−5), leading to a significant overhead
when employing the standard RB method. In the latter, the values {θai (µ)}Qa

i=1 are obtained by
solving an interpolation problem, and a large number of affine components is required to obtain
an accurate RB solution. In the PDE-NN framework we are proposing, the values of the functions
{θai (µ)}Qa

i=1 (and {θfi (µ)}Qf

i=1) are instead optimized by the encoding part of the network, the MLP.

15

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

input
output

(a) Input location (green) and output location (red)

0 200 400 600 800 1000
epoch

10−6

10−5

10−4

10−3

10−2

lo
ss

train
validation

(b) A1
na and Qa = 5

0 200 400 600 800 1000
epoch

10−6

10−5

10−4

10−3

10−2

lo
ss

train
validation

(c) A1
na and Qa = 40

0 200 400 600 800 1000
epoch

10−6

10−5

10−4

10−3

10−2

lo
ss

train
validation

(d) A3
na and Qa = 5

Figure 8: Location of input and output locations and decay of loss for the training and validation
set different architectures and number of affine terms Qa.

It is important to notice in the case of PDE-NNs the values {θai (µ)}Qa

i=1 are not trained to minimize
the error between the original FE matrix A(µ) and its affine approximation, but rather to minimize
the error between the final output of the RB solver and the training output. We analyze the behavior
of our network by varying the number of matrix affine components Qa, which is set to 1, 2, 3, 4,
5, 10, 20, 40, and used to feed the RB solver. These numbers of affine components lead to an
affine approximation of A(µ) that by the standard computation of {θai (µ)}Qa

i=1 would lead to a
relative error ranging from 1 to 10−5. We stress that for our PDE-DNNs we employ MDEIM for
building an affine basis, but not for computing the corresponding coefficients {θai (µ)}Qa

i=1 of the
affine approximation.

The training of the PDE-DNN is performed through minimization of the loss in Eq. (2) by Adam
algorithm (with learning rate set to 10−3) for 1000 epochs; the parameters of the optimization
method were set after empirical observations. For training the network, we employ Ns = 10000
samples obtained by computing the FE full solutions of problem (16) corresponding to randomly
sampled values of µ ∈ D. We use this set also to construct a RB solver with εPOD = 10−4. We
considered this setting adequate after the analysis carried out in the test case in Section 5.1; 80%
of the samples are used as training set, whereas the remainder serves as validation set. Examples of
loss decay for the training validation sets corresponding to A1

na and A3
na architectures and Qa = 5

and Qa = 40 affine components are reported in Figure 8. As expected, the lower number of trainable
parameters in the case of A3

na results in a significantly smoother decay of the loss function.
The trained network is then evaluated on a test set with 1000 samples corresponding to values of

the parameters randomly sampled in D and different from the ones used during the training phase,
and we evaluate the error achieved on the value of the solution at the output location by the three
proposed architecture as function of the number of affine components predicted by the MLP. We
also compare this result by the one computed by a standard RB solver, where the number of affine
components is Qa and, given the physical parameter µ, the coefficients {θaq (µ)}Qa

q=1 are computed
online by solving an interpolation problem in MDEIM. As a matter of fact, the RB method requires

16

Qa 1 2 3 4 5 10 20 40

A1
na 2.19e-02 3.59e-02 2.55e-02 7.31e-03 5.15e-03 6.16e-03 5.58e-03 2.59e-03
A2

na 2.22e-02 8.58e-03 1.18e-02 5.46e-03 4.87e-03 3.11e-03 4.55e-03 2.36e-03
A3

na 2.22e-02 2.97e-02 6.26e-02 7.79e-03 5.69e-03 4.42e-03 4.52e-03 3.45e-03
RB 6.84e-01 7.63e-01 3.43e+00 1.34e+00 6.52e-01 4.98e-02 7.27e-03 3.32e-04

Table 5: Errors on the output for the three architectures and the RB method over 1000 test samples
randomly selected and different from the ones using in the training phase.

100 101
Qa

10−3

10−2

10−1

100

m
ea

n
ab

so
lu
te
 e
rro

r 1
2
3
RB

Figure 9: Accuracy obtained by the PDE-DNN with three different architectures of the MLP and
the standalone RB method as function the number of matrix affine components Qa.

a fine affine decomposition of A(µ) in order to provide a satisfactory result. As observed in the
literature, the accuracy of the RB solution strictly depends on the accuracy of the matrix affine
approximation: the lower Qa is, the less accurate the RB model becomes. On the contrary, the
accuracy of the PDE-DNNs is mildly dependent of the number of affine components Qa: a minimal
amount of Qa = 4 affine basis is required, where a plateau is reached. By employing a larger Qa
no gain in accuracy is observed. This different behavior is ascribed to the fact that the PDE-DNN
does not necessarily provide the values of {θaq (µ)}Qa

q=1 that would be computed by the interpolation
problem solved by the MDEIM algorithm, and that would provide a poor approximation in the
case of small Qa. Instead, it computes the coefficients {θaq (µ)}Qa

q=1 which yield an accurate RB
approximation with the given affine basis. Eventually, this results in the minimization of the loss
function. On average, the PDE-DNN approximation is more accurate in the 100% of cases when
using Qa = 1, 2, 3, 4, 5, 10 and in about the 90% of cases if Qa = 20. The standalone RB method
always results in a better approximation only if Qa = 40. The detailed errors can be found in Table
5.

5.3 Steady Navier-Stokes equations

In this section we introduce the steady Navier-Stokes (NS) equations for a viscous Newtonian in-
compressible fluid, which model the blood dynamics in artery bifurcations. Given an open bounded
domain Ω ⊂ R2, shown in Figure (10a), such that ∂Ω = Γin∪Γout∪Γw and Γ̊w∩ Γ̊in = Γ̊out∩ Γ̊in =
Γ̊w ∩ Γ̊out = ∅ the steady NS equations read as follows:

~u · ∇~u− ν∆~u+∇p = ~0 in Ω

∇ · ~u = 0 in Ω

+b.c. on ∂Ω

(18)

Here ~u = ~u(µ) and p = p(µ) are the velocity and the pressure fields describing the dynamics of the
fluid and ν denotes the kinematic viscosity, which in our formulation is taken as physical parameter.

17

We employ a nonhomogeneous Dirichlet inlet condition u = u(~x) = 4U(0.4 − x)2, with U = 10,
on Γin , homogeneous Dirichlet conditions on the wall Γw and homogeneoous Neumann conditions
on the outlet boundary Γout. We define the Reynolds number Re = LŪ/ν as the non-dimensional
ratio of convection to diffusion, where L and Ū are the characteristic length of the domain and
velocity of the flow, respectively; here we deal with laminar flows, featuring Re ∈ [1, 103]. We are
interested in the velocity dynamics in the presence of stenosis, that is the partial occlusion of the
artery before the bifurcation. In this work, this is modelled by summing an additional reaction
term c(~x; r)~u to the left hand side of the first equation in (18), where

c(~x; r) = 103IΩs(r) + 10−10IΩc(r)

where IA is the characteristic function on a set A ⊂ R2 and the regions Ωs(r) and Ωc(r) are defined
as

Ωs = Ωs(r) = {~x ∈ Ω : 10(~x1 − 1.5).2 + (~x2 − 0.46)2 < r2}
Ωc = Ωc(r) = {~x ∈ Ω\Ωs(r) : 10(~x1 − 1.5).2 + (~x2 − 0.46)2 < r2

max},

where rmax = 0.25 is fixed. The function c(~x; r) defines an ellipsis modelling the presence of an
obstacle which represents the stenosis in the region Ωs. The volume of the stenosis increases by
increasing the value of r, which is the second parameter for this test case. A non-zero value is
assigned also in the region Ωc, in order to guarantee that the support of c(~x; r) be not parameter
dependent. This ensures that the sparsity pattern of the nonaffinely parametrized FE matrix ob-
tained by discretizing the additional reaction term does not change by changing the value of the
parameter r. Should this property not hold, we could not apply MDEIM to affinely approximate
it. Eventually, we define the parameter vector as

µ = (ν, r) ∈ D = [0.01, 0.1]× [0, 0.25].

From (18), we can derive the corresponding variational formulation and subsequently the FE
discretization by employing continuous piecewise second order polynomials for the the velocity and
continuous piecewise first order polynomials for the pressure. This choice, also known as Taylor-
Hood FE basis functions, is motivated by the saddle-point nature of problem (18) and guarantees
the well-posedness of the resulting FE nonlinear system. We refer to, e.g., [16, 44, 6] for further
details on the NS equations and their FE discretization. Solving the FE formulation of the NS
equations is equivalent to solving a nonlinear system as (4) of the following form, where the matrix
at the left hand side has a saddle-point structure[

D(µ) + C(u;µ) + K(µ) BT

B 0

] [
u
p

]
=

[
fu(µ)

0

]
. (19)

Here u ∈ RNu
h and p ∈ RN

p
h are the vector representations of the velocity and pressure FE solutions,

fu corresponds to the discretization of the nonhomogeneous Dirichlet condition, D(µ), C(u;µ),
K(µ) ∈ RNu

h×Nu
h arise from the discretization of the second order differential operator, the nonlinear

term and the additional obstruction term in the first equation of (18), respectively, and B ∈ RN
p
h×N

u
h

from the discretization of the incompressibility constraint given by the second equation in (18). We
stress that B is not parameter dependent, whereas the nonlinear matrix C(u;µ) depends on the
parameter by means of the solution u.

Remark 5.1. Let us introduce, for ~w, ~u,~v in a suitable functional space, the trilinear form

c(~w, ~u,~v) =

∫
Ω

(~w · ∇)~u · ~vdΩ. (20)

The nonlinear matrix C(u;µ) arises from the FE discretization of (20) where ~w = ~u.

18

(a) Regions Ωs (red) and Ωc (green). (b) FE mesh.

Figure 10: On the left, domain Ω, boundaries, regions Ωs(r), Ωc(r) for r = 0.2. On the right, the
FE mesh.

(a) µ = (0.05, 0.15) (b) µ = (0.02, 0.24)

Figure 11: Velocity solutions of the modified NS problem for µ = (0.05, 0.15) (left) and µ =
(0.02, 0.24) (right), where a stenosis is simulated, yielding an obstruction and the subsequent cre-
ation of vortices.

In the numerical experiment we use a mesh with 15182 triangles, shown in Figure 10b, leading
to Nu

h = 59686 dofs for the velocity and Np
h = 7592 for the pressure. The FE system is then solved

with the Newton method (with a tolerance of 10−8) in about 165.2 seconds, where at each iteration
a linear system is solved with a direct method. An example of regions Ωs and Ωc is displayed in
Figure 10a and the velocity obtained for two choices of the parameter, simulating the absence and
the presence of the stenosis, are shown in Figures 11a and 11b, respectively. The larger the value
of r, the smaller is the volume of central arterial lumen and the larger the corresponding velocity,
leading also to the creation of vortices, as it is shown in Figure 11b.

The RB method (and in particular POD) has been largely employed to accelerate the solution
of the parametrized steady NS equations, see e.g. [2]. To this aim, as explained in Section 3.2, we
collect velocity solutions of (18) for a large enough amount of randomly chosen parameter in D,
we perform POD to build the RB projection matrix for velocity Vu ∈ RNu

h×Nu , and approximate
u in (19) with VuuN , with uN = uN (µ) ∈ RNu . Being the columns of Vu obtained through POD,
i.e. as linear combinations of solutions of (19) for some parameter instances, they are divergence
free, that is BVu = 0, meaning that the second equation in (19) is automatically satisfied when
we substitute u with VuuN . Next, we left-multiply the remaining first equation by VT

u to obtain
the Galerkin-projected problem. Similarly, VT

uBT = 0, providing us with the following nonlinear
RB system where the reduced velocity uN is the only unknown(

DN (µ) + CN (VuuN ;µ) + KN (µ)
)
uN = fuN (µ). (21)

The definition of the linear reduced operators in (21) take advantage of the (approximated) affine
decomposition of the corresponding FE arrays, that is,

DN (µ) = νVT
uDVu KN (µ) =

Qk∑
q=1

θkq (µ)VT
uKqVu, fu(µ) =

Qu
f∑

q=1

θf
u

q (µ)VT
u fuq , (22)

where D ∈ RNh×Nh is the FE matrix corresponding to the viscosity-independent Laplace operator,
{Kq}Qk

q=1 ⊂ RNh×Nh and {fuq }
Qu

f

q=1 ⊂ RNh are the (M)DEIM basis for the affine approximation of

19

K(µ) and fu(µ), respectively. For what concerns the nonlinear term CN (VuuN ;µ), it admits the
following (exact) affine decomposition

CN (VuuN ;µ) =

Nu∑
j=1

ujNVT
uCjVu, (23)

where ujN is the j-th component of the RB solution vector, i.e. ujN = [uN]j , and Cj ∈ RNh×Nh , j =

1, . . . , Nu, is the FE matrix corresponding to the nonlinear term (20) where ~w = ~ξj , with ~ξj the
j-th RB function. The RB problem (21) for the steady NS equations is nonlinear and requires to
employ a Newton solver and the affine decomposition of the Jacobian and the residual, which are
inherited from the ones of the linear and nonlinear operators (22) and (23). The need to assemble
and solve a nonlinear problem can clearly slow down the efficiency of the RB method.

There are several techniques to obtain a RB problem coupling both the velocity and pressure,
which involve the use of the so-called supremizing functions, the interested reader can find more
details in [2, 40, 32]. In this work are not interested to the value of pressure, however, in case of
need, it can be reconstructed from the RB velocity through an additional pressure equation, as in
[31].

5.3.1 PDE-DNNs for parametrized Navier-Stokes PDEs

We use a setting similar to the one employed in the previous test case and construct a PDE-DNN
which has the measurements of the velocity as input and output, with an architecture as (2), where
the RB solver interprets Oµ

i as the viscosity ν, the coefficients {θkq (µ)}Qk
q=1 and {θf

u

q (µ)}
Qu

f

q=1 of the
affine approximations (22) and eventually the coefficients ujN of the affine expansion (23). Since the
coefficients ujN have an exponential decay, we decide to truncate them to the first Qn coefficients,
leading to the approximation

CN (VuuN ;µ) ≈
Qn∑
j=1

ujNVT
uCjVu. (24)

To summarize, the last layer processes

Oµ
i =

ν if i = 1

θki−1(µ) if i = 2, . . . , Qk + 1

θfi−Qk−1(µ) if i = Qk + 2, . . . , Qk +Quf + 1

ujN if i = Qk +Quf + 2, . . . , Qk +Qf +Qn, j = i−Qk −Quf − 1.

The choice of predicting the coefficients ujN has evident advantages, since the final layer of our
PDE-DNN is called to solve a linear RB problem rather than a non-linear one. Indeed, we predict
the coefficients ujN in the affine decomposition of CN (VuuN ;µ), instead of considering them as the
unknown solution, which is a remarkable advantage when compared to the standard RB method
for the NS equations. As a consequence, also the backpropagation (12) is easily computable.

In the numerical experiments, we have randomly selected a varying number of Nin input loca-
tions and Nout locations across the full domain Ω.

We construct the RB problem (21) starting from ns = 19137 snapshots for the velocity and
with a tolerance εPOD = 10−4, leading to Nu = 245 reduced basis functions. Similarly, we employ
(M)DEIM with 1000 vector or matrix snapshots to build the affine approximations of fuN (µ) and
KN (µ); in the experiments we will use Qk = Quf = 2, 4, 8, 16, which correspond to an affine
approximation with a relative accuracy ranging from about 1 to 10−2. For the MLP component,
we take as architecture the ones reported in Table 6 and we employ the same ns = 19137 samples
obtained by solving the FE problem corresponding to randomly selected instances of µ. We train our

20

MLP architecture Number of layers L Number of nodes per layer

A1
ns 4 64
A2

ns 4 256
A3

ns 4 1024
A4

ns 8 1024

Table 6: Architectures employed for NS equations.

PDE-DNN with the Adam algorithm and 500 epochs and test against 1000 FE solutions, obtained
for randomly selected instances of µ, different from the ones employed during the training. For
simplicity, in the following we set the number of predicted affine components for the nonlinear term
equal to the one Qk for the linear part, thus resulting in Qn = Qk = Quf = 2, 4, 8, 16. The errors
after training as function of the number of output locations Nout are reported in Figure 12 for the
case Nin = 100 for many architectures.

As a first consideration, we can see that the error has a decreasing trend with the number of
affine components used for the nonaffine and nonlinear term, which is however interrupted by few
bumps which are motivated by the training with the Adam algorithm with a mini-batch size equal
to 128 and the random initialization of the trainable parameters. Then, we see that employing
an architecture with a smaller amount of trainable parameters performs better when also a small
number of output locations is employed; as an example we refer to Figure 12a, where a better result
on the test set is achieved with Nout = 800. The behavior can be ascribed to the fact that a smaller
number of trainable parameter is not able to capture the complex dynamics considered in this test
case, not being able to create a map with too many output points. Yet, an overall better accuracy
is achieved when more output points are employed, since in this case the error on a larger portion
of the domain is penalized in the loss function used for the training (Figure 12b). As one could
expect, the better results are provided when the architecture with a larger number of trainable
parameter, A4

ns, is taken into account; this situation corresponds to Figure 12g, and achieves the
best results in term of accuracy both on the Nout test output locations and in the full domain.
As expected, the larger the number of testing output locations Nout, the better the results on the
full domain Ω (Figure 12h). Finally, we observe that by using a larger number of output locations,
which consists in providing more information to the network during the training phase, yields a
more significant use of a larger number of affine operators. Indeed, with Nout = 800, the accuracy
does not significantly depend on the number of affine components; instead, the larger Nout, the
better are the improvements given by a larger number of affine components. The architectures with
an intermediate number of trainable parameters, present intermediate results in term of accuracy
on both the test set and the full solution.

We consider in Figure 13 the cases Nin = 200, 400, both with the architecture A4
ns; we see that

a larger number of input locations does not significantly affect the network in terms of accuracy
and we observe the same trends with respect to the number of affine components and the output
points as in the test with Nin = 100. In Figure 14 we report the error for the test parameter values,
each point corresponds to a single instance of the parameter and it is colored according to the error
committed when reconstructing the solution on the full domain (and compared with the true FE
solution). The results consider a number of affine component Qn = Qk = Quf = 2, 16 (respectively
top and bottom line) and a number of output locations Nout = 800, 12800 (respectively left and
right). When using a small number of affine components, i.e. Qn = Qk = Quf = 2, the error
is significantly larger than when using 16 affine components, since the complex dynamics is not
captured by such a small number of affine components. This is confirmed for example when the
fluid is less viscous (small ν) and the occlusion is larger (large r), which yield the creation of larger
vortices. Instead, the larger the number of affine components Qn = Qk = Quf = 16, the smaller
the errors and the more effective the use of a larger amount of output locations, up to a maximum
error of about 1 % across the parameter space.

21

1012×100 3×100 4×100 6×100

Qn=Qk=Qf

10−3

2×10−3

3×10−3

4×10−3

6×10−3
m
ea
n
ab

so
lu
te
 e
rro

r o
n
N
ou

t

Nout=800
Nout=1600
Nout=3200
Nout=6400
Nout=12800

(a) NS errors at the test locations, A1
ns architecture.

1012×100 3×100 4×100 6×100

Qn=Qk=Qf

10−2

m
ea
n
Eu

cli
de

an
 e
rro

r o
n
Ω

Nout=800
Nout=1600
Nout=3200
Nout=6400
Nout=12800

(b) NS errors in Ω, A1
ns architecture.

1012×100 3×100 4×100 6×100

Qn=Qk=Qf

10−3

2×10−3

3×10−3

4×10−3

6×10−3

m
ea
n
ab

so
lu
te
 e
rro

r o
n
N
ou

t

Nout=800
Nout=1600
Nout=3200
Nout=6400
Nout=12800

(c) NS errors at the test locations, A2
ns architecture.

1012×100 3×100 4×100 6×100

Qn=Qk=Qf

10−2

m
ea
n
Eu

cli
de

an
 e
rro

r o
n
Ω

Nout=800
Nout=1600
Nout=3200
Nout=6400
Nout=12800

(d) NS errors in Ω, A2
ns architecture.

1012×100 3×100 4×100 6×100

Qn=Qk=Qf

10−3

2×10−3

3×10−3

4×10−3

6×10−3

m
ea
n
ab

so
lu
te
 e
rro

r o
n
N
ou

t

Nout=800
Nout=1600
Nout=3200
Nout=6400
Nout=12800

(e) NS errors at the test locations, A3
ns architecture.

1012×100 3×100 4×100 6×100

Qn=Qk=Qf

10−2

m
ea
n
Eu

cli
de

an
 e
rro

r o
n
Ω

Nout=800
Nout=1600
Nout=3200
Nout=6400
Nout=12800

(f) NS errors in Ω, A3
ns architecture.

1012×100 3×100 4×100 6×100

Qn=Qk=Qf

10−3

2×10−3

3×10−3

4×10−3

6×10−3

m
ea
n
ab

so
lu
te
 e
rro

r o
n
N
ou

t

Nout=800
Nout=1600
Nout=3200
Nout=6400
Nout=12800

(g) NS errors at the test locations, A4
ns architecture.

1012×100 3×100 4×100 6×100

Qn=Qk=Qf

10−2

m
ea
n
Eu

cli
de

an
 e
rro

r o
n
Ω

Nout=800
Nout=1600
Nout=3200
Nout=6400
Nout=12800

(h) NS errors in Ω, A4
ns architecture.

Figure 12: On the left, mean error on the test set FE functions at the output locations as function of
the number of affine components for the linear (nonaffine) and nonlinear terms. On the right, mean
error on the test set FE functions in the full Ω. Different lines correspond to different architectures.
All results are provided with Nin = 100.

22

1012×100 3×100 4×100 6×100

Qn=Qk=Qf

10−3

2×10−3

3×10−3

4×10−3

6×10−3

m
ea
n
ab

so
lu
te
 e
rro

r o
n
N
ou

t

Nout=800
Nout=1600
Nout=3200
Nout=6400
Nout=12800

(a) NS errors at the test locations, Nin = 200.

1012×100 3×100 4×100 6×100

Qn=Qk=Qf

10−2

m
ea
n
Eu

cli
de

an
 e
rro

r o
n
Ω

Nout=800
Nout=1600
Nout=3200
Nout=6400
Nout=12800

(b) NS errors in Ω, Nin = 200.

1012×100 3×100 4×100 6×100

Qn=Qk=Qf

10−3

2×10−3

3×10−3

4×10−3

6×10−3

m
ea
n
ab

so
lu
te
 e
rro

r o
n
N
ou

t

Nout=800
Nout=1600
Nout=3200
Nout=6400
Nout=12800

(c) NS errors at the test locations, Nin = 400.

1012×100 3×100 4×100 6×100

Qn=Qk=Qf

10−2

m
ea
n
Eu

cli
de

an
 e
rro

r o
n
Ω

Nout=800
Nout=1600
Nout=3200
Nout=6400
Nout=12800

(d) NS errors in Ω, Nin = 400.

Figure 13: On the left, mean error on the test set FE functions at the output locations as function
of the number of affine components for the linear (nonaffine) and nonlinear terms. On the right,
mean error on the test set FE functions in the full Ω. The top line refers to Nin = 200 and the
bottom line refers to Nin = 400. All results are computed with A4

ns architecture.

23

0.02 0.04 0.06 0.08 0.10
0.00

0.05

0.10

0.15

0.20

0.25

0.02

0.04

0.06

0.08

0.10

0.12

0.14

(a) Nout = 800, Qn = Qk = Qu
f = 2.

0.02 0.04 0.06 0.08 0.10
0.00

0.05

0.10

0.15

0.20

0.25

0.02

0.04

0.06

0.08

0.10

0.12

0.14

(b) Nout = 12800, Qn = Qk = Qu
f = 2.

0.02 0.04 0.06 0.08 0.10
0.00

0.05

0.10

0.15

0.20

0.25

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(c) Nout = 800, Qn = Qk = Qu
f = 16.

0.02 0.04 0.06 0.08 0.10
0.00

0.05

0.10

0.15

0.20

0.25

0.002

0.004

0.006

0.008

0.010

0.012

(d) Nout = 12800, Qn = Qk = Qu
f = 16.

Figure 14: Scattered errors (on full Ω) as function of the physical parameters computed with A4
ns

architecture, Nin = 100 and for different configurations of output locations (800 on the left, 12800
on the right) and number of affine components (2 on the top, 16 on the bottom).

24

6 Conclusions

In this paper we have proposed a novel way to integrate data and PDE numerical simulation by
combining DNNs and RB solvers for the prediction of the solution of a parametrized PDE at
some physical points. The proposed architecture is composed of a MLP followed by a RB solver,
where the latter acts as a final nonlinear activation function interpreting the output of the MLP as
prediction of parameter dependent quantities - physical parameters (affine case), theta functions of
the approximated affine decomposition (nonaffine case) and approximated RB solutions (nonlinear
case). Our architecture recovers an autoencoder structure when the input and output match, in this
case the MLP acts as encoder and the RB solver acts as decoder. We have shown with a wide range
of numerical experiments the features of the proposed methodology. Compared to standard DNN,
we can obtain as byproduct the solution in the full physical space and, for affine dependencies,
the value of the parameter. In the nonaffine and nonlinear case, we obtain accurate solutions by
employing only a small amount of information compared to what needed by the standard RB
method. Indeed, for the nonaffine case, only a small number of theta functions is needed by the
affine approximation and, in the nonlinear case, we were able to turn the nonlinear problem to a
linear one, yet recovering an accurate solution on the full computational domain.

Eventually, the advantages of the methods proposed in this paper can be leveraged for tackling
even more complex problem classes. These include, e.g., multiphysics problems, where multiple
PDE solvers can be weakly coupled by means of the quantities predicted by the MLP, FE error
correctors, to improve the solution given by the considered PDE solver, and, finally, time dependent
PDEs, where the (possibly expensive) time marching scheme can take advantage of an extrapolation
given by the MLP.

Acknowledgements

The authors acknowledge the Swiss National Supercomputing Centre (CSCS) for providing the
CPU resources under project ID s796.

References

[1] A. Abdulle and O. Budáč. A Petrov–Galerkin reduced basis approximation of the Stokes
equation in parameterized geometries. C. R. Math. Acad. Sci. Paris, 353(7):641–645, 2015.

[2] F. Ballarin, A. Manzoni, A. Quarteroni, and G. Rozza. Supremizer stabilization of POD–
Galerkin approximation of parametrized steady incompressible Navier–Stokes equations. In-
ternational Journal for Numerical Methods in Engineering, 102(5):1136–1161, 2015.

[3] M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera. An ‘empirical interpolation’ method:
application to efficient reduced-basis discretization of partial differential equations. Comptes
Rendus Mathematique Académie des Sciences Paris, 339(9):667–672, 2004.

[4] Y. Bengio et al. Learning deep architectures for ai. Foundations and trends R© in Machine
Learning, 2(1):1–127, 2009.

[5] H. Bölcskei, P. Grohs, G. Kutyniok, and P. Petersen. Optimal approximation with sparsely
connected deep neural networks. SIAM Journal on Mathematics of Data Science, 1(1):8–45,
2019.

[6] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems aris-
ing from lagrangian multipliers. ESAIM: Mathematical Modelling and Numerical Analysis-
Modélisation Mathématique et Analyse Numérique, 8(R2):129–151, 1974.

25

[7] S. Chaturantabut and D. C. Sorensen. Nonlinear model reduction via discrete empirical inter-
polation. SIAM Journal on Scientific Computing, 32(5):2737–2764, 2010.

[8] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa. Natural lan-
guage processing (almost) from scratch. Journal of machine learning research, 12(Aug):2493–
2537, 2011.

[9] G. Cybenko. Continuous valued neural networks with two hidden layers are sufficient. Technical
report, Department of Computer Science, Tufts University, 1988.

[10] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

[11] N. Dal Santo, S. Deparis, A. Manzoni, and A. Quarteroni. An algebraic least squares reduced
basis method for the solution of nonaffinely parametrized stokes equations. Computer Methods
in Applied Mechanics and Engineering, 344:186 – 208, 2019.

[12] N. Dal Santo and Manzoni. Hyper-reduced order models for parametrized unsteady navier-
stokes equations on domains with variable shape. 2018.

[13] X. Ding, Y. Zhang, T. Liu, and J. Duan. Deep learning for event-driven stock prediction. In
Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015.

[14] W. E, J. Han, and Q. Li. A mean-field optimal control formulation of deep learning. arXiv
preprint arXiv:1807.01083, 2018.

[15] W. E and B. Yu. The deep ritz method: A deep learning-based numerical algorithm for solving
variational problems. Communications in Mathematics and Statistics, 6(1):1–12, Mar 2018.

[16] H. C. Elman, D. J. Silvester, and A. J. Wathen. Finite elements and fast iterative solvers:
with applications in incompressible fluid dynamics, 2005.

[17] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning, volume 1. MIT press
Cambridge, 2016.

[18] B. Hanin. Universal function approximation by deep neural nets with bounded width and relu
activations. arXiv preprint arXiv:1708.02691, 2017.

[19] B. Hanin. Which neural net architectures give rise to exploding and vanishing gradients? In
Advances in Neural Information Processing Systems, pages 580–589, 2018.

[20] B. Hanin and D. Rolnick. How to start training: The effect of initialization and architecture.
In Advances in Neural Information Processing Systems, pages 569–579, 2018.

[21] S. Haykin. Neural networks: a comprehensive foundation. Prentice Hall, Upper Saddle River,
NJ, 2004.

[22] J. S. Hesthaven, G. Rozza, and B. Stamm. Certified reduced basis methods for parametrized
partial differential equations. SpringerBriefs in Mathematics, 2016.

[23] J. S. Hesthaven and S. Ubbiali. Non-intrusive reduced order modeling of nonlinear problems
using neural networks. Journal of Computational Physics, 363:55–78, 2018.

[24] Z. Hu, J. Tang, Z. Wang, K. Zhang, L. Zhang, and Q. Sun. Deep learning for image-based
cancer detection and diagnosis- a survey. Pattern Recognition, 83:134–149, 2018.

[25] Y. Kim. Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882, 2014.

26

[26] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional
neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012.

[28] S. Lai, L. Xu, K. Liu, and J. Zhao. Recurrent convolutional neural networks for text classifi-
cation. In Twenty-ninth AAAI conference on artificial intelligence, 2015.

[29] S. Lathuilière, P. Mesejo, X. Alameda-Pineda, and R. Horaud. A comprehensive analysis of
deep regression. arXiv preprint arXiv:1803.08450, 2018.

[30] K. Lee and K. Carlberg. Model reduction of dynamical systems on nonlinear manifolds using
deep convolutional autoencoders. arXiv preprint arXiv:1812.08373, 2018.

[31] A. E. Løvgren, Y. Maday, and E. M. Rønquist. A reduced basis element method for the
steady Stokes problem. ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation
Mathématique et Analyse Numérique, 40(3):529–552, 2006.

[32] A. Manzoni. An efficient computational framework for reduced basis approximation and a pos-
teriori error estimation of parametrized Navier-Stokes flows. ESAIM: Mathematical Modelling
and Numerical Analysis, 48(4):1199–1226, 2014.

[33] H. N. Mhaskar. Approximation properties of a multilayered feedforward artificial neural net-
work. Advances in Computational Mathematics, 1(1):61–80, 1993.

[34] A. Mordvintsev, C. Olah, and M. Tyka. Inceptionism: Going deeper into neural networks,
2015.

[35] F. Negri, A. Manzoni, and D. Amsallem. Efficient model reduction of parametrized systems
by matrix discrete empirical interpolation. Journal of Computational Physics, 303:431–454,
2015.

[36] P. Petersen, M. Raslan, and F. Voigtlaender. Topological properties of the set of functions
generated by neural networks of fixed size. arXiv preprint arXiv:1806.08459, 2018.

[37] A. Quarteroni, A. Manzoni, and F. Negri. Reduced Basis Methods for Partial Differential
Equations: An Introduction. Springer, 2016.

[38] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics informed deep learning (part i): Data-
driven solutions of nonlinear partial differential equations. arXiv preprint arXiv:1711.10561,
2017.

[39] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics informed deep learning (part ii): data-
driven discovery of nonlinear partial differential equations. arXiv preprint arXiv:1711.10566,
2017.

[40] G. Rozza and K. Veroy. On the stability of the reduced basis method for Stokes equa-
tions in parametrized domains. Computer Methods in Applied Mechanics and Engineering,
196(7):1244–1260, 2007.

[41] C. Schwab and J. Zech. Deep learning in high dimension: Neural network expression rates for
generalized polynomial chaos expansions in uq. Analysis and Applications, 17(1):19–55, 2019.

[42] D. F. Specht. A general regression neural network. IEEE transactions on neural networks,
2(6):568–576, 1991.

[43] C. Szegedy, A. Toshev, and D. Erhan. Deep neural networks for object detection. In Advances
in neural information processing systems, pages 2553–2561, 2013.

27

[44] R. Temam. Navier-Stokes Equations, volume 2. North-Holland Amsterdam, 1984.

[45] S. Volkwein. Proper orthogonal decomposition: Theory and reduced-order modelling. Lecture
Notes, University of Konstanz, 4(4), 2013.

[46] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang, and X. Tang. Residual
attention network for image classification. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3156–3164, 2017.

[47] Q. Wang, J. S. Hesthaven, and D. Ray. Non-intrusive reduced order modeling of unsteady
flows using artificial neural networks with application to a combustion problem. Journal of
computational physics, 2019.

[48] T. Young, D. Hazarika, S. Poria, and E. Cambria. Recent trends in deep learning based natural
language processing. ieee Computational intelligenCe magazine, 13(3):55–75, 2018.

28

	1 Introduction
	2 Deep Neural Networks
	3 Parametrized partial differential equations
	3.1 Parametrized PDEs
	3.2 The reduced basis method for parametrized PDEs
	3.2.1 Constructing the RB space
	3.2.2 Affine decompositions of RB arrays

	4 PDE-aware deep neural networks
	5 Numerical experiments
	5.1 Affinely parametrized elliptic problems
	5.1.1 PDE-DNNs for affinely parametrized PDEs

	5.2 Nonaffinely parametrized elliptic problems
	5.2.1 PDE-DNNs for nonaffinely parametrized PDEs

	5.3 Steady Navier-Stokes equations
	5.3.1 PDE-DNNs for parametrized Navier-Stokes PDEs

	6 Conclusions

