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Abstract

Ion transport, often described by the Poisson–Nernst–Planck (PNP) equations, is ubiqui-
tous in electrochemical devices and many biological processes of significance. In this work,
we develop conservative, positivity-preserving, energy dissipating, and implicit finite differ-
ence schemes for solving the multi-dimensional PNP equations with multiple ionic species.
A central-differencing discretization based on harmonic-mean approximations is employed for
the Nernst–Planck (NP) equations. The backward Euler discretization in time is employed to
derive a fully implicit nonlinear system, which is efficiently solved by a newly proposed New-
ton’s method. The improved computational efficiency of the Newton’s method originates from
the usage of the electrostatic potential as the iteration variable, rather than the unknowns
of the nonlinear system that involves both the potential and concentration of multiple ionic
species. Numerical analysis proves that the numerical schemes respect three desired analytical
properties (conservation, positivity preserving, and energy dissipation) fully discretely. Based
on advantages brought by the harmonic-mean approximations, we are able to establish esti-
mate on the upper bound of condition numbers of coefficient matrices in linear systems that
are solved iteratively. The solvability and stability of the linearized problem in the Newton’s
method are rigorously established as well. Numerical tests are performed to confirm the an-
ticipated numerical accuracy, computational efficiency, and structure-preserving properties of
the developed schemes. Adaptive time stepping is implemented for further efficiency improve-
ment. Finally, the proposed numerical approaches are applied to characterize ion transport
subject to a sinusoidal applied potential.

AMS subject classifications: 65N06, 35K61, 35Q92, 92D15
Keywords: Ion transport; Harmonic-mean approximation; Conservation; Positivity; Energy
dissipation; Newton’s method

1 Introduction

Ion transport plays a fundamental role in many applications, such as electrochemical energy
devices [4], electrokinetics in microfluidics [48], and transmembrane ion channels [53]. It is often
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described by the so-called Poisson–Nernst–Planck (PNP) equations, which consist of the Poisson’s
equation and the Nernst–Planck (NP) equations. Based on a mean-field approximation, the
NP equations describe the diffusion of ions in the gradient of the electrostatic potential. The
Poisson’s equation determines the electrostatic potential with the charge density arising from
diffusing ions. Recently, there has been growing interests in incorporating effects that are beyond
the mean-field description, e.g., the steric effect, inhomogeneous dielectric effect, and ion-ion
correlations [23–26,28,30,33,37,39,45,46,49,51,52,55].

In this work, we develop efficient and structure-preserving finite difference schemes for the
PNP equations 




∂tc
l = ∇ · (∇cl + qlcl∇ψ), l = 1, · · · ,M,

− κ∆ψ =

M∑

l=1

qlcl + ρf .
(1)

Here cl is the ion concentration for the l-th species, ql is the valence of the l-th ionic species, κ > 0
is a coefficient arising from nondimensionalization, ψ is the electrostatic potential, and ρf is the
fixed charge density.

The analytical solutions to (1) with zero-flux boundary conditions possess several physically
desired properties, including mass conservation, positivity preservation, and free-energy dissipa-
tion, i.e.,

∫

Ω
cl(t, ·) dV =

∫

Ω
clin(·) dV, ∀t > 0, (2a)

clin(·) > 0 =⇒ cl(t, ·) > 0, ∀t > 0, (2b)

d

dt
F = −

M∑

l=1

∫

Ω

1

cl
(|∇cl + qlcl∇ψ|2)dV ≤ 0, (2c)

where the free energy F , aside from some boundary contributions, is defined by

F =

M∑

l=1

∫

Ω

[
cl log cl +

1

2
(qlcl + ρf )ψ

]
dV. (3)

The free energy contains both an entropic contribution and an electrostatic energy: cllogcl is the
entropy related to the Brownian motion of each ion species, and 1

2(q
lcl + ρf )ψ is the (mean-field)

electrostatic energy of the Coulomb interaction between charged ions. The concentrations are
expected to converge to an equilibrium solution in a closed system regardless of how initial data
are distributed.

These nice mathematical features are crucial for the analytical study of the PNP equations.
For instance, by an energy estimate with the control of the free-energy dissipation, the solution
is shown to converge to the thermal equilibrium state as time becomes large, if the boundary
conditions are in thermal equilibrium (see, e.g., [16]). Long time behavior was studied in [6],
and further in [2,5] with refined convergence rates. Results for the drift-diffusion model, i.e., the
PNP equations in the semiconductor literature, with regarding global existence, uniqueness, and
asymptotic behavior in the case of different boundary conditions have been established in the
works [12,13,17,42].
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The PNP equations can hardly be solved analytically due to the nonlinear coupling of the
electrostatic potential and ionic concentrations. Much effort has been devoted to the development
of numerical methods in various applications [7–10,14,15,18,31,32,35,36,40,41,43,44,49,50,54].
The existing algorithms range from finite difference to finite elements in both one dimension and
high dimensions. Among these developed schemes, several attempts are made to design desirable
numerical schemes that respect the nice properties (2) of analytical solutions. In [15], for instance,
a second-order conservative, energy dissipative finite difference method was presented for the one-
dimensional PNP equations. A delicate temporal discretization scheme was designed to preserve
energy dynamics in [14]. A hybrid conservative scheme that uses adaptive grids was developed to
solve the PNP equations on irregular domains [41]. A type of finite difference schemes has been
developed using the Slotboom transformation of the Nernst–Planck (NP) equations:

∂tc
l = ∇ ·

(
e−q

lψ∇gl
)
, (4)

where gl = cleq
lψ are the Slotboom variables [32,33,36,38,39]. By using the Slotboom variables,

Liu and Wang [31] developed a free energy satisfying finite difference scheme that preserves those
three properties with rigorous proof in one dimension. A free energy satisfying discontinuous
Galerkin method was also developed by the same authors in [32], in which the positivity of nu-
merical solutions was not proved but enforced by an accuracy-preserving limiter. An implicit finite
difference scheme was developed to solve the PNP equations with properties of positivity preser-
vation and energy dissipation [22]. The resulting nonlinear discretization system was numerically
solved by a fixed-point iteration method. Gao and He [18] proposed a linearized convergent finite
element scheme that conserves total concentration and preserves the electric energy. Rigorous
error analysis of finite element type methods for the PNP equations has been studied in [19,50].
A finite element discretization that can enforce positivity of numerical solutions was developed for
the PNP equations, as well as the PNP equations coupling with the incompressible Navier-Stokes
equations [40].

Although some progress has been made on the development of numerical methods that en-
sure the desired properties, it is still desirable to have computationally efficient and robust finite
difference schemes that incorporate all three desired properties together, especially in high di-
mensions. Among three properties (2), the preservation of positivity is crucial to the validity of
a numerical solution and is in particular hard to achieve. For instance, the positivity has been
proved in [15] for the one-dimensional PNP equations, under assumptions that the gradient of
the electrostatic potential is bounded and mesh step sizes satisfy certain constraint conditions.
The numerical scheme developed in [31] has been proved to preserve positivity of the numerical
solution but in one-dimensional case. Furthermore, one constraint on a mesh ratio needs to be
satisfied to ensure positivity, due to the explicit nature of the scheme. From a practical point of
view, implicit or semi-implicit schemes that preserve positivity are much more computationally
efficient, because larger time-stepping sizes are allowed in temporal integration. In our recent
work [11], we proposed efficient semi-implicit schemes that respect the desired properties. While
the scheme allows relatively large time steps and is successful in positivity persevering and mass
conservation, the energy dissipation is only proved in a semi-discrete form.

In this work, we develop implicit finite difference schemes for the multi-dimensional PNP
equations with multiple ionic species that respect conservation, positivity preserving, and energy
dissipation at fully discrete level. The NP equations reformulated in the Slotboom variables are
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spatially discretized by a central-differencing scheme based on harmonic-mean approximations.
The backward Euler method in time is employed to derive a nonlinear coupled system, which is
efficiently solved by a newly proposed Newton’s method. The improved efficiency of the Newton’s
method is achieved via using the electrostatic potential as the iteration variable, rather than
the unknowns of the nonlinear system that involves both the potential and concentrations of
multiple ionic species. The advantages of the proposed Newton’s method in saving memory and
computational efficiency become more significant when the number of ionic species gets larger. In
addition, numerical simulations demonstrate that the Newton’s method requires appreciably fewer
iteration steps and less computational time, in comparison with a typical fixed-point iteration
method. Such a Netwon’s method can be employed to solve nonlinear systems resulting from
other implicit discretization of the PNP-type equations.

We perform detailed numerical analysis to prove that the numerical schemes respect three
desired analytical properties fully discretely. Thanks to the advantages brought by the harmonic-
mean approximations, we are able to establish upper bounds on condition numbers of coefficient
matrices of linear systems resulting from both the discretization of the NP equations, and solv-
ability and stability of the linearized problem in the Newtons method. The linear systems are
efficiently solved using iterative methods with preconditioners. Numerical simulations are pre-
sented to demonstrate that the developed schemes have expected numerical accuracy, compu-
tational efficiency, and structure-preserving properties. An adaptive time stepping strategy is
employed to achieve further improvement in computational efficiency. The benefit of the adaptive
time stepping is demonstrated in the application of the proposed numerical approaches to probing
ion transport in response to an alternating applied potential. Finally, the developed numerical
approaches are applied to understand charge dynamics in electrolytes between two parallel elec-
trodes exposed to sinusoidal applied potentials. The impact of frequency of the sinusoidal applied
potentials is extensively investigated in numerical simulations.

The rest of this paper is organized as follows. In Section §3, we start with details of our settings,
and present our implicit finite difference method in both spatial and temporal discretization.
In Section §4 we prove the main properties at fully discrete level, including conservation, free-
energy dissipation, positivity preservation. Section §5 is devoted to numerical examples, including
accuracy test, charge dynamics, and adaptive time stepping. Finally, we conclude in Section §6.

2 The PNP equations

We consider the initial-boundary value problem





∂tc
l = ∇ · (∇cl + qlcl∇ψ) for t > 0 and l = 1, · · · ,M,

− κ∆ψ =
M∑

l=1

qlcl + ρf ,

cl(0, ·) = clin(·),

∂cl

∂n
+ qlcl

∂ψ

∂n
= 0 on ∂Ω,

ψ(·) = V (·) on ΓD, and κ
∂ψ

∂n
= σ(·) on ΓN .

(5)
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Here Ω is a bounded domain, n is a unit exterior normal vector on the boundary ∂Ω, clin are
initial concentration distributions. To be general, we here consider both Dirichlet and Neumann
boundary conditions for the electrostatic potential, i.e., V (x) is a given electrostatic potential
defined on the Dirichlet boundary ΓD, and σ(x) is the surface charge density defined on the
Neumann boundary ΓN with ΓD ∩ ΓN = Ø and ΓD ∪ ΓN = ∂Ω. The corresponding total free
energy with boundary contributions is given by [34]

F =

M∑

l=1

∫

Ω

[
cl log cl +

1

2
(qlcl + ρf )ψ

]
dV −

1

2

∫

ΓD

κ
∂ψ

∂n
V dS +

1

2

∫

ΓN

σψdS. (6)

With initial-boundary conditions given in (5), the property of free-energy dissipation (2c) can be
derived as well.

Theorem 2.1 The solution to the PNP equations (5) satisfies the energy dissipation law

dF

dt
= −

M∑

l=1

∫

Ω

1

cl
|∇cl + qlcl∇ψ|2dV +

∫

ΓN

dσ

dt
ψdS −

∫

ΓD

κ
∂ψ

∂n

dV

dt
dS. (7)

Proof Taking a derivative with respect to time, we have by integration by parts that

d

dt
F =−

∫

Ω

M∑

l=1

1

cl
|∇c+ qlcl∇ψ|2 +

1

2

(
(qlcl + ρf )

dψ

dt
− ql

dcl

dt
ψ

)
dV

+
1

2

∫

ΓN

[
dσ

dt
ψ + σ

dψ

dt

]
dS −

1

2

∫

ΓD

κ

[
d

dt

(
∂ψ

∂n

)
V +

∂ψ

∂n

dV

dt

]
dS.

It follows from the Poisson’s equation that

M∑

l=1

1

2

∫

Ω

(
(qlcl + ρf )

dψ

dt
− ql

dcl

dt
ψ

)
dV

=
1

2

∫

ΓN

[
ψ
dσ

dt
− σ

dψ

dt

]
dS +

1

2

∫

ΓD

κ

[
d

dt

(
∂ψ

∂n

)
V −

∂ψ

∂n

dV

dt

]
dS

Substituting into the above equation completes the proof.

One can observe from (7) that the total free energy of the system is dissipating if the boundary
data are independent of time.

3 Numerical Method

3.1 Discretization and Notations

The spatial discretization is similar to our previous work [11]. For completeness of the presen-
tation, we briefly introduce notations and recall the discretization scheme. For simplicity, we
consider a 2D rectangular computational domain Ω = [a, b]× [c, d] with boundaries

ΓD = {(x, y) : x = a or b, c ≤ y ≤ d} and ΓN = {(x, y) : y = c or d, a ≤ x ≤ b} .
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The computational domain is covered by the non-uniform grid points {xi, yj} with

a = x 1
2
< x 3

2
< · · · < xNx+

1
2
= b,

c = y 1
2
< y 3

2
< · · · < yNy+

1
2
= d,

where Nx and Ny are the number of grid points along each dimension. We also introduce grid
points with integer indices:

xi =
xi− 1

2
+ xi+ 1

2

2
and yj =

yj− 1
2
+ yj+ 1

2

2
for i = 1, . . . , Nx, j = 1, . . . , Ny.

The grid spacings are given by

hxi = xi+ 1
2
− xi− 1

2
, hyj = yj+ 1

2
− yj− 1

2
for i = 1, . . . , Nx, j = 1, . . . , Ny,

and
hx
i+ 1

2
= xi+1 − xi, h

y

j+ 1
2

= yj+1 − yj for i = 1, . . . , Nx − 1, j = 1, . . . , Ny − 1.

We denote by cli,j, g
l
i,j, and ψi,j the semi-discrete approximations of cl(t, xi, yj), g

l(t, xi, yj), and
ψ(t, xi, yj), respectively. Define discrete operators

D+
x fi,j =

fi+1,j − fi,j
hx
i+ 1

2

, D2
xfi,j =

D+
x fi,j −D+

x fi−1,j

hxi
.

Discrete operators D+
y and D2

y can be analogously defined. Also, we introduce

hxm = min(hx1 , · · · , h
x
Nx

), hxM = max(hx1 , · · · , h
x
Nx

),

hym = min(hy1, · · · , h
y
Ny

), hyM = max(hy1, · · · , h
y
Ny

).

We now present our implicit finite difference method by discretiztion in space and time sepa-
rately. Note that, although our discretization is presented for a 2D case, it can be readily extended
to three dimensions in a dimension-by-dimension manner.

3.2 Finite difference method in space

1) Spatial discretization of the Poisson’s equation

With given semi-discrete approximations cli,j, we discretize the Poisson’s equation with a central
differencing stencil

− κ(D2
x +D2

y)ψi,j =

M∑

l=1

qlcli,j + ρfi,j, i = 1, . . . , Nx, j = 1, . . . , Ny. (8)

We employ central differencing stencils again to discretize the Dirichlet boundary conditions on
ΓD by

ψ0,j + ψ1,j

2
= ψD(t, a, yj),

ψNx+1,j + ψNx,j

2
= ψD(t, b, yj) for j = 1, . . . , Ny, (9)
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and the Neumann boundary conditions on ΓN by

−κD+
y ψi,0 = σ(t, xi, a), κD+

y ψi,Ny = σ(t, xi, b) for i = 1, . . . , Nx. (10)

Notice that the definition of the boundary data ψD and σ have been extended to the whole
computational domain. In numerical implementation, the ghost points outside Ω are eliminated
by coupling the discretization scheme (8) and boundary discretization (9) and (10). The coupled
difference equations can be written in a matrix form

Lψψψ =

M∑

l=1

qlcccl + ρρρf + bbb. (11)

Here L is the coefficient matrix, the column vector bbb results from the boundary conditions (9)

and (10), and ψψψ, cccl, and ρρρf are vectors with components being ψi,j , c
l
i,j , and ρ

f
i,j, respectively.

2) Spatial discretization of the NP equations

We first introduce a Slotboom reformulation of the Nernst–Planck equations:

∂tc
l = ∇ ·

(
e−S

l

∇gl
)
, (12)

where Sl = qlψ and gl = cleS
l

, which are the Slotboom variables [32,36].
It follows from central-differencing discretization of Eq. (12) at {xi, yj} that

hxi h
y
j

d

dt
cli,j =h

y
j

(
e
−Sl

i+1
2 ,j ĝl

x,i+ 1
2
,j
− e

−Sl

i− 1
2 ,j ĝl

x,i− 1
2
,j

)

+ hxi

(
e
−Sl

i,j+1
2 ĝl
y,i,j+ 1

2

− e
−Sl

i,j− 1
2 ĝl
y,i,j− 1

2

)
:= Qi,j(c

l, Sl),

(13)

where the flux is approximated by

ĝl
x,i+ 1

2
,j
=
cli+1,je

Sl
i+1,j − cli,je

Sl
i,j

hx
i+ 1

2

and ĝl
y,i,j+ 1

2
=
cli,j+1e

Sl
i,j+1 − cli,je

Sl
i,j

hy
j+ 1

2

. (14)

Harmonic-mean approximations are proposed in [11] to approximate the exponential terms at
half-grid points:

e
−Sl

i+1
2 ,j =

2e−S
l
i+1,je−S

l
i,j

e−S
l
i+1,j + e−S

l
i,j

and e
−Sl

i,j+1
2 =

2e−S
l
i,j+1e−S

l
i,j

e−S
l
i,j+1 + e−S

l
i,j

. (15)

The zero-flux boundary conditions are discretized by

ĝl
x, 1

2
,j
= 0, ĝl

x,Nx+
1
2
,j
= 0, j = 1, . . . , Ny,

ĝl
y,i, 1

2
= 0, ĝl

y,i,Ny+
1
2
= 0, i = 1, . . . , Nx.

(16)
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3.3 Backward Euler method in time

To obtain numerical solutions of concentrations at different time steps, the semi-discrete scheme
can be integrated with various ODE solvers implicitly. With a nonuniform time step size ∆tn

and tn = tn−1 + ∆tn, cl,ni,j , g
l,n
i,j , and Sl,ni,j are used to denote the numerical approximations of

cl(tn, xi, yj), g
l(tn, xi, yj), and S

l(tn, xi, yj), respectively.
We employ the backward Euler discretization in cl:

cl,n+1
i,j − cl,ni,j
∆tn+1

= Qi,j(c
l,n+1, Sl,n+1), (17)

which gives a fully implicit nonlinear system. Note that the zero-flux boundary conditions (16)
have been used in (17). We further rewrite (17) in a matrix form as

Al(ψψψn+1)cccl,n+1 = Pcccl,n, l = 1, · · · ,M. (18)

Here Al(ψψψn+1) is a square matrix dependent on ql and ψψψn+1, P is a diagonal matrix given by

P = diag
(
hx1h

y
1, · · · , h

x
1h

y
Ny
, hx2h

y
1, · · · , h

x
2h

y
Ny
, · · · , hxNx

hy1, · · · , h
x
Nx
hyNy

)
,

and cccl,n+1 and cccl,n are column vectors with components being cl,n+1
i,j and cl,ni,j , respectively.

An adaptive time stepping strategy is often useful in speeding up simulations of charged
systems that have time-dependent boundary input data. One efficient way to adjust the time
step sizes has been proposed in [29,47]:

∆tn+1 = max

(
∆tmin,

∆tmax√
1 + α|F ′(t)|2

)
, (19)

where α is a given constant, F (t) is the free energy defined by (6). In our numerical imple-
mentation, the temporal derivative of the free energy is approximated by a difference quotient.
The time steps ∆tmin and ∆tmax dictate the lower and upper bounds of the adaptive time steps,
respectively, i.e., ∆tmin ≤ ∆tn+1 ≤ ∆tmax.

4 Properties of numerical solutions

The numerical solution has several important properties, as stated in the following theorems.

Theorem 4.1 (Mass conservation)The fully implicit scheme (17) respect conservation of con-
centration, in the sense that the total concentration remains constant in time, i.e.,

d

dt

Nx∑

i=1

Ny∑

j=1

cli,jh
x
i h

y
j = 0, (20)

Nx∑

i=1

Ny∑

j=1

cl,n+1
i,j hxi h

y
j =

Nx∑

i=1

Ny∑

j=1

cl,ni,jh
x
i h

y
j . (21)
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Proof It follows from (13) that

d

dt

Nx∑

i=1

Ny∑

j=1

cli,jh
x
i h

y
j =

Ny∑

j=1

hyj

(
e
−Sl

Nx+1
2 ,j ĝl

x,Nx+
1
2
− e

−Sl
1
2 ,j ĝl

x, 1
2

)

+
Nx∑

i=1

hxi

(
e
−Sl

i,Ny+1
2 ĝl
y,Ny+

1
2

− e
−Sl

i, 12 ĝl
y, 1

2

)
= 0,

where we have used the zero-flux boundary conditions (16) in the last step. Similarly, summing
both sides of (17) over i, j gives

Nx∑

i=1

Ny∑

j=1

cl,n+1
i,j hxi h

y
j −

Nx∑

i=1

Ny∑

j=1

cl,ni,j h
x
i h

y
j = ∆tn+1

Nx∑

i=1

Ny∑

j=1

Qi,j(c
l,n+1, Sl,n+1)hxi h

y
j .

Incorporating the zero-flux boundary conditions (16) at time tn+1 for gl,n+1 = cl,n+1eS
n+1

leads
to (21).

Theorem 4.2 (Positivity preserving)The numerical solutions cl,n+1
i,j computed from the back-

ward Euler scheme (17) remain positive in time, i.e., if cl,ni,j > 0, then

cl,n+1
i,j > 0 for i = 1, · · · , Nx, j = 1, · · · , Ny.

Proof Analogous to the derivation in our previous work [11], we can show that





NxNy∑

i=1

Al
i,j = hxi h

y
j for j = 1, . . . , NxNy,

1 < Al
i,i < 1 + 4∆tn+1(

hxM
hym

+
hyM
hxm

) for i = 1, . . . , NxNy,

− 2max{
hxM
hym

,
hyM
hxm

} < Al
i,j ≤ 0 for i, j = 1, . . . , NxNy, and i 6= j.

(22)

We can verify that Al is an M-matrix and Al,−1 > 0 in the element-wise sense. Thus, cl,n+1
i,j > 0

if cl,ni,j > 0.

The concentrations are obtained by solving the linear system (18) iteratively. For iterative
methods, it is desirable to establish estimates on the condition number of the coefficient matrix.
We now recall the estimate on the condition number of the coefficient matrix Al in the work [11],
and brief the corresponding proof with minor modifications.

Theorem 4.3 The condition number of the coefficient matrix Al satisfies

κ1(A
l) := ‖Al‖1‖A

l,−1‖1 ≤
hxMh

y
M

hxmh
y
m

+ 8∆tn+1

[
hyM

(hxm)
2hym

+
hxM

hxm(h
y
m)2

]
. (23)
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Proof From the proof of Theorem 4.2, we know that Al is an M-matrix, and therefore Al,−1

exists and is a non-negative matrix. As shown in [11], we can further prove that

hxmh
y
mνA

l,−1 ≤ ν,

where ν = (1, · · · , 1︸ ︷︷ ︸
NxNy

). This implies that each column sum of (Al)−1 is less or equal to 1
hxmh

y
m
. Since

each element in (Al)−1 is non-negative, we obtain ‖(Al)−1‖1 ≤ 1
hxmh

y
m
. Also, it follows from (22)

that

‖Al‖1 ≤ hxMh
y
M + 8∆tn+1

(
hyM
hxm

+
hxM
hym

)
.

This completes the proof by the definition of the 1-norm condition number.

Our numerical scheme also respects the property of free-energy dissipation at full discrete level,
when the boundary data is independent of time. The total discrete free energy (6) is approximated
by

Fnh =

M∑

l=1

Nx∑

i=1

Ny∑

j=1

hxi h
y
j

[
cl,ni,j log c

l,n
i,j +

1

2
(qlcl,ni,j + ρfi,j)ψ

n
i,j

]

−

Ny∑

j=1

hyjκ

[
VNx+

1
2
,j

(VNx+
1
2
,j − ψnNx,j

)

hxi
+ V 1

2
,j

(V 1
2
,j − ψn1,j)

hxi

]

+

Nx∑

i=1

hxi
2

[
σi,Ny+

1
2
(hyjσi,Ny+

1
2
/κ+ 2ψni,Ny

) + σi, 1
2
(hyjσi, 1

2
/κ+ 2ψni,1)

]
.

(24)

Note that it is easy to verify that such an approximation is second-order accurate in space.

Theorem 4.4 (Energy dissipation) The fully discrete free energy Fh is non-increasing for
time-independent boundary data in the sense that

Fn+1
h − Fnh = −

M∑

l=1

Nx∑

i=1

Ny∑

j=1

∆tn+1


e

−Sl,n+1

i+1
2 ,j

ξxi

∣∣ĝl,n+1

x,i+ 1
2
,j

∣∣2 + e
−Sl,n+1

i,j+1
2

ξyj

∣∣ĝl,n+1

y,i,j+ 1
2

∣∣2

 ≤ 0, (25)

where ξxi is a number between gl,n+1
i,j and gl,n+1

i+1,j , and ξ
y
j is a number between gl,n+1

i,j and gl,n+1
i,j+1 .

Proof The fully discrete NP equations are given by

cl,n+1
i,j − cl,ni,j
∆tn+1

=
e
−Sl,n+1

i+1
2 ,j ĝl,n+1

x,i+ 1
2
,j
− e

−Sl,n+1

i− 1
2 ,j ĝl,n+1

x,i− 1
2
,j

hxi
+
e
−Sl,n+1

i,j+1
2 ĝl,n+1

y,i,j+ 1
2

− e
−Sl,n+1

i,j− 1
2 ĝl,n+1

y,i,j− 1
2

hyj
.

Multiplying both sides by log cl,n+1
i,j + qlψn+1

i,j and summing over indices i, j, l lead to

M∑

l=1

Nx∑

i=1

Ny∑

j=1

(cl,n+1
i,j − cl,ni,j )(log c

l,n+1
i,j + qlψn+1

i,j )

∆tn+1
+
e
−Sl,n+1

i+1
2 ,j

ξxi

∣∣ĝl,n+1

x,i+ 1
2
,j

∣∣2+e
−Sl,n+1

i,j+1
2

ξyj

∣∣ĝl,n+1

y,i,j+ 1
2

∣∣2 = 0, (26)

10



where ξxi is between cl,n+1
i,j eS

l,n+1
i,j and cl,n+1

i+1,j e
S
l,n+1
i+1,j , and ξyi is between cl,n+1

i,j eS
l,n+1
i,j and cl,n+1

i,j+1e
S
l,n+1
i,j+1 .

Here the summation by parts have been used. By (26), we have

Fn+1
h − Fnh =

M∑

l=1

Nx∑

i=1

Ny∑

j=1

hxi h
y
j

[
cl,n+1
i,j log cl,n+1

i,j − cl,ni,j log c
l,n
i,j − log cl,n+1

i,j

(
cl,n+1
i,j − cl,ni,j

)]

+
1

2

M∑

l=1

Nx∑

i=1

Ny∑

j=1

hxi h
y
j

[(
qlcl,n+1

i,j + ρfi,j

)
ψn+1
i,j −

(
qlcl,ni,j + ρfi,j

)
ψni,j − 2qlψn+1

i,j

(
cl,n+1
i,j − cl,ni,j

)]

−

Ny∑

j=1

hyjκ

[
VNx+

1
2
,j

(ψnNx,j
− ψn+1

Nx,j
)

hxi
+ V 1

2
,j

(ψn1,j − ψn+1
1,j )

hxi

]

+
Nx∑

i=1

hxi
2

[
σi,Ny+

1
2
(2ψn+1

i,Ny
− 2ψni,Ny

) + σi, 1
2
(2ψn+1

i,1 − 2ψni,1)
]

−
M∑

l=1

Nx∑

i=1

Ny∑

j=1

∆tn+1 e
−Sl,n+1

i+1
2 ,j

ξxi

∣∣ĝl,n+1

x,i+ 1
2
,j

∣∣2 −
M∑

l=1

Nx∑

i=1

Ny∑

j=1

∆tn+1 e
−Sl,n+1

i,j+1
2

ξyj

∣∣ĝl,n+1

y,i,j+ 1
2

∣∣2

:= I1 + I2 + I3,
(27)

where

I1 =
M∑

l=1

Nx∑

i=1

Ny∑

j=1

hxi h
y
j

[
cl,n+1
i,j log cl,n+1

i,j − cl,ni,j log c
l,n
i,j − log cl,n+1

i,j

(
cl,n+1
i,j − cl,ni,j

)]
,

I2 =
1

2

M∑

l=1

Nx∑

i=1

Ny∑

j=1

hxi h
y
j

[(
qlcl,n+1

i,j + ρfi,j

)
ψn+1
i,j −

(
qlcl,ni,j + ρfi,j

)
ψni,j − 2qlψn+1

i,j

(
cl,n+1
i,j − cl,ni,j

)]

−

Ny∑

j=1

hyjκ

[
VNx+

1
2
,j

(ψnNx,j
− ψn+1

Nx,j
)

hxi
+ V 1

2
,j

(ψn1,j − ψn+1
1,j )

hxi

]

+

Nx∑

i=1

hxi
2

[
σi,Ny+

1
2
(2ψn+1

i,Ny
− 2ψni,Ny

) + σi, 1
2
(2ψn+1

i,1 − 2ψni,1)
]
,

I3 = −
M∑

l=1

Nx∑

i=1

Ny∑

j=1

∆tn+1 e
−Sl,n+1

i+1
2 ,j

ξxi
|ĝl,n+1

x,i+ 1
2
,j
|2 −

M∑

l=1

Nx∑

i=1

Ny∑

j=1

∆tn+1 e
−Sl,n+1

i,j+1
2

ξyj
|ĝl,n+1

y,i,j+ 1
2

|2.

(28)
For the term I1, we have

I1 = −
M∑

l=1

Nx∑

i=1

Ny∑

j=1

hxi h
y
j

1

2ζ li,j

(
cl,n+1
i,j − cl,ni,j

)2
,

where ζ li,j is a number between cl,n+1
i,j and cl,ni,j . Here we have used the Taylor expansion to the

second order and mass conservation (4.1). Hence I1 ≤ 0.
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It follows from the discrete Poisson’s equation (8) that

I2 =
1

2

M∑

l=1

Nx∑

i=1

Ny∑

j=1

hxi h
y
j

[
−
(
qlcl,n+1

i,j + ρfi,j

)
ψn+1
i,j −

(
qlcl,ni,j + ρfi,j

)
ψni,j + 2qlψn+1

i,j

(
qlcl,ni,j + ρfi,j

)]

−

Ny∑

j=1

hyjκ

[
VNx+

1
2
,j

(ψnNx,j
− ψn+1

Nx,j
)

hxi
+ V 1

2
,j

(ψn1,j − ψn+1
1,j )

hxi

]

+

Nx∑

i=1

hxi
2

[
σi,Ny+

1
2
(2ψn+1

i,Ny
− 2ψni,Ny

) + σi, 1
2
(2ψn+1

i,1 − 2ψni,1)
]

=
1

2

Nx∑

i=1

Ny∑

j=1

hxi h
y
j

[
κψn+1

i,j (D2
x +D2

y)ψ
n+1
i,j + κψni,j(D

2
x +D2

y)ψ
n
i,j − 2κψn+1

i,j (D2
x +D2

y)ψ
n
i,j

]

−

Ny∑

j=1

hyjκ

[
VNx+

1
2
,j

(ψnNx,j
− ψn+1

Nx,j
)

hxi
+ V 1

2
,j

(ψn1,j − ψn+1
1,j )

hxi

]

+

Nx∑

i=1

hxi
2

[
σi,Ny+

1
2
(2ψn+1

i,Ny
− 2ψni,Ny

) + σi, 1
2
(2ψn+1

i,1 − 2ψni,1)
]

=−
1

2

Nx∑

i=1

Ny∑

j=1

hxi h
y
jκ
[
(D+

x ψ
n+1
i,j )2 + (D+

y ψ
n+1
i,j )2 + (D+

x ψ
n
i,j)

2 + (D+
y ψ

n
i,j)

2

−2D+
x ψ

n
i,jD

+
x ψ

n+1
i,j − 2D+

y ψ
n
i,jD

+
y ψ

n+1
i,j

]

=−
1

2

Nx∑

i=1

Ny∑

j=1

hxi h
y
jκ

[(
D+
x ψ

n+1
i,j −D+

x ψ
n
i,j

)2
+
(
D+
y ψ

n+1
i,j −D+

y ψ
n
i,j

)2]
≤ 0,

where the summation by parts has been used in the third equality.
Clearly, we have I3 ≤ 0. Combining I1, I2, and I3 completes the proof.

4.1 Newton’s iteration method and its viability

The discrete PNP equations (11) and (17) form a coupled nonlinear discrete system




Lψψψn+1 =

M∑

l=1

qlcccl,n+1 + ρρρf + bbbn+1,

Al(ψψψn+1)cccl,n+1 = Pcccl,n, l = 1, · · · ,M,

(29)

where ψψψn+1 and cccl,n+1 are the unknowns, and bbbn+1 is known boundary data at time tn+1. The
nonlinear system (29) can be solved by iterative methods with iterative variables involving both
the concentration and potential. To save memory, one treatment is to decouple the system and
use a fixed-point iterative method in which the discrete Poisson’s equation and NP equations
are solved alternatively. The fixed point method is simple to implement but may suffer from
slow convergence. To speed up the convergence, we further propose a novel Newton’s iteration
approach that uses the potential as the only iterative variables.
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The electrostatic potential that solves the system (29) can be found by solving the nonlinear
residual equations R(uuu) = 0, where the vector function R : RNxNy → R

NxNy is defined by

R(uuu) := Luuu−

M∑

l=1

qlAl,−1(uuu)Pcccl,n − ρρρf − bbbn+1, uuu ∈ R
NxNy . (30)

We note that the matrix Al is invertible as shown in the proof of Theorem 4.2. To linearize, we
take the Fréchet derivative of the residuals

J (uuu)[δuuu] =
dR(uuu+ τδuuu)

dτ

∣∣∣∣
τ=0

= Lδuuu−

M∑

l=1

ql
dAl,−1(uuu+ τδuuu)

dτ

∣∣∣∣
τ=0

Pcccl,n.

(31)

To calculate the Fréchet derivative of Al,−1(uuu), we take a derivative with respect to τ of the
identity matrix

I = A(uuu+ τδuuu)Al,−1(uuu+ τδuuu).

We then have

dAl,−1(uuu+ τδuuu)

dτ

∣∣∣∣
τ=0

= −Al,−1(uuu)
dAl(uuu+ τδuuu)

dτ

∣∣∣∣
τ=0

Al,−1(uuu). (32)

Combining (31) and (32), we have

J (uuu)[δuuu] = Lδuuu+

M∑

l=1

qlAl,−1(uuu)
dAl(uuu+ τδuuu)

dτ

∣∣∣∣
τ=0

Al,−1(uuu)Pcccl,n.

We notice that dAl(uuu+τδuuu)
dτ

∣∣∣∣
τ=0

Al,−1(uuu)Pcccl,n is a vector linearly dependent on δuuu and can be iden-

tified as
dAl(uuu+ τδuuu)

dτ

∣∣∣∣
τ=0

Al,−1(uuu)Pcccl,n = qlK(µµµl,uuu)δuuu,

where K(µµµl,uuu) is a symmetric matrix with elements given inAppendix A and µµµl = Al,−1(uuu)Pcccl,n.
Since Al is an M-matrix, elements in the column vector µµµl are all non-negative, given the con-
centration on the previous step, cccl,n, is non-negative. We further denote by J (uuu)[δuuu] = W(uuu)δuuu,
where

W(uuu) := L+

M∑

l=1

(ql)2Al,−1(uuu) K(µµµl,uuu). (33)

In our Newton’s iteration method, for a given previous iteration step uuuk, we update the
potential via

uuuk+1 = uuuk + δuuu,

where the correction δuuu solves the linear system

W(uuuk)δuuu = −R(uuuk). (34)

13



In our implementation, we solve such a linear system using the BiCGSTAB method preconditioned
with an incomplete lower-upper (iLU) decomposition of the matrix L. We remark that the
iterative method only requires multiplication of the matrix and vector (i.e., W(uuuk)δuuu), rather the
matrix W itself that involves the inverse of Al. Therefore, when solving the linear system (34), we
need to solve linear systems involving the coefficient matrices Al, again by using the BiCGSTAB
method preconditioned with iLU decompositions of Al. Numerical simulations reveal that the
preconditioning accelerates the convergence significantly.

We summarize the whole numerical algorithm as follows.

Algorithm 1 Numerical algorithm for the PNP equations

1: Given initial concentrations cccl,0, obtain ψψψ0 by solving the discrete Poisson’s equation (8) with
boundary conditions (9) and (10);

2: Given cccl,n and ψψψn at time step tn. Let k = 0 and uuuk = ψψψn;
3: Find vvvl,k by solving Al(uuuk)vvvl,k = Pcccl,n;
4: Find R(uuuk) = Luuuk −

∑M
l=1 q

lvvvl,k − ρρρf − bbbn+1;
5: Find δuuu by solving the linear system W(uuuk)δuuu = −R(uuuk) iteratively;
6: Update uuuk+1 = uuuk + δuuu;
7: Check convergence. If ‖δuuu‖∞ < Tol, let ψψψn+1 = uuuk+1, find cccl,n+1 by solving Al(ψψψn+1)cccl,n+1 =

Pcccl,n, and set T = T +∆tn+1; else, let k = k + 1 and go to Step 3;
8: If T ≥ Tend, then stop; else, let n = n+ 1 and go back to Step 2.

We now investigate the properties of the matrix W, and solvability and stability of the corre-
sponding linear system (34).

Lemma 4.5 The coefficient matrix L in (11) is an M-matrix and ‖L‖1 <
4

(hxm)2
+ 4

(hym)2
.

Proof Define

[i, j] := (i− 1)Ny + j for i = 1, 2, · · · , Nx, j = 1, 2, · · · , Ny.

Denote by R = PL. It is easy to verify the following results:





NxNy∑

m=1

Rm,n = 0 for n = [i, j] with i = 2, . . . , Nx − 1 and j = 2, . . . , Ny − 1,

NxNy∑

m=1

Rm,n = 2
hyj
hx1

2

for n = [1, j] with 1 ≤ j ≤ Ny,

NxNy∑

m=1

Rm,n = 2
hyj

hx
Nx+

1
2

for n = [Nx, j] with 1 ≤ j ≤ Ny,

0 < Rm,m < 2(
hyM
hxm

+
hxM
hym

) for m = 1, · · · , NxNy,

−max{
hyM
hxm

,
hxM
hym

} < Rm,n = Rn,m ≤ 0 for m,n = 1, . . . , NxNy and m 6= n.

(35)
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For a non-zero ααα = (α1, α2, · · · , αNxNy), we have

αααRαααT =2

Ny∑

j=1


 hyj
hx1

2

α2
[1,j] +

hyj
hx
Nx+

1
2

α2
[Nx,j]




+

Nx∑

i=1

Ny−1∑

j=1

hxi
hy
j+ 1

2

(
α[i,j] − α[i,j+1]

)2
+

Nx−1∑

i=1

Ny∑

j=1

hyj
hx
i+ 1

2

(
α[i,j] − α[i+1,j]

)2
> 0.

Thus, R is positive definite and eigenvalues of R are all positive. Moreover, R is an M-matrix
with R−1 > 0. Thus, L−1 = R−1P > 0. Since diagonal elements of L are all positive and
off-diagonal elements are all non-positive, we obtain that L is an M-matrix as well. From (35)
and L = P−1R, we have ‖L‖1 <

4
(hxm)2 + 4

(hym)2
.

Lemma 4.6 Suppose M1 and M2 are two real square matrices. Assume that M1 is invertible
with ‖M−1

1 ‖1 <∞. If ‖M2‖1 <
1

‖M−1
1 ‖1

, then M1 +M2 is invertible, and

‖ (M1 +M2)
−1 ‖1 ≤

‖M−1
1 ‖1

1− ‖M−1
1 ‖1‖M2‖1

. (36)

Proof Since M1 is invertible, we have

M1 +M2 =
(
I +M2M

−1
1

)
M1.

The assumption ‖M2‖1 <
1

‖M−1
1 ‖1

implies that ‖M2M
−1
1 ‖1 < 1. By the matrix geometric series

theorem [21], we know that
(
I +M2M

−1
1

)−1
exists and

‖
(
I +M2M

−1
1

)−1
‖1 ≤

1

1− ‖M2‖1‖M
−1
1 ‖1

.

Therefore, M1 +M2 is invertible with

(M1 +M2)
−1 = M−1

1

(
I +M2M

−1
1

)−1
,

and its norm satisfies

‖ (M1 +M2)
−1 ‖1 ≤ ‖M−1

1 ‖1‖
(
I +M2M

−1
1

)−1
‖1 ≤

‖M−1
1 ‖1

1− ‖M−1
1 ‖1‖M2‖1

.

We now derive a sufficient condition that guarantees the solvability and stability of the lin-
earized problem (34). Denote by

(γ1, γ2, · · · , γNxNy) := (1, 1, · · · , 1)︸ ︷︷ ︸
NxNy

R−1.

Since R is an M-matrix (cf. (35)), we have γl > 0 for l = 1, 2, · · · , NxNy. We define the index

l∗ := argmax
l=1,2,··· ,NxNy

{
γlhxl h

y
l

}
.
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Theorem 4.7 If

∆tn+1 <
1

4γl∗
[
h
y
M
hx
l∗
h
y

l∗

(hxm)2hym
+

hx
M
hx
l∗
h
y

l∗

(hym)2hxm

]∑M
l=1(q

l)2‖µµµl‖∞

,

then we have that
(1) W is invertible;

(2) ‖W−1‖1 ≤
γl∗hx

l∗
h
y

l∗

1−4γl∗∆tn+1

[

h
y
M

hx
l∗

h
y
l∗

h
y
m(hxm)2

+
hx
M

hx
l∗

h
y
l∗

hxm(h
y
m)2

]

∑M
l=1(q

l)2‖µµµl‖∞

;

(3) The 1-norm condition number of W in (34) satisfies

κ1(W) := ‖W‖1‖W
−1‖1 ≤

γl∗hxl∗h
y
l∗

{
4

(hxm)2 + 4
(hym)2

+ 4∆tn+1
[

h
y
M

h
y
m(hxm)2

+
hxM

hxm(hym)2

]∑M
l=1(q

l)2‖µµµl‖∞

}

1− 4γl∗∆tn+1

[
h
y

M
hx
l∗
h
y

l∗

h
y
m(hxm)2

+
hx
M
hx
l∗
h
y

l∗

hxm(hym)2

]∑M
l=1(q

l)2‖µµµl‖∞

.

(37)

Proof As shown in Appendix A, we have





NxNy∑

m=1

Kl
m,n =

NxNy∑

n=1

Kl
m,n = 0 for m,n = 1, . . . , NxNy,

0 < Kl
n,n < 2∆tn+1(

hyM
hxm

+
hxM
hym

)‖µµµl‖∞ for n = 1, . . . , NxNy,

−∆tn+1max{
hyM
hxm

,
hxM
hym

}‖µµµl‖∞ < Kl
m,n < 0 for n,m = 1, . . . , NxNy, and m 6= n.

(38)

This implies that

‖Kl‖1 ≤ 4∆tn+1

(
hyM
hxm

+
hxM
hym

)
‖µµµl‖∞.

From the proof of Theorem 4.3, we know that ‖Al,−1‖1 ≤ 1
hxmh

y
m
. Therefore, we have

∥∥∥∥∥

M∑

l=1

(ql)2Al,−1(uuuk) K(µµµk,uuuk)

∥∥∥∥∥
1

≤ 4∆tn+1

[
hyM

(hxm)
2hym

+
hxM

(hym)2hxm

] M∑

l=1

(ql)2‖µµµl‖∞. (39)

If

∆tn+1 <
1

4γl∗
[
h
y

M
hx
l∗
h
y

l∗

(hxm)2hym
+

hx
M
hx
l∗
h
y

l∗

(hym)2hxm

]∑M
l=1(q

l)2‖µµµl‖∞

,

we have

‖W − L‖1 <
1

‖L−1‖1
.

It follows from Lemma (4.6) that W is invertible. By (36), we further have

‖W−1‖1 ≤
‖L−1‖1

1− ‖L−1‖1‖L −W‖1
≤

γl∗hxl∗h
y
l∗

1− 4γl∗∆tn+1

[
h
y
M
hx
l∗
h
y

l∗

h
y
m(hxm)2

+
hx
M
hx
l∗
h
y

l∗

hxm(hym)2

]∑M
l=1(q

l)2‖µµµl‖∞

.
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By Lemma 4.5, we obtain

‖W‖1 ≤ ‖L‖1 +

M∑

l=1

(ql)2‖Al,−1(uuuk)‖1‖K(µµµl,k,uuuk)‖1

≤
4

(hxm)
2
+

4

(hym)2
+

M∑

l=1

4∆tn+1(ql)2
(

hyM
hym(hxm)

2
+

hxM
hxm(h

y
m)2

)
‖µµµl‖∞.

(40)

By the definition of 1-norm condition number, we complete the proof of (37).

5 Numerical tests

We perform numerical simulations to show numerical accuracy of the developed numerical methods
and their effectiveness in preserving mass conservation, positivity, and free-energy dissipation.
The advantage of using the adaptive time stepping strategy is demonstrated through an example
in which electrolytes are exposed to sudden alternating applied potentials over two electrodes.
Furthermore, we apply the developed numerical methods to characterize the charge dynamics of
electrolytes between two parallel electrodes with sinusoidal applied potentials. Unless otherwise
specified, we use a uniform mesh with grid spacing hxi = hyj in the following simulations. The

stopping tolerance in the Newton’s iterations is set to be 10−10.

5.1 Accuracy and efficiency

We consider an electrolyte solution with symmetric monovalent ions. To test the accuracy of our
methods, we consider the following constructed problem in 2D:





∂tc
1 = ∇ · (∇c1 + c1∇ψ) + f1,

∂tc
2 = ∇ · (∇c2 − c2∇ψ) + f2,

− κ∆ψ = c1 − c2 + ρf .

(41)

The functions f1, f2, and ρ
f are determined by the following exact solution




c1 = π2e−t cos(πx) cos(πy)/5 + 2,

c2 = π2e−t cos(πx) cos(πy)/5 + 2,

ψ = e−t cos(πx) cos(πy).

(42)

The initial and boundary conditions are obtained by evaluating the exact solution at t = 0 and
the boundary of a computational box, respectively.

h l∞ error in c1 Order l∞ error in c2 Order l∞ error in ψ Order
1
10 1.30e-02 - 1.41e-02 - 1.00e-03 -
1
20 3.40e-03 1.93 3.70e-03 1.93 2.70e-04 1.89
1
30 1.50e-03 2.01 1.60e-03 2.06 1.21e-04 1.97
1
40 8.45e-04 1.99 9.26e-04 1.90 6.87e-05 1.98
1
50 5.42e-04 1.99 5.94e-04 1.99 4.41e-05 1.99

Table 1: Numerical error and convergence order of numerical solutions at time T = 0.1.
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We test the numerical accuracy of the proposed numerical method using various spatial step
size h with a fixed mesh ratio ∆t = h2. Table 1 lists l∞ errors and convergence orders for ionic
concentration and electrostatic potential at time T = 0.1. We observe that the error decreases
as the mesh refines, and that the convergence orders for ion concentrations and the potential are
both about 2. This indicates that the fully-implicit scheme (17), as expected, is first-order and
second-order accurate in time and spatial discretization, respectively. Note that the mesh ratio
chosen here is for the purpose of numerical accuracy test, not for the purpose of the stability or
positivity.

To demonstrate the advantage of the proposed Newton’s iteration method in computational
efficiency, we compare the Newton’s iteration method with a simple fixed-point iteration method
for solving the nonlinear discrete system (29) in terms of computational time and iteration steps.
We solve the problem using various mesh resolution with a mesh ratio ∆t = h/10. As shown
in Table 2, the number of iteration steps of the Newton’s method is about 2 in each time step
evolution, which is significantly fewer than that of the fixed-point method. Also, the fixed-
point method takes roughly twofold to threefold longer computational time. The computational
advantage makes the proposed Newton’s iteration method promising in studying complex ion
transport problems.

Mesh Size
Newton’s method Fixed-point method

Computational time Iteration steps Computational time Iteration steps

502 82s 2 194s 21
1002 1243s 2 3615s 21
1502 6892s 2 20274s 20
2002 24798s 2 73357s 19
2502 68512s 2 191746s 19
3002 155486s 2 404593s 19

Table 2: Computational time and iteration steps of the proposed Newton’s iteration method and
fixed-point iteration method in each time step evolution up to time T = 0.1.

5.2 Conservation and energy dissipation

In this case, we consider a closed, neutral system that consists of symmetric monovalent ions with
the following initial and boundary conditions





ψ(t, 0, y) = 0, ψ(t, 1, y) = 1, y ∈ [0, 1],

∂ψ

∂y
(t, x, 0) = sin (πx) ,

∂ψ

∂y
(t, x, 1) = − sin (πx) , x ∈ [0, 1],

c1(0, x, y) = 1, c2(0, x, y) = 1, (x, y) ∈ [0, 1] × [0, 1],

∂c1

∂n
+ c1

∂ψ

∂n
= 0 and

∂c2

∂n
− c2

∂ψ

∂n
= 0 on ∂Ω.

(43)

The prescribed potential boundary conditions represent that a potential difference is applied
horizontally and the upper and lower boundaries carry surface charges with opposite signs. With
such zero-flux boundary conditions and time-independent boundary potentials, the system has
properties of mass conservation and free-energy dissipation.
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Figure 1: Profiles of the free energy (solid line) and total ion concentrations (dotted line) against
time evolution.

As displayed in Fig. 1, our numerical method perfectly conserves the total ion concentration,
and the discrete free energy (24) decays monotonically and robustly. In addition, our numerical
solutions of concentrations are all positive, being consistent with our analysis on solution positivity.

5.3 Adaptive time stepping
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Figure 2: Upper: The evolution of the applied potential V (t); Middle: The adaptive time stepping
size versus time; Lower: Free-energy evolution with a uniform time-stepping size ∆t = 0.001
(black) and adaptive time stepping sizes with parameters ∆tmax = 0.05, ∆tmin = 0.001, and
α = 105 (blue).
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We now study the time-marching stability of the numerical scheme and the efficiency improvement
by using the strategy of adaptive time stepping in solving problems in which electrolytes are
exposed to sudden alternating applied potentials. We consider the same initial and boundary
conditions as in (43) except that ψ(t, 1, y) = V (t) for y ∈ [0, 1] with

V (t) = χ[0,2) − χ[2,4) + χ[4,6) − χ[6,8),

where χ[·,·) is the characteristic function of a time interval. That is, a periodically alternating
potential V (t) is applied horizontally across the computational domain; cf. the upper plot of the
Fig. 2.

We investigate the effectiveness of adaptive time-stepping techniques using the form of (19)
with a parameter setting ∆tmax = 0.05, ∆tmin = 0.001, and α = 105. The adaptive time step
evolution is presented in the middle plot of the Fig. 2, and the corresponding free-energy evolution
profile is displayed in the lower plot of the Fig. 2. For comparison, we also present the free-energy
evolution profile computed with a uniform time step size (∆t = 0.001) in the same plot. As the
applied potential changes periodically, the free energy correspondingly undergoes large, abrupt
changes. This in turn leads to drastic decrease of the time stepping size to the minimum value
∆tmin. One can observe that, for a fixed applied potential, the free energy quickly relaxes and
the corresponding time step size increases to its maximum value ∆tmax. In contrast to 8000 steps
with ∆t = ∆tmin = 0.001 to reach T = 8, the adaptive time stepping only takes a total of 877
steps, which have about 89% reduction in time steps. Of interest is that the free-energy evolution
profile computed with adaptive time stepping is almost identical to that with ∆t = 0.001, with
minor discrepancy due to the resolution of time. This indicates that the strategy of adaptive time
stepping is useful in speeding up computations of problems that have applied potentials with
sudden changes.

5.4 Charge Dynamics

0 1 2 3

−1

0

1

Time

V

ω=15π

Figure 3: The applied potential V (t) with ω = 15π. It keeps as a constant for the time interval
[0, 1.5) and continuously becomes a sinusoidal function for [1.5,+∞).

We apply the proposed numerical approaches to probe the charge dynamics in electrolytes be-
tween two parallel electrodes with sinusoidal applied potentials. Electrolytes under alternating
current (AC) have wide range of applications, including AC electroosmosis (ACEO) pumps, cyclic
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voltammetry, and dielectrophoresis [1, 3, 4]. Numerical simulation with sinusoidal applied poten-
tials of large frequency is computationally challenging. It sets high demand on the stability of
numerical integration methods.

We consider a closed, neutral system that consists of binary monovalent ions. Due to geometry
symmetry, the problem can be reduced to one dimension on a computational domain [−1, 1], after
nondimensionalization. We consider the same initial and boundary conditions as in (43) except
that the left electrode is kept grounded, i.e., ψ(t,−1) = 0, and ψ(t, 1) = V (t) with

V (t) = χ[0,1.5) + χ[1.5,+∞) sin (ωt) ,

where ω is the angular frequency; cf. Fig. 3.

Figure 4: Evolution of cation distribution (upper row) and electrostatic potential (lower row)
with various angular frequency ω.

In Fig. 4, we consider the dynamics of concentrations and electrostatic potential with various
angular frequency. For T < 1.5, the potential difference across two electrodes attracts oppositely
charged ions from the bulk, forming electric double layers (EDLs) in the vicinity of electrodes.
In the meantime, the electrostatic potential gets screened by the charges in the EDLs. After the
charging phase, the boundary potential becomes sinusoidal and the electrostatic potential across
the system responds instantaneously. The ionic concentration close to the electrodes oscillates
correspondingly. However, the magnitude of oscillation decays as time evolves, because charges
in the EDLs are gradually released to the bulk.

With larger angular frequency, the electrostatic potential inside still can follow the boundary
potential instantaneously. However, the ionic concentration fall behind the potential oscillation
and the potential only partially gets screened. At lower frequency, ions can travel much longer
distances during each AC cycle; therefore, the oscillatory effect extend farther away from the
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electrode surface, with more pronounced impact on the structure of EDLs. For ω = 39π, we
barely observe oscillations in concentration for 2 < T < 3.
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Figure 5: Evolution of total net charges ρ(t) with various angular frequency ω.

To further understand charge dynamics with sinusoidal applied potentials, we also study the
evolution of total net charges in left half of the electrolytes [4]:

ρ(t) =

∫ 0

−1

2∑

l=1

qlcl(x)dx.

As seen from Fig. 5, the total net charges increase quickly and reach a plateau with a constant
applied voltage in the charging phase, i.e., 0 < T < 1.5. Later, the total net charges decay
oscillatorily to zero at T = 3, which indicates that the discharging phase with sinusoidal applied
potentials takes roughly the same time as the charging phase. For lower angular frequency, the
total net charges have larger magnitude of oscillation, being consistent with the results shown
in Fig. 4. For ω = 95π, the oscillation in the profile of ρ(t) is extremely small. Larger angular
frequency leads to shrinking oscillation magnitude, indicating that the effect of applied potentials
with rather large frequency is equivalent to a zero applied potential. This observation is further
confirmed by the lower plot in the Fig. 5, which is obtained with a zero applied potential (ω = 0)
for T > 1.5. We can see that the profile of the total net charges is almost identical to the case
with ω = 95π.

6 Conclusions

The Poisson–Nernst–Planck (PNP) equations are a classical model to describe ion transport,
which is fundamental to many applications. In this work, we have developed finite difference
schemes for solving the multi-dimensional PNP equations with multiple ionic species. Numerical
analysis has shown that the schemes are able to guarantee mass conservation, positivity, and
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free-energy dissipation at fully discrete level. The novelty of numerical schemes lies in using the
harmonic-mean approximations in the spatial discretization of the Nernst–Planck equations. In
addition, we have proposed a new Newton’s method to efficiently solve a fully implicit nonlin-
ear system resulting from discretization. The improved computational efficiency of the Newton’s
method originates from the usage of the electrostatic potential as the iteration variable, instead
of both the potential and concentration of multiple ionic species. Thanks to the harmonic-mean
approximations, we have been able to rigorously establish the solvability and stability of the lin-
earized problem in the Newton’s method and estimates on the upper bound of condition numbers
of coefficient matrices in linear systems that are solved iteratively. Extensive numerical tests
have been performed to corroborate the anticipated numerical accuracy, computational efficiency,
and structure-preserving properties of the developed schemes. Also, numerical simulations have
shown that a strategy of adaptive time stepping is able to speed up simulation of problems with
time-dependent, alternating boundary potentials. Finally, the proposed numerical approaches
have been applied to understand ion transport in response to a sinusoidal applied potential. Such
numerical simulations demonstrate that the developed numerical approaches are promising in
solving complex, realistic ion transport problems.

We now discuss several issues and possible further refinements of our work. The current
development of numerical methods only considers a regular domain. However, it is of practical
interest to extend the developed numerical methods for irregular computational domains, such
as irregular geometry considered in ion-channel applications. The discretization accuracy on
irregular boundaries deserves further attention, and discrete structure-preserving properties, such
as positivity preservation and mass conservation, are highly desirable to maintain. Because these
numerical properties are crucial to the validity of numerical solutions. It is also desirable to
pursue second-order temporal discretization schemes that have structure-preserving properties.
In addition, it will be our future work to extend the proposed discretization schemes and the
Newton’s method to solve other modified PNP models that account for steric effects, Coulomb
ionic correlations, and inhomogeneous dielectric effects [3, 20,23,24,27,33,37].
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11601361, 11771318, and 11790274). S. Zhou was supported by National Natural Science Foun-
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2018YFB0204404).

A Appendix: the matrix K(µµµl, uuu)

To facilitate the presentation, we denote by Sl = qluuu and introduce the following discrete operators

E±
x S

l,n
i,j =

eS
l,n
i±1,j−S

l,n
i,j

(1 + eS
l,n
i±1,j−S

l,n
i,j )2

, E±
y S

l,n
i,j =

eS
l,n
i,j±1−S

l,n
i,j

(1 + eS
l,n
i,j±1−S

l,n
i,j )2

.

We now examine elements in each column of the matrix K. For the kth column with k = [i, j],
the column elements are related to coefficients in the discretization stencils of the Nernst–Planck
equations, associated to the grid point {xi, yj}. Thus, we look into all of the discretization stencils
for different types of grid points.
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First, for any interior grid point {xi, yj} with i = 2, . . . , Nx−1 and j = 2, . . . , Ny−1, non-zero
entries of the kth column (k = [i, j]) are given by

Kl
m,k =





− 2∆tn+1
hyj
hx
i− 1

2

E−
x S

l,n
i,j µ

l,n
m+Ny

− 2∆tn+1
hyj
hx
i− 1

2

E+
x S

l,n
i−1,jµ

l,n
m , m = [i− 1, j],

− 2∆tn+1 hxi
hy
j− 1

2

E+
y S

l,n
i,j−1µ

l,n
m − 2∆tn+1 hxi

hy
j− 1

2

E−
y S

l,n
i,j µ

l,n
m+1, m = [i, j − 1],

2∆tn+1


 hyj
hx
i+ 1

2

E+
x S

l,n
i,j +

hyj
hx
i− 1

2

E−
x S

l,n
i,j +

hxi
hy
j+ 1

2

E+
y S

l,n
i,j +

hxi
hy
j− 1

2

E−
y S

l,n
i,j


µl,nm

+ 2∆tn+1
hyj
hx
i− 1

2

E+
x S

l,n
i−1,jµ

l,n
m−Ny

+ 2∆tn+1
hyj
hx
i+ 1

2

E−
x S

l,n
i+1,jµ

l,n
m+Ny

+ 2∆tn+1 hxi
hy
j+ 1

2

E−
y S

l,n
i,j+1µ

l,n
m+1 + 2∆tn+1 hxi

hy
j− 1

2

E+
y S

l,n
i,j−1µ

l,n
m−1, m = k,

− 2∆tn+1 hxi
hy
j+ 1

2

E−
y S

l,n
i,j+1µ

l,n
m+1 − 2∆tn+1 hxi

hy
j+ 1

2

E+
y S

l,n
i,j µ

l,n
m , m = [i, j + 1],

− 2∆tn+1
hyj
hx
i+ 1

2

E−
x S

l,n
i+1,jµ

l,n
m+Ny

− 2∆tn+1
hyj
hx
i+ 1

2

E+
x S

l,n
i,j µ

l,n
m , m = [i+ 1, j].

Hence, the conclusion (38) holds for the columns associated to interior grid points. We examine
the conclusion for boundary grid points that are adjacent to four edges but not corner vertices.
We consider Dirichlet boundary grid points {x1, yj} for j = 2, . . . , Ny−1, and Neumann boundary
grid points {xi, y1} for i = 2, . . . , Nx − 1. Non-zero entries of the kth column (k = [1, j]) are

Kl
m,k =





− 2∆tn+1 hx1
hy
j− 1

2

E+
y S

l,n
1,j−1µ

l,n
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2
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2
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2

E−
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l,n
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hyj
hx3

2

E+
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l,n
1,jµ

l,n
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, m = [2, j].
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Non-zero entries of the kth column (k = [i, 1]) are

Kl
m,k =
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2
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x S
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2
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Thus, we can verify that the conclusion (38) holds for the columns associated to edge grid points.
For corner vertices grid points, e.g., k = [1, 1], we have

Kl
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, m = [2, 1].

Other corner vertices can be verified analogously. Also, we can verify that K is a symmetric
matrix.

Without any assumption on Sl,ni,j , we have

0 < E±
k S

l,n
i,j ≤

1

4
for k = x, y. (A.1)

Therefore, we have the following results:





NxNy∑

m=1

Kl
m,n =

NxNy∑

n=1

Kl
m,n = 0 for m,n = 1, . . . , NxNy,

0 < Kl
n,n < 2∆tn+1(

hyM
hxm
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hxM
hym

)‖µµµl‖∞ for n = 1, . . . , NxNy,
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hyM
hxm

,
hxM
hym

}‖µµµl‖∞ < Kl
m,n < 0 for n,m = 1, . . . , NxNy, and m 6= n.
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