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Abstract

A semi-implicit finite difference time domain (FDTD) numerical Maxwell
solver is developed for full electromagnetic Particle-in-Cell (PIC) codes for
the simulations of plasma-based acceleration. The solver projects the vol-
umetric Yee lattice into planes transverse to a selected axis (the particle
acceleration direction). The scheme - by design - removes the numerical dis-
persion of electromagnetic waves running parallel the selected axis. The fields
locations in the transverse plane are selected so that the scheme is Lorentz-
invariant for relativistic transformations along the selected axis. The solver
results in “Galilean shift” of transverse fields by exactly one cell per time step.
This eases greatly the problem of numerical Cerenkov instability (NCI). The
fields positions build rhombi in plane (RIP) patterns. The RIP scheme uses
a compact local stencil that makes it perfectly suitable for massively par-
allel processing via domain decomposition along all three dimensions. No
global/local spectral methods are involved.
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1. Introduction

Plasma-based particle acceleration is a rapidly developing route towards
future compact accelerators [1, 2, 3, 4]. The reason is that plasma supports
fields orders of magnitude higher than conventional accelerators [5, 6]. Thus,
particle acceleration can be accomplished on much shorter distances as com-
pared with the solid-state accelerating strucutures. However, the plasma
is a highly nonlinear medium and requires accurate and computationally
efficient numerical modeling to understand and tune the acceleration pro-
cess. The main workhorse for plasma simulations are Particle-in-Cell codes
[7, 8, 9, 10, 11, 12] (a much longerthough still incomplete list of PIC codes
can be found on the web, see e.g. [13]). These provide the most appropriate
description of plasma as an ensemble of particles pushed according to the
relativistic equations of motion using self-consistent electromagnetic fields,
which are maintained on a spatial grid [14].

From a numerical point of view, plasma-based acceleration represents a
classic multi-scale problem. Here, we have the long scale of acceleration
distance that can range from centimeters [15] to several meters [16, 17], and
the short scale of plasma wavelength that ranges from a few micrometers
to near millimeter scales. In addition, if the plasma wave is created by a
laser pulse, there is additionally the laser wavelength scale in the sub-micron
range. This natural scale disparity makes the simulations of plasma-based
acceleration so computationally demanding.

Presently, two types of PIC codes are used to simulate the plasma-
based accelerator structures: (i) universal full electromagnetic PIC codes
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like [7, 8, 9, 10, 11, 12] , which solve the unabridged set of Maxwell equa-
tions and (ii) quasi-static PIC codes like [20, 8, 18, 19] (and many others),
which analytically separate the short scale of plasma wavelength and the
long propagation distance scale. The quasi-static PIC codes are proven to
be both accurate and very computationally efficient when simulating beam-
driven plasma-based wake field acceleration (PBWFA). Unfortunately, the
quasi-static aproximation for the Maxwell equations eliminates any radia-
tion. Thus, the laser pulse driver has to be described in an envelope approx-
imation [20]. Further, the quasi-static codes fail at simulating sharp plasma
boundaries and self-trapping of particles from background plasma.

For this reason, we here consider full electromagnetic (EM) PIC codes
which are usually applied for Laser Wake Field Acceleration (LWFA) in
plasmas. The full EM PIC correctly describes the laser evolution even in
highly nonlinear regimes. The full EM PIC codes are computationally very
expensive because they do not separate the different scales.

A significant scale adjustment can be made if one makes a Lorentz trans-
formation of the system into a reference frame moving in the direction of
acceleration with a relativistic speed. This leads to the Lorentz contraction
of the propagation distance with the relativistic factor γ = 1/

√
1− V 2/c2,

where V is the relative velocity of the reference frame. Simultaneously, the
driver - and its wavelength - become longer at nearly the same factor. This
so-called “Lorentz-boost” [21] evens the scale disparity and potentially gives
a large computational speed up at the cost of not properly resolving backward
propagating waves.

However, in “Lorentz-boosted” PIC simulations, the background plasma
- both electrons and ions - is moving backward at a relativistic velocity. This
moving plasma is a source of free energy that can be easily transformed into
high amplitude noise fields. The major numerical mechanism for this para-
sitic conversion is the Cerenkov resonance [24]. The problem of most existing
FDTD Maxwell solvers is that they employ the Yee lattice [25] (with a few
exceptions like FBPIC [22] and INF&RNO [23]): individual components of
the electromagnetic fields are located at staggered positions in space. The
resulting numerical scheme includes a Courant stability restriction on the
time step which leads to numerical dispersion. This results in electromag-
netic waves with phase velocities below the vacuum speed of light. Thus, the
relativistic particles may stay in resonance with the waves and radiate . This
non-physical Cerenkov radiation plagues the Lorentz-boosted PIC simula-
tions [26]. Moreover, even normal PIC simulations in the laboratory frame

3



suffer from the numerical Cerenkov effect [27, 28]. Any high density bunch
of relativistic particles - e.g. the accelerated witness bunch - emits Cerenkov
radiation as well. This affects the bunch energy and emittance [29].

In principle, the Yee scheme can be modified - or extended - by using
additional neighboring cells with the goal to tune the numerical dispersion
so that the Cerenkov resonance is avoided in the zero order [30, 31]. This
reduces the Cerenkov instability, but does not eliminate it. One of the reasons
is that the Yee lattice itself is not Lorentz-invariant. The individual field
components are located all at different positions staggered in space. In the
boosted frame, the fields are Lorentz-transformed and find themselves at
the wrong positions. For example, when the boosted frame moves in the
X−direction, the pairs Ey, Bz and Ez, By transform one into another. Yet,
they are located at different positions within the Yee lattice cell. In addition,
the aliasing leads to numerical Cerenkov resonances at wavenumbers from
higher Brillouin zones on the numerical grid.

The different positions of the field pairs Ey, Bz and Ez, By on the Yee lat-
tice also cause another problem relevant to the high energy physics. When
we want to simulate high current relativistic beams [32], this spatial stag-
gering may lead to a beam numerical self-interaction. A real beam of ultra-
relativistic, γ � 1, particles has a small physical self-interaction due to the
difference of these fields with the transverce force q

(
E⊥ + β||e|| ×B⊥

)
. Here

e|| is the unit vector in the propagation direction and 1 − β|| = 1 − v||/c ≈
1/2γ2 is the relative difference of the particles longitudinal velocity v|| from
the speed of light c. For 50 GeV electrons with γ ≈ 105, this real difference
is as small as 1 − β|| ≈ 5 · 10−11. The transverse self-fields E⊥ and B⊥ of
the ultra-relativistic bunch are also nearly equal with the same miniscule
relative difference. However, the Yee lattice defines these fields at staggered
positions in space and time. These fields must be interpolated to the same
time and to individual particle positions. This interpolation leads to errors
and differences between the transvers fields acting on the particle. As a con-
sequence, the bunch self-action due to the numerical errors is many orders of
magnitude larger than the real one. This results not only in the bunch nu-
merical self-focusing/defocusing and emittance growth, but also in significant
numerical bremsstrahlung and stopping - when these effects are included in
the PIC code. A similar inaccuracy can occur in the interaction of laser with
a co-propagating relativistic beam (see the appendix in [33]).

We conclude, the Yee lattice is not optimal for simulating high energy
applications.
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2. Limitations of pseudo-spectral methods

Recently, pseudo-spectral methods origninally proposed by Haber et al.
[34], shortly discussed in [14] and used by O. Buneman in his TRISTAN
code [35] have seen a remarkable revival [10]. The seeming advantage of
the spectral methods is that they are dispersionless and provide an “infinite
order” of approximation, even calling the method after Haber “a pseudo-
spectral analytical time-domain (PSATD) algorithm” [36].

Indeed, following Sommerfeld [37] we can write the Maxwell equations in
the Fourier space as

∂F̂

∂t
= ick× F̂− Ĵ (1)

where Ĵ = FFT [J] is the Fourier image of the real current while F̂ = FFT [F]
is the Fourier image of the complex electromagnetic field F = E + iB. It is
straightforward to show that the numerical scheme advancing the fields from
the time step n to n+ 1 in the form

F̂n+1 = CkF̂
n + iSk × F̂n − C̃kĴ

n+1/2 + iS̃k × Ĵn+1/2 (2)

+
(
C̃k − 1

)(
ek · Ĵn+1/2

)
ek + (1− Ck)

(
ek · F̂n

)
ek

is dispersionless in vacuum and provides second order approximation for the
plasma currents. Here, Ck = cos(ckτ), C̃k = cos(ckτ/2), Sk = ek sin(ckτ),
S̃k = ek sin(ckτ/2), τ is the time step, k = |k|, ek = k/k.

The FFT-based solvers are intrinsically global. This means, they need
information about fields in the full simulation domain to update the local field
at a particular point in space. This contradicts the causality principle of the
special relativity: only fields within cτ distance from the space point may
cause the local fields to change. The propagator (2) explicitly separates the
fields and currents into the propagating transverse fields and non-propagating
longitudinal fields.

Indeed, the longitudinal part of the field is Fn
|| =

(
ek · F̂n

)
ek, and the

transverse part is Fn
⊥ = Fn −

(
ek · F̂n

)
ek, so that F = F|| + F⊥. The same

is valid for the current J = J|| + J⊥. The Eq. (2) projected onto the vector
ek is
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F̂||
n+1

= F̂ n
|| − Ĵ

n+1/2
|| (3)

The transverse field components are updated according to

F̂n+1
⊥ = CkF̂

n
⊥ + iSk × F̂n

⊥ − C̃kĴ
n+1/2
⊥ + iS̃k × Ĵ

n+1/2
⊥ (4)

We see that the transverse fields (4) propagate with the speed of light. The
longitudinal component (3) does not propagate anywhere. Taking divergence
of (3) we arrive at the Poisson equation.

Computationally, one can use spectral algorithms that are ”local” to one
simulation sub-domain [38, 39]. In this case, an ultra-high order finite dif-
ferences scheme can be designed. The resulting convolution is then effciently
computed within one sub-domain with the help of a spectral transformation.
The resulting schemes show excellent parallel scalability [39]

Although the spectral solver (2) removes the numerical dispersion, it does
not remove aliasing errors and the numerical Cerenkov instability in pseudo-
spectral codes persists, even when at a lower rate [40, 41]. In an effort to
remove the Cerenkov instability in pseudo-spectral codes, filtering currents
of the most unstable modes is often applied [42, 43]. This artificial filtering,
however, may lead to additional unphysical effects in the pseudo-spectral
simulations.

Another approach is elimination of numerical Cherenkov instability in
flowing-plasma particle-in-cell simulations by using Galilean coordinates [44].
This approach removes relative motion between the numerical grid and the
streaming plasma: the grid cells flow together with the plasma. Unfortu-
nately, this trick works only in one direction and does not help removing
numerical Cerenkov emission of the high current bunch being accelerated in
the opposite direction.

We conclude that pseudo-spectral methods are far from ideal candidates
for PIC simulations and that a better FDTD method is required. In this
work, a new FDTD solver is presented that does not employ spectral trans-
formations and yet has the unique property of having no numerical dispersion
along one selected spatial axis. The positions of the transverse field pairs
(Ey, Bz) (Ez, By) are colocated in the RIP scheme. This is Lorentz-invariant
and greatly improves the accuracy in calculating the transverse force acting
on a relativistic particle moving along the X−axis.

6



3. The general X-dispersionless Maxwell solver

We here develop a FDTD 3D Maxwell solver that has no dispersion for
plane waves propagating in vacuum in one selected direction. In plasma-
based acceleration this is usually the direction of particle acceleration: the
driving laser optical axis. The solver should retain its dispersionless prop-
erties not only in vacuum, but also inside dense plasmas, i.e. the optimal
time step/grid step relation should not be compromised by the presence of
plasma. The solver must not use spectral transformations and should have
a compact local stencil. This is the pre-requisite for efficient parallelization
via domain decomposition. In short, we develop an efficient Maxwell solver
for full three-dimensional problems where one axis is distinguished from the
two others (e.g. the laser- or beam-propagation axis).

We select the X−direction for dispersionless propagation. For electro-
magnetic waves propagating in X, we have the Maxwell equations

1

c

∂Ex
∂t

= Γx (5)

1

c

∂Ey
∂t

= −∂Bz

∂x
+ Γy (6)

1

c

∂Ez
∂t

=
∂By

∂x
+ Γz (7)

1

c

∂Bx

∂t
= Φx (8)

1

c

∂By

∂t
=

∂Ez
∂x

+ Φy (9)

1

c

∂Bz

∂t
= −∂Ey

∂x
+ Φz (10)

Here, the vector

Γx =
∂Bz

∂y
− ∂By

∂z
− Jx (11)

Γy =
∂Bx

∂z
− Jy (12)

Γz = −∂Bx

∂y
− Jz (13)
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combines the vacuum diffraction E and the medium response (currents) J,
while

Φx = −∂Ey
∂z

+
∂Ez
∂y

(14)

Φy = −∂Ez
∂x

(15)

Φz =
∂Ey
∂x

(16)

is the vacuum diffraction operator for B.
We use a semi-implicit trapezoidal (sometimes called “implicit midpoint”)

scheme for the discretization of the transverse fields on a 3D grid. We write
here explicitly the i−index along the X−axis only as the scheme can be easily
generalized for arbitrary transverse geometries (e.g. Cartesian, or cylindrical,
etc.):

En+1
y(i+1) + En+1

y(i) − En
y(i+1) − En

y(i)

2cτ
= −

−Bn+1
z(i) +Bn+1

z(i+1) −Bn
z(i) +Bn

z(i+1)

2hx

+ Γ
n+1/2
y(i+1/2) (17)

En+1
z(i+1) + En+1

z(i) − En
z(i+1) − En

z(i)

2cτ
=
−Bn+1

y(i) +Bn+1
y(i+1) −Bn

y(i) +Bn
y(i+1)

2hx

+ Γ
n+1/2
z(i+1/2) (18)

En+1
x(i) − En

x(i)

cτ
= Γ

n+1/2
x(i) (19)

Bn+1
y(i) +Bn+1

y(i+1) −Bn
y(i) −Bn

y(i+1)

2cτ
=
−En+1

z(i) + En+1
z(i+1) − En

z(i) + En
z(i+1)

2hx

+ Φ
n+1/2
y(i+1/2) (20)

Bn+1
z(i) +Bn+1

z(i+1) −Bn
z(i) −Bn

z(i+1)

2cτ
= −

−En+1
y(i) + En+1

y(i+1) − En
y(i) + En

y(i+1)

2hx

+ Φ
n+1/2
z(i+1/2) (21)

Bn+1
x(i) −Bn

x(i)

cτ
= Φ

n+1/2
x(i) (22)
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Here, τ is the time step and hx is the spatial grid step in the X−direction.
These equations (17)-(22) build a system of coupled linear equations relat-

ing the updated fields at the time step n+1 with already known fields at the
time steps n and n+ 1/2. Although this implicit system of linear equations
can generally be solved using a fast matrix inversion method (the system has
a sparse matrix), we will be interested in the special case cτ = hx = ∆. In
this particular case, the inversion is straightforward.

First, we add Eqs. (17)+(21) and (18)+(20). to obtain transport com-
ponents

T
+(n+1)
y(i) = En+1

y(i) +Bn+1
z(i) = En

y(i−1) +Bn
z(i−1) (23)

+ ∆
(

Γ
n+1/2
y(i−1/2) + Φ

n+1/2
z(i−1/2)

)
T

+(n+1)
z(i) = En+1

z(i) +Bn+1
y(i) = En

z(i+1) +Bn
y(i+1) (24)

+ ∆
(

Γ
n+1/2
z(i+1/2) + Φ

n+1/2
y(i+1/2)

)
or simply

T
+(n+1)
y(i) = T

+(n)
y(i−1) + ∆

(
Γ
n+1/2
y(i−1/2) + Φ

n+1/2
z(i−1/2)

)
(25)

T
+(n+1)
z(i) = T

+(n)
z(i+1) + ∆

(
Γ
n+1/2
z(i+1/2) + Φ

n+1/2
y(i+1/2)

)
(26)

Then, we substract the same Eqs. (17)-(21) and (18)-(20) to obtain

T
−(n+1)
y(i) = En+1

y(i) −B
n+1
z(i) = En

y(i+1) −Bn
z(i+1) (27)

+ ∆
(

Γ
n+1/2
y(i+1/2) − Φ

n+1/2
z(i+1/2)

)
T
−(n+1)
z(i) = En+1

z(i) −B
n+1
y(i) = En

z(i−1) −Bn
y(i−1) (28)

+ ∆
(

Γ
n+1/2
z(i−1/2) − Φ

n+1/2
y(i−1/2)

)
or

T
−(n+1)
y(i) = T

−(n)
y(i+1) + ∆

(
Γ
n+1/2
y(i+1/2) − Φ

n+1/2
z(i+1/2)

)
(29)

T
−(n+1)
z(i) = T

−(n)
z(i−1) + ∆

(
Γ
n+1/2
z(i−1/2) − Φ

n+1/2
y(i−1/2)

)
(30)
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Figure 1: (color online) The “rhombi-in-plane” RIP. grid.

These are the marching equations. The transport components T
+/−
y,z must be

shifted one cell in the corresponding direction and the diffraction/refraction
terms be correctly added.

This marching has a form of “Galiliean field shift” exactly by single cell
per time step. Thus, instead of shifting the grid following the relativistic
plasma [44], the RIP solver shifts the transverse fields so that the relativistic
particle sees the same fields when it enters the new cell. In one-dimensional
geometry, the new algorithm defaults to the well known advective algorithm
introduced by Birdsall and Langdon [14]. In [24], and as reported also in [14],
on the stability of various electromagnetic PIC schemes, it is stated that ”the
improved stability associated with the advective differencing schemes is due
not so much to the dispersionless vacuum transport of the fields, per se, as
to the less conventional methods of determining the mesh current usually
employed with advective differencing”.
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For the fields, we get

En+1
y(i) = 1

2

(
En
y(i−1) + En

y(i+1)

)
− 1

2

(
Bn
z(i+1) −Bn

z(i−1)

)
(31)

+∆
2

(
Γ
n+1/2
y(i−1/2) + Φ

n+1/2
z(i−1/2) + Γ

n+1/2
y(i+1/2) − Φ

n+1/2
z(i+1/2)

)
En+1
z(i) = 1

2

(
En
z(i−1) + En

z(i+1)

)
+ 1

2

(
Bn
y(i+1) −Bn

y(i−1)

)
(32)

+∆
2

(
Γ
n+1/2
z(i−1/2) − Φ

n+1/2
y(i−1/2) + Γ

n+1/2
z(i+1/2) + Φ

n+1/2
y(i+1/2)

)

Bn+1
y(i) = 1

2

(
Bn
y(i−1) +Bn

y(i+1)

)
+ 1

2

(
En
z(i+1) − En

z(i−1)

)
(33)

+∆
2

(
−Γ

n+1/2
z(i−1/2) + Φ

n+1/2
y(i−1/2) + Γ

n+1/2
z(i+1/2) + Φ

n+1/2
y(i+1/2)

)
Bn+1
z(i) = 1

2

(
Bn
z(i−1) +Bn

z(i+1)

)
− 1

2

(
En
y(i+1) − En

y(i−1)

)
(34)

+∆
2

(
Γ
n+1/2
y(i−1/2) + Φ

n+1/2
z(i−1/2) − Γ

n+1/2
z(i+1/2) + Φ

n+1/2
y(i+1/2)

)
or simply

E
(n+1)
y(i) =

T
+(n+1)
y(i)

+T
−(n+1)
y(i)

2
(35)

E
(n+1)
z(i) =

T
+(n+1)
z(i)

+T
−(n+1)
z(i)

2
(36)

B
(n+1)
y(i) =

T
+(n+1)
y(i)

−T−(n+1)
y(i)

2
(37)

B
(n+1)
z(i) =

T
+(n+1)
z(i)

−T−(n+1)
z(i)

2
(38)

4. The three-dimensional RIP Maxwell solver in Cartesian coordi-
nates

Let us now look at the diffraction/refraction terms. For simplicity, we
use Cartesian coordinates.

We project the Yee lattice onto the (Y, Z) plane. The grid becomes
planar and has the form of Rhombi-in-Plane (RIP), as shown in Fig. 1. The
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pairs of transverse fields are now combined at positions according to the
transport properties (23)-(24). The pair Ey,Bz is located at the rhombi
vertices (i, j + 1/2, k). The pair Ez,By is located at the rhombi vertices
(i, j, k + 1/2). The longitudinal field Ex we place at point (i, j, k) which is
the center of the full integer rhombus. The longitudinal field Bx we place at
the center of the half integer rhombus (i, j+ 1/2, k+ 1/2). The grid is shown
in Fig.1.

Then, the diffraction/refraction terms at the half time step will be:

Γ
n+1/2
y(i+1/2,j+1/2,k) =

(
∂Bx

∂z
− jy

)
|n+1/2
i+1/2,j+1/2,k = −1

2

(
j
n+1/2
y,(i,j+1/2,k) + j

n+1/2
y,(i+1,j+1/2,k)

)
+ (39)

+
B
n+1/2
x(i,,j+1/2,k+1/2) +B

n+1/2
x(i+1,,j+1/2,k+1/2) −B

n+1/2
x(i,j+1/2,k−1/2) −B

n+1/2
x(i+1,j+1/2,k−1/2)

2hz

Γ
n+1/2
z(i+1/2,j,k+1/2) =

(
−∂Bx

∂y
− jy

)
|n+1/2
i+1/2,j,k+1/2 = −1

2

(
j
n+1/2
z,(i,j,k+1/2) + j

n+1/2
z,(i+1,j,k+1/2)

)
− (40)

−
B
n+1/2
x(i,,j+1/2,k+1/2) +B

n+1/2
x(i+1,j+1/2,k+1/2) −B

n+1/2
x(i,j−1/2,k+1/2) −B

n+1/2
x(i+1,j−1/2,k+1/2)

2hy

Γ
n+1/2
x(i,j,k) =

(
∂Bz

∂y
− ∂By

∂z
+ jx

)
|n+1/2
i,j,k = −jn+1/2

x,(i,j,k) (41)

+
B
n+1/2
z(i,,j+1/2,k) −B

n+1/2
z(i,,j−1/2,k)

hy
−
B
n+1/2
y(i,,j,k+1/2) −B

n+1/2
y(i,,j,k−1/2)

hz

Φ
n+1/2
y(i+1/2,j,k+1/2) = −

E
n+1/2
x(i,,j,k+1) + E

n+1/2
x(i+1,,j,k+1) − E

n+1/2
x(i,j,k) − E

n+1/2
x(i+1,j,k)

2hz
(42)

Φ
n+1/2
z(i+1/2,j+1/2,k) =

E
n+1/2
x(i,,j+1,k) + E

n+1/2
x(i+1,,j+1,k) − E

n+1/2
x(i,j,k) − E

n+1/2
x(i+1,j,k)

2hy
(43)

Φ
n+1/2
x(i,j+1/2,k+1/2) = −

(
∂Ez
∂y
− ∂Ey

∂z

)
|n+1/2
i,j+1/2,k+1/2 = (44)

−
E
n+1/2
z(i,,j+1,k+1/2) − E

n+1/2
z(i,,j,k+1/2)

hy
+
E
n+1/2
y(i,,j+1/2,k+1) − E

n+1/2
y(i,,j−1/2,k+1/2)

hz

Similar formulas are obtained for the fields at the half-time steps, where
all fields and currents are shifted by a half time step.

12



The use of the transport vectors T⊥ makes the boundary conditions in
the x−direction trivial. One sets the inbound T vectors equal to the incident
laser pulse and outbound T vectors to zero at the boundaries. This procedure
absorbs waves normally incident on the boundaries exactly.

It seems that we have to maintain two sets of fields for each time step:
fields at the full step and at the half step. The particles however, can be
pushed just once per time step. For the particle push we use the symplectic
semi-implicit mid-point scheme of Higuera and Hary [45] (pushers of Boris
[46] and Vay [47] produce hardly discernible results) at the full time step:

pn+1/2
α = pn−1/2

α + τq

(
En +

1

γmc
p×Bn

)
(45)

where p = (p
n+1/2
α + p

n−1/2
α )/2 and γ =

√
1 + p2/m2c2.

These momenta are used to generate currents jn+1/2 at the half time steps.
Currents at the full time step required to push the half-time step fields can
be obtained by simple averaging on the grid

jn =
1

2

(
jn−1/2 + jn+1/2

)
(46)

To ensure the Lorentz invariance and charge conservation of the scheme, the
current components are defined within the cell at the same positions as the
corresponding E−field components.

5. Conservation laws on the RIP grid

The RIP scheme places fields in a transverse plane as seen in Fig.1. These
field locations are perfectly suited for conservative definition of the currents,
charges, field divergence and curl on the grid. The simple rule is that the
trapezoidal formula must be applied in the longitudinal direction, while in
the transverse direction, the usual Yee (spatial leap-frog) formula remains
valid.

5.1. Generalized rigorous charge conservation

The numerical continuity equation on the RIP grid has the form

c
ρn+1
i+1/2.j,k − ρni+1/2.j,k

∆
= − 1

∆

(
j
n+1/2
x(i+1,j,k) − j

n+1/2
x(i,j,k)

)
(47)
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− 1

2hy

(
j
n+1/2
y(i+1,j+1/2,k) + j

n+1/2
y(i,j+1/2,k) − j

n+1/2
y(i+1,j−1/2,k) − j

n+1/2
y(i,j−1/2,k)

)
− 1

2hz

(
j
n+1/2
z(i+1,j,k+1/2) + j

n+1/2
z(i,j,k+1/2) − j

n+1/2
z(i+1,j,k−1/2) − j

n+1/2
z(i,j,k−1/2)

)
The charge conservation on the grid can be enforced in various ways. One

can correct currents and solve an elliptic problem after each time step [14].
One can atomatically calculate currents inside the cell co that the charge is
locally conserved [48]. One can move particles in a zig-zag along the axises
[49]. The charge-conserving closure is not unique and an infinite number of
other schemes can be easily generated like charge splitting curvy trajectory
particle motion, etc. All these schemes generate different curl currents on
the grid and thus have different noise properties.

However, the only true 2-nd order accurate current closure is the rigorous
charge conservation method introduced originally by Villacenor and Bune-
man [50]. This scheme assumes the straight particle trajectory during the
time step. All other methods fail to do so. The Esirkepov scheme [48] co-
incides with the Villacenor and Buneman scheme identically as long as the
particle stays inside one cell during the time step. It gives different results,
however, as soon as the particle crosses boundaries.

We use a generalized rigorous charge conservation (GRCC) method based
on [50], compare also [51]. It is not limited to the Cartesian geometry and is
valid for any particle shape. Let us suppose, we have selected a form-factor
w for the current deposition by the numerical macro-particles. The macro-
particle α will then induce an instantaneous current j(t) on the grid with
components:

jx(i,j,k)(t) = wαx (rα(t)) (48)

jy(i,j+1/2,k)(t) = wαy (rα(t))

jz(i,j,k+1/2)(t) = wαz (rα(t))

where rα(t) is the instantaneous particle position inside the cell. Depending
on the form-factor, the particle may induce instantaneous currents at many
grid cells. We write expressions for one cell only, as the others are analogous.

The particle starts its motion at the time step tn at the position rα(tn) and
finishes at the time step tn+1 = tn+∆/c at the position rα(tn+1). The straight
particle trajectory is parameterized as rα(t) = rα(tn)+(t−tn)/(tn+1−tn)δrα,
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where δrα = rα(tn+1) − rα(tn). The current induced by the particle on the
grid during the time step is then

jn+1/2 =
c

∆

∫ 1

0

wα(rα(tn) + τδrα)dτ = Wα(rα(tn), δrα) (49)

When the macroparticle crosses the cell boundaries, the integral (49) must
be split along the straight particle trajectory in parts, where the particle
center belongs to one particular cell.

For most popular particle shapes (box, triangle, quadratic, spline, etc.),
the integration in (49) is done analytically (using any symbolic integration
software) and the function Wα(rα(tn), δrα) is easily coded. Villacenor and
Buneman did it explicitly for the case of Cartesian grid and a square box
particle shape.

This described GRCC algorithm preserves the discretized Maxwell-Gauss
equations automatically by the RIP scheme.

5.2. Divergence conservation

In the same manner we define the curl and divergence of the fields. For
example, ∇ ·B is defined as

∇ ·Bi+1/2,j+1/2,k+1/2 =
Bx(i+1,j+1/2,k+1/2) −Bx(i−1,j+1/2,k+1/2)

∆
(50)

+
By(i+1,j+1,k+1/2) +By(i,j+1,k+1/2) −By(i+1,j,k+1/2) −By(i,j,k+1/2)

2hy

+
Bz(i+1,j+1/2,k+1) +Bz(i,j+1/2,k+1) −Bz(i+1,j+1/2,k) −Bz(i,j+1/2,k)

2hz

at the middle cell position (i+ 1/2, j + 1/2, k + 1/2). We average fields along
the X−axis according to the trapezoidal rule while the usual leap-frog Yee
rule is applied along the transverse coordinates. It is straightforward to check
that the RIP scheme preserves ∇ ·B defined in this way.

The fields at the half-time steps are required to calculate the diffraction
terms only. Without diffraction, the need to maintain the additional set
of fields at half-time steps vanishes and the RIP scheme becomes identical
to the standard 1D PIC scheme [14], which is the workhorse of 1D plasma
simulations due to its excellent stability and accuracy.
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Figure 2: (color online) Intensity of fluctuating fields in the “streaming plasma” simula-
tions. The Yee scheme is fully subject to the numerical Cerenkov instability and reaches
saturation within a few plasma periods. The FFT-based solver avoids the first order nu-
merical Cerenkov resonance and is subject to second order aliasing resonance. The RIP
simulation of streaming plasma shows several orders of magnitude lower noise fields. The
noise field growth rate is very low here. Mention that the FFT solver (2) is identical to
the RIP solver for waves running along the X−axis. Yet, the FFT solver is subject to
NCI because of aliasing. The stationary plasma case shows no instability at all in the RIP
simulation.
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6. Dispersion and stability of the RIP scheme

We apply the plane-wave analysis to the marching equations (19), (22)
and (31)-(34) with the refraction/diffraction terms (39)-(44) assuming F =
F̃ exp (−iωt+ ikr). For simplicity, we assume uniform plasma frequency
ω2
p = 4πne2/γ and the linear current response to the electric field 2c

∆
sin ωτ

2
J̃ =

iq2nẼ. For the case of interest, cτ = hx = ∆, these equations become

2

∆
sin

ω∆

2c
cos

kx∆

2
Ẽy = − 2

∆
sin

kx∆

2
cos

ω∆

2c
B̃z (51)

+
2

hz
sin

kzhz
2

cos
kx∆

2
B̃x + ω2

p

∆

2c sin ω∆
2c

Ẽy

2

∆
sin

ω∆

2c
cos

kx∆

2
Ẽz =

2

∆
sin

kx∆

2
cos

ω∆

2c
B̃y (52)

− 2

hy
sin

kyhy
2

cos
kx∆

2
B̃x + ω2

p

τ

2 sin ωτ
2

Ẽz

2

∆
sin

ω∆

2c
Ẽx =

2

hy
sin

kyhy
2

B̃z −
2

hz
sin

kzhz
2

B̃y (53)

+ ω2
p

∆

2c sin ω∆
2c

Ẽx

2

∆
sin

ω∆

2c
cos

kx∆

2
B̃y =

2

∆
sin

kx∆

2
cos

ω∆

2c
Ẽz (54)

− 2

hz
sin

kzhz
2

cos
kxhx

2
Ẽx

2

∆
sin

ω∆

2c
cos

kx∆

2
B̃z = − 2

∆
sin

kx∆

2
cos

ω∆

2c
Ẽy (55)

+
2

hy
sin

kyhy
2

cos
kxhx

2
Ẽx

2

∆
sin

ωτ

2
B̃x =

2

kyhy
sin

kyhy
2

Ẽz −
2

kzhz
sin

kzhz
2

Ẽy (56)

The dispersion relation in vacuum (ωp = 0) is rather simple:(
1

h2
y

sin2 kyhy
2

+
1

h2
z

sin2 kzhz
2

)
+

1

∆2
sin2 ∆kx

2

(
1−∆2

(
1

h2
y

sin2 kyhy
2

+
1

h2
z

sin2 kzhz
2

))
=

1

∆2
sin2 ∆ω

2c
(57)
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The stability condition in vacuum is

∆2

(
1

h2
y

+
1

h2
z

)
< 1 (58)

In the presence of plasmas, it is modified to

1

∆2
>

1

h2
y

+
1

h2
z

+
ω2
p

4c2
(59)

The RIP scheme combines dispersionless properties of the standard 1D solver
along the X−axis with the Yee dispersion for waves running in the transverse
direction. Indeed, setting ky = kz = 0 in the dispersion relation (57), we
immediately obtain ω = ckx and the phase velocity

Vph =
ω

kx
= c (60)

for plane waves propagating in the X−direction.
Conversely, setting kx = 0, we obtain the usual 2D Yee dispersion relation

for waves propagating in the transverse direction

1

h2
y

sin2 kyhy
2

+
1

h2
z

sin2 kzhz
2

=
1

∆2
sin2 ∆ω

2c
(61)

with all its known advantages and drawbacks.
Mention that the NDF scheme introduced in [52] has a different stability

condition:

1

c2τ 2
>

1

h2
x

+
ω2
p

4c2
(62)

so that one can set cτ = hx only in vacuum. The presence of plasma, ωp > 0,
one has to choose cτ < hx and the dispersionless properties of the NDF
scheme are compromised.

7. Numerical tests of the RIP Maxwel solver

7.1. Numerical Cerenkov instability test

As a first test, we take the numerical Cerenkov instability. We com-
pare the standard Yee solver, the FFT-based solver (2) and the RIP solver,
all implemented on the VLPL platform [8]. No artificial filtering of fields
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or currents is used. The initial configuration is a ellipsoidal plasma of
Gaussian density profile n = n0 exp (−r2/σ2) consisting of electrons and
protons moving in the X−direction with the average momentum < p0 >
/mαc = (px0, 0, 0), where α denotes the particle type (α = e, p), with
mp/me = 1846. To seed the instability, the electrons have a small initial
temperature < (p0− < p0 >)2 >= σ2

p. In relativistically normalized units,
the simulation parameters are: the peak plasma density is n0 = 1 with the
corresponding non-relativistic plasma frequency ωp =

√
4πn0e2/me. The

initial particle momenta px0 = −10 and σp = 10−4. The grid steps were
hy = hz = 1.88 c/ωp and hx = cτ = ∆ = 0.63 c/ωp. As a diagnostics for
the comparison, we selected the growth of the maximum local field intensity
I = E2 + B2 on the grid. The results are shown in Fig.2

We see that the fluctuating fields in simulations using the Yee scheme
grow to the non-linear saturation within a few plasma oscillations. This
is because the Yee solver is exposed to the first order Cerenkov resonance.
The FFT-based solver is dispersionless and avoids the first order Cerenkov
resonance. Still, the second order aliasing of the spectral FFT solver leads to
the numerical Cerenkov instabilty, though at a lower growth rate as compared
with the standard Yee solver.

In contrast, the RIP solver is free from NCI. The noise in the RIP scheme
remains many orders of magnitude lower over a long simulation time of t =
100 · 2π/ωp. The very slow growth of the noise fields here has nothing to
do with the Cerenkov resonance, but is the unavoidable “numerical heating”
always present in PIC codes.

Finally, we do another simulation with a stationary plasma, < p0 >
/mαc = (0, 0, 0), while keeping all other parameters the same. We observe
here no numerical heating at all. Intensity of fluctuating noise fields remains
constant over many hundreds of plasma periods here. The higher absolute
level of the noise for the streaming plasma is the natural consequence of the
larger initial noise current source in this case. Fig.2 demonstrates clearly
that the RIP scheme is much less subject to Cerenkov instability for plasmas
drifting along the selected axis.

We stress here that the FFT-based method (2) is identical to the RIP
solver for waves running in the X−direction. Yet, we observe a quite different
behaviour with respect to the numerical Cerenkov instability. The reason for
this difference has to be studied further.

We mention here that the numerical Cerenkov instability of uniformly
streaming plasma can be alleviated by using a co-moving grid as proposed
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Figure 3: (color online) Laser-plasma wake field acceleration in the bubble regime. The
electron plasma density nenc, the accelerating electric field eEx/mcω and the transverse
electric field eEy/mcω are shown after the laser pulse propagated La = 300λ. The first
row shows the Yee scheme simulation results for the longitudinal grid step hx = 0.05λ and
time step τ = 0.04λ/c, the middle row gives the RIP scheme results with the same grid
steps and time step τ = hx/c, and the last row shows RIP scheme results with two times
rougher resolution in the propagation direction hx = cτ = 0.1λ. The numerical Cerenkov
resonance in the Yee scheme is clearly seen in frame (c) as the short wavelength bow-like
emission by the accelerated electron bunch.
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Figure 4: (color online) Ultra-low transverse emittance beam propagation in vacuum. The
bunches carry charges of 6 nC or 0.6nC. The initial normalized transverse emittance is
εy = εz = 1 nm. The Yee solver shows fast emittance growth. The RIP solver preserves
the emittance at sub-nm level.
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by Lehe et al. [44]. The method exploits a Galilean transformation to a grid
in which the background plasma does not stream through the cell boundaries.
Yet, the dense bunch of accelerated particles moves in the opposite direction
at twice the light speed relative to this grid and is fully exposed to the
Cerenkov resonance.

7.2. Laser-driven plasma bubble

As the second numerical test, we select laser-plasma particle acceler-
ation in the bubble regime [53]. A circularly polarized laser pulse with
initial vector potential A = < [a(ξ, r⊥)(ey + iez) exp(ikξ)] is used. Here,
ξ = x − ct and the envelope shape has been selected as a ellipsoidal Gaus-
sian a(ξ, r⊥) = a0 exp(−ξ2/σ2

|| − r2
⊥/σ

2
⊥) with the amplitude a0 = 5 , length

σ|| = 5λ and radius σ⊥ = 5λ, where the laser wavelength λ = 2π/k. The
plasma consisting of electrons and protons has an initial density n = 0.01nc,
where nc = meω

2/4πe2 is the critical density. At the plasma boundary, the
density increases lineraly from n = 0 to n = 0.01nc over a length L = 38λ.
The simulation results after an acceleration distance of La = 300λ are shown
in Fig.3. The simulation box has the size 40λ × 40λ × 40λ. The grid steps
are hx = 0.05λ, hy = 0.25λ, hz = 0.25λ and the time step is τ = 0.045λ/c in
the Yee simulation, and τ = hx/c in the RIP simulation.

We see that the trapped electron bunch of the bubble has a fine longitudi-
nal structure in the Yee simulation. At the same time, the bubble accelerating
field Ex is rippled with the short-wavelength radiation emitted by the rela-
tivistic electrons due to the numerical Cerenkov resonance. This numerical
emission is clearly seen in Fig. 3(c) as the bow-like short wavelength radia-
tion emanating from the dense electron bunch. The RIP simulation shows a
rather smooth electron bunch and no signatures of numerical Cerenkov emis-
sion. The Ey−field of the relativistic electron bunch has a clean quasi-static
form: it is not bow-shaped, but perpendicular to the bunch. Further, a small
additional numerical dephasing can be observed at the leading edge of the
bubble.

To check the RIP scheme convergence, we did an additional simulation
with rough resolution. We doubled the longitudinal grid step and the time
step to hx = cτ = 0.1λ, so that we have only 10 cells per laser wavelength.
The results are shown in the last row in Fig. 3. One observes little difference
from the higher resolution simulation, shown in the middle row in Fig. 3.
Compare the phase of the laser pulse seen in the electron density perturba-
tions in frames (f) and (i). The RIP simulation even at this rough resolution
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Figure 5: (color online) Beam propagation in vacuum. The bunch carries the charge of
6 nC. The initial normalized transverse emittance is εy = εz = 1 nm. The frames show
the bunch density n/nc and the combine transverse force Fy = e(Ey − Bz)/mcω. Here,
ω = 2πc/λ, λ = 1 µm and nc = mω2/4πe2. The frames (a) and (b) are simulated with
the RIP solver and taken after 1 mm propagation distance. The frames (c) and (d) are
simulated with the Yee solver and are taken after 0.1 mm propagation. The RIP solver
shows the correct transverse force due to the bunch self-action. The Yee solver is spoiled
by poor force interpolation and the onset of numerical Cerenkov instability.

23



accurately describes the laser phase. The Yee solver gives a completely wrong
laser phase as seen in the frame (b). At the resolution of just 10 cells per
wavelength (or even smaller), the RIP solver is a good alternative to full
electromagnetic PIC codes that employ the envelope approximation [23, 54]
when the laser pulse is short.

7.3. Ultra-low transverse emittance beam propagation in vacuum

Finally, we check how well the RIP scheme preserves the beam emittance.
The future colliders and XFEL light sources must have beams with ultra-low
transverse emittance. Emittances in the range of a few nanometers, or even
picometers have to be realized. There are several approaches, how such
beams can be generated using the conventional accelerators. Plasma-based
acceleration also might reach such ultra-low beam emittances, using, e.g.
the Trojan-horse injection [55]. Thus, very accurate simulation methods are
required, where the emittance is preserved at picometer levels.

Lehe et al [29] have shown that the Yee Maxwell solver has problems
with emittance conservation and suggested an ”improved” one that shows a
better emittance preservation. There are several sources of emittance growth
in PIC simulations: numerical heating, numerical Cerenkov instability and
the wrong field interpolation to the particle position due the staggered mesh.
Lehe et al. modified the Yee solver to remove the zero-order Cerenkov reso-
nance. This improved the emittance preservation [29].

In this sub-section, we simulate an electron bunch propagation in vacuum.
The electron bunch has initial energy of 10 GeV and normalized transverse
emittance of εy = εz = 1 nm. The bunch has a Gaussian shape with σx =
σy = σz = 1.41 µm. We simulate two cases, where the bunch carries either
0.6 nC or 6.0 nC charge. The simulations are done using the Yee or RIP solver
for total propagation distance of 1 mm. The grid steps were hx = 0.1 µm,
hy = hz = 0.15 µm. The time step for the Yee solver was cτ = 0.7hx.

The emittance evolution is shown in Fig. 4. The Yee solver shows a very
fast inital jump of the bunch emittance due to the incorrect field interpolation
to the particle positions on the staggered Yee mesh. The jump is higher for
the higher bunch charge. Later, the bunch becomes unstable due to the
numerical Cerenkov instability and the emittance grows steadily. After the
full propagation distance of 1 mm, the final numerical emittance grew in the
Yee simulations to 8.5 µm for the high current bunch of 6 nC and to 0.8 µm
for the low current bunch of 0.6 nC.
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The RIP solver shows an excellent conservation of the emittance. For the
high-current bunch of 6 nC, the transverse emittance grew only by 10 pm,
from 1 nm to 1.01 nm after the full 1 mm propagation distance. This minis-
cule emittance growth is physical: it is due to the Coulomb explosion of the
high current bunch.

The bunch dynamics is shown in Fig. 5. It shows the normalized bunch
density ne/nc and the tranverse force acting on the electrons Fy = e(Ey −
Bz)/mcω. Here, ω = 2πc/λ, λ = 1 µm and nc = mω2/4πe2. The frames
(a) and (b) are taken for the RIP solver after the full 1 mm propagation
distance, while the frames (c) and (d) are taken for the Yee solver after
0.1 mm propagation. We take here the high current case of 6 nC charge
bunch.

The Yee solver fails with the transverse force by many orders of magni-
tude. We also see the development of NCI in the transverse force causing
self-modulation of the bunch tail. Apparently, the Yee solver is not the best
choice when one wants to simulate low emittance bunches.

The RIP solver accurately reproduces the transverse force due to the self-
interaction down to the machine precision. The normalized transverse force
is at the level of Fy = 3.7 · 10−7 in this case. Thus, the RIP Maxwell solver
is perfectly suited to simulate bunches with sub-nanometer emittances.

8. Discussion

The new RIP scheme is a compact stencil FDTD Maxwell solver that
removes the numerical dipersion in one selected direction. For the waves
propagating in the transverse direction, it corresponds to the Yee solver. The
RIP scheme is local and does not use any global spectral method. This allows
for efficient parallelization via domain decomposition in all three dimensions.
The computational costs of the RIP solver is comparable with that of the
standard Yee solver. The RIP solver can be used for simulations of quasi-
1D physics problems like laser wake field acceleration. This RIP marching
algorithm has a form of “Galiliean field shift” exactly by single cell per time
step. Thus, instead of shifting the grid following the relativistic plasma [44],
the RIP solver shifts the transverse fields so that the relativistic particle
sees the same fields when it enters the new cell. Apparently, this procedure
greatly reduces the numerical Cerenkov instability.
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