
Gaussian Process Regression for Maximum Entropy

Distribution

Abstract. Maximum-Entropy Distributions offer an attractive family of probability densities suit-

able for moment closure problems. Yet finding the Lagrange multipliers which parametrize these

distributions, turns out to be a computational bottleneck for practical closure settings. Motivated

by recent success of Gaussian processes, we investigate the suitability of Gaussian priors to ap-

proximate the Lagrange multipliers as a map of a given set of moments. Examining various kernel

functions, the hyperparameters are optimized by maximizing the log-likelihood. The performance of

the devised data-driven Maximum-Entropy closure is studied for couple of test cases including relax-

ation of non-equilibrium distributions governed by Bhatnagar-Gross-Krook and Boltzmann kinetic

equations.

1. Introduction

Estimating a probability density from a given set of moments known as the closure problem, nat-

urally arises by representing a high-dimensional system with only a few moments. This inverse

problem is ill-posed in general, and thus regularization/regression has to be pursued. In practice

two frameworks have been developed: regression on the probability density versus regression on the

logarithm of the probability density. The former includes orthogonal expansion techniques such as

Hermite/Grad type expansions [1, 2, 3] besides quadrature methods [4]. The latter leads to the

family of Maximum Entropy Distributions (MEDs) [5, 6]. The MED is defined by maximizing an

entropy functional of the distribution, subject to the given moment constraints. Regularizing the

closure problem by maximizing the Shannon entropy is motivated by both physical and informa-

tion theoretic considerations. The physical motivation relies on the Boltzmann H-theorem, whereas

the latter is linked to the least-bias estimators. MEDs have been employed in various settings as

diverse as natural language processing [7], image/signal processing [8, 9], geoscience [10], rarefied

gas dynamics [11], solid state physics [12, 13] and climate forecast [14]. However besides theoretical

difficulties [15], the use of Maximum-Entropy distributions has been restricted due to numerical

challenges.

Following standard steps of the method of Lagrange multipliers, finding the MED reduces to comput-

ing the Lagrange multipliers arising from moment constraints [16]. Although the well-posedeness

of such an optimization problem has been shown for bounded domains and realizable moments

[17, 18, 19], in practice expensive iterations have to be employed for finding Lagrange multipliers.
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Commonly used iterative approaches are based on the gradient descent, Newton’s method and the

adaptive basis method. For invertable and Lipschitz continuous Hessians, Newton’s method pro-

vides the fastest convergence. However since those conditions are not guaranteed in the considered

setting, the adaptive basis method is suggested [20, 21].

As a numerically efficient alternative, here we reset the problem of finding the Lagrange multipliers

to a Bayesian inference framework. The idea is to express the mapping from moments to Lagrange

multipliers by a Gaussian Process (GP). Since computing moments for a given set of Lagrange multi-

pliers is simple and cheap, the training data set can be obtained in a straight-forward way. Therefore,

the hyperparameters of the considered GP prior are found by maximizing the log-likelihood over

the training data set. Once the hyperparameters are found, the Lagrange multipliers for a new set

of moments can be inferred by conditioning the constructed multivariate Gaussian distribution [22].

The motivation behind our approach is purely computational. Observe that all heavy computations

including generating training data, finding an appropriate kernel, the Cholesky factorization of the

covariance matrix and fitting the hyperparameters are done up-front (offline). For simulations, eval-

uation of the GP regression is done via a simple backward substitution.

Following the objective of constructing accurate GP estimators for the Lagrange multipliers of MED,

the remainder of this manuscript is structured as the following. First in § 2, a short review of MED

besides an iterative approach for computing the Lagrange multipliers are presented. Furthermore,

a short description of the GP regression is provided. Then in § 3, training of the GP regression is

pursued, where several kernels such as radial basis and Matèrn family are evaluated for our prob-

lem setting. Section 4 deals with the assessment of the devised GP-accelerated MED. As the first

test case, the accuracy of the fitted GP in predicting bi-modal distributions is studied in § 4.1. In

§ 4.2, robustness of the GP regression is tested by predicting MED for moments obtained from noisy

bi-modal distributions. Then § 4.3 and § 4.4 focus on relaxation of non-equilibrium distributions,

governed by Bhatnagar-Gross-Krook (BGK) [23] and Boltzmann equations, respectively. At the

end, a conclusion and an outlook for future studies are given in § 5.

2. Methods

In the following, first the MED framework is reviewed and the problem statement is refined. Next,

a short description of the GP regression is presented.

2.1. Review of Maximum Entropy Problem

Consider the set of admissible probability densities defined over measurable functions as

P =

{
f : Rl → [0,∞)

∣∣∣∣ ∫
Ω
f(x)dx = 1

}
, (1)

where Ω ⊆ Rl. Suppose we are given a finite vector of moments p ∈ RN of an unknown f(v) ∈ P
such that

pj =

∫
Ω
f(v)ϕj(v)dv; 1 ⩽ j ⩽ N , (2)

where ϕ(v) : Rl → RN is a vector of polynomials. Here and hence forth the subscript indices

denote a component of the quantity. The goal is to approximate f by some f (s) ∈ P such that the
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(mathematical) entropy

S[f ] :=

∫
Ω
f ln(f)dv, (3)

is minimized while the constraints ∫
Ω
ϕ(v)f (s)dv = p (4)

are satisfied. Since S[f ] is convex and the constraints are linear, the solution of the above minimiza-

tion problem is unique, once it exists. To leave out pathological cases [15], we focus on a bounded

domain Ω, for which the minimization problem is well-posed for realizable moments. Using the

method of Lagrange multipliers we get

Cλ
N [f (s)] :=

∫
Ω
f (s) ln(f (s))dv −

N∑
j=1

λj

(∫
Ω
f (s)ϕjdv − pj

)
, (5)

which has its extremum at

fλ
N (v) = Z−1

λ exp

− N∑
j=1

λjϕj

 , (6)

where Zλ is the normalization factor [16]. By inserting fλ
N into the constraints, the Lagrange

multipliers λ(p) can be computed. However it is more convenient to consider the dual formulation

which provides an unconstrained convex minimization for Lagrange multipliers as

λ(p) = argmin
λ∗∈RN

{C(λ∗; p)} , (7)

where C(λ∗; p) := Zλ∗ −
∑
j

λ∗
jpj . (8)

Hence the maximum entropy regularization, reduces the closure problem to computing λ(p) from

Eq. (7). As a direct solution of the dual problem, the standard Newton’s method for finding the

Lagrange multipliers are reviewed in the following. Let H(λ) and g(λ) be the Hessian and the

gradient of the objective function in Eq. (7), respectively. Following Newton’s method [24], the

estimated Lagrange multipliers λ(n) at step n, are updated by solving the linear system

N∑
j=1

Hij(λ
(n))∆λ

(n)
j = gi(λ

(n)) (9)

for ∆λ(n). After random initialization of the Lagrange multipliers, they get updated according to

λ
(n+1)
i = λ

(n)
i + β(n)∆λ

(n)
i . (10)

Here β is a damping factor and is chosen such that the cost function decreases efficiently. The

damping β(n) is set to the largest value of the power series {sk}Ns
k=0 with s ∈ (0, 1) that guarantees

the Armijo’s rule

C(λ(n) + β(n)∆λ(n); p) < C(λ(n); p) + cβ(n)(∆λ(n), g(λ(n))), (11)

where (., .) indicates the dot product of vectors. Note that the values of c, s, and Ns need to be

tuned appropriately. For our study, we set c = 10−4, s = 1/2 and Ns = 30. A pseudocode describing

this direct approach with corresponding values of the free parameters are provided in algorithm (1)
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[24, 25, 26]. Although H is symmetric-positive-definite, it can become ill-conditioned which can be

coped with by using an adaptive basis [27]. For example in [24], Hermite polynomials are employed

as the basis in order to keep the Hessian matrix close to a diagonal one. A more general approach

which generates a diagonal Hessian for an arbitrary probability density is followed in [20, 21]. Yet

high computational costs can become a limiting factor for this fully adaptive basis methodology.

Algorithm 1 Direct approach to find Lagrange multipliers given the moments p ∈ RN

Set n = 0 and sample λ(n) uniformly from [−0.1, 0.1]N

Set the tolerance ϵ = 10−10

while C(λ(n); p) > ϵ do

Compute Hessian and gradient of the cost function C(λ(n); p)

Solve the linear system in Eq. (9) for ∆λ(n)

Find the largest β(n) that satisfies Armijo’s rule (11)

Compute the new guess λ(n+1) from Eq. (10)

Increment n

end while

return λ(n)

2.2. Gaussian Process Regression

The high computational intensity of the direct iterative approach for solving the dual problem (7),

motivates alternative methods. Here we focus on a data-driven approach based on GP. Let us first

review the main idea behind GP based regressions. Suppose Ψ(x) : RN → RN is an unknown map,

yet we have access to evaluations {Ψ(x(j))}Mj=1 at some data points D = {x(1), x(2), ..., x(M)}. Note

that the superscript index denotes the corresponding data batch. Therefore the regression problem

addresses estimating Ψ(x) from the given {x(j),Ψ(x(j))}Mj=1. Consider a positive semi-definite (PSD)

kernel function K(x, x′) : RN × RN → [0,∞), then the GP regression sets forth

Ψ̃ ∼ GP(0,K) (12)

as an approximation of Ψ. Here GP denotes a random process whose distribution for a set of

points is a joint normal with the covariance being the Gram matrix associated with K. The merit

of a regression of the type (12) can be addressed from different perspectives. More relevant to

our setting, it can be shown that the conditional expectation E[Ψ̃|Ψ̃(x(j)) = Ψ(x(j)), ∀x(j) ∈ D]
provides an optimal recovery of Ψ in the sense of the relative error induced by the corresponding

Reproducing-Kernel-Hilbert-Space [28]. In practice, we work with parametrized kernels KΘ, where

the hyperparameters embedded in Θ are found by maximizing the log-likelihood [29]. Furthermore,

we construct the GP regressions component-wise. Hence we evaluate the hyperparameters for every

Ψ̃i (i = 1, ..., N), separately.

Several PSD kernel functions K have been introduced in the literature, see e.g. [29]. Here we consider

the radial basis function (RBF) along with Matérn’s family for each component i, j ∈ {1, ..., N} we
have

KRBF
Θi

(x, x′) = σi exp
(
−r2i /2

)
, (13)
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KMatérn(12)
Θi

(x, x′) = σi exp(−ri) , (14)

KMatérn(32)
Θi

(x, x′) = σi(1 +
√
3ri) exp(−

√
3ri) and (15)

KMatérn(52)
Θi

(x, x′) = σi(1 +
√
5ri +

5

3

√
ri) exp(−

√
5ri) . (16)

Note that r2i =
∑

j L
−1
ij (xj −x′j)

2, where the positive-definite-matrix LN×N encodes a characteristic

length-scale. For each component i ∈ {1, ..., N}, the hyperparameters Θi = {σi, L−1
i1 , ..., L−1

iN } can

be found by maximizing the log-likelihood

ln
(
f̃
(
Ψ̃i(x) |x ∈ D

))
= −1

2
ln
(
det(KΘi(x, x

′))
)

−1

2
Ψi

T (x)KΘi(x, x
′)−1Ψi(x

′)− M

2
ln(2π), (17)

where f̃ denotes the probability density of Ψ̃i conditioned on the training points. The Broyden-

Fletcher-Goldfarb-Shanno algorithm (BFGS) is used in this study to find the local minimum with

respect to the hyperparameters [30]. It can be shown that the global minimum is attained as more

data points are deployed [31]. Once the kernel function K and its hyperparameters are set, one

can evaluate the distribution of Ψ̃ at an arbitrary input point x∗ ∈ RN . Let x be composed of the

training points, therefore (
Ψ̃i(x

∗)

∣∣∣∣Ψ̃i(x) = Ψi(x)

)
∼ N (m̄i, Σ̄i), (18)

where N (m̄i, Σ̄i) is a normal distribution with mean

m̄i = KΘi(x
∗, x′)KΘi(x, x

′)−1Ψi(x) (19)

and variance

Σ̄i = KΘi(x
∗, x∗)−KΘi(x

∗, x)KΘi(x, x
′)−1KΘi(x

∗, x) . (20)

Note that m̃ and Σ̃ indicate posterior estimates of the mean and the variance, respectively. Since

the inversions appearing in Eqs. (19) and (20) only include the training points, the corresponding

computations can be done up-front. Therefore computational advantage is gained, as only matrix-

vector multiplication is needed for predictions. Although more efficient GP models such as sparse

GP [32] could be pursued, in this study we adopt the straight-forward GP regression model available

on GPflow [33].

3. Training Gaussian Process

In this section, constructing GP maps for Lagrange multipliers are pursued. The performance of

several covariance functions besides accuracy of the GP regression close to realizability limit are

assessed.

3.1. Initializing data set

To construct a regression on the Lagrange multipliers as a map from moments, we need to construct

a data set. Since the inverse map is cheaper to evaluate, the main idea here is to compute the

moments based on a set of Lagrange multipliers. In order to do that we need to introduce a domain
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for Lagrange multipliers of the form Λ = [λmin, λmax]
N to sample from. Furthermore, we need to

have a boundary for values of the moments i.e. Ωp =
∏

i[pi,min, pi,max]. Since all scenarios can be

shifted and scaled to a reference with zero mean and unity variance, finally we only include the data

points corresponding to zero mean and unity variance MEDs. First, {λ̃i}Ni=1 are uniformly sampled

from Λ resulting in a trial density f λ̃
N . The mean µ and the variance σ2 are computed from f λ̃

N using

Gaussian-quadrature. In order to find the corresponding Lagrange multipliers that guarantee zero

mean and unity variance, we make use of the coordinate transformation v′ = (v − µ)/σ. Let fλ
N be

the density with zero mean and unity variance. Observe that by equality of measures and assuming

v ∈ R we get

fλ
N (v′) = σf λ̃

N

(
σv′ + µ

)
. (21)

Using the binomial expansion, it is straight-forward to find that

λi = σiλ̃i +

N∑
j=i+1

λ̃j

(
j

i

)
σiµj−i ; i ∈ {1, ..., N} (22)

ensures Eq. (21). Yet since we deal with bounded v ∈ Ω, an iterative scheme with the initial guess

given by Eq. (22) is employed to ensure zero mean and unity variance. Algorithm (2) is introduced

in order to create the data set.

Algorithm 2 Generating (λ, p) with
∫
Ω vfλ

Ndv = 0 and
∫
Ω v2fλ

Ndv = 1 given the moment space Ωp,

and sample space Λ for Lagrange multipliers

Set p′ = (0, ..., 0)T ∈ RN with N = dim(Ωp)

Set the tolerance ϵ = 10−10

while p′ /∈ Ωp do

Sample λ̃ uniformly from Λ

Compute µ =
∫
Ω vf λ̃

Ndv and σ2 =
∫
Ω v2f λ̃

Ndv

while µ > ϵ or |σ − 1| > ϵ do

Compute λ according to Eq. (22)

Update µ =
∫
Ω vfλ

Ndv and σ2 =
∫
Ω v2fλ

Ndv

λ̃← λ

end while

Update p′i =
∫
Ω vifλ

Ndv for 1 ⩽ i ⩽ N

end while

p← p′

return λ and p

For the training, we considerN ∈ {4, 6, 8} and numerical integrations are carried out using Gaussian-

quadrature with roughly 20 points. The sample space for the Lagrange multipliers has been chosen

carefully after a trial and error on the outcome moments obtained from the algorithm (2). As

shown in Fig. 1, the generated data points using the uniform sample space of Λ = [−b, b]N with

b ∈ {1, 10}, suggests that the tail of the moment distribution becomes longer as b increases. This

implies that MED with a larger b is better equipped to capture rare events. The training points
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Figure 1. Probability density function of the moments p3 and p4 obtained from 104

data points using algorithm (2). The sample space Λ = [−b, b]N for the Lagrange

multipliers varies with N ∈ {4, 6, 8} and b ∈ {1, 10}.

are generated by setting b = 10 and only keeping data points whose moments lie in the space

Ωp = [−ϵ, ϵ]× [1− ϵ, 1 + ϵ]× [−1, 1]× [1, 4]× [−4, 4]× [1, 15]× [−25, 1]× [1, 110].

3.2. Pre-treatment of data set

Every (λ
(k)
i , p

(k)
j ) component of the data set can have significant variations passing through different

batches of k ∈ {1, ...,M} (with M = 1000 for our data set). We follow the common recipe in

data-driven methodologies which includes scaling and shifting of every data point (λ
(k)
i , p

(k)
j ) by the

standard-deviation and the average computed over N batches of the particular (i, j) component,
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Figure 2. Expectation and variance of the relative error in predicting λs using RBF.

Here, λex ∈ RN withN = 6 indicates the exact solution of MED taken from untrained

subset of the data set. The statistics are performed over 2000 testing points.

respectively. Note that this does not have to be carried out for p1 and p2, since they have fixed

values already.

3.3. Kernel comparison

We consider MED with N = 6 moments as the target distribution, where the appropriate kernel and

number of training data points M should be found. First, let us consider the radial basis function

(RBF) for the kernel choice. Once the hyperparameters of Eq. (13) are found via maximizing the

log-likelihood given by Eq. (17), the accuracy of predictions over unseen data is investigated. As

shown in Fig. 2, by increasing the number of data points M in the training set, the expectation and

the variance of the relative error decay using the GP regression.

For comparison, several kernels from the Matérn family of functions, i.e. Matérn(12), Matérn(32)

and Matérn(52), have been tested here for the training step. Based on our computational experi-

ments as shown in Fig. 3, RBF provides a better estimation for this data set.

3.4. Cost of data generation and training

Although the described algorithm(2) is straight-forward, the iterations on λ̃ required to ensure

p ∈ Ωp besides zero mean and unity variance, can become costly. As it can be seen in Fig. 4,

the computational time for generating the data set τgen scales almost linearly with the number of

data points. However, the cost of generating relevant data points increases as more moments are

considered.

The GP hyperparameters are trained by maximizing the log-likelihood, as explained in § 2.2. The
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Figure 3. Convergence comparison using different kernels. The L2-norm of the

expectation and the variance of the relative error are shown. Here, λex ∈ RN with

N = 6 indicates the exact solution of MED taken from untrained subset of the data

set. The statistics are performed over 2000 testing points.
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Figure 4. Averaged execution time τgen for tuning hyperparameters and τ tr for

generating the data set, are depicted at left and right, respectively. Here N denotes

the number of moments and M the number of employed data points. Execution

times are normalized by the computational time corresponding to the case of N = 4

and M = 100.

execution time for training τ tr shown in Fig. 4 includes cost of the Cholesky factorization besides

optimizing the hyperparameters with a tolerance 10−6.
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p4 = p23 + 1, Right: Average of moments relative error using data-driven MED for

input moments pin ∈ Dtest
p , and variance of the predicted Lagrange multipliers shown

in solid and dashed lines, respectively

3.5. Accuracy in the limit of realizability

Here, we investigate the accuracy of the trained GP at the limit of moment realizability. Let us

consider MED with N = 4 moments along with RBF as the kernel function. Following [34, 35], the

moment problem is physically realizable for N = 4, if the sufficient condition

p4 ⩾ p23 + 1 (23)

holds for the standardized moments p ∈ R4. In order to show accuracy of the trained GP at the

points near the limit p4 = p23 + 1, we investigate the GP predictions for a set of standardized input

moments

Dtest
p =

{( 0
1
α

α2+1+d

)∣∣∣α = αmin + ih, i = 1, ..., Ntest, h = (αmax − αmin)/Ntest

}
(24)

where d ∈ {0.04, 0.02, 0.01}, αmax = −αmin = 0.5, and Ntest = 100. As shown in Fig. 5, by

decreasing d, the relative error and the variance of predictions increase. On the other hand, as

expected, the accuracy improves by increasing the number of training points M . Therefore this

investigation suggests that the GP regression for MED becomes less reliable once moments close to

the realizability border are encountered.

Moreover, the upper limit of realizable moments is investigated here. First, since data points with

4th order moment p4 ∈ [1, 4] are considered here, let us evaluate the accuracy of GP in predicting

MED as points of interest approaches the upper limit. Let us define a set of points as

U test
p =

{( 0
1
β

4−d

)∣∣∣β = βmin + ih, i = 1, ..., Ntest, h = (βmax − βmin)/Ntest

}
(25)

where d ∈ {0.1, 0.05, 0} and βmax = −βmin = 0.1, and Ntest = 200 illustrate the number of testing

points. As shown in the Fig. 6, similar to the lower limit of physical realizability, the accuracy in
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prediction decreases as the upper limit of moments is approached.
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Figure 6. Left: Input points depicted in (p3, p4) plane with black dashed line depict-

ing p3 = 0 with p4 > 3, Right: Average of moments relative error using data-driven

MED for input moments pin ∈ U test
p , and variance of the predicted Lagrange multi-

pliers shown in solid and dashed lines, respectively

Finally, the trained GP is tested in estimating the MED near the line p3 = 0 with p4 > 3 which are

not realizable with MED. In order to evaluate the accuracy of MED with N = 4 around this limit

of realizability, let us take moments from the set

Stest
p =

{( 0
1

β/d

(10βd)2+3

)∣∣∣β = βmin + ih, i = 1, ..., Ntest, h = (βmax − βmin)/Ntest

}
(26)

where the parameters are d ∈ {1, 8, 64} and Ntest = 100 indicates the number of testing points.

Similar to the lower bound of realizability, it can be observed from Fig. 7 that the relative error,

as well as the variance of the predictions, decrease by deploying more training points. However,

the error in predictions as the point of interest approaches the upper limit of realizability, i.e., by

increasing d, is negligible, which can be explained by having an excess of testing points near the

equilibrium point, i.e., (p3, p4) = (0, 3).

4. Results

In this section, the trained GP is employed for predicting different scenarios relevant in kinetic

problems. To further refine our setting, without loss of generality we restrict ourselves to a one-

dimensional domain Ω = [vmin, vmax]. Moreover the moments are computed for the polynomials

ϕi = vi, for i ∈ {1, ..., N}. We shift and scale the coordinate such that zero mean and unity variance

are obtained. After normalization, the velocity sample space is set by adopting vmax = −vmin = 10.
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Figure 7. Left: Input points depicted in (p3, p4) plane with black dashed line depict-

ing p3 = 0 with p4 > 3, Right: Average of moments relative error using data-driven

MED for input moments pin ∈ Stest
p , and variance of the predicted Lagrange multi-

pliers shown in solid and dashed lines, respectively

4.1. Test case #1: recovering bi-modal density

Bi-modal distributions are prototype of non-equilibrium phenomena in kinetic problems. For exam-

ple they show up as simplified solutions of shock waves in rarefied gas kinetics [36]. We employ the

trained GP with the RBF kernel to predict the bi-modal density of the form

fbi(v|µ1, σ1, µ2, σ2) =
1

2

[
fN (v|µ1, σ1) + fN (v|µ2, σ2)

]
, (27)

where µ2 = −µ1 and σ2 =
√

2− (σ2
1 + 2µ2

1). Note that fN (v|µ, σ) is the normal density with the

mean µ and the variance σ2. To quantify the deviation of the estimated density from the exact one,

the Kullback–Leibler divergence

DKL(f
bi||fλ

N ) =

∫
Ω
fbi(v) ln

(
fbi(v)/fλ

N (v)
)
dv (28)

is used here. Three different scenarios {(a),(b),(c)} corresponding to (µ1, σ1) ∈
{(0.8, 0.3), (0.9, 0.2), (0.95, 0.15)} are considered, where predictions are provided based on the

GP regression with N = 4, 6 and 8 moments. The results depicted in Fig. 8 show that even with fλ
4

a good recovery is achieved. Although predictions of MED suggest that by increasing the number

of moments better estimation of the bi-modal distribution can be obtained, such improvement were

not observed for the predictions in the test case (b) and (c) from N = 6 to N = 8. This discrepancy

can be explained by noticing high values for the variance of posterior for mentioned points, i.e. lack

of training data near prediction points. As expected by merging the two modes, better agreement

is obtained between the GP-accelerated MED and the bi-model one.

To further evaluate accuracy and performance of the data-driven MED, the bi-modal test

case was also studied using the standard algorithm (1). While reasonable accuracy in predicting the
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exact Lagrange multipliers and their outcome moments are obtained via GP estimates as shown in

Fig. 9, a speedup of at least two orders of magnitude compared to the direct approach is observed.

The predictions are improved overall as the number of moments is increased.

4.2. Test case #2: noisy bi-modal distribution

To test the robustness of our data-driven MED estimator, here we consider a perturbed bi-modal

distribution

fbi
ϵ (v|µ1, σ1, µ2, σ2) = fbi(v|µ1, σ1, µ2, σ2)(1 + ϵ), (29)

where ϵ is a random variable with the normal density fN (0, 0.1). The values of (µ1, σ1) are taken

from § 4.1.

As depicted in Fig. 10, devised GP estimators provide reasonable performance for perturbed

scenarios. Here, it can be observed that although MED with higher moments has the potential of

describing more complicated distributions, the sensitivity of higher-order Lagrange multipliers to

the input moments reduces the robustness.

4.3. Test case #3: recovering BGK relaxation

This test case investigates the accuracy of the trained GP with the RBF kernel in predicting the

evolution of a density f(v|t) governed by

∂f(v|t)
∂t

= ν(fN (v|0, 1)− f(v|t)) . (30)

The collision frequency ν controls how quick the solution reaches the equilibrium. Given an initial

condition f(v|t0), the exact solution reads

f ex(v|t) = [1− exp(−νt)] fN (v|0, 1) + exp(−νt)f(v|t0) . (31)

Here, we use bi-modal normal distribution described in § 4.1 with (µ1, σ1) = (0.98, 0.2) as the initial

density.

In order to solve Eq. (30) using MED, the Lagrange multipliers corresponding to the set of

moments at time t need to be evaluated. Applying the devised GP regression, trained for λ ∈ RN

with N = 4, 6 and 8, the Lagrange multipliers are estimated. Observe that the moments p(t)

can be computed analytically from Eq. (30). Therefore, at each time instant, the moments and

subsequently the trained GP map, are found. The estimated fλ
N together with its moments are

compared with respect to the corresponding exact solution as shown in Fig. 11. Here ν = 0.25

and time intervals are (t0 = 0, t1 = 3, t2 = 8, t3 = 20) are chosen. Improvements of the estimator

are clearly visible by increasing the number of moments as shown in Fig. 12. It is encouraging

to see that even with as few moments as N = 4, one can recover the bi-model density using the

GP-estimated MED.
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Figure 8. Recovering bi-modal probability densities using MEDs accelerated by the

GP regression with N = 4, 6 and 8 moments. The estimated densities are shown in

sub-figures (a)-(c) for test cases (a)-(c), respectively. The KL-divergence between

estimated MEDs and the bi-modal distribution, relative error of the GP estimator

with respect to exact values of Lagrange multipliers and outcome moments, and

variance of predictions are presented in (d)-(f), respectively.
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4.4. Test case #4: recovering Boltzmann relaxation

In this section, we investigate accuracy of the devised data-driven MED in estimating an exact

solution of the Boltzmann equation. Consider the homogeneous and dimension-less Boltzmann

equation in the velocity space v

∂f(v, t̂)

∂t̂
=

1

4π

∫ ∫
[f(v′, t̂)f(w′, t̂)− f(v, t̂)f(w, t̂)]ϕ(X )dΩ̄dw, (32)

where t̂ is the normalized time, superscript (.)′ denotes pre-collision velocities of the collision pair,

w is the velocity of the collision partner and dΩ̄ = sin(X )dXdϵ0 with scattering angle X and

ϵ0 ∈ [0, 2π]. Here g = |v − w| is the magnitude of relative velocity. Note that in the case of the

isotropic scattering we have ϕ(X ) = 1. As shown in [37], an exact solution

fBolt(v, t̂) =
exp(−v2/2K(t̂))

2K(t̂)[2πK(t̂)]3/2

[
(5K(t̂)− 3) +

1−K(t̂)

K(t̂)
v2
]
/I (33)

can be obtained, where I is the normalizing factor and

K(t̂) = 1− exp(t̂/6) . (34)

Note that Eq. (33) provides a valid solution of the Boltzmann equation once t̂ ⩾ 6 log(5/2). As

derived in [37], the even moments for this isotropic setting evolve according to

p2n(t̂) =
(4n+ 1)!

22n(2n)!
M2n and (35)

M2n(t̂) = K2n−1(t̂)
[
2n− (2n− 1)K(t̂)

]
, (36)

for n ∈ {0, 1, ...}. In order to deploy our GP estimator of MED, the input moments need to be

standardized via

p̂k(t̂) =
pk(t̂)

p2(t̂)k/2
, for k = 1, ..., N . (37)
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Figure 10. Estimating the noisy bi-modal distribution fbi
ϵ with GP-accelerated

MED fλ
N , where N ∈ {4, 6, 8} for test cases {(a), (b), (c)}. Probability density func-

tions are shown in (a)-(c). Also the KL-divergence between distributions, the relative

error in outcome moments and the variance of the Lagrange multipliers are shown in

(d)-(f), respectively.
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Figure 11. Capturing BGK relaxation using GP-accelerated MED for N = 4, 6 and

8 moments at time t ∈ {0, 3, 8, 20}.

By plugging standardized moments at any time t̂ as the input in the trained GP, the outcome

Lagrange multipliers are predicted. As shown in Figs. 13-14, the trained GP-accelerated MED

estimator provides an accurate solution of the Boltzmann equation. As expected, the accuracy in

prediction improves once more moments are considered.

5. Conclusions

The moment closure problem arising from high dimensional systems continues to be a challenge for

scientific computing. While MEDs offer an interesting solution framework for estimating the under-

lying probability density from a given set of moments, the computational cost associated with com-

puting the Lagrange multipliers hindered their use for practical settings. In this study, we accelerate

finding the MED by employing GPs as a regression map from moments to Lagrange multipliers.

By taking advantage of the fact that computing the moments from Lagrange multipliers can be

performed by simple numerical integrations, around 1000 training data points were generated. Ap-

propriate preparation of the training set by ensuring zero mean and unity variance of MED, besides
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Figure 13. Estimating solution of the Boltzmann equation at time t̂ ∈
{5.8, 6.5, 7.5, 8.5} by devised GP-accelerate MED for N = 4, 6 and 8 moments.
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Figure 14. Relaxation of standardized moments p̂(N) ∈ RN obtained from exact so-

lution of the Boltzmann equation and devised MED estimation fλ
N with N ∈ {4, 6, 8}

depicted by dashed and solid lines, respectively, together with the KL divergence be-

tween solutions.

careful choice of the kernel function have been carried out for a one-dimensional bounded sample

space. The results of capturing bi-modal distributions, noisy distributions, and BGK/Boltzmann

type relaxations show encouraging performance of the GP-accelerated MED. However, GP predic-

tion of Lagrange-multipliers becomes less accurate once moments near the realizability limit are

encountered. This issue can be tackled by enriching the training points near those limits. For future

studies, higher dimensional sample spaces besides sparse GPs will be pursued to further generalize

the devised scheme.
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