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Abstract

This paper presents a numerical method for the simulation of fluid-structure interaction specifically tailored
to interactions between Newtonian fluids and a large number of slender viscoelastic Cosserat rods. Because
of their high flexibility and low weight the rods considered here exhibit large deflections, even under mod-
erate fluid loads. Their motion, in turn, modifies the flow so that fluid and structures are strongly coupled
to each other which is numerically very challenging. The paper proposes a new coupling approach based on
an immersed boundary method which improves upon existing methods for this problem. It is numerically
stable and exempt from any global iteration between the fluid part and the structure part, thus yielding
high stability and low computational cost of the coupling scheme. The contribution presents the underlying
methodology and its algorithmic realization, including an assessment of accuracy and convergence by sys-
tematic studies. Various validation cases illustrate performance and versatility of the proposed method.
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1. Introduction

1.1. Simulation of fluid-structure interaction

During the last decades, various numerical approaches have been developed for the simulation of fluid-
structure interactions (FSI). These numerical methods differ in the manner in which the fluid and the
structure are coupled in time and space. The temporal coupling can either be monolithic, defining a single
discrete system comprising the fluid and the structure, or partitioned. With the partitioned approach,
discrete equations for the fluid and the structure are solved separately and then coupled by an appropriate
coupling algorithm. This strategy is versatile as it allows to use existing and optimized solvers. Hence, it
is employed in most cases. The price to be paid is that the coupling can become unstable which requires
substantial care and often generates problems. In this context, one can distinguish between weak and
strong coupling strategies. With the former, also designated as explicit coupling schemes, the fluid and
the structural part are solved once within each time step with an exchange of coupling quantities, such as
the instantaneous fluid loads on the structure, at the end of the step, for example. This exchange is often
performed in a sequential manner which allows a simple implementation. With this approach, however, it is
not guaranteed that the kinematic and dynamic coupling condition at the interface are fulfilled accurately.
In addition, weak coupling schemes become numerically unstable if structures are mobile and lightweight,
so that the added mass effect of the fluid becomes important [1, 2, 3]. Such kind of FSI problems require
a strong coupling strategy also termed implicit coupling. Then, the fluid and solid part are usually solved
repeatedly, iterating within each time step until the coupling condition at the interface satisfies a certain
convergence criterion.
In addition to the temporal coupling of the fluid and the structure part, both need to be spatially coupled
at their common interface after discretization in space. The most common approach is to use a boundary
fitted mesh to represent the structure within the fluid domain [4, 5, 6]. This simplifies the imposition of
boundary conditions at the fluid-structure interface. But requires to adjust the grid in each time step,
which is costly an can require additional measures to maintain grid quality. Furthermore, the grid in the
fluid domain and the structure domain generally do not match, so that interpolation schemes have to be
employed, rising issues of conservation properties and accuracy. Specific coupling software is often employed
to implement these steps [7]. As an alternative to moving mesh techniques, approaches using a spatially
uniform Eulerian background grid for the fluid part and a Lagrangian representation of the structures become
increasingly popular [8, 9]. This is due to various advantages over moving mesh methods like algorithmic
simplicity, higher efficiency of the background fluid solver, etc. With a structure-independent, temporally
constant fluid grid, the structures can be represented by various techniques, such as level-set (LS) methods
[10], volume-of-fluid (VOF) methods [11], phase field (PF) methods [12, 13] or immersed boundary methods
[9, 14, 15, 16]. Especially for simulations of flow through or around complex mobile geometries, the immersed
boundary method (IBM) has been applied with great success during the past decade. Closely related is the
so-called fictitious domain method [17] which was developed within the FEM framework. As stated in [18],
in the strong form the fictitious domain method does not differ from the immersed boundary method, but
in the weak form when using an integral formulation of the FSI problem. Since these methods turned out
to be well suited for scenarios with a large number of immersed mobile structures, e.g. particulate flows
with thousands of particles [19, 20], the IBM approach is used in this work as well. This is motivated by the
ultimate goal of the present research to simulate scenarios comprising a large number of interacting even
colliding slender structures. For such cases geometrically adapted grids for the fluid would be very difficult
to devise and costly to employ.

1.2. Immersed boundary methods for FSI problems

The IBM was originally introduced by Peskin [21]. Later on, a variety of different IB approaches were
developed in recent years differing in various technical aspects as reviewed in [8, 9]. While the fluid field is
treated by an Eulerian description on a temporally constant fluid grid, the immersed structures are described
using a Lagrangian point of view. In the general case, the grids of the movable structures do not conform
with the fixed grid of the fluid. At this point, the IBM offers a method to impose the coupling conditions on
the fluid-structure interface. Concerning the spatial imposition of the coupling conditions, IBMs are usually
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grouped into so-called discrete forcing schemes and continuous forcing schemes [8]. With the discrete forcing
approach, the boundary conditions at the interface are imposed through the use of grid cells in the solid part.
For each of these cells an interpolation scheme is derived that invokes the desired boundary condition at the
interface [22, 8]. In the continuous forcing approach, compact delta functions are used at the interface for the
transfer of quantities between the fluid and the immersed structures. A distinctive feature of a continuous
forcing is, that the fluid-structure interface is represented by evenly distributed surface markers after spatial
discretization of the physical problem [23, 24]. This avoids the identification of special grid points for the
imposition of the coupling conditions, with the drawback that the interface is “smeared” over several cells
of the fluid grid, typically three to four cells around each of the marker points. In this region the local
coupling force is introduced in the momentum balance of the fluid to impose the no-slip condition at the
fluid-structure interface. Due do its simplicity, stability and high efficiency, IBMs with continuous forcing
are used preferably in large-scale simulations, e.g. disperse multiphase flows with rigid particles [19, 20] or
bubbles [25].
Besides the different approaches used for the spatial coupling, the various IBMs differ in the manner in
which the coupling force is computed in time, when a partitioned coupling approach is applied. Familiar
techniques are feedback forcing, discrete mass and momentum forcing as well as the so-called direct forcing
[26]. The direct forcing approach is one of the most popular methods because of its increased stability.
In the literature, several IBMs can be found with movable rigid bodies, e.g. [27, 28, 24, 9, 29]. The description
of fluid-structure interactions in the narrow sense, with elastic solid structures, is less common but has become
increasingly important over the last decade. Most of these IBMs, however, were implemented and tested
only with two-dimensional cases [30, 31, 32, 18, 33, 34, 35]. Recently, more and more efforts have been
made to simulate truly three-dimensional scenarios. These can be divided into fluid-structure interactions
with one-dimensional fiber-like structures [36, 37, 38], two-dimensional elastic membranes [39, 40, 41, 15]
and volumetric elastic structures [42, 14, 16]. In some of these implementations, non-classical structure
models are used, such as neutrally buoyant fibers and membranes in Le et al. [39], Griffith and Lim [36],
Bhalla et al. [37] and Wiens and Stockie [41, 38], or a mass-spring network model in the work of de Tullio
and Pascazio [15]. A classical continuum mechanical description of the structures was applied by Zhang et
al. [42], Tian et al. [14], Zhu et al. [40], Gilmanov et al. [43, 44] and recently by Kim et al. [16]. The methods
mentioned, including IBMs for two-dimensional problems, cover a variety of coupling algorithms. Besides a
few monolithic schemes [30, 18, 33, 35], most of the implementations are realized by means of a partitioned
coupling approach. The latter range from non-iterative coupling schemes [31, 42, 32, 36, 34, 40, 41] and
iterative strong coupling approaches [37, 14, 15, 43], to improved non-iterative schemes with extended
numerical stability [39, 16]. Sotiropoulos and Yang [9] provided a comprehensive overview of various IB
approaches for the simulation of general FSI problems distinguishing between weak and strong coupling
strategies. An even more recent review of IBMs for fluid-structure interactions was published by Kim and
Choi [45].

1.3. Basic idea of the coupling approach

The IBM developed in this work can be assigned to the group of IBMs with continuous direct forcing. A
special component of this coupling scheme is a novel non-iterative semi-implicit direct forcing which combines
the stability of monolithic methods with the advantages of partitioned weak approaches. Furthermore, a
general coupling strategy is proposed to couple of the Navier-Stokes equations with an arbitrary immersed
structure, demonstrated for Cosserat rods here.
In contrast to other non-iterative coupling strategies, the main idea is not based on a stabilization technique,
e.g. a relaxation technique [46, 14, 15, 16, 47]. Even if relaxation techniques are easy to implement, may
offer numerical stability as well as a second order accuracy [46], they also have their disadvantages. As
mentioned in [47], problems which feature strong added mass effects require small values of the relaxation
parameter to obtain stability which, in turn, causes higher truncation errors and small time step sizes. The
present direct forcing approach does not require any additional parameter. Numerical stability is achieved
by using a semi-implicit time scheme for the structure motion. As a matter of fact, the coupling terms used
to impose the coupling conditions, require some kind of implicit integration in time to ensure numerical
stability [48]. It is shown here, that this is not only feasible by means of a global iteration between the fluid
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Ω = Ωf ∪Ωs

Ωf

∂ΩfΩs ∂Ωs

Γ = ∂Ωf ∩ ∂Ωs

Figure 1: Type of fluid-structure interaction considered in the present work, namely the interaction between viscous fluids and
a larger number of slender flexible structures. The fluid domain and structure domain are designated as Ωf and Ωs, respectively,
with the corresponding boundaries ∂Ωf and ∂Ωs. The fluid-structure interface is referred to as Γ.

and structure part, but can also be achieved by an implicit integration of the coupling terms in the structure
equations. These coupling terms are provided in a temporally continuous form so that the coupled structure
equations can be discretized in time by an arbitrary implicit integration scheme. As a result, the FSI
coupling becomes independent of the discretization techniques employed for both subsolvers, lending itself
to application in a broad set of conditions. The scheme developed is completely non-iterative and requires
only a single bidirectional exchange of coupling quantities between the fluid solver and the structure solver.
Its only drawback is a first-order accuracy of the coupling terms in time which will be discussed in detail.

2. Physical model and governing equations

2.1. Problem definition and assumptions

The physical configuration addressed here consists of a viscous fluid interacting with a large number of
flexible structures. These are assumed to be long and slender, as encountered with a fiber suspension or a
canopy flow, as illustrated in Fig. 1 for example. Constant material properties are assumed for fluid and
structures. All structures are assumed completely immersed in the fluid and are geometrically characterized
by a long and slender shape with cross sections much smaller than their longitudinal extension. When the
structures are subjected to fluid loads, local deformations and associated internal strains are assumed to be
small but may agglomerate to large overall displacements in space.
The domain of the entire physical configuration Ω ∈ R3 consists of the closed subset Ωf ⊂ Ω, defining the
fluid domain, and a certain number of structures Ns, which combine to form the closed subset Ωs ⊂ Ω, the
structure domain, so that the union of the fluid domain and the set of all structures gives the entire domain
Ω = Ωf ∪ Ωs assumed to be time-independent here. The fluid domain Ωf and the structure domain Ωs may
change their shape in time. The associated boundaries of both subdomains are ∂fΩ ⊂ Ωf and ∂Ωs ⊂ Ωs,
respectively, so that their intersection defines a time-dependent fluid-structure interface Γ = ∂Ωf ∩ ∂Ωs. The
boundary of the entire domain is given by ∂Ω = (∂Ωf ∪ ∂Ωs) \ Γ.

2.2. Individual models for fluid and structure

2.2.1. Navier-Stokes equations

The governing equations for the fluid motion are the unsteady three-dimensional Navier-Stokes equations
(NSE) for a Newtonian fluid of constant density

∂u
∂t

+ ∇ · (u ⊗ u) =
1
ρf
∇ · σ + f (1a)

∇ · u = 0 (1b)

in the fluid domain Ωf , where u = (u, v,w)> designates the velocity vector in Cartesian components along the
Cartesian coordinates x, y, z, while t represents the time, p the pressure field, and ρf the fluid density. The
hydrodynamic stress tensor σ is defined by

σ = −p I + µf (∇u + ∇u>) , (2)
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Figure 2: Instantaneous configuration of a deformed Cosserat rod Ωs at time t > 0. Each of the cross sections Υ(Z) ⊂ Ωs

along the arc length Z remains rigid and plane, while its orientation is described by three orthonormal direction vectors. The
latter can be combined to the rotation matrix R = [rX rY rZ ]. The location of a material point x ∈ Ωs can be decomposed into a
longitudinal part along c and a lateral part ξ = R · ξ0 within the associated cross-section Υ, so that x = c + R · ξ0.

with the matrix R(Z, t) = [rX rY rZ] and the cross section vector ξ0 = (X,Y, 0)> in the Lagrangian reference

frame. Here, a specific cross-section Υ ⊂ Ωs is defined by

Υ : Z̃ 7→
{
x ∈ Ωs : x = χ

(
(X,Y, Z̃)>, t

)}
(11)

and is thus uniquely assigned to a selected arc length Z = Z̃. In case of long slender rods the cross sections

exhibit only small distortions and the Euler–Bernoulli hypothesis [55] states that these remain plane during

deformation, i.e. that the motion of the cross sections is well approximated by a pure rigid body motion.

The associated kinematic constraint is incorporated into the mapping (10) by a special choice of the tensor

R, which has to feature the properties of a common rotation matrix R ∈ S O(3). The corresponding equations

of motion of the rod can be derived by replacing x in the common linear and angular momentum balance

∫

Ωs
0

dẋ
dt

dV0 = − 1
ρs

∫

∂Ωs
0

P> · n0 dS 0 +

∫

Ωs
0

f dV0 (12a)

∫

Ωs
0

d
dt

(x × ẋ) dV0 = − 1
ρs

∫

∂Ωs
0

x × (P> · n0) dS 0 +

∫

Ωs
0

x × f dV0 , (12b)

with the constrained mapping x = c + R · ξ0. and the inward pointing unit normal vector n0. Both equations

are thentransferred into two spatially one-dimensional differential equations for the rod motion. One equation

describes the temporal evolution of c(Z, t) ∈ ζ, i.e. the positions of the center line ζ ⊂ Ωs of the rod. The

second equation describes the rotation of the cross sections Υ(Z) ⊂ Ωs along the Lagrangian arc length

coordinate Z, captured by the rotation matrix R(Z, t) ∈ S O(3) (see Fig. 2). Both equations are referred to as

12

Figure 2: Instantaneous configuration of a deformed Cosserat rod Ωs. Each of the cross sections Υ(Z) ⊂ Ωs along the arc
length Z remains rigid and plane, while its orientation is described by three orthonormal direction vectors. The latter can be
combined to the rotation matrix R = [rX rY rZ ]. The location of a material point x ∈ Ωs can be decomposed into a longitudinal
part along c and a lateral part ξ = R · ξ0 within the associated cross-section Υ, so that x = c + R · ξ0.

with µf =ρf νf the dynamic viscosity and νf the kinematic viscosity, I the identity matrix, and f = ( fx, fy, fz)> a
mass-specific force. The latter consists of two parts, f = fV + fΓ, where fV is a mass-specific volume force, e.g.
gravitational acceleration, and fΓ a coupling force used to impose the no-slip condition on the fluid-structure
interface Γ, as described in section 4 below.

2.2.2. Geometrically exact Cosserat rod model

The structures addressed here are characterized by a long and slender shape with cross sections much smaller
than their longitudinal expansion. This kind of structure is usually referred to as a beam, cantilever or rod,
the latter term being used in the present work. In principle, such geometrical constraints on shape can be
used to employ model reduction techniques which reduce the degrees of freedom required to describe the
structure motion. These techniques are of crucial importance when simulating large numbers of individual
resolved rod structures due to the enormous reduction of computational effort this entails. Especially for
the slender rods considered here, the general three-dimensional equations of motion are well approximated
by one-dimensional rod models without loss of physical correctness. One of the most complex rod models
is the so-called geometrically exact Cosserat rod which covers both the rigid body motion and the common
deformation modes of a rod [49, 50, 51, 52]. This model is used in the present work, since it captures large
structural displacements to be considered here, and offers a broad range of applications. Geometry and
coordinate systems used for the definition of the Cosserat rod are assembled in Fig. 2. With this model each
cross section is assumed to remain rigid during deformation (Euler–Bernoulli hypothesis [53]), while internal
strains are measured by the relative position and orientation between adjacent cross sections. On the basis of
this kinematic constraint, the three-dimensional linear and angular momentum balance can be transferred
into two spatially one-dimensional differential equations for the rod motion. One equation describes the
temporal evolution of c(Z, t) ∈ ζ, i.e. the positions of the center line ζ ⊂ Ωs of the rod. The second equation
describes the rotation of the cross sections Υ(Z) ⊂ Ωs along the Lagrangian arc length coordinate Z, captured
by the rotation matrix R(Z, t) ∈ S O(3) (Fig. 2). This equation is not formulated directly for the rotation
matrix R(Z, t), but for the angular velocity ω(Z, t) of the cross section. Both quantities are related via

[ω]× = Ṙ · R>, (3)

where [ω]× is the skew matrix of ω, so that [ω]× · v = ω × v for any vector v ∈ R3. The final form of the
equations of motion, the so-called (geometrically exact) Cosserat rod equations [49, 50, 52], reads

ρsA c̈ =
M
f′ +

O
f (4a)

ρsI·ω̇ + ω × ρsI·ω =
Mm′ + c′ × M

f +
Om , (4b)

where the temporal and spatial derivatives are abbreviated as ċ = dc/dt, c̈ = d2c/dt2 and c′ = ∂c/∂Z,
respectively. In the present work, the rods have spatially constant geometrical properties, i.e. a constant
cross sectional area A and tensor of inertia I0, as well as constant material properties, such as the density ρs.
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The motion of the rods, governed by Eqs. (4), depends on the internal forces
M
f and internal moments

Mm, as

well as on the external forces
O
f and external moments

Om. The external loads contain gravitational forces
O
fg = (ρs−ρf) A g, and external fluid loads acting on the fluid-structure interface Γ, denoted as

O
fΓ and

OmΓ. The

internal forces
M
fΓ and moments

MmΓ in Eqs. (4) are formulated for a linear viscoelastic material of Kelvin-Voigt
type [54, 52], i.e.

M
f = Cε · (ε − ε|t=0) + Cε̇ · ε̇ (5a)
Mm = Cκ · (κ − κ|t=0) + Cκ̇ · κ̇ . (5b)

Here, the first term on the right-hand side of Eq. (5a) and (5b) constitutes the linear elastic part of
M
f and

Mm.
Internal strains generated during deformation are measured by the strain vector ε and the curvature vector
κ. Both vectors are defined by [52]

ε = c′ and [κ]× = R′ , (6)

respectively. Their linear relation to the internal loads
M
f and

Mm are represented by the two constitutive matri-
ces Cε= R·Cε0 ·R> with Cε0 = diag

(
ks1Gs, ks2Gs, Es

)
A, and Cκ= R·Cκ0 ·R> with Cκ0 = diag(Es, Es, ktGs) I0 where

Es is the Young modulus and Gs the shear modulus. Here, the geometric tensor of inertia I0 = diag(IX , IY , J)
contains the second moments of area IX, IY and J = IZ around the rX-, rY - and rZ-axis of the cross section,
respectively. The shear and torsion correction factors ks1 , ks2 and kt are used to model the influence of
warping effects in case of shear and torsional loads.
The second term on the right-hand side of Eq. (5) takes into account the dissipative part of the internal

loads
M
f and

Mm due to internal friction. For the Kelvin-Voigt material used here, these depend linearly on the
strain rate ε̇ and the curvature rate κ̇, respectively, while the corresponding constitutive matrices are given
by Cε̇ = R ·Cε̇0 ·R> with Cε̇0 = diag(cs1, cs2, ce), and Cκ̇ = R ·Cκ̇0 ·R> with Cκ̇0 = diag(cb1, cb2, ct). The subscript
of each damping parameter c denotes the deformation mode, i.e. shear, extension, bending and torsion.

2.3. Fluid-structure coupling

2.3.1. Coupling conditions

The coupling between the Navier-Stokes equations (1) and the Cosserat rod equations (4) is realized by the
dynamic and the kinematic coupling condition. Both are applied at the common fluid-structure interface Γ.
The dynamic condition states the equality of the stress vectors, i.e.

σ · n = σs · n ∀x ∈ Γ , (7)

with the hydrodynamic stress tensor σ according to (2), the structural Cauchy stress tensor σs, and the
unit normal vector n pointing from the fluid domain Ωf into the solid domain Ωs. The stress vector can be
interpreted as a surface-specific coupling force fS = σ · n connecting both parts of the coupled system at
the interface Γ. To impose the dynamic coupling condition (7), fS has to be introduced in the momentum
balances of the fluid and the structure. For the one-dimensional Cosserat rod considered here, the coupling

force
O
fΓ(Z, t) and the coupling moment

OmΓ(Z, t) read

O
fΓ = −

∫

Γ∩Υ

fS dC ,
OmΓ = −

∫

Γ∩Υ

x × fS dC , (8)

respectively. The kinematic coupling is realized by the no-slip boundary condition

u = v ∀x ∈ Γ , (9)

which for the Cosserat rod with v = ẋ and x = c + R · ξ0 yields

u = ċ + ω × ξ ∀x ∈ Γ . (10)
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Figure 3: Representation of a strip-shaped rod in the fluid domain Ωf = Ω as an infinitely thin Cosserat rod Ωs = Γ. In
contrast to the three-dimensional volumetric rod shown in Fig.2, the cross sections Υ(Z) are one-dimensional and a subset of
the fluid-structure interface Γ.

∂ω+

ω+

∂ω−

ω−

∂ω

γ
λ

dΛ

n+

n−
n

x

y
z

Γ

Ω

ω

∂Γ

Figure 4: Illustration of an interface problem in which the fluid domain Ω is cut by the interface Γ. On a smaller scale, the
finite volume ω ⊂ Ω is separated into two subdomains ω+ and ω−. The intersection of their boundaries ∂ω+and ∂ω− defines the
common interface γ ⊂ Γ. The vectors n, n+ and n− are unit normal vectors at the boundaries ∂ω, ∂ω+and ∂ω−. The gray shaded
area around γ represents a compact, volumetric layer λ of infinitesimally small thickness dΛ → 0, as described in section 2.3.3.

2.3.2. Zero-thickness assumption and jump conditions

The long slender rods considered in this work have cross-sectional expansions much smaller than their
longitudinal expansion. For the applications below, the rods are very well represented in the fluid as simple
one-dimensional curves, e.g. to model fibers, or as two-dimensional geometries in case of strip-shaped rods
(Fig. 3). Since at least one lateral expansion of the structure is neglected, the approach is often referred to
as zero-thickness approximation which is widely used in the literature to model rods or membranes [5, 55,
56, 57, 40, 14, 15]. This strategy is pursued here as well. The FSI model is tailored to rectangular cross
sections of width W and thickness T , with an aspect ratio of T � W. While the Cosserat-rod equations (4)
are solved for the three-dimensional volumetric rod with T > 0, the rod is represented in the fluid as a
two-dimensional object with T = 0, as illustrated in Fig. 3. When applying the zero-thickness assumption
in the fluid domain, the structure domain Ωs completely coincides with the fluid-structure interface Γ, so
that Ωs = Γ. Moreover, the fluid domain now represents the entire domain of the coupled problem, i.e.
Ω = Ωf ∪Ωs = Ωf , and contains the structure as an embedded fluid-structure interface Γ.
To discuss this issue the limiting case of a so-called interface problem is considered, where the entire fluid
domain Ω is separated by the interface Γ into two disjoint regions. The setting is equivalent to a small finite
volume ω ⊂ Ω which is entirely cut by the interface γ ⊂ Γ into two subdomains ω+ ⊂ ω and ω− ⊂ ω, as
illustrated in Fig. 4. The fluid inside ω is described by the Navier-Stokes equations (1), where the velocity
field u+ and u− belongs to the associated subdomain ω+ and ω−, respectively. The linear momentum
balance (1a) can now be formulated for ω+ and ω− separately. Adding these results in a momentum balance
for the union ω = ω+ ∪ ω− results in

∫

ω

(
ρf

du
dt
− fV

)
dV =

∫

∂ω

σ · n dS +

∫

γ

(σ+− σ−) · n dS , (11)

where σ+ and σ− are the stress tensors in ω+ and ω−, respectively. The second term on the right-hand side
of Eq. (11) is referred to as jump term. The associated jump in the stress vectors, i.e. (σ+− σ−) · n, has the
unit of a surface-specific force fS related to the interface γ [58, 59, 60]. Using this force, the jump term can
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be expressed as ∫

γ

fS dS =

∫

γ

σ+ · n dS −
∫

γ

σ− · n dS , (12)

which illustrates, that fS is the resulting fluid load caused by the hydrodynamic stresses σ+ and σ− acting
on γ from both sides, i.e. from ω+ and ω−, respectively. Only in cases where the stresses across γ are
discontinuous, the force fS does not vanish.
As described in the previous section 2.3.1, the force fS can also be interpreted as a coupling force introduced
into the Navier-Stokes equations (1) and the Cosserat rod equations (4) to impose the kinematic and dynamic
coupling condition. In this context, the coupling force is defined locally at each point on x ∈ Γ, opposed to
its integral formulation according to Eq. (12). However, if the control volume ω shown in Fig. 4 is decreased
to an infinitesimally small size, Eq. (12) can be transferred to a local relation between the coupling force
and the hydrodynamic stresses, so that fS = (σ+−σ−) · n ∀x ∈ Γ. At the interface edge ∂Γ the local force fS

vanishes, since σ+ and σ− coincide in the free flow region without Γ.
The analysis of the cut volume ω via the momentum balance (1a) revealed that the hydrodynamic stresses
σ are discontinuous at γ, i.e. (σ+− σ−) · n , 0, which implies that the velocity field does not need to be
differentiable at Γ.

2.3.3. Coupling via distributive sources

In the previous sections, the coupling force fS = (σ+−σ−) ·n was derived as a surface-specific force acting on
the fluid-structure interface Γ with the associated coupling term appearing as an additional surface integral
in the momentum balance (11) of the fluid. The IBM coupling strategy used here is based on the idea of
converting this surface integral into a volume integral proposed by the present authors in [61]. For this
purpose, the surface-specific coupling force fS is transformed into a mass-specific coupling force fΓ. As a
result, fΓ can be introduced directly into the differential momentum balance (1a) as a regular volume force,
such as gravitational acceleration. This simplifies the numerical treatment of the Navier-Stokes equations (1),
since a special handling of surface-specific quantities is not necessary.
The transformation of the integral coupling term is realized by using common techniques of distribution
theory. In this context, a properly defined delta function δV allows replacing the surface-specific force fS by
its volumetric complement fΓ [62, 63], in such a way that the same momentum is transferred to the fluid,
i.e. ∫

γ

fS dS =

∫

ω

δV fS dV =

∫

λ

ρf fΓ dV , (13)

where λ ⊂ Λ is the compact, volumetric support of the delta function δV enveloping the interface γ ⊂ Γ in
the cut volume ω ⊂ Ω (Fig. 4). On a larger scale, this support constitutes a thin “coating” layer Λ enclosing
entirely the interface Γ. For the exact continuous problem the thickness of Λ, dΛ, is infinitesimally small,
i.e. dΛ → 0. Thus, fΓ applies a finite amount of “force” to the fluid in an arbitrarily thin layer Λ, which
indicates the distributive nature of the coupling force. This perspective constitutes the basis for the discrete
formulation of the FSI problem via an immersed boundary method, described in section 4 below.
According to the principle of actio et reactio, the distributive force fΓ, introduced into the momentum balance
of the fluid, must also appear in the equations of motion of the Cosserat rod, with opposite sign. So far,

the forces
O
fΓ and moments

OmΓ acting on the rod are defined via fS , according to Eq. (8). Considering the
zero-thickness approximation with Γ ∩ Υ = Υ, both are given by

O
fΓ(Z) = −

∫

Υ

fS dY , OmΓ(Z) = −
∫

Υ

ξ × fS dY , (14)

with fS = (σ+− σ−) · n. According to transformation (13), the coupling force fΓ emerges from a surface

integration of fS . Instead, Eq. (14) provides a line integral of fS over Υ(Z). To connect
O
fΓ(Z) and

OmΓ(Z) with

8



the distributive force fΓ, the former must be integrated along the arc length Z, i.e.

∫

ζ

O
fΓ dZ = −

∫

Γ

fS dS = −
∫

Λ

ρf fΓ dV (15a)

∫

ζ

OmΓ dZ = −
∫

Γ

ξ × fS dS = −
∫

Λ

ξ × (ρf fΓ) dV , (15b)

taking advantage of the fact that the interface Γ equals the union of the cross-sections Υ(Z) (Fig. 3), i.e.
Γ =

⋃
Z∈ζΥ(Z). At a later stage, this relation is of crucial importance for the spatial discretization of the

Cosserat rod by a finite set of structural elements e. In this context, the average hydrodynamic loads acting

on the element interface Γe are given by
O
fΓe =

∫
ζe

O
fΓ dZ/∆Z and

OmΓe =
∫
ζe

OmΓ dZ/∆Z, with ζe ⊂ ζ and ∆Z =
∫
ζe

dZ.

3. Numerical discretization of the partitioned problems

3.1. Navier Stokes equations

3.1.1. Temporal and spatial discretization

The method proposed here was implemented in the in-house code PRIME (Phase-Resolving sIMulation
Environment) [24, 61]. The time integration of the Navier-Stokes equations (1) is accomplished by a special
variant of the pressure projection method, used to impose the incompressibility constraint (1b). It combines
an explicit three-step third-order low-storage Runge-Kutta scheme for the convective term and a second-order
implicit Crank-Nicolson scheme for the viscous term in each Runge-Kutta sub-step. This variant conserves
an overall second order accuracy in time for both, the pressure as well as the velocity [64]. Numerical
stability of the time scheme is achieved for Courant numbers CFL <

√
3 [65]. In each Runge-Kutta sub-step

r = 1, 2, 3 the following equations are solved:

ũ − ur−1

∆t
= 2αr νf ∇2u r−1 − 2αr ∇

(
p
ρf

r−1
)
− γr ∇ · (u ⊗ u) r−1 − ζr ∇ · (u ⊗ u) r−2 + fV (16a)

∇2u∗ − u∗

αr νf ∆t
= ∇2ur−1 − ũ + 2αr ∆t fΓ

αr νf ∆t
(16b)

∇2φr = ∇ · u∗ (16c)

ur = u∗ − ∇φr (16d)

p
ρf

r
=

p
ρf

r−1
+

φr

2 αr ∆t
− νf

2
∇2φr , (16e)

with ∆t the time step and the values of the coefficients αr, γr and ζr from [65]. The force fΓ in Eq. (16b) is
used at a later stage for the fluid-structure coupling, described in section 4.
The spatial discretization of the system (16) is performed by a second-order finite-volume scheme of Ham [66]
on a Cartesian staggered grid. The discretization scheme fully conserves mass, momentum and energy even
on non-uniform grids and avoids checkerboard oscillations of the pressure [67]. In the present work, a
rectangular computational domain Ω = [0; Lx]× [0; Ly]× [0; Lz] is used, where Lx, Ly and Lz denote the extend
of the domain in x-, y- and z-direction, respectively. The usual boundary conditions for the velocity field are
available. For the pressure correction field φ a zero gradient condition [68] is used for all types of boundary
conditions except for periodic boundaries.

3.1.2. Large eddy simulation and subgrid-scale model

The present numerical approach is designed to provide time-dependent high-resolution data, which are
utilized to study the dynamic behavior of the coupled system and the role of turbulent structures, also for
higher turbulence intensities of the fluid. Under the latter conditions, the direct numerical simulation (DNS)
of the Navier-Stokes equations (1) is technically not feasible with the present discretization technique since
the required grid resolution can not be achieved. In such cases, the large eddy simulation (LES) approach

9
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Z

Figure 5: Spatial discretization of the rod along the arc length Z by Ne elements of equal geometrical and material properties.
Shown are discrete centroid positions ce− 1

2
and velocities ċe− 1

2
, as well as the rotational degree of freedom represented by

quaternions qe and q̇e, with e = 1, ...,Ne. The dashed lines indicate the connection to ghost-quaternions q0 and qNe+1 and
ghost-velocities q̇0 and q̇Ne+1 required to impose the boundary conditions at both ends.

is employed here, using the Smagorinsky model [69] to model subgrid-scale stresses. In the present work it
is assumed, that the grid spacing is fine enough to capture both the flow near the walls and at the fluid-
structure interface Γ, so that no additional modeling is required, e.g. by a wall function. Non-physical values
of the eddy viscosity in the region close to walls are reduced by a Van Driest damping function [70].

3.2. Cosserat rod equations

3.2.1. Parametrization of finite rotations

The Cosserat rod equations (4b) are constituted by a linear and an angular equation of motion. The former
describes the motion of the center line position c ∈ R3. The angular equation of motion is formulated in terms
of the rotation matrix R ∈ S O(3) additionally subjected to the properties of the rotation group S O(3), i.e.
the orthogonality constraint R · R>= R> · R = I. This constraint is taken into account when parameterizing
R. State of the art is to describe rotations via quaternions q ∈ S3 with the set of unit quaternions S3 [71, 52].
Among other advantages, these avoid the gimbal lock effect or singularities [71]. Lang et al. [52] showed that
the Cosserat rod equations (4) can be reformulated by standard index reduction techniques as an equivalent
system

c̈ =
1
ρsA

{ (
q∗

M
f0
∗q

)′
+

O
f
}

(17a)

q̈ =
2
ρs
M ·

{
4ρs q̇∗I 0 ·

(
q̇∗q

)
+ c′∗q∗

M
f0 +

(
q∗ Mm0

)′
+ q′∗ Mm0 +

Om∗q
}
− ‖q̇‖2q , (17b)

with the quaternion matrix of inertia I 0 = 0 ⊕ I0 and the “inverse” quaternion matrix of inertia M =
1
4 Q · I−1

0 ·Q>. Here, the matrix Q allows to express a multiplication of p,q ∈ S3 as a matrix-vector product,
i.e. p ∗ q = Q(p) · q [52]. Vectors indicated with index zero, e.g. v0 ∈ R3, are given in the local co-rotated
Lagrangian frame of a cross section and quantities without index, such as v ∈ R3, in the global Eulerian

frame. According to Eq. (5) internal forces
M
f0 and internal moments

Mm0 are formulated in terms of the strain
vector ε0 and the curvature vector κ0, respectively. Their equivalent quaternionic forms are given by

ε0 = q∗c′ ∗q and κ0 = 2 q∗q′ . (18)

3.2.2. Temporal and spatial discretization

Following recommendations of Lang et al. [52], the rod equations (17) are discretized by the finite difference
methods (FDM) using an equidistant staggered grid to achieve a second order accuracy in space. As shown
in Fig.5, the centroids of the cross sections are located at the edges of an element e which are denoted by a
half-index, i.e. ce− 1

2
and ce+ 1

2
with e = 1, ...,Ne. The spatial discretization of the Cosserat equations via FDM

results in a system of first-order ordinary differential equations (ODE) of the form

u̇ = rhs(u, t), u =
(
c 1

2
, ċ 1

2
, q̇1,q1, c 3

2
, ċ 3

2
, ... , q̇Ne

,qNe
, cNe+

1
2
, ċNe+

1
2

)>
. (19)

The time integration of system (19) can be done by an appropriate ODE-solver, adapted to the numer-
ical properties of the ODE. Following recommendations of Lang et al. [52] the non-commercial solver
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RADAU5 [72, 73] is employed here. Successfully solving the differential equations (17) does not neces-
sarily impose the constraint of unit length, i.e. ‖q‖ = 1, required to describe rotations in space. As described
in [52], the quaternion q drifts quadratically from this constraint which, however, can be counteracted by
the projection

q← q/‖q‖ and q̇← q̇ − (q·q̇) q , (20)

applied after each time integration step for the entire set of quaternions qn+1
e , e = 1, ...,Ne.

4. Semi-implicit direct forcing IBM

4.1. Temporal coupling using direct forcing

4.1.1. The direct forcing approach

Different variants of the immersed boundary method can be distinguished by the way in which the coupling
force fΓ in Eq. (1a) is computed. As already mentioned, a spatially continuous force fΓ, acting in an
infinitesimally thin layer Λ (Fig. 4), is employed in the present work to impose the kinematic and dynamic
coupling condition. In the IBM framework this approach is usually denoted as continuous forcing [8]. From
a numerical point of view two aspects are decisive. First, the local force has to be evaluated in a time
discrete manner to realize a coupling of fluid and structures, called temporal coupling here. Second, a
suitable approach is required for a spatial transfer of information between the fluid and the structure, each
discretized in a different manner. While the temporal coupling is described in this section, the next section
focuses on the spatial coupling. Finally, both approaches for temporal and spatial coupling are combined in
section 4.3, thus providing the complete coupling algorithm.
In the present work, the temporal coupling is realized by the direct forcing approach [74, 75, 23]. Its basic
idea is to incorporate the no-slip condition on Γ at a time discrete level to determine the coupling force
within a certain time interval t ∈ [tn, tn+1]. According to the momentum balance (1a) the coupling force at
x ∈ Γ is

fΓ =
∂u
∂t
− rhs , (21)

where the right-hand side rhs includes the convective, pressure and viscous terms [74]. The coupling force
can then be obtained by integrating Eq. (21) with an arbitrary time-stepping scheme over the time interval
t ∈ [tn, tn+1] ∫ tn+1

tn
fΓ dt =

∫ tn+1

tn

(
∂u
∂t
− rhs

)
dt = un+1− un −

∫ tn+1

tn
rhs dt , (22)

with un and un+1 being the fluid velocities at time level tn and tn+1, respectively. By incorporating the no-slip
condition (9), un+1 is replaced by the local desired velocity un+1

Γ
of the interface Γ, yielding

∫ tn+1

tn
fΓ dt = un+1

Γ − un −
∫ tn+1

tn
rhs dt ∀ x ∈ Λ , (23)

while fΓ vanishes at locations x < Λ. In the literature, this equation is usually converted into

fΓ =
1
∆t

∫ tn+1

tn
fΓ dt =

un+1
Γ
− ũ

∆t
, (24)

where fΓ is the average coupling force applied over the time interval t ∈ [tn, tn+1] and ũ is a shorthand for

ũ = un +

∫ tn+1

tn
rhs dt , (25)

which is the preliminary velocity of the fluid obtained without accounting for the effect of the immersed
boundary.
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4.1.2. Modified equation of motion

As described in section 2.3.1, the fluid-structure coupling is accomplished by two conditions, the kinematic
coupling condition (9) and the dynamic coupling condition (7). Using the direct forcing method, the former
is incorporated directly into the coupling force fΓ imposing the no-slip condition in the fluid field, i.e. u = uΓ

at x ∈ Γ. In accordance with the dynamic coupling condition and the principle of actio et reactio, the
coupling force fΓ also appears in the equation of motion of the immersed boundary Γ with opposite sign. As
a result, the motion of Γ and the coupling force (24) exhibit an implicit dependency, since fΓ is a function
of un+1

Γ
at the new time level tn+1. This becomes clearer when considering a general motion of Γ described

by the differential equation
u̇Γ = rhsΓ(uΓ, t) − πρfΓ ∀x ∈ Γ, (26)

with the right-hand side rhsΓ describing the unconstrained motion of Γ, coupled to the fluid via πρfΓ. Here,
πρ ≥ 0, specifies the ratio of inertia between the fluid and the immersed structure represented by the boundary
Γ. After integrating in time and using Eq. (24) the discrete motion is given by

un+1
Γ = un

Γ +

∫ tn+1

tn
rhsΓ(uΓ, t) dt − ∆t πρfΓ(un+1

Γ , ũ) . (27)

Two strategies are now possible to solve this equation. The first is based on the observation that fΓ depends
on the difference un+1

Γ
− ũ. This suggests to bring the contribution of fΓ depending on un+1

Γ
to the left-hand

side, resulting in a kind of added mass effect. This strategy was employed for FSIs with one-dimensional
filaments by Xu et al. [76] and earlier by Tschisgale et al. [77, 61] for rigid bodies. However, for Cosserat

rods or similar three-dimensional structures the additional mass term resulting from fΓ may become very
complex and requires considerable manipulation of the time-discrete equation of motion. The second strategy
proposed here avoids this complication. When using particular libraries for an integration of the structure
equation, the ODE integrators usually only provide an interface to the continuous version of the differential
equation, e.g. u̇Γ = rhsΓ(uΓ, t), and not an already discrete version including un+1

Γ
in the coupling force fΓ.

The user simply has to provide a continuous function of rhsΓ(uΓ, t) to the solver while using it as a black-box
without specific technical knowledge of the discretization scheme employed. To realize the direct forcing
approach with a standard black-box ODE solver, a continuous version of Eq. (27) is required. While
rhsΓ(uΓ, t) is already known, the coupling force needs to be reformulated as an expression fΓ(uΓ, t) that
continuously depends on time and on the interface velocity. Doing so, Eq. (27) can be expressed as a
modified equation of motion of Γ

u̇Γ = rhsΓ(uΓ, t) − πρfΓ(uΓ, t) = rhsΓ,mod(uΓ, t) , (28)

which can simply be passed to an arbitrary implicit ODE solver without need of knowledge about the time
discretization technique. In the present work, the continuous variant of the coupling force is obtained by
considering a linear behavior of the interface velocity within the given time interval t ∈ [tn, tn+1], i.e.

uΓ,lin(t) =
(
un+1

Γ − un
Γ

) t − tn

∆t
+ un

Γ , (29)

which can be rearranged into

un+1
Γ =

(
uΓ,lin − un

Γ

) ∆t
t − tn + un

Γ , (30)

such that the interface velocity at the new time level tn+1 is provided as a continuous function un+1
Γ

= un+1
Γ

(uΓ, t).
Using this formulation in combination with the direct forcing approach (24), the coupling force in Eq. (28)
can be approximated by

fΓ(uΓ, t) ≈ fΓ,lin(uΓ, t) =
uΓ − un

Γ

t − tn +
un

Γ
− ũ

∆t
. (31)

As a crosscheck, the time integration of fΓ,lin for a linear slope of uΓ(t) = uΓ,lin(t) yields

1
∆t

∫ tn+1

tn
fΓ,lin(uΓ,lin, t) dt = fΓ =

un+1
Γ
− ũ

∆t
(32)
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and, thus, reproduces the common direct forcing according to Eq. (24). Since the preliminary velocity ũ
in fΓ,lin(uΓ, t) is computed for a particular time interval [tn, tn+1], the coupling force and the corresponding
modified right-hand side of Eq. (28) is valid only for this specific time interval as well.
In general, the modified equations of motion (28) can be formulated for any kind of immersed boundary,
ranging from rigid bodies to deformable structures, by adding the continuous version of the coupling force
fΓ,lin(uΓ, t) to the ODE describing the decoupled motion of Γ.

4.1.3. Application to Cosserat rod equations.

In the present context, the motion of the immersed boundary Γ is described by the Cosserat rod equations (4)

that contain external fluid forces
O
fΓ and external fluid moments

OmΓ, both related to the coupling force fΓ

via Eqs. (15a) and (15b), respectively. To apply the “black-box” technique via fΓ,lin just mentioned, the
dependency of uΓ in Eq. (31) must be expressed in terms of velocity quantities provided by the Cosserat
rod, i.e. the linear velocity of the center line ċ and the angular velocities represented by the quaternionic
velocity q̇. According to the no-slip condition (10) the velocity at the interface Γ is given by

uΓ = ċ + ω × ξ (33a)

= ċ +
(
2 q̇∗q

) × (
q∗ξ0

∗q
)
, (33b)

where in the second variant (33b) the angular velocity is expressed by means of quaternions via ω = 2 q̇ ∗ q.
Furthermore, the vector ξ can be rotated backwards into the local frame, so that ξ = q ∗ ξ0

∗ q. Since ξ0

in the local reference frame is time-independent, the continuous coupling force (31) can be expressed as

fΓ,lin(ċ, q̇,q, t). Using this force, the related external fluid forces
O
fΓ (15a) and moments

OmΓ (15b) can be
approximated by

∫

ζ

O
fΓ dZ ≈ −

∫

Λ

ρf fΓ,lin(ċ, q̇,q, t) dV (34a)

∫

ζ

OmΓ dZ ≈ −
∫

Λ

ξ × [
ρf fΓ,lin(ċ, q̇,q, t)

]
dV (34b)

in the time interval t ∈ [tn, tn+1].

4.1.4. Resulting coupling scheme

The modified direct forcing proposed in the previous section can be summarized by the following steps:

1. Computation of the preliminary velocity ũ via Eq. (25) without accounting for any coupling to the
immersed interface Γ.

2. Communication of the preliminary velocity ũ(x) at x ∈ Γ to the structure solver.

3. Computation of the interface velocity un+1
Γ

at the new time level tn+1 by solving the equation of mo-
tion (28) implicitly, modified by the coupling force fΓ,lin (31).

4. Determination of the coupling force fΓ(x) at x ∈ Γ via Eq. (24) and communication of fΓ to the fluid
solver.

5. Solving the Navier-Stokes equations (1) coupled to the immersed boundary Γ by fΓ.

The implicit treatment of the modified equation of motion of the structure in step 3 corresponds to a strong
coupling of fluid and structure and achieves numerical stability for arbitrary immersed objects. It can
be solved by an iterative procedure, e.g. a Newton method or an implicit Runge-Kutta scheme, such as
RADAU5 employed in the present work.
As an alternative to an implicit treatment, the modified equations could be treated by an explicit integration
scheme as well. When integrating the continuous coupling force fΓ(uΓ, t) according to Eq. (31) with an explicit
Euler scheme, e.g., it simplifies to

1
∆t

∫ tn+1

tn
fΓ,lin(uΓ,lin, t) dt ≈ fΓ,lin(un

Γ,lin, t
n) =

un
Γ
− ũ

∆t
. (35)
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2. ũ ∀x ∈ Γ4. fΓ ∀x ∈ Γ

1. Solve for ũ without fΓ

5. Solve for un+1 with fΓ

3. Solve for un+1
Γ

with fΓ,lintn tn+1

Structure solver

Fluid solver

Figure 6: Flowchart of the five steps to be performed for the temporal coupling of the fluid solver and the structure solver
within one time step t ∈ [tn, tn+1] by means of the direct forcing approach proposed here. The circular arrow illustrates the
implicit nature of the solution procedure employed to solve for the structure motion.

Obviously, in contrast to the exact direct forcing (24), it is based on employing the interface velocity at the
old time tn−1. In this case the forcing scheme is equal to the well-known variants of an explicit IBM, proposed,
e.g., in [23, 24, 78]. It is known that these variants become unstable, especially for lightweight immersed
objects [24]. In addition, as demonstrated in previous works [77, 61], replacing un+1

Γ
with un

Γ
may result

in a numerically inconsistent coupling, where the numerical solution does not converge to the monolithic
solution by a spatial and temporal refinement. The solution only coincides with the monolithic solution if
the mass ratio between the structure mass and the mass of the surrounding fluid layer Λ tends to infinity.
However, for sufficiently large mass ratios the numerical error remains very small. For practical applications,
the explicit direct forcing, based on un

Γ
, does not constitute any advantage over the present scheme in terms

of implementation effort, numerical efficiency and accuracy. In other words, the present scheme combines
the stability properties of strong coupling schemes with the efficiency and ease of implementation of weak
coupling schemes.
Since an analytical proof of the stability of the proposed coupling between the Navier-Stokes equations and
Cosserat rod equations is out of reach, the assessment of the stability behavior is based on own simulation
experiences. In all these, no stability issues were observed, including simulations with stiff and soft rods, high
and moderate Reynolds numbers as well as FSI problems with strong added mass effects. The latter property
is supported by previous FSI simulations with rigid bodies based on the above coupling strategy [77, 61].
Even for rigid bodies of zero mass, where inertia effects are solely given by the added mass of the fluid, the
proposed coupling works without any stability issues.
In addition to empirical test simulation, the stability of staggered coupling schemes is often verified by using
a simple linear model problem, e.g. a mass-spring-damper model [46]. Here, a similar system is used for
this purpose based on two coupled Dahlquist test equations,

u̇ = αu + f (36a)

u̇Γ = αΓuΓ − πρ f (36b)

u = uΓ (coupling condition) , (36c)

where α < 0, αΓ < 0 and πρ ≥ 0, with Eq. (36a) and (36b) inspired by Eq. (21) and (26), respectively. Within
a time step [tn, tn+1] both equations are coupled by the above strategy involving the coupling force (31).
The implicit Euler scheme is employed for time integration which results in a discrete system of the form
(un+1, un+1

Γ
)> = A · (un, un

Γ
)>, with the amplification matrix A depending on ∆tα,∆tαΓ and πρ. It was checked

that the spectral radius of A does not exceed one for any of these parameters. Hence, the proposed coupling
strategy is unconditionally stable for the model system (36) discretized with an implicit Euler scheme.
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Ω

Γ

xl dΛ = h

∆Vl

dΦ = 3h

Figure 7: Sketch of the spatial discretization employed by the immersed boundary method. The rod is represented by
Lagrangian points xl. Each point is attributed a Lagrangian volume ∆Vl centered around xl. The union of all volumes
constitutes a layer Λ of width dΛ = h. The connection between the Lagrangian points xl and the Eulerian grid xi jk is realized
by regularized delta functions, described below. The gray shaded area displays the cumulative spatial influence of all delta
functions, one applied at each marker point. The dashed line represents the area of impact in the velocity field when the
three-point delta function of Roma et al. [79] is employed. Note, that only the staggered grid for the velocity component u is
shown for simplicity.

4.2. Spatial coupling via marker points

4.2.1. Lagrangian markers and volumes

In the framework of common IBMs the discrete elements of the structures do not coincide with the points of
the Eulerian grid of the fluid. Hence, their coupling requires some technique to transfer information between
both discrete representations. For this purpose, each zero-thickness rod is represented here by a set of
discrete markers, so-called Lagrangian points, implementing this communication. The Lagrangian points xl,
l = 1, ...,Nl, are evenly distributed over the fluid-structure interface Γ, as shown exemplarily in Fig. 8, below.
Furthermore, a two-dimensional sketch of the discretization of a rod embedded in the Eulerian background
grid is shown in Fig. 7. The fluid-structure coupling is realized by a distributive coupling force fΓ acting in
a small layer Λ around the interface Γ. While in the continuous formulation of the coupling force (13) the
support of the corresponding delta function δV is infinitesimally small, i.e. dΛ → 0, in the discrete realization
the thickness of the layer Λ has to be equal to the step size of the Eulerian grid, i.e. dΛ = h, as discussed
in [61]. Hence, at least one marker point controls a volume equal to the volume of a fluid cell. This means
that each Lagrangian volume ∆Vl, associated to a marker point, has to be chosen smaller or equal to the
size of the Eulerian fluid cells, i.e.

∆Vl = ∆S l h ≤ h3 , (37)

where ∆S l is the corresponding surface area attributed to a particular marker point. The volume of the
entire layer, as the sum of all volumes ∆Vl, fulfills the condition

∑
l ∆Vl = S Γ h, with the surface area of the

rod S Γ =
∫

Γ
dS =

∑
l ∆S l, yielding Nl ≥ S Γ/h2.

4.2.2. Regularized delta functions

The transfer of information between fluid and structure is performed via regularized delta functions δh. As
common for the present type of IBM the three-dimensional function δh is generated by a tensor product of
three one-dimensional functions δ1D

h , so that

δh(r) = δ1D
h (rx) δ1D

h (ry) δ1D
h (rz) (38)

with the distance vector r = (rx, ry, rz)>. Furthermore, δ1D
h (rx) = Φ(r)/h and r = rx/h, etc. The continuous

function Φ is constructed so as to fulfill certain properties, e.g. moment conditions [80], and several proposals
have been made in the literature [81]. Here, the three-point version of Roma et al. [79]

Φ3(r) =



1
6

(
5 − 3|r| −

√
−3(1 − |r|)2 + 1

)
, 0.5 ≤ |r| ≤ 1.5

1
3

(
1 +

√
−3|r|2 + 1

)
, |r| < 0.5

0 , otherwise

(39)
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is employed, so that Φ3 has a width of dΦ = 3h as sketched in Fig. 7. This ensures a good balance between
numerical efficiency and smoothing properties [24]. As an alternative the four-point version of Peskin [80]

Φ4(r) =



1
8

(
5 − 2|r| −

√
−7 + 12|r| − 4|r|2

)
, 1 ≤ |r| ≤ 2

1
8

(
3 − 2|r| +

√
1 + 4|r| − 4|r|2

)
, |r| < 1

0 , otherwise

(40)

will be considered as well in the validation below.
With the help of the regularized delta function δh a transfer of an arbitrary vector quantity ϕ from the
Eulerian points xi jk to the Lagrangian points xl is accomplished by an interpolation via

ϕ(xl) =

Nx∑

i=1

Ny∑

j=1

Nz∑

k=1

ϕ(xi jk) δh(xi jk − xl) h3 , (41)

e.g. to provide fluid velocities at the location of the interface Γ. The complementary operation is a transfer
from Lagrangian to Eulerian points, often called spreading or regularization. It is defined by

ϕ(xi jk) =
∑

xl ∈Γe

ϕ(xl) δh(xi jk − xl) ∆Vl (42)

and is commonly used to distribute the coupling force fΓ to the Eulerian grid used to solve the equations
for the fluid. The width of the regularized delta function, dΦ, introduced in this section, and the thickness
of the Lagrangian layer dΛ of the previous section are two different aspects of the discretization scheme.
The width dΛ is required for the definition of appropriate forcing volumes ∆Vl associated to each forcing
point. From a numerical point of view, this is the discrete realization of the support of the delta function
δV in the continuous formulation of coupling force (13), and is uniquely defined by the discretization of
the Eulerian grid. The second width dΦ is an independent parameter and can be chosen “arbitrarily” by
selecting a certain regularized delta function. It can be interpreted as the width of regularization regarding
the spreading operation that serves to transfer momentum from the Lagrangian points to the Eulerian points.
Due to the distributive nature of the momentum source fΓ regularization reduces or avoids jumps of fΓ on
the Eulerian grid and, thus, prevents numerical oscillations. Interpolation an spreading are performed with
the same delta function.

4.3. Proposed coupling algorithm

Temporal and spatial coupling of the Navier-Stokes equations (1) and the Cosserat rod equations (4) are now
combined to a partitioned solution approach. It is realized in a fully explicit manner, which is exempt from
any global iteration between the fluid part and the structure part. The scheme presented in section 4.1.4
is now detailed, with the following five steps executed once in each Runge-Kutta sub-step r. A compact
overview of the proposed FSI scheme is provided in Appendix A.

1. Computation and interpolation of preliminary velocities. First, the preliminary velocity field
ũ(xi jk) is computed on the Eulerian grid points xi jk, according to Eqs. (25) and (16a) using the Runge-Kutta
scheme applied here. Thereafter, the values ũ(xr−1

l ) located at the Lagrangian marker points of the previous
time level xr−1

l (Fig. 8) are interpolated from the Eulerian grid points xi jk according to Eq. (41), so that

ũ(xr−1
l ) =

Nx∑

i=1

Ny∑

j=1

Nz∑

k=1

ũ(xi jk) δh(xi jk − xr−1
l ) h3 . (43)
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2. Communication of preliminary quantities to the structure solver. According to the direct
forcing approach described in section 4.1, the values ũ on Γ are used to determine the coupling force fΓ and

thus are required to compute the fluid loads
O
fΓ,

OmΓ acting on the rod during motion. Therefore, the velocities
ũ(xr

l ) for Nl marker points need to be transferred to the corresponding structure solver. In order to realize a
coupling to Cosserat rods these can be replaced by integral quantities p̃e, l̃e (see Eqs. (45b) and (46b) below)
for each rod element e. This drastically reduces the communication effort between the fluid and structure
solver to 6 values per element, i.e. 6Ne per rod in total.

3. Solving Cosserat rod equations modified by coupling terms. To realize the coupling to the
surrounding fluid, the Cosserat rod equations (17a) are modified via the coupling terms (34a) and (34b).
The corresponding discrete versions are given by

O
fΓ,e ∆Z = −

∑

xl ∈Γe

∆ml fΓ,lin(ċ, q̇,q, t) (44a)

OmΓ,e ∆Z = −
∑

xl ∈Γe

∆ml ξl × fΓ,lin(ċ, q̇,q, t) (44b)

for an individual rod element Γe ⊂ Γ represented by Lagrangian marker points xl. Each marker covers a
Lagrangian fluid layer mass ∆ml = ρf h ∆S l. Assuming a rigid body motion of an element, as discussed in
section 3.2.2, the fluid force (44a) acting on Γe can be reformulated with fΓ,lin (31) as

O
fΓ,e ∆Z = −


pΓ − pr−1

Γ

t − tr−1 +
pr−1

Γ
− p̃

2αr ∆t


e

with pΓ,e =
[
q∗(m ċ0 + ω0 × s0)∗q

]
e (45a)

me =
∑

xl ∈Γe

∆ml , s0,e =
∑

xl ∈Γe

∆ml ξ0,l , p̃e =
∑

xl ∈Γe

∆ml ũ(xr−1
l ) , (45b)

where the vector p designates the linear momentum of the fluid layer around an element e. Related quantities
are the fluid layer mass me, the static moment of the layer s0,e and the preliminary linear momentum p̃e as
an integral measure of ũ(xr

l ), computed in the previous step. These quantities can be precomputed before

solving the rod equations. Due to the staggered spatial discretization of the rod, the external forces
O
fΓ are

considered at nodes with half-index, i.e. e+ 1
2 = 1

2 , ...Ne+ 1
2

(Fig. 8). Here,
O
fΓ,e+ 1

2
is approximated by the mean

value of the fluid forces of both adjoining elements, i.e.
O
fΓ,e+ 1

2
= (

O
fΓ,e +

O
fΓ,e+1)/2. In a similar manner, the

velocities ċe are determined from the values at the element edges, i.e. ċe = (ċe+ 1
2

+ ċe− 1
2
)/2. Analogous to the

external fluid forces, the external moments acting on Γe are obtained via

OmΓ,e ∆Z = −

lΓ − lr−1

Γ

t − tr−1 +
lr−1
Γ − l̃
2αr ∆t


e

with lΓ,e =
[
q∗(s0 × ċ0 +J 0 · ω0)∗q

]
e (46a)

J 0,e = 0 ⊕
∑

xl ∈Γe

∆ml [ξ0,l]
>
× · [ξ0,l]× , l̃e =

∑

xl ∈Γe

∆ml ξ
n
l × ũ(xr−1

l ) , (46b)

where l designates the angular momentum of the fluid layer. As for the linear momentum, the static moment
of the layer s0,e, the quaternionic tensor of inertia J 0,e and the preliminary angular momentum l̃e can be
precomputed.

In step 3 of the direct forcing coupling scheme (Fig. 6), the Cosserat rod equations (17) modified by
O
fΓ,e

and
OmΓ,e are solved implicitly for the new linear velocities of rod center line ċr

e− 1
2

and the angular velocities

ωr
e = 2 q̇r

e∗q
r
e by means of the quaternions qr

e, q̇r
e.

4. Communication of coupling forces to the fluid solver. In the next step, the velocities ċr
e =

(ċr
e+ 1

2
+ ċr

e− 1
2
)/2 and ωr

e at the new Runge-Kutta time level are communicated to the fluid solver. Based on

these velocities the corresponding interface velocity of a rod element e is computed via

ur
Γe

(xr−1
l ) = ċr

e + ωr
e × ξr−1

l . (47)

17



ξl

Γe
e

e −1

e +1

marker point xl

∆S l

qe
Ome (ce

O
fe)

ce− 1
2O

fe− 1
2

ce+ 1
2

O
fe+ 1

2

Figure 8: Discrete structural rod element Γe ⊂ Γ represented by uniformly distributed Lagrangian marker points xl, each
covering a surface area ∆S l. The vector ξl = xl − ce denotes the relative position of xl with respect to the element center position

ce. Due to the staggered spatial discretization the quaternions qe and the external moments
O
me are given at the element center,

while the center line positions ce±1/2 and the external forces
O
f e±1/2 are defined between two adjoining elements.

With the preliminary velocities ũ(xr−1
l ) computed in step 1, the coupling force located at an individual

Lagrangian point then is given by

fΓ(xr−1
l ) =

ur
Γ
(xr−1

l ) − ũ(xr−1
l )

2αr ∆t
, (48)

according to Eq. (24). Here, fΓ is formulated with the preliminary velocity ũ (xr−1
l ) using the marker location

xr−1
l at the old time level r − 1, which amounts to a semi-implicit treatment of the coupling force.

5. Spreading of coupling forces and reintegration of NSE. In a final step, the remaining equations
of the fractional step scheme (16b)-(16c) are solved to obtain the new fluid velocity field ur and the pressure
field pr. Herein, the Helmholtz equation (16b) includes fΓ(xi jk), so that the fluid motion now is constraint

by the immersed boundary Γ. Since the coupling forces fΓ(xr−1
l ) computed in step 4 are only provided at the

Lagrangian points xr−1
l , they are distributed to the Eulerian grid points xi jk via the spreading operation (42),

i.e.
fΓ(xi jk) =

∑

xl ∈Γe

fΓ(xr−1
l ) δh(xi jk − xr−1

l ) ∆Vl . (49)

4.4. Numerical study of convergence

4.4.1. Test configuration

The convergence behavior of the proposed direct forcing IBM is assessed by a simple steady planar shear
flow. The physical parameters of the problem are listed in Fig. 9. The computational domain extends over
a height H, with a no-slip condition u = (0, 0, 0)> at the bottom and a moving wall with u = (U, 0, 0)> at the
top. Positioning an interface Γ at y = H/2 mimics a solid structure of vanishing thickness and is addressed
as immersed wall here. It results in the exact solution for the x-component of the velocity

u(y) =


0 , y ≤ H

2

U (2y − H) , H
2 < y ≤ H ,

(50)

while the pressure is uniform, p = const. The boundary conditions at y = 0 and y = H are imposed on
the Eulerian grid as usual. The no-slip condition at y = H/2, instead, is imposed by a layer of forcing
points arranged as a two-dimensional Cartesian grid of spacing ∆xl. The layer is rotated by an angle of
φ = arctan(8/15) around the y-axis, to achieve a high degree of variation between the arrangement of the
forcing points and the discretization of the fluid domain, as it is the case for freely movable structures.
Due to the kink in the velocity profile at y = H/2 the hydrodynamic stresses σ are different on both sides
of the interface Γ. According to Eq. (12), the jump in σ is associated to a fluid load acting on Γ. For the
present configuration this load simplifies to

∫

Γ

σ+ · n dS −
∫

Γ

σ− · n dS = τwH2 ex (51)
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physical parameters:
H = 1 m channel height
ρf = 100 kg/m3 fluid density
νf = 0.005 m2/s kinematic viscosity
U = 1 m/s shear velocity

dimensionless quantities:
Re H

2
= 100 Reynolds number

Re H
2
< Recrit = 600

numerical parameters:
Lx = Ly = Lz = H domain size (cubic)
Nx = Ny = Nz = 8 · 2i number of grid cells, i ≥ 0
∆x = 1/Nx step size of Eulerian grid
∆xl = 2−i/17 step size of Lagrangian grid
φ = arctan(8/15) rotation of Lagrangian grid
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Figure 9: Planar shear flow driven by a constant shear velocity U at the top of the fluid domain. The no-slip condition is
imposed by a layer of uniform distributed forcing points located at y = H/2. Below this plane the fluid remains at rest. The
present setup is used to analyze the convergence behavior of the direct forcing approach employed at the layer of forcing points.

and, thus, is solely determined by the shear stress τw = 2 ρfνf U/H in the streamwise direction acting on
the upper side of the immersed wall. In terms of the present direct forcing IBM, each forcing point xl acts
against this shear to impose the no-slip condition at y = H/2. Using Eq. (44a), with uΓ = 0 at the immersed
wall, the shear force acting on Γ can be approximated numerically by

τwH2ex ≈ fw =

3∑

r=1

∑

xl ∈Γ

∆ml ũ(xl)/∆t , (52)

with ∆ml = ρf ∆x (∆xl/H)2 for the present spatial arrangement of the forcing points. Since the components of
the fluid loads in y- and z-direction vanish, the relation between the wall shear and the direct forcing is given
by τw ≈ fw · ex/H2. The following convergence analysis bases on the relative error between the theoretical
value of the wall shear and the numerical approximation

ε = fw · ex/(τwH2) − 1 . (53)

4.4.2. Numerical parameters

To determine numerically the spatial and the temporal convergence rate, the error was computed over a
wide range of grid step sizes ∆x ∈ {1/8, 1/16, 1/32, 1/64} and Courant numbers CFL ∈ {1, 0.5, 0.25, ..., 1/26, 0.01}
with CFL = U∆t/∆x. The spatial distribution of the forcing points, controlled by ∆xl = const., was adapted to
the step size of the Eulerian grid, so that ∆xl/∆x = 8/17 ≈ 0.5 for any ∆x. Besides the temporal and spatial
resolution the error is also influenced by the delta function employed for interpolation of the preliminary
velocity ũ to the Lagrangian positions xl, as well for spreading the IBM force fΓ to the Eulerian grid points xi jk.
Two different delta functions are tested in the present study, which are frequently employed in continuous
direct forcing schemes [80, 23, 81, 24, 77]. One is the three-point delta function Φ3 of Roma et al. [79]
defined in Eq. (39). The other is the four-point delta function Φ4 proposed by Peskin [80] given in Eq. (40).

4.4.3. Results and discussion

The convergence behavior obtained for Φ3 and Φ4 in the given range of spatial and temporal resolutions is
shown in Fig. 10 using ε from Eq. (53). Selected values of the corresponding errors ε3 and ε4, respectively,
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Figure 10: Temporal and spatial convergence of the present direct forcing–IBM in a range of ∆x×CFL = {1/8, 1/16, 1/32, 1/64} ×
{1, 0.5, 0.25, ..., 1/26, 0.01}. Shown are the relative errors ε3 and ε4 according to Eq. (53) obtained from simulations with the 3-point
delta function Φ3 and the 4-point delta function Φ4, respectively.

1/∆x 1/CFL 1/∆t |ε3| |ε4|
8 64 512 5.248 × 10−5 7.275 × 10−2

16 64 1024 5.237 × 10−5 3.509 × 10−2

32 64 2048 5.196 × 10−5 1.731 × 10−2

64 64 4096 5.040 × 10−5 8.510 × 10−3

64 32 2048 1.022 × 10−4 8.433 × 10−3

64 16 1024 2.086 × 10−4 8.295 × 10−3

64 8 512 4.194 × 10−4 8.026 × 10−3

Table 1: Relative errors ε of the wall shear stress τw for selected grid step sizes ∆x and time step sizes ∆t (CFL = U∆t/∆x).
Listed are the errors ε3 and ε4 obtained with the 3-point delta function Φ3 and the 4-point delta function Φ4, respectively.

are provided in Table 1. Obviously, the convergence behavior is quite different for the two delta functions
selected. While the three-point version exhibits a first order convergence in time for any spatial discretization,
the four-point version shows the opposite behavior, i.e. a first order convergence in space for any CFL number.
This is explained as follows: The total numerical error of the present direct forcing IBM can be traced back
to two sources. On one hand, the temporal part of the error results from the direct forcing approach which
is used to estimate the amplitude of the coupling force at each forcing point. Due to its time splitting the
method exhibits first order accuracy in time O(∆t). On the other hand, the spatial part of the total error
stems from the delta functions used for interpolation and spreading. While an evaluation of numerical errors
for the spreading operation at least seems to be ambitious, the accuracy of an interpolation by means of delta
functions is well understood. By increasing the width of support additional constraints can be incorporated,
so that higher moments of Φ and its smoothness are conserved [80, 81]. As stated in [82], the moment order
controls the accuracy in the low frequency range, while the smoothing order suppresses a possible Gibbs
phenomenon that may corrupt convergence. A simple two-point linear hat-function, for example, exhibits a
discontinuity in its first derivative that often leads to spatial oscillations in the solution [83].
In fact, the convergence rate of the approximation depends on both, the smoothness of the approximating
function as well as the smoothness of the function to be approximated. In the present IBM framework
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σ exhibits a jump at the interface Γ, so that u(x) is not differentiable at x ∈ Γ. As a consequence, the
rate of spatial convergence reduces to O(∆x) for any delta function, regardless of the support of Φ [84, 80].
Moreover it turns out, that a wider support increases the spatial error compared to a more narrow delta
function. As shown in Fig. 10, the errors obtained for Φ4 with four-point support are increased by at least
one order of magnitude compared to Φ3 with three-point support. The total error ε4 is dominated by spatial
interpolation and spreading errors of order O(∆x), while temporal errors, resulting from the direct forcing
approach, are much smaller and just not recognizable. On the contrary, for Φ3 spatial errors are negligibly
small compared to the temporal splitting error, so that ε3 mainly converges with O(∆t). In the present work,
the three-point function of Roma et al. [79] is preferred as it constitutes a good balance between accuracy,
numerical efficiency and smoothing properties.

4.5. Validation and results

4.5.1. FSI problem of Wall and Ramm

fluid properties:
Lx = 19.5 cm channel length
Ly = 13 cm channel height
ρf = 1.18 × 10−3 g/cm3 fluid density
ηf = 1.82 × 10−4 g/(cms) dyn. viscosity
U = 51.3 cm/s bulk velocity

structure properties:
W = 1 cm square width
L = 4 cm rod length
T = 0.06 cm rod thickness
ρs = 0.1 g/cm3 structure density
νs = 0.35 Poisson ratio
Es = 2.5 × 106 g/(cms2) Young modulus
ks = 5/6 shear correction

dimensionless quantities:
ReW ≈ 333 Reynolds number
ρs/ρf ≈ 84.7 density ratio
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Figure 11: Setup according to Wall and Ramm [4, 85] (not to scale). A slender elastic rod is mounted on an immobile square
shaped obstacle submerged into a uniform flow. At the present Reynolds number of ReW =UW/νf ≈ 333 regular vortices are shed
from the square and excite a periodic oscillation of the rod.

The commonly used FSI benchmark of Turek and Hron [86] is an improved version of the FSI problem
proposed by Ramm and Wall [4, 85] several years earlier. Both configurations base on the same physical
phenomenon, a vortex-induced oscillation of a flexible rod in the wake of an immobile obstacle in laminar
flow. Besides different material parameters for the fluid and the structure, an alternative shape of the
obstacle is used, a square instead of a circle. Moreover, the thickness of the rod is significantly smaller,
which is better suited to validate the present IBM using a zero-thickness representation of the rod. The
definition of the benchmark is provided in Fig. 11. Initially, the structure is at rest while a uniform and
temporally constant bulk velocity of U = 51.3 cm/s is applied instantaneously at the inlet at t = 0. The
corresponding Reynolds number is ReW = ρfUW/ηf ≈ 333 based on the square width W and the bulk velocity
U. At the outlet a convective outflow condition is imposed, and the lateral boundaries are modeled as
free-slip walls.
In the original setup of Ramm and Wall [4] the obstacle with the rod is positioned symmetrically at the
midspan of the domain, so that numerical instabilities of the fluid flow cause a transition to a periodic
motion of the rod. The time of the first occurrence of such instabilities can vary significantly between
different numerical methods, which complicates a cross-comparison of the associated simulation results.
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level ∆t/10−4s ∆x/10−1cm L/∆x N Ne

4h 1 0.25 160 405600 20
2h 0.5 0.125 320 1622400 40
h 0.25 0.0625 640 6489600 80

level ∆t/10−4s ∆x/10−1cm L/∆x N Ne

4h 1 0.25 160 405600 20
2h 0.5 0.125 320 1622400 40
h 0.25 0.0625 640 6489600 80
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Figure 12: Time step sizes ∆t and grid step sizes ∆x used to assess the temporal and spatial convergence. In addition, the
resulting number of grid cells N = Nx × Ny and number of structural rod elements Ne are listed in the table. The right figure
shows the vertical tip displacement dy over time for different resolutions.

definition of the benchmark is provided in Fig. 11. Initially, the structure is at rest while a uniform and
temporally constant bulk velocity of U = 51.3 cm/s is applied instantaneously at the inlet at t = 0. The
corresponding Reynolds number is ReW = ρfUW/ηf ≈ 333 based on the square width W and the bulk velocity
U. At the outlet a convective outflow condition is imposed, and the lateral boundaries are modeled as
free-slip walls.
In the original setup of Ramm and Wall [4] the obstacle with the rod is positioned symmetrically at the
midspan of the domain, so that numerical instabilities of the fluid flow cause a transition to a periodic
motion of the rod. The time of the first occurrence of such instabilities can vary significantly between
different numerical methods, which complicates a cross-comparison of the associated simulation results.
Similar to the benchmark of Turek and Hron [81] the domain is slightly enlarged in vertical direction here,
so that the symmetry of the domain is broken. This small geometrical change triggers a well-defined initial
instability which initiates the transition phase. The amplitude and frequency of the subsequent steady
oscillation are barely affected by this modification.
In the work of Ramm and Wall [4] the present configuration was used only as a phenomenological study of
such kind of FSI problems without any convergence study. The results should not be considered as an exact
solution, even if the principle physical behavior is reproduced [80]. In general, the benchmark is less popular
and commonly used as a qualitative validation of numerical strategies for FSI only, e.g. in [82], where
only a short time interval was simulated without reaching the steady oscillation state. Other groups slightly
changed the material properties and performed simulations at a lower Reynolds number of ReW = 204 instead
of ReW = 333 [83, 84]. This complicates a cross-comparison between the different numerical approaches. To
date, only few studies provide data for quantitative comparison as the one of Dettmer and Perić [53]. They
carried out simulations with various structure models, even with a zero-thickness approximation of the rod
in the fluid which indeed is atypical. Most authors, however, model the rod via the regular three-dimensional
structure equations, denoted as continuum models here.
The fluid domain shown in Fig. 11 is discretized by a Cartesian, equidistant grid with the same grid step size
in x- and y-directions. To assess the convergence behavior, three simulations with different grid resolutions
were performed (Fig. 12). For each case a constant time step was used, determined such that CFL ≈ 0.5.
Figure 14 shows the temporal evolution of the vertical tip displacement dy(t) for different grid resolutions,
compared with the result obtained by Dettmer and Perić [53]. Especially with the coarse grid resolution
of L/∆x = 160, the initial transient of the oscillation agrees well with the reference data, while the fine
resolution of L/∆x = 640 differs slightly more. These results indicate that the grid resolution used by
Dettmer and Perić [53] is not fine enough to guarantee grid independence. They used two adapted meshes of
different spatial resolutions, the finest having about L/∆x ≈ 100 cells over the rod length. Although temporal
convergence has been demonstrated in [53], no spatial convergence study was presented.
The long term response of the rod is shown in Fig. 15. Obviously, the transition phase to the steady-state
oscillation is finished after a time period of approximately 2 s. Then, the rod oscillates with an amplitude of
1.1 cm and a frequency of 3.29 Hz. It is obvious that the motion is dominated by the first natural bending
mode. Fig. 13 shows a snapshot of the oscillation at the instant of maximum vertical deflection of the
rod. Different numerical structure models were studied in [53], ranging from a large strain continuum
model to a small strain rod model. Depending on the model applied, the dominant first mode oscillation is
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Figure 12: Time step sizes ∆t and grid step sizes ∆x used to assess the temporal and spatial convergence. In addition, the
resulting number of grid cells N = Nx × Ny and number of structural rod elements Ne are listed in the table. The right figure
shows the vertical tip displacement dy over time for different resolutions.

Similar to the benchmark of Turek and Hron [86] the domain is slightly enlarged in vertical direction here,
so that the symmetry of the domain is broken. This small geometrical change triggers a well-defined initial
instability which initiates the transition phase. The amplitude and frequency of the subsequent steady
oscillation are barely affected by this modification.
In the work of Ramm and Wall [4] the present configuration was used only as a phenomenological study of
such kind of FSI problems without any convergence study. The results should not be considered as an exact
solution, even if the principle physical behavior is reproduced [85]. In general, the benchmark is less popular
and commonly used as a qualitative validation of numerical strategies for FSI only, e.g. in [87], where
only a short time interval was simulated without reaching the steady oscillation state. Other groups slightly
changed the material properties and performed simulations at a lower Reynolds number of ReW = 204 instead
of ReW = 333 [88, 89]. This complicates a cross-comparison between the different numerical approaches. To
date, only few studies provide data for quantitative comparison as the one of Dettmer and Perić [55]. They
carried out simulations with various structure models, even with a zero-thickness approximation of the rod
in the fluid. Most authors, however, model the rod via the regular three-dimensional structure equations,
denoted as continuum models here.
The fluid domain shown in Fig. 11 is discretized by a Cartesian, equidistant grid with the same grid step size
in x- and y-directions. To assess the convergence behavior, three simulations with different grid resolutions
were performed (Fig. 12). For each case a constant time step was used, determined such that CFL ≈ 0.5.
Figure 14 shows the temporal evolution of the vertical tip displacement dy(t) for different grid resolutions,
compared with the result obtained by Dettmer and Perić [55]. Especially with the coarse grid resolution
of L/∆x = 160, the initial transient of the oscillation agrees well with the reference data, while the fine
resolution of L/∆x = 640 differs slightly more. These results indicate that the grid resolution used by
Dettmer and Perić [55] is not fine enough to guarantee grid independence. They used two adapted meshes of
different spatial resolutions, the finest having about L/∆x ≈ 100 cells over the rod length. Although temporal
convergence has been demonstrated in [55], no spatial convergence study was presented.
The long term response of the rod is shown in Fig. 15. Obviously, the transition phase to the steady-state
oscillation is finished after a time period of approximately 2 s. Then, the rod oscillates with an amplitude of
1.1 cm and a frequency of 3.29 Hz. It is obvious that the motion is dominated by the first natural bending
mode. Fig. 13 shows a snapshot of the oscillation at the instant of maximum vertical deflection of the
rod. Different numerical structure models were studied in [55], ranging from a large strain continuum
model to a small strain rod model. Depending on the model applied, the dominant first mode oscillation is
superposed by a second mode of higher frequency. The displacement plot in Fig. 14 shows that second mode
oscillations also occur with the present Cosserat rod model (t > 2.5 s), but with smaller amplitudes compared
to the small strain continuum model of [55]. Tab. 2 provides a cross-comparison between the present IBM
and selected numerical approaches from the literature. Each numerical approach reproduces the expected
periodic behavior of the coupled system. However, deviations in the order of 10% can be observed for the
oscillation amplitude and frequency. Hübner et al. [89] showed how different stable periodic solutions can
arise when different initial conditions are imposed. In the present study it was observed that the spatial
resolution has a noticeable impact on the dynamic behavior. A very fine spatial discretization must be used
to reach convergence, especially with regard to the initial transient phase.
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Figure 13: Instantaneous solution of the FSI problem according to Ramm and Wall at the time of maximum vertical deflection
of the rod. a) Contour plot of instantaneous normalized velocity magnitude ‖u‖/U, b) normalized pressure field p/ρfU2. Clearly
visible are the suction side (negative pressure, light gray) and the pressure side (positive pressure, dark gray), which generate
a positive lift force on the structure. The light pressure region at the tip indicates the growth of an individual vortex.
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Figure 14: Vertical tip displacement dy during the initial transition phase. The results obtained for the coarse resolution
(L/∆x = 160) and the fine resolution (L/∆x = 640) are compared to the data of Dettmer and Perić [55] (picked case: fine grid,
small strain continuum structure model).
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Figure 15: Long-term response of the rod shown for the vertical tip position ytip. After an initial transition phase of
approximately 2 s the rod oscillates with a constant amplitude of 1.1 cm and a frequency of 3.29 Hz.

numerical IBM IBM IBM ALE ALE ALE
method present Gilmanov Kamensky Baudille & Dettmer &

et al. [43] et al. [90] Biancolini [91] Perić [55]
structure
model

Cosserat rod
(zero-thickness)

shell shell shell continuum beam
continuum

(small strain)

ampl. (cm) 1.10 1.00 - 1.10 1.3 ≈ 1 ≈ 1 1.24 1.29
freq. (Hz) 3.29 3.2 3.2 3.2 3.18 3.08 2.96

Table 2: Oscillation amplitudes and frequencies of vertical tip-displacement dy obtained by different authors using either an
IBM with a fixed background grid or an ALE method with a moving adapted mesh. Moreover, different structure models were
applied in these works, ranging from non-reduced three-dimensional continuum models to one-dimensional rod models. Each
structure model is formulated geometrically exact and thus is able to represent large rod deflections.
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4.5.2. Flexible rod in cross flow

g = 981 cm/s2 grav. acceleration

fluid properties (water):
Lx = 20 cm channel length
Ly = 16 cm channel height
Lz = 16 cm channel width
ρf = 1 g/cm3 fluid density
νf = 0.01 cm2/s kin. viscosity
U = 3.6 . . . 32 cm/s bulk velocity

structure properties (foam material):
L = 5 cm rod length
W = 1 cm rod width
T = 0.2 cm rod thickness
ρs = 0.67 g/cm3 structure density
νs = 0.4 Poisson ratio
Es = 50 N/cm2 Young modulus

dimensionless quantities:
ReL = 360 . . . 3200 Reynolds number
ρs/ρf = 0.67 density ratio
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Figure 16: Benchmark configuration of a flexible rod made subjected to a uniform cross flow according to the experimental
work of Luhar and Nepf [92] (drawing not to scale).

The configuration shown in Figure 16 was experimentally studied by Luhar and Nepf [92] and is well
suited as a benchmark problem for steady-state fluid-structure interactions. In contrast to the previous two
benchmarks the interaction is pressure dominated as the blade is oriented perpendicular to the mean flow.
To provide a uniform flow over the entire length of the rod, it is positioned above the boundary layer of the
channel bottom. In the experiment this is realized with the aid of a thin steel rod. The latter is connected
to a load sensor which simultaneously measures the integral hydrodynamic force acting on the rod. The
structure responds by a large almost steady deflection to the applied fluid load and the wake generated past
the rod is three-dimensional and turbulent (Fig. 17).
The laboratory flume used in the experiment is approximated here by a bounded rectangular fluid domain
of size [0; Lx] × [0; Ly] × [0; Lz] with Lx = 20 cm, Ly = 16 cm and Lz = 16 cm. Within the domain, the lower
end of the rod is positioned at c(Z =0) = (5 cm, 5 cm, 8 cm)T. Tests with different domain sizes have shown
that this domain is sufficiently large and does not affect the flow around the rod by boundary effects. At
the four lateral boundaries of the domain a free-slip rigid lid condition is applied. The inlet velocity is set to
a constant bulk velocity U, while a convective outflow condition is used at the outlet. The fluid domain is
discretized by Nx×Ny×Nz = 200×160×160 cells in total, which corresponds to W/∆x = 10 grid cells over the
width of the structure. In addition, a finer resolution of W/∆x = 20 is used to verify grid independence. The
rod is discretized by Ne = 20 elements, while Ne = 40 is employed for the fine resolution. A constant time
step size of was chosen, yielding CFL ≈ 0.5. This, for example, results in a time step size of ∆t = 1 × 10−3 s
for a bulk velocity of U = 16 cm/s and a grid resolution of W/∆x = 10.
To validate the FSI-solver over a wide range of Reynolds numbers ReL = UL/νf , simulations were carried out
for 8 bulk velocities ranging from U = 3.6 cm/s (ReL = 360) up to U = 32 cm/s (ReL = 3200). Figure 18 shows
a comparison between the present simulation results and the experimental data of Luhar and Nepf [92] over
the entire range of bulk velocities U. In addition, the results are compared with a similar IBM simulation
carried out by Tian et al. [14] for U = 16 cm/s.
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Figure 17: Instantaneous flow around the rod perpendicular to the mean flow in the center plane, z = 8 cm, for two bulk
velocities U. a) Streamwise velocity component u for U = 16 cm/s. b) Pressure field for U = 16 cm/s. c) Streamwise velocity
component u for U = 32 cm/s. d) Pressure field for U = 32 cm/s.

U (cm/s) 3.6 7.1 11 14 16 22 27 32
Fd (mN) 0.5 1.9 4.3 6.4 7.5 (7.6) 10.9 13.7 16.0 (16.1)

Table 3: Average drag force Fd at different bulk velocities U ranging from U = 3.6 cm/s up to U = 32 cm/s. For the simulations
performed over the entire range of U a grid resolution of W/∆x = 10 was used. To verify convergence of Fd, a finer grid resolution
of W/∆x = 20 was employed at U = 16 cm/s and U = 32 cm/s as well (values in brackets).
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Figure 18: Results for the rod in cross flow. a) Drag force Fd against bulk velocity U. The present results are compared
with the experimental data of Luhar & Nepf [92] and the simulation results of Tian et al. [14]. b) Comparison of the deflected
rod shape between the experiment and the present simulation at a bulk velocity of U = 16 cm/s. The dark blurred line is the
average shape in the experiment, the white line shows the simulation result.
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With regard to the average drag force Fd, the present results show an excellent agreement with the experi-
mental data over the entire range of bulk velocities U. Small differences can be observed for the deflection
shape of the rod, shown in Fig. 18b for a selected velocity of U = 16 cm/s. Compared to the experimental
observation, the rod is slightly more deflected in the simulation. One possible reason can be assigned to
the values of the material parameters provided in [92]. Measurement uncertainties of more than 10% may
be expected for the Young modulus Es and the density ρs of the foam material. An additional source of
the deviations obtained can be related to the isotropic linear-elastic constitutive relations applied here to
simulate a rod made out of non-isotropic foam material. Despite these minor uncertainties in the properties
of the experimental setup, the present results show reasonably good agreement with the reference, thus
providing another validation of the approach.

4.5.3. Flow through artificial canopy

g = 9.81 m/s2 grav. acceleration

fluid properties (open water channel):
H = 17 cm channel height
ρf = 1000 kg/m3 fluid density
νf = 1 × 10−6 m2/s kin. viscosity
U = 0.2 m s−1 bulk velocity

structure properties (OHP slides):
L = 70 mm rod length
W = 8 mm rod width
T = 0.1 mm rod thickness
∆S = 32 mm rod spacing
ρs = 1400 kg/m3 structure density
Es = 4.8 × 109 N/m2 Young modulus

dimensionless quantities:
ReH = 42000 Reynolds number
ρs/ρf = 1.4 density ratio
Ca ≈ 17 Cauchy number
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Figure 19: Numerical setup of a submerged canopy modeled as an array of flexible rectangular rods made out of polyester
overhead projector (OHP) slides with fixation on the bottom plate (same spacing ∆S in x and z-direction), corresponding to
the experimental setup of [93].

The final setup addressed here demonstrates the ability of the proposed method for simulations with a
large number of highly flexible slender structures in turbulent flow. To validate the FSI-solver for this type
of configuration the setup of the experimental work of [93] was simulated as described in Fig. 19. The
dimension of the computational domain is 6H × H × 3H in x-, y-, z-direction. It is discretized by cubic cells
of size ∆x = 0.625 mm, i.e. W/∆x = 12.8 grid cells over the blade width. This yields 700 million grid cells
which is at the very edge of what is technically feasible, since the instantaneous flow has to be simulated over
a certain duration to be developed and to accumulate statistics. To model the subgrid scale a Smagorinsky
constant of Cs = 0.15 was chosen, as already employed by [94] for an LES of canopy flows over rigid blades.
The 800 equally distributed strip-shaped flexible blades are discretized by 30 elements each in longitudinal
direction. The time step was automatically adjusted to yield a CFL number of 0.5. The flow is driven by a
spatially constant volume force which is dynamically adjusted in time to maintain a constant bulk velocity
of U = 0.2 m/s. While a no-slip condition is applied at the bottom wall the water surface is approximated
by a free-slip rigid lid condition. All remaining boundaries are periodic.
For the present set of parameters, in a few cases two or more rods collide. This is taken into account by an
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Figure 20: Statistical results for the canopy test case in comparison to the experiment [93] for different grid resolutions. a)
Normalized averaged velocity profile 〈u〉/U and b) Reynolds stresses 〈u′v′〉/U2. The temporally and spatially averaged height of
the canopy with the blades being deflected by the flow 〈hc〉 = 0.8L, and represented by a straight horizontal line.

own constraint-based collision model, tailored to the properties of Cosserat rods [95].
The simulation results for the mean velocity profile 〈u〉/U and the Reynolds stress 〈u′v′〉/U2 are given in
Fig. 20 and are compared to the experimental data provided in [93]. To examine their sensitivity with
respect to the grid resolution employed, simulations with coarser resolutions were performed, also included
in Fig. 20.
The comparison to the experimental data of [93] shows that the mean velocity component 〈u〉 is slightly
underestimated inside the canopy region, while, for reasons of continuity, it is slightly overestimated above
the canopy in the free flow region. In this region the Reynolds shear stress 〈u′v′〉/U2 has to vary linearly with
y/L due to the mean momentum balance. This is very well met by the simulation data. The experimental
values, however, exhibit considerable scatter, which might be due to measurement uncertainties or a small
amount of averaging. Bearing in mind this issue, together with the known difficulty of precisely determining
material properties of the blades, the comparison between experiment and simulation is quite satisfactory.
As demonstrated in [94] the monami phenomenon (mo=aquatic plant, nami=wave) can be observed for the
present set of parameters. It is characterized by a strong interaction between coherent vortices and organized
wavelike plant deflection [96]. The present simulation shows these well-separated regions of different blade
deflection very nicely as they travel through the canopy (Fig. 21, a). A deeper analysis of the data reveals that
these regions are accompanied by separated longer streaks in streamwise direction of positive and negative
velocity fluctuations u′ = u − 〈u〉 (Fig. 21, b). For negative fluctuations u′ < 0 the resulting decreased
drag yields more erect blades, while for u′ > 0, in turn, the blades are more deflected. These regions
are usually termed low-speed velocity streaks and high-speed velocity streaks, respectively. In general, with
experimental methods the shape and temporal evolution of such three-dimensional coherent structures of the
flow field are difficult to measure, especially in the canopy region due to the optical inaccessibility resulting
from the dense arrangement of moving plants. Especially for such configurations the proposed numerical
method is a well-suited means to assess the interaction of numerous highly flexible slender structures with a
turbulent flow. Its efficiency can be illustrated by some information on the computing time. The simulation
described in this section was undertaken for 44.5 physical bulk time units H/U. This required 619 000 h CPU
time in total. The run was performed on 1024 Intel processors of different architecture (Intel Westmere,
Sandy Bridge, Haswell). The flow solver employing PETSc [97] and Hypre [98] took 93.7%. Computing the
motion of the structures 5.7% and the coupling by means of the IBM 0.6%. The present paper is devoted
to description and assessment of the numerical method. An in-depth physical analysis is beyond this scope
and will be presented elsewhere.
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Figure 21: LES of a shallow submerged aquatic canopy in a turbulent channel flow, corresponding to the experimental setup
of [93]. Both visualizations show the instantaneous, streamwise velocity component u/U in the vertical planes z = 0 and x = 6H,
at the same arbitrary instant in time. In addition, the left figure shows the array of deflected blades colored with the respective
normalized tip elevation ytip/L. While some groups of blades are deflected by up to 50% of the blade length, other groups stand
up quite vertically. In the right figure regions of positive and negative velocity fluctuation u′ = u − 〈u〉 = ±0.7U are highlighted
by iso-surfaces in red and blue, respectively.

5. Conclusions

In the present work, a numerical method suited for fluid-structure interactions of large numbers of slender
flexible rods in turbulent flow was developed. The underlying physical model was tailored to this kind of
FSI using appropriate model assumptions and simplifications. While the fluid flow is modeled as usual
by the three-dimensional Navier-Stokes equations, the motion of the slender structures is described by a
powerful one-dimensional rod model, the geometrically exact Cosserat rod model. The basic fluid solver was
adopted from the in-house code PRIME [67, 24]. Concerning the structure solver, the associated Cosserat rod
equations were implemented according to recommendations of Lang et al. [52], who proposed a performance-
optimized variant. To describe the interaction of fluid and structure, a new semi-implicit coupling scheme was
developed based on an IBM with continuous forcing. It combines the stability of monolithic methods with
advantages of partitioned approaches, such as computational efficiency. As a special feature, the coupling
is exempt from any global iteration between the fluid part and the structure part, usually performed to
ensure numerical stability of partitioned FSI-solvers. In contrast to other non-iterative coupling strategies,
the main idea is not based on a stabilization technique, such as relaxation, but on a semi-implicit integration
of the coupling terms in the structural equations of motion. It is referred to as semi-implicit coupling here,
since only those coupling quantities are treated implicitly which have an effect on the stability of the time
integration. Excluded from this are structure positions, constituting the fluid-structure interface. As a result,
the proposed coupling scheme requires only a single bidirectional exchange of information between the fluid
solver and the structure solver, so that the computing time per individual Cosserat rod could be reduced to
a minimum. This makes the developed numerical method highly efficient and particularly suitable for large-
scale configurations with a very large number of deformable rods. The method was successfully validated for
various test cases with single elastic rods in flow, including the benchmark of Ramm and Wall [4, 85] and a
three-dimensional setup of a flexible blade in cross flow according to an experiment of Luhar and Nepf [92].
Finally, the proposed method was applied to the flow through an artificial aquatic canopy, consisting of 800
flexible rods, according to the experimental setup of Okamoto and Nezu [93]. This demonstrates the ability
of the present numerical approach for configurations with a large number of slender structures in turbulent
flow, and how the generated three-dimensional flow data can be used to gain fundamental insights into the
physical of such kind of fluid-structure interactions.
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Appendix A. Proposed FSI algorithm in condensed form

This section provides an overview of the proposed semi-implicit direct forcing IBM for the coupling of an
arbitrary number of Cosserat rods to the Navier-Stokes equations. All relevant equations are given for an
individual Runge-Kutta sub-step r within the time interval t ∈ [tr−1, tr]. With the three-step Runge-Kutta
scheme employed here, each time step ∆t consists of three sub-steps, so that quantities at the new time level
tn+1 are provided after the third sub-step. Quantities of the previous time level tn are denoted by superscript
0, e.g. the velocity field u0(xi jk). The rth Runge-Kutta sub-step can be summarized as follows:

ũ − ur−1

∆t
= 2αr νf ∇2u r−1 − 2αr ∇

(
p r−1/ρf

)
− γr ∇ · (u ⊗ u) r−1 − ζr ∇ · (u ⊗ u) r−2 + fV (A.1a)
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The remaining terms contained in the Cosserat rod equations of motion (A.1d), (A.1e) are:
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[47] C. Kadapa, W. Dettmer, D. Perić, A stabilised immersed framework on hierarchical b-spline grids for fluid-flexible structure
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mann method for fluidŰstructure interactions at moderate and high Reynolds numbers, Journal of Computational Physics
375 (2018) 22–56.
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