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High fidelity numerical simulation of compressible flow requires the numerical method 
being used to have both stable shock-capturing capability and high spectral resolution. 
Recently, a family of Targeted Essentially Non-Oscillatory (TENO) schemes is developed 
to fulfill such requirements. Although TENO has very low dissipation for smooth flow, it 
introduces a cutoff value CT to maintain the non-oscillatory shock-capturing property. As 
CT actually controls the dissipation property of TENO, the choice of CT for better shock-
capturing capability also means higher dissipation for small structures. To overcome this, in 
this paper, a new local adaptive method is proposed for the choice of CT . By introducing 
a novel adaptive function based on the WENO smoothness indicators, CT is dynamically 
adjusted from 1.0 × 10−10 for lower dissipation to 1.0 × 10−4 for stable capturing of shock 
according to the smoothness of the reconstruction stencil. The numerical results of the 
new method are compared with those of the original TENO method and an adaptive TENO 
method in Fu et al. (2019) [49]. It reveals that the new method is capable of suppressing 
numerical oscillations near discontinuities while further improving the resolution of TENO 
at a low extra computational cost.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Compressible flow is ubiquitous in engineering and scientific researches. It is featured by multi-scale spatial/temporal 
structures like turbulence, discontinuities like shockwaves, and the interactions of such structures. Accurate and high fidelity 
numerical simulation of compressible flow requires numerical methods that are capable of simultaneously resolving all of 
these flow phenomena. However, different structures have different demands: low-dissipation for multi-scale structures and 
high-dissipation for discontinuities. Such contradictory requirements imply that a numerical scheme should be able to adjust 
its dissipation property in accordance with the flow structure being locally resolved.

The state-of-the-art study of numerical methods for compressible flow concerns the development of high-order shock-
capturing schemes. Such methods suppress numerical oscillations in the vicinity of discontinuities by increasing dissipation 
when the local gradient is large enough while maintaining low dissipation in smooth regions.

By using intrinsic limiting procedures, classical high-order shock-capturing schemes, as exemplified by total variation 
diminishing (TVD) schemes [1], essentially non-oscillatory (ENO) schemes [2], and so on [3], can resolve discontinuities 
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without numerical oscillations; nevertheless, they suffer from excessive numerical dissipation in smooth regions. The family 
of weighted essentially non-oscillatory (WENO) finite difference schemes [4,5] achieves lower dissipation for smooth fields 
as well as non-oscillatory shock-capturing capability. Based on the smoothness of each sub-stencil, WENO schemes dynam-
ically adjust local numerical dissipation in an elaborate weighting approach. Within the general framework of the WENO-JS 
scheme by Jiang & Shu [5], the WENO family is further extended and developed. Henrick et al. [6] found that the WENO-JS 
scheme, at critical points, does not satisfy the fifth-order convergence conditions, and the WENO-M scheme was proposed 
to circumvent such problem by mapping of the WENO-JS weights. Borges et al. [7] introduced a higher-order smoothness 
indicator for the non-linear weights and proposed the WENO-Z scheme which satisfies the sufficient criteria for fifth-order 
convergence at much lower computational cost than the WENO-M method. The accuracy of the WENO-Z scheme was further 
improved in [8–13]. Shen and Zha [14] showed that at transitional points, which connect smooth region and discontinuity, 
the accuracy of fifth-order WENO schemes is second-order and a series of multi-step weighting methods [15–18] were de-
veloped to improve the accuracy. Other high-order methods were also developed based on the ideal of WENO in [19–25]. 
Even though the order of accuracy for WENO schemes can be designed to be arbitrarily high [26–29], the spectral resolution 
of WENO schemes is still not satisfactory [30]. Specifically, their excessive numerical dissipation for small scale structures 
in compressible turbulent flows may overwhelm physical dissipation [31]. Compared to linear schemes of the same order, 
such high dissipation is related to the weighting mechanism and the smoothness indicators of the WENO scheme.

By using a switcher/shock-sensor to classify the flow field as smooth or discontinuous, hybrid schemes [32–35] apply 
low dissipation schemes such as compact schemes [36] in smooth regions and shock-capturing schemes such as the WENO 
scheme when discontinuities emerge. The high dissipation caused by the weighting mechanism of WENO for smooth regions 
is thus avoided. Varieties of methods have been proposed to develop switcher/shock-sensor method [37,38,3], such as the 
flow variable difference between neighboring points [32–34], the flow gradients [31,39], the multi-resolution coefficients 
[35,40], and the Boundary Value Diminishing (BVD) criterion [41,42]. Obviously, the performance of a hybrid scheme relies 
on the accuracy of its switcher/shock-sensor.

Beyond typical WENO and hybrid approaches, a novel way to control numerical dissipation was introduced in the fam-
ily of targeted ENO (TENO) schemes [43–45]. By using a scale separation technique [46], TENO cuts off the least smooth 
sub-stencil and therefore avoids the high dissipation issue caused by the WENO weights. The idea of TENO can be extended 
to arbitrarily high order [47,48]. TENO achieves significant low dissipation for smooth fields; however, it still produces nu-
merical oscillations for some strong discontinuities if the cutoff value CT used is inappropriate. With constant CT , better 
shock-capturing capability also leads to higher dissipation for small structures, a compromise between shock-capturing and 
small structure resolution is inevitable. Based on a non-linear shock detector, an adaptive version of CT was developed in 
[45,49]. This adaptive TENO scheme (TENO-A) increases CT near discontinuities for non-oscillatory shock-capturing and uses 
smaller CT in smooth regions for higher resolution. Compared to TENO, TENO-A achieves higher resolution and maintains 
shock-capturing capability at the price of higher computational cost. Although TENO-A performs very well for most prob-
lems, the shock detector requires a compromise between low dissipation and good ENO property if the problem considered 
becomes more complicated, as discussed in [50].

In this paper, we propose a new adaptive method to improve the performance of TENO as well as TENO-A. Based on 
the shock-sensor developed in [51], a novel adaptive function for CT is introduced. The new method maintains the low 
dissipation property of TENO for smooth fields and maintains its shock-capturing capability at a low price. This paper is 
organized as follows. In Sec. 2, the TENO scheme is briefly reviewed. The new method is proposed and analyzed in Sec. 3. 
Numerical validations are presented in Sec. 4. Concluding remarks are given in 5.

2. The fifth-order targeted ENO scheme of Fu et al. [43,45,49]

To describe the TENO scheme, we consider the one-dimensional hyperbolic conservation law expressed as:

∂u

∂t
+ ∂ f

∂x
= 0 (1)

where u(x, t) is the conserved variable and f (u) is the flux function. To solve (1) numerically, we transform it into semi-
discretized form on uniformly discretized space:

dui

dt
= −

f̂ i+ 1
2

− f̂ i− 1
2

�x
(2)

in which ui = u(xi), f̂ i+ 1
2

= f̂ +
i+ 1

2
+ f̂ −

i+ 1
2

is the numerical flux at cell interface xi+ 1
2

= xi + �x/2 and �x = xi+1 − xi . The 

splitted numerical fluxes f̂ ±
i+ 1

2
at cell interface are to be reconstructed. For simplicity, ± in the superscript are dropped in 

the following parts of this paper.
The numerical flux f̂ i+ 1

2
can be obtained by high order schemes. The fifth -rder upstream-biased scheme is written as:

f̂ i+ 1 = 2
f i−2 − 13

f i−1 + 47
f i + 27

f i+1 − 3
f i+2, (3)
2 60 60 60 60 60

2
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where f i = f (ui) is the point value of the flux. Eq. (3) is a convex combination of three third order schemes on three 
sub-stencils S0 = (xi−2, xi−1, xi), S1 = (xi−1, xi, xi+1), and S2 = (xi, xi+1, xi+2):

f̂0,i+1/2 = 1

3
f i−2 − 7

6
f i−1 + 11

6
f i, (4)

f̂1,i+1/2 = −1

6
f i−1 + 5

6
f i + 1

3
f i+1, (5)

f̂2,i+1/2 = 1

3
f i + 5

6
f i+1 − 1

6
f i+2 (6)

with linear weights

c0 = 0.1, c1 = 0.6, c2 = 0.3

respectively. For higher spectral resolution, the optimized weights can be applied as in [49]:

c0 = 0.1235341937, c1 = 0.5065006634, c2 = 0.3699651429.

By substituting the linear weights with the non-linear TENO weights, we have the fifth-rder TENO scheme, which has the 
same form as the WENO scheme:

TENO5 : f̂ i+1/2 = ω0 f̂0,i+1/2 + ω1 f̂1,i+1/2 + ω2 f̂2,i+1/2. (7)

To compute the non-linear weights ωk , the smoothness of each sub-stencil is firstly measured by:

γk =
(

C + τK

βk + ε

)q

,k = 0,1,2 (8)

in which τK is the global smoothness indicator, βk is the WENO smoothness indicator [5] of each sub-stencil given by:

β0 = 13

12
( f i−2 − 2 f i−1 + f i)

2 + 1

4
( f i−2 − 4 f i−1 + 3 f i)

2, (9)

β1 = 13

12
( f i−1 − 2 f i + f i+1)

2 + 1

4
( f i−1 − f i+1)

2, (10)

β2 = 13

12
( f i − 2 f i+1 + f i+2)

2 + 1

4
(3 f i − 4 f i+1 + f i+2)

2. (11)

Noted that the choice for τK is flexible for TENO [43]. The global smoothness indicator of WENO-Z, i.e.:

τK = τ5 = |β2 − β0| (12)

is used in this paper. C and q are parameters to incorporate a scale-separation mechanism [46] with typical values C = 1
and q = 6. ε is a small value to avoid division by zero as in the WENO scheme. ε is set to 1 × 10−40 in this paper.

Then, a ENO-like stencil selection method is applied. The smoothness measure Eq. (8) is normalized:

χk = γk∑2
k=0 γk

, k = 0,1,2 (13)

and passed to a cutoff function:

δk =
{

0 χk < CT ,

1 otherwise.
(14)

Typically CT is set to be 1 × 10−5 [43].
Finally, the non-linear TENO weights are computed as:

ωk = δkck∑2
k=0 δkck

, k = 0,1,2. (15)

The dissipation property of TENO is related to the choice of the cutoff value CT [43,44]. Smaller CT brings lower dissi-
pation but may also lead to numerical oscillations. An adaptive CT is proposed in [45,49]:⎧⎪⎨

⎪⎩
CT = 10−�β�,
β = α1 − α2(1 − g(m)),

g(m) = (1 − m)4(1 + 4m),

(16)
3



J. Peng, S. Liu, S. Li et al. Journal of Computational Physics 425 (2021) 109902
where{
m = 1 − min(1,

ηi+1/2
Cr

)

ηi+1/2 = min(ηi−1, ηi, ηi+1)
(17)

in which

ηi = 2|� f i+1/2� f i−1/2| + ε

(� f i+1/2)
2 + (� f i+1/2)

2 + ε
, � f i+1/2 = f i+1 − f i, ε = 0.9Cr

1 − 0.9Cr
ξ2, (18)

and �·� denotes the floor function. The values of the parameters are α1 = 10.0, α2 = 5.0, Cr = 0.24, and ξ = 10−3 [49]. The 
setup (16) gives CT a dynamically adjustable interval according to the smoothness of the flow field ranging from 10−5 for 
shock-capturing to 10−10 for low dissipation. The TENO scheme with adaptive CT Eq. (16) is referred to as TENO5-A.

3. The new method

The adaptive method (16) for CT brings extra computational cost. Besides, more free parameters (Cr , α1, α2, and ξ ) are 
introduced. As will be shown latter, the adaptive method Eq. (16) is insufficient to suppress numerical oscillations for some 
strong discontinuities.

To design a more efficient adaptive CT , we propose the following principles:

• The adaptive method only uses information that has already been provided by the WENO part, e.g., βk , τK .
• The upper and lower bounds of CT are given by magnitudes instead of values.
• The fewer free parameters, the better.

Following these principles, we propose a new adaptive CT :

{
CT = 10−m,

m = Bl + �θ(Bu − Bl)�, (19)

where

θ = 1

1 + (
maxk χ̃k/H

) , χ̃k = τK

βk + ε
, k = 0,1,2. (20)

θ is the Runge function that it has been used as shock-sensor [16] and switcher [52] to design adaptive methods. H is 
the intensity threshold for discontinuities. For example, by taking H = 10, it means that if the maximum of χ̃k is over 10 
then the whole stencil is considered to be discontinuous. Parameters Bl and Bu are the lower and upper magnitudes of CT . 
Typical values of Bl and Bu are:

Bl = 4, Bu = 10.

According the smoothness of the stencil, θ varies from 0 for discontinuity to 1 for smooth field. The value of CT therefore 
varies from 10−Bl to 10−Bu . Noted that CT equals 10−Bu only when θ is exactly 1.0, i.e. maxk χ̃k/H = 0.0.

Considering that the computational cost for computing 10−m on computer is very high. We introduce a constant array, 
the Ladder array, to store pre-calculated CT s of different magnitudes:

Ladder : Lad(Bl : Bu) = (10−Bl , ...,10−Bu ). (21)

CT is then determined by:

CT = Lad(m). (22)

In the following part of the paper, we refer to the new method as TENO5-LAD (Local Adaptive Dissipation)
Spectral properties of TENO5-LAD and the linear fifth-order upwind scheme, the WENO-Z scheme, and TENO schemes 

with different CT s are illustrated in Fig. 1. The new scheme maintains the good spectral property of the TENO scheme. It 
is worth noting that although TENO5-A shows lower dissipation and dispersion error at high wavenumbers, it is unable to 
suppress numerical oscillations, as will be shown in Sec. 4.
4



J. Peng, S. Liu, S. Li et al. Journal of Computational Physics 425 (2021) 109902
Fig. 1. Dispersion and dissipation properties of different schemes.

4. Numerical validation

To assess the new method, we perform several numerical tests, including 1D scalar, 1D Euler, and 2D Euler problems. 
Numerical results are compared with TENO schemes with different CT setups as well as WENO-Z. Unless specified, CT for 
TENO5 is set to be 10−5, the parameters of the TENO5-A scheme is taken as:

a1 = 10.0, a2 = 5.0, Cr = 0.24, ξ = 10−3,

and the parameters of the presented method is set to be:

H = 10.0, Bl = 4.0, Bu = 10.0.

As the main theme of this paper is to develop an adaptation method, therefore, if not specified, the canonical sub-stencil 
weights (the standard WENO values) are used for the tested TENO schemes for better comparison purposes. Considering that 
the parameters of TENO5-A are designed for the optimized weights, for completeness, results computed with the optimized 
weights are also provided for the tested TENO schemes for some cases.

For all of the numerical tests in this section, the third order TVD Runge-Kutta method [53] is used for time advancing:

u(1) = un + �tL(un) (23)

u(2) = 3

4
un + +1

4
u(1) + 1

4
�tL(u(1)) (24)

un+1 = 1

3
un + 2

3
u(2) + 2

3
�tL(u(2)). (25)
5



J. Peng, S. Liu, S. Li et al. Journal of Computational Physics 425 (2021) 109902
Table 1
L2 errors and convergence orders for different schemes for the linear advection equation with initial condition 
(30) at t=2.

N Upwind5 TENO5 TENO5-A Present

L2 order L2 order L2 order L2 order

20 2.7611E-003 - 2.7611E-003 - 2.7611E-003 - 2.7611E-006 -
40 9.5732E-005 4.85 9.5732E-004 4.85 9.5732E-004 4.85 9.5732E-006 4.85
80 3.0514E-006 4.97 3.0514E-006 4.97 3.0514E-006 4.97 3.0514E-006 4.97
160 9.6010E-008 4.99 9.6010E-007 4.99 9.6010E-007 4.99 9.6010E-006 4.99
320 3.0061E-009 5.00 3.0061E-009 5.00 3.0061E-009 5.00 3.0061E-006 5.00

Unless specified, the time step �t is given by:

�t = σ
�x

max
i

(|ui | + αi)
(26)

for one dimensional cases and

�t = σ
�tx�t y

�tx + �t y
, �tx = �x

max
i, j

(|ui, j| + αi, j)
, �t y = �y

max
i, j

(|vi, j| + αi, j)
(27)

for two dimensional cases, where σ is the Courant-Friedrichs-Lewy number. If not specified, the CFL number is set as 0.2 
for all cases. It should be noted that a small CFL number is chosen in this paper to reduce the influence of time advancing 
method to evaluate the new scheme’s performance better. The effect of the CFL number on TENO schemes can be found in 
[43,49].

For the convective terms, the global Lax-Friedrichs splitting method [54] is used, and the reconstruction of the numerical 
flux is performed in the characteristic space [55].

4.1. Linear advection equation

Let us consider the linear wave advection problem. The linear advection equation is given by:{
ut + ux = 0 −1 � x � 1,

u(x,0) = u0(x) periodic boundary.
(28)

The exact solution of Eq. (28) at time t with the initial condition u0(x) is given by

u(x, t) = u0(x − t). (29)

Two cases are studied in this section.
The first case is to evaluate the convergence order of the present scheme for a smooth solution. The initial condition is 

given by:

u0(x) = sin(πx − sinπx

π
). (30)

This initial condition has two critical points where f ′ = 0 and f ′′′ �= 0 [6]. The time step �t is set to �x5/3.
The L2 norm of the error is obtained by comparison with the exact solution at t = 2 according to:

L2 =
√√√√ 1

N

N∑
i=1

(
ui − uexact,i

)2

Table 1 shows the L2 norms as well as convergence orders for different schemes. The differences of L2 errors between 
different schemes are trivial.

The initial condition of the second case is:

u0(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
6 (G(x, β, z − δ) + G(x, β, z + δ) + 4G(x, β, z)), −0.8 � x < −0.6

1, −0.4 � x < −0.2

1 − |10(x − 0.1)|, 0 � x < 0.2
1
6 (F (x,α,a − δ) + F (x,α,a + δ) + 4F (x,α,a)), 0.4 � x < 0.6

0, otherwise

(31)
6
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Fig. 2. Results of the linear advection equation with the initial condition (31) at t=6, N=200.

where

G(x, β, z) = e−β(x−z)2
, F (x,α,a) =

√
max(1 − α2(x − a)2,0),

a = 0.5, z = −0.7, δ = 0.005,α = 10, β = log2/36δ2.

The solution of Eq. (31) contains a smooth but narrow combination of Gaussians, a square wave, a sharp triangle wave, and 
a half ellipse [5]. As this test case is a combination of both smooth and non-smooth functions, it has been widely used to 
test the discontinuity capturing capability of a scheme.

Numerical results of different schemes are given in Fig. 2. It can be observed that TENO5-A produces oscillations for 
the square wave while the others not. The presented method well preserves the ENO property for the discontinuities and 
maintains low dissipation for the smooth waves.

Consider an extreme condition. Solution of the initial condition (31) scaled by a factor of 10−3 are given in Fig. 3. It 
can be observed that TENO5-A generates obvious oscillations while TENO5 and TENO5-LAD obtain almost identical results 
with respect to the non-scaled result. It indicates that the adaptation method of TENO5-A with the chosen parameters is 
not scalar invariant for such circumstances.

It should be pointed out that, for this kind of extreme cases, the numerical oscillations of TENO5-A maybe caused by 
the non-smoothness measurement of Eq. (18) which is not functioning well with the chosen ε , and the user may use a 
proper small value of ε according to their problem or machine to overcome this deficiency. However, it is difficult for a 
7



Fig. 3. Results of the linear advection equation with the initial condition (31) scaled by a factor of 10−3 at t=6, N=200. (For interpretation of the colors in 
the figure(s), the reader is referred to the web version of this article.)

complex problem to choose a proper value to maintain both high accuracy and oscillation free [50]. Developing robust and 
problem-independent methods is still an open issue.

4.2. One dimensional Euler equations

The one dimensional Euler equations are given by

Ut + F (U )x = 0 (32)

where U = (ρ, ρu, e)T and F (U ) = (ρu, ρu2 + p, u(e + p))T . Here ρ is the density, u is the velocity, e is the total energy, p
is the pressure, and for ideal gas e = p

γ −1 + 1
2 ρu2, γ = 1.4 is the ratio of specific heat.

Six typical examples containing strong discontinuities are considered here. The first example is the Sod problem [5]. The 
initial conditions are:

(ρ, u, p) =
{

(1,0,1) x � 0

(0.125,0,0.1) x > 0
(33)

with zero gradient boundary conditions applied at x = ±0.5.
J. Peng, S. Liu, S. Li et al. Journal of Computational Physics 425 (2021) 109902
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Fig. 4. Results of different schemes for the Lax problem, t=0.13, N=400.

Fig. 5. Results of different schemes for the Lax problem with CFL=0.2, t=0.13, N=100.

Fig. 6. Results of different schemes for the Lax problem with CFL=0.4, t=0.13, N=100.
9
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Fig. 7. Results of different schemes for the Lax problem with CFL=0.6, t=0.13, N=100.

Fig. 8. Results of different schemes for the Sod problem, t=0.14, N=400.

Fig. 9. Results of different schemes for the two interacting blast waves problem, t=0.038, N=400.
10
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Fig. 10. Results of different schemes for the Le Blanc problem, t=6.0, N=800.

Fig. 11. Results of different schemes for the Sedov problem, t=0.001, N=800.

The second problem is the Lax problem [5], the initial conditions are given by:

(ρ, u, p) =
{

(0.445,0.698,3.528) x � 0

(0.5,0,0.571) x > 0
(34)

with zero gradient boundary conditions at x = ±0.5.
The third problem is the two interacting blast waves case [56]. The initial conditions are given by:

(ρ, u, p) =

⎧⎪⎨
⎪⎩

(1,0,1000) 0 � x < 0.1

(1,0,0.01) 0 � x < 0.9

(1,0,100) 0.9 � x � 1.

(35)

Zero gradient boundary conditions are set at boundaries.
The fourth problem is the Le Blanc problem [57]. The initial conditions are given by:

(ρ, u, p) =
{

(1,0, 2
3 × 10−1) 0 � x � 3

(1,0, 2
3 × 10−10) 3 < x � 9.

(36)

Zero gradient boundary conditions are set at boundaries.
11
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Fig. 12. Results of different schemes for the Shu-Osher problem, N=200, t=1.8.

The fifth problem is the Sedov problem [57]. The initial conditions are given by:

(ρ, u, p) =
{

(1,0,1.28 × 106/�x) 2 − 0.5�x � x � 2 + 0.5�x

(1,0,4.0 × 10−13) otherwise,
(37)

where �x is the grid size. Zero gradient boundary conditions are set at x = 0.0 and x = 4.0.
The last problem is the Shu-Osher problem [5]. It describes the interaction of a Mach 3 shock with a density wave. The 

initial conditions are given by:

(ρ, u, p) =
{

( 27
7 , 4

√
35

9 , 31
3 ) x < −4

(1 + 1
5 sin5x,0,1) x � −4

(38)

Zero gradient boundary conditions are applied at x = ±5.
Fig. 8 to Fig. 12 illustrate the results of the above cases. Reference results are obtained by the WENO-Z scheme with 

2000 points.
For the sod problem, as shown in Fig. 8, each scheme resolves the discontinuities well. When the discontinuity becomes 

stronger for the Lax problem, as being shown in Fig. 4, the TENO5-A method produces oscillations near the contact wave. 
The presented method maintains the ENO property. Results computed with different CFL numbers on a N = 100 grid are 
also given in Figs. 5 to 7.
12
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Fig. 13. Density contours of different schemes for the Rayleigh–Taylor instability problem at t=1.95 (blue = 0.85 to red = 2.25), [Nx × N y ] = [128 × 512]. 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

The two interacting blast waves problem is a more severe case with very strong discontinuities for high order schemes. 
CT is adjusted to 10−4 for TENO5 to obtain a stable result. The upper bound of CT of TENO5-A is also adjusted accordingly. 
From Fig. 9(b), it can be seen that the presented method obtains better-resolved structures than the others.

The Le Blanc problem and the Sedov problem involve even stronger pressure jumps and require stronger stability of a 
scheme. To calculate this kind of problem without the help of the positivity-preserving technique, CT is adjusted to be 1.0−3

for the Le Blanc problem and 1.0−2 for the Sedov problem for TENO5. The upper bounds of CT of TENO5-A and TENO5-LAD 
are also adjusted accordingly. Cr for TENO5-A is set to be 0.7 for the Le Blanc problem and 1.0 for the Sedov problem. 
The parameter H used by TENO5-LAD is 1.5 for both cases. Results in Fig. 10 and Fig. 11 show that the TENO schemes can 
handle such tough problems. TENO5-LAD obtains similar results near discontinuities as TENO5, indicating the effectiveness 
of the new adaptive function.

The results of the Shu-Osher problem are shown in Fig. 12. The TENO methods give better resolved short waves than 
the WENO-Z method. When computed with the optimized weights (see Fig. 12(d)), the TENO schemes obtain much better 
resolved short waves than WENOZ. The TENO schemes show similar results for the short waves; however, TENO5-A shows 
some overshoots near the shock waves (see Fig. 12(c)). The presented method better preserves the ENO property.

4.3. Two dimensional Euler equations

4.3.1. Rayleigh–Taylor instability
The two-dimensional Rayleigh-Taylor instability problem is often used to assess the dissipation property of a high-order 

scheme. It describes the interface instability between fluids with different densities when acceleration is directed from the 
heavy fluid to the light one. The acceleration effect is introduced by adding ρ and ρv to the y-momentum and the energy 
equations, respectively. The initial conditions are:

(ρ, u, v, p) =
{

(2,0,−0.025αcos(8πx),2y + 1), 0 ≤ y < 1/2,

(1,0,−0.025αcos(8πx), y + 3/2), 1/2 ≤ y < 1,
(39)
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Fig. 14. Density contours of different schemes for the Rayleigh–Taylor instability problem at t=1.95 (blue = 0.85 to red = 2.25), [Nx × N y ] = [256 × 1024]. 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

where α = √
γ p/ρ is the speed of sound with γ = 5/3. The computational domain is [0, 0.25] × [0,1]. The left and 

right boundaries are set with reflective boundary conditions, and the top and bottom boundaries are set as (ρ, u, v, p) =
(1, 0, 0, 2.5) and (ρ, u, v, p) = (2, 0, 0, 1) respectively. The solution is integrated to t = 1.95.

Solutions on two sets of meshes are illustrated in Fig. 13 and Fig. 14. The TENO schemes resolve richer structures than 
the WENO-Z scheme. As the CT ranges for TENO5-A and TENO5-LAD are the same, their results are similar that they both 
obtain richer structures compared to TENO5.

4.3.2. Riemann problems
Two 2D Riemann problems are considered in this section.
The first case corresponds to configuration 3 in [58] with the initial conditions

(ρ, u, v, p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(0.138, 1.206, 1.206, 0.029) x ≤ 0.5, y ≤ 0.5,

(0.5323, 1.206, 0.0, 0.3) x ≤ 0.5, y > 0.5,

(0.5323, 0.0, 1.206, 0.3) x > 0.5, y ≤ 0.5,

(1.5, 0.0, 0.0, 1.5) x > 0.5, y > 0.5.

(40)

Solutions are integrated to t = 0.3. A uniform grid of (1024 × 1024) is used.
Density contours are shown in Fig. 15. It can be seen that the TENO schemes present much richer K-H instability 

structures than the WENO-Z scheme. TENO5 and TENO5-LAD resolve more structures on the contact lines. As the parameters 
for TENO5-A are designed for optimized sub-stencil weights, the results of TENO schemes with optimized weights are shown 
in Fig. 16. It can be seen that with the optimized weights, TENO5-A better resolves the structures. The presented method 
gives a similar resolution of the structures as TENO5-A and also better maintains the ENO property.
14
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Fig. 15. Density contours for 2D Riemann problem with initial conditions Eq. (40).

The second case corresponds to configuration 12 in [58] with the initial conditions

(ρ, u, v, p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(0.8, 0, 0, 1.0) x ≤ 0.5, y ≤ 0.5,

(1.0, 0.7276, 0, 1.0) x ≤ 0.5, y > 0.5,

(1.0, 0.0, 0.7276, 1.0) x > 0.5, y ≤ 0.5,

(0.5313, 0.0, 0.0, 0.4) x > 0.5, y > 0.5.

(41)

Solutions are integrated to t = 0.25. As the small structures induced by the KH instability for this case require even lower 
dissipation and smaller grid size [41], a gird of (1400 × 1400) is used to illustrate the advantage of the presented method.

Density contours are shown in Fig. 17. The TENO schemes better resolve the small structures than WENOZ. The presented 
method resolves more small structures than the other schemes. Results of the TENO schemes computed with optimized 
weights are shown in Fig. 18. TENO5-A has a higher resolution of the structures than TENO5. The presented method obtains 
a similar resolution of the structures as TENO5-A.

4.3.3. Double Mach reflection
The double Mach reflection test is a mimic of the planar shock reflection in the air from wedges. It is a widely used 

benchmark to test the ability of shock capturing as well as the small scale structure resolution of a certain scheme. In the 
present simulation, the computation domain is taken as [0, 4] × [0, 1]. The lower boundary is set to be a reflecting wall 
15
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Fig. 16. Density contours for 2D Riemann problem with initial conditions Eq. (40), computed with optimized sub-stencil weights.

starting from x = 1
6 . At t = 0, a right-moving 60◦ inclined Mach 10 shock is positioned at ( 1

6 , 0). The upper boundary is 
set to describe the exact motion of the Mach 10 shock. The left boundary at x = 0 is assigned with post-shock values. 
Zero gradient outflow condition is set at x = 4. Readers may refer to [56,59] for detailed descriptions of the double Mach 
reflection problem. A uniform grid is used with �x = �y = 1

256 .
Fig. 19 shows the density contours of different methods at t = 0.2. All methods capture the discontinuities. Density 

contours of the roll-up region of different methods are shown in Figs. 20 to 23. Compared to the other schemes, the 
presented method resolves the K-H instability structures with lower dissipation.

In order to test the CFL effect on different schemes, numerical results with different CFL numbers are provided in Fig. 22
(CFL=0.4) and Fig. 23 (CFL=0.6). It can be seen that the resolved K-H structures are sensitive to the CFL number. TENO5-A 
varies more obviously than TENO5 and the present scheme. To test the performance of a spatial scheme, it seems reasonable 
to use a small CFL number.

4.3.4. High Mach number astrophysical jet
Consider the Mach 80 astrophysical jet problem [60,47]. This case is generally computed with the help of positivity-

preserving methods. However, in this simulation, we do not incorporate such methods to evaluate the robustness of the 
tested schemes. The computational domain is [0, 2] × [−0.5, 0.5]. The initial condition is given by:

(ρ, u, p) = (5.0,0.0,0.4127).
16
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Fig. 17. Density contours for 2D Riemann problem with initial conditions Eq. (41) on a grid of 1400 × 1400.

For the left boundary if y ∈ [−0.05, 0.05], then (ρ, u, p) = (5.0, 30.0, 0.4127) otherwise (ρ, u, p) = (5.0, 0.0, 0.4127). The 
boundary conditions for the top, bottom, and the right boundaries are outflow. γ is set to be 5/3. The final time is 0.07.

Without the help of positivity-preserving methods, the parameters of the TENO schemes are adjusted to avoid failure. 
The parameter of TENO5 is set to be:

CT = 10−2.

The parameters of TENO5-A are set as:

a1 = 10, a2 = 8, Cr = 0.55, ξ = 10−3.

The parameters of TENO5-LAD are set as:

Bl = 2, Bu = 10, H = 1.57.

It should be noted that the parameters for TENO5-A and TENO5-LAD are obtained by fixing the upper and lower CT bounds 
and fine-tuning the free parameters Cr and H for the best result of each scheme. The computation is performed on a 
(Nx, N y) = (512, 256) mesh. The CFL number for this simulation is 0.05 for all tested schemes.
17



Fig. 18. Density contours for 2D Riemann problem with initial conditions Eq. (41) on a grid of 1400 × 1400, computed with optimized sub-stencil weights.

Table 2
Averaged computational time (in second) of a single time step of each scheme for different 2D cases, 
normalized values with respect to the computational time of TENO5 are given in the brackets.

Case Grid number WENO-Z TENO5 TENO5-A Present

Rayleigh–Taylor instability 128×512 0.14(0.93) 0.15(1.0) 0.2(1.33) 0.16(1.07)
256×1024 0.59(0.88) 0.67(1.0) 0.88(1.31) 0.70(1.04)

2D Riemann Problem Case 1 1024×1024 2.57(0.88) 2.89(1.0) 3.71(1.28) 2.99(1.03)
2D Riemann Problem Case 2 1400×1400 5.03(0.88) 5.71(1.0) 8.26(1.45) 6.33(1.11)
Double Mach Reflection 1024×256 0.59(0.89) 0.66(1.0) 0.87(1.31) 0.69(1.05)
High Mach number jet 512×256 0.31(0.88) 0.35(1.0) 0.51(1.46) 0.38(1.08)

Fig. 24 shows the density contours of different methods at t = 0.07. Compared to the other schemes, the presented 
method better resolves the flow structures, especially the structures near the jet front.

4.3.5. Computational efficiency
The computational times of each scheme for different 2D cases are given in Table 2. All tests are computed on the same 

desktop workstation. TENO5-LAD needs about 5% ∼ 10% more time than TENO5 while TENO5-A needs about 30% ∼ 40%
more computational time.
J. Peng, S. Liu, S. Li et al. Journal of Computational Physics 425 (2021) 109902
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Fig. 19. Density contours of the double Mach reflection problem, ranging from ρ = 1.4 to 21 with 45 equally separated levels.
19
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Fig. 20. Zoom-in view of the roll-up region. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

5. Conclusion

In this paper, an efficient target ENO scheme, the TENO5-LAD scheme, is proposed for compressible flow simulation. 
By utilizing a novel adaptive method, the cutoff parameter CT is dynamically adjusted according to the smoothness of 
the reconstruction stencil. Numerical results show that the presented method maintains both of the ENO property and 
the low dissipation property of the TENO scheme at a lower extra computational cost. Due to the novel adaptive method, 
the presented method is more efficient than the TENO5 scheme and the TENO5-A scheme, and the pre-chosen value of 
the parameters can be applied to a wide range of cases. Furthermore, as only the most essential ingredients of TENO are 
required for the adaptive process, the presented method can be directly extended to higher-order TENO schemes.
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Fig. 21. Zoom-in view of the roll-up region computed with optimized sub-stencil weights. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Acknowledgement

This paper is supported by the National Numerical Windtunnel project (NNW2019ZT1-A02). The first author is partially 
supported by NSFC under Grant No. 11902326 and the LHD Youth Innovation Fund under Grant No. LHD2019CX05. The fifth 
author is partially supported by NSFC under Grants Nos. 11872067 and 91852203 and NKRDPC No. 2016YFA0401200.

The authors acknowledge the anonymous reviewers for their valuable comments and suggestions. The authors also ac-
knowledge Dr. Zhiwei He for his suggestions on the numerical examples.
21



J. Peng, S. Liu, S. Li et al. Journal of Computational Physics 425 (2021) 109902
Fig. 22. Zoom-in view of the roll-up region computed with optimized sub-stencil weights, CFL=0.4. (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)
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