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A B S T R A C T

Drops on a free-flow/porous-medium-flow interface have a strong influence on
the exchange of mass, momentum and energy between the two macroscopic
flow regimes. Modeling droplet-related pore-scale processes in a macro-scale
context is challenging due to the scale gap, but might be rewarding due to rela-
tively low computational costs. We develop a three-domain approach to model
drop formation, growth, detachment and film flow in a lower-dimensional in-
terface domain. A simple upscaling technique allows to compute the drop-
covered interface area fraction which affects the coupling fluxes. In a first
scenario, only drop formation, growth and detachment are taken into account.
Then, spreading and merging due to lateral fluxes are considered as well. The
simulation results show that the impact of these droplet-related processes can
be captured. However, extensions are necessary to represent the influence on
the free flow more precisely.

c© 2020 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Motivation

Drop formation at the interface between a single-

phase gaseous free flow and a two-phase flow in a hy-

drophobic porous medium occurs in many technical ap-

plications. Examples are the water management in fuel

cells, thermal insulation of building exteriors or turbine

heat exchange processes. With an appropriate pressure

∗Corresponding author: sina.ackermann@iws.uni-stuttgart.de

gradient, the liquid phase in the porous medium flows

towards the interface where it enters the surface pores.

For liquid water in a hydrophobic porous medium, drops

form on the pore throats and grow into the adjacent free-

flow domain. Depending on the surrounding flow condi-

tions, the drops might spread and merge, or be detached

by the free flow.

In fuel cells, for example, the drops might block the

surface and therefore prevent the reaction of air and oxy-

gen. To describe the processes happening in such ap-
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plications, two spatial scales are distinguished. On the

pore-scale, detailed information about pore sizes, indi-

vidual drop volumes and drop surfaces is given. The dis-

tribution of liquid and gas and their respective interfaces

can be described exactly. Averaging all fluid and ma-

terial properties over representative elementary volumes

(REVs) allows a description on the macro-scale, which

is usually sufficiently precise for real-life scenarios. On

the macro-scale, phase interfaces are no longer resolved.

In order to predict the consequences of drops on cou-

pled free-flow/porous-medium-flow systems, numerical

simulators are developed, as for example in [1] and [2].

In these cases, the coupled systems of free flow and flow

in porous media are modeled with the help of macro-

scale concepts. Even though these models do not take

detailed pore-scale information into account, the results

are often precise enough for real-world scenarios. In

contrast, droplet-related processes are usually studied

with pore-scale models which consider properties such

as interphasial areas and varying contact angles. Drop

dynamics and droplet-related flow processes differ from

the multi-phase flow patterns which are assumed and de-

scribed on the macro-scale. Therefore, the pore-scale

drop dynamics need to be combined with the macro-

scale model for flow and transport processes in coupled

free-flow/porous-medium-flow systems.

The aim of this work is to obtain a model concept on

the REV-scale that includes pore-scale droplet-related

processes. We therefore develop a multi-scale model

which contains droplet-related pore-scale information.

The upscaling procedure is designed in such a way that

the properties which influence the exchange of mass,

momentum and energy are preserved in the macro-scale

description.

1.2. State of the art

In the following literature review, we first refer

to models for single-phase coupled free-flow/porous-

medium-flow systems. Then, approaches for coupled

multi-phase systems without and with the influence of

drops are presented.

For single-phase systems, commonly either a one-

domain or a two-domain approach is applied. In the

one-domain approach, one set of balance equations de-

scribes the flow and transport processes in the whole

system. In the Brinkman equation derived in [3], the

Stokes equation is combined with Darcy’s law to ob-

tain one momentum balance equation which is valid in

the whole domain. Spatial parameters such as poros-

ity or permeability are defined such that they represent

the porous medium or the free flow domain respectively,

with a smooth transition zone in between.

In the two-domain approach, two different sets of bal-

ance equations describe the respective flow regimes. At

the sharp interface in between, coupling conditions de-

termine the exchange of mass, momentum and energy

between the two domains. Such conditions for single-

phase systems are analyzed in [4] and [5].

For multi-phase flows in porous media, modeling the

behavior of the liquid phase at the coupling interface

is challenging. The approach for compositional non-

isothermal systems presented in [6] and [7] is based on

the assumption that the normal water flux coming from

the porous medium evaporates directly into the gaseous

free flow when it reaches the interface. The same is as-

sumed in [8] and [9]. Another possibility is to assume

that the liquid phase does not reach the interface and can

therefore be neglected in the coupling conditions, as im-

plemented in [10]. Both assumptions neglect the fact that

liquid drops might form and move on the porous surface

in such a set-up.
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A multifluid approach is applied to model the accu-

mulation of liquid water in the gas channel of a fuel cell

in [1]. At the interface, the liquid pressure is set as the

capillary pressure between the liquid phase pressure in

the porous medium and the pore entry pressure which

is derived from the Hagen-Poiseuille equation. Another

multiphase, multifluid model is presented in [11], where

pending drops in the gas channel are investigated with

the help of separate transport equations for each phase.

In the concept presented in [2], the drops are added to

the coupled free-flow/porous-medium-system by apply-

ing a mortar method. The additional degrees of freedom

allow to store mass and energy in the interface. The drop

volume can then be computed as an additional primary

variable and is used to predict the drops’ influence in fuel

cells.

Within this work, we use the model developed in [2]

as a base to describe the droplet-related processes. In

their approach, only a small number of drops can be

computed due to stability issues. In addition, it is impos-

sible to take lateral fluxes into account. Therefore, we

implement the principles of [2] in a lower-dimensional

domain approach as for example presented in [12], to

obtain more flexibility with respect to drop dynamics.

1.3. Outline

In the next section, we explain the model concepts for

free flow, flow in porous media and drops at the inter-

face of these two flow regimes. Section 3 deals with the

coupling concept to describe the exchange of mass, mo-

mentum and energy. In Section 4, the numerical model

is formulated. Then, the results of numerical simulations

are presented in Section 5. Finally, a summary and out-

look are given in Section 6.

Fig. 1: Three-domain approach with lower-dimensional interface do-
main Γ between the full-dimensional subdomains Ωff and Ωpm

2. Model concepts

We extend the existing two-domain approach for cou-

pled free-flow/porous-medium-flow systems [6] to a

three-domain approach with an additional interface do-

main as shown in Figure 1. All droplet-related processes

are computed within the interface domain, following the

derivations in [2]. First, we take a full-dimensional in-

terface domain Ωif into account. Similar to the approach

in [12], the respective equations are then upscaled and

solved in a lower-dimensional interface domain Γ which

is defined as Ω̄ff ∩ Ω̄pm = Γ.

We assume local thermodynamic equilibrium, i. e.

mechanical, chemical and thermal equilibrium, and non-

isothermal conditions in each domain. The gas and liq-

uid phases consist of the two components water and air

which mix according to binary diffusion. The mass frac-

tions in each phase α ∈ {g, l} sum up to one: Xw
α +Xa

α = 1.

Further assumptions and the respective equations to be

solved are given in the next three sections. The nomen-

clature is listed in Table 2.

2.1. Free flow

We consider a single-phase gaseous free flow under

laminar conditions in Ωff. The gas is assumed to be com-

pressible. The total mass balance is given as

∂%g

∂t
+ ∇ · (%gvg) = qg . (1)
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For the mass of each component κ ∈ {a,w}, the following

balance holds:

∂(%gXκ
g)

∂t
+ ∇ ·

(
%gvgXκ

g − Dκ
g%g∇Xκ

g

)
= qκg . (2)

We solve the two component mass balance equations (2)

and use the supplementary relation Xw
g + Xa

g = 1.

The Navier-Stokes equations describe the momentum

balance:

∂(%gvg)
∂t

+ ∇ ·
(
%gvgvT

g

)
= ∇ ·

(
µg

(
∇vg + ∇vT

g

)
+

(
2
3
µg∇ · vg

)
I − pgI

)
+ %gg .

(3)

The dilatation term ∇ ·
((

2
3µg∇ · vg

)
I
)

will be neglected

in the following. The energy balance is

∂(%gug)
∂t

+ ∇ ·
(
%gvghg − λg∇T

)
= qT . (4)

Solving these four equations with respective initial

and boundary conditions yields the solution for the gas

pressure pg, the gas velocity vg, the mass fraction of

water in gas Xw
g and the temperature T . To close the

system of equations, additional supplementary equations

are necessary, as listed in Table 1.

2.2. Flow in porous media

A rigid solid phase and a two-phase flow interact with

each other in the porous medium Ωpm. Both fluids are

assumed to behave like Newtonian fluids, the gas phase

is compressible while the liqud phase is incompress-

ible. Instead of resolving the pore network in detail, the

porous medium properties are averaged over representa-

tive elementary volumes (REVs). The flow velocity is

assumed to be small (Re < 1) such that Darcy’s law can

be applied to compute the phase velocities:

vα = −K
krα

µα

(
∇pα − %gg

)
. (5)

For the total mass balance, the contributions from both

phases are summed up:

∑
α∈{l,g}

Φ
∂(%αS α)
∂t

+ ∇ ·

 ∑
α∈{l,g}

%αvα

 =
∑
α∈{l,g}

qα . (6)

The component mass balances for κ ∈ {a,w} are given

as ∑
α∈{l,g}

Φ
∂(%αXκ

αS α)
∂t

+ ∇ · Fκ =
∑
α∈{l,g}

qκα (7)

with the flux term

Fκ =
∑
α∈{l,g}

(%αvαXκ
α − Dκ,pm

α %α∇Xκ
α) . (8)

Due to the assumption of local thermodynamic equi-

librium, all present phases have the same temperature:

Tg = Tl = Ts = T . Therefore, we can formulate the

energy balance as

∑
α∈{l,g}

Φ
∂(%αuαS α)

∂t
+ (1 − Φ)

∂(%scsT )
∂t

+ ∇ ·

 ∑
α∈{l,g}

%αvαhα − λpm∇T

 = qT . (9)

In addition to the balance equations, S g +S l = 1 holds

and the relationship between the phase pressures is given

as pc(S w) = pn − pw, where the capillary pressure pc de-

pends on the wetting-phase saturation S w. With these

relationships, the gas pressure pg, the liquid-phase sat-

uration S l and the temperature T can be obtained by

solving the balance equations with respective initial and

boundary conditions. If the liquid phase disappears due

to evaporation, the mass fraction of water in gas Xw
g be-

comes the new primary variable instead of the saturation

S l ([13]). The remaining variables are either material

parameters or can be computed with additional supple-

mentary relations. Again, we refer to Table 1 for details.

The capillary pressure pc(S w) and the relative permeabil-

ities krα are computed with a regularized van-Genuchten

model ([14]).
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%g = %a
g + %w

g =
pg Ma

RT + %w
g (T, p) ideal gas,

[15]

%l = %mol,w
l (Mwxw

l + Maxa
l ) [13]

Dg = 2.13 · 10−5 105

pg

(
T

273.15

)1.8
[16]

Dl = 2.01 · 10−9 T
273.15+25 [17]

hg = Xw
g hw + Xa

gha [13]

hl = hw
l

ha
g = ca

g(T − 273.15) [18]

hw
α = hw

α (pα,T ) [15]

cg = ca
gxa

g + cw
g xw

g

cl = cw
l

ca
g = ca

g(T, pg) [19]

cw
α = cw

α (T, pα) [15]

uα = hα −
pα
%α

γlg = 0.2358 · (1 − T
Tc

)1.256

·
(
1 − 0.625(1 − T

Tc
)
)

[20]

λg = λa
g = 0.0255535 [21]

λl = λw
l (T, pl) [22]

µg according to the Wilke method [17]

µl = µw
l

Table 1: Fluid properties for the phases and components used in this
work

(a) Scenario 1: Formation, growth, detachment

(b) Scenario 2: Formation, growth, film flow

Fig. 2: Schematic view of the two scenarios for drops at the interface
of a free flow and a porous medium

2.3. Interface

The interface domain Ωif consists of a thin layer of the

free-flow region as shown on the right side in Figure 1.

We assume the top layer of the porous medium to con-

sist of parallel, circular and perpendicular pores. These

pores allow mass and energy fluxes between porous

medium and interface. On the upper boundary of the

interface domain, a smooth transition into the free-flow

domain is given. In contrast to the balance equations

in the two previous sections, the influence of pore-scale

drops is included in the REV-scale equations for the in-

terface domain. The transition from a full-dimensional

description for Ωif towards a lower-dimensional model

concept for Γ is outlined in the following.

2.3.1. Assumptions

We assume two different scenarios in the scope of this

work, as illustrated in Figure 2. In the first scenario, the

drops grow and detach, but do not interact. In the second

scenario, drops can touch and spread along the surface.

For the first scenario (Figure 2a), we assume the drops

to be symmetrical with a circular contact line. They do

not deform due to shear forces exerted from the sur-

rounding flow field. Horizontal fluxes along the inter-

face are neglected, leading to constant contact angles but

varying contact areas due to drop growth. With these as-

sumptions, drop formation, growth and detachment can
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be modeled. Detached drops are assumed to be trans-

ported away with the free flow and do not interact with

the interface anymore.

The second scenario (Figure 2b) takes spreading and

merging into account. If the drops merge, film flow

can occur along the interface. Lateral fluxes of both the

gas and the liquid phase are modeled, while the sliding,

rolling and break-up of drops is still neglected.

2.3.2. Transfer from pore- to REV-scale

The following concept is based on the simple up-

scaling and homogenization technique presented in [2].

Considerations on the pore-scale with the help of a

bundle-of-tubes model lead to an REV-scale concept

which allows to take droplet-related processes into ac-

count. In most porous media, not all pores have the same

radius. By clustering them in N pore classes with a re-

spective mean pore radius r̄pore, condition (17) has to be

evaluated only N times. The fate of the drops in each

pore class can be determined by evaluating the liquid

fluxes into the drops and the balance of drag and reten-

tion forces for each pore radius separately. Then, the

drop volumes of the individual drops are summed up as

Vsum
drop =

∑
i∈{1,...,N}

Vr̄pore,i nr̄pore,i , (10)

where nr̄pore,i is the number of pores in the respective pore

class.

In the following, we determine the area fractions of

the interface Γ that are available for mass fluxes be-

tween the interface and its neighboring compartments.

Summing up the cross-sectional areas of all liquid-filled

pores yields the total liquid-filled area Aif
l . The area frac-

tion available for liquid fluxes between porous medium

and interface is then given as

al =
Aif

l

ΦAΓ

. (11)

Fig. 3: Upscaling: The individual drop volumes are summed up to
Vup

drop, which is used to compute the drop-covered area fraction adrop.

This procedure is also illustrated in Figure 3. For the gas

flux between porous medium and interface, the remain-

ing area fraction is

ag = 1 − al . (12)

The area fractions will be used later to compute the

fluxes across the interface.

2.3.3. Lower-dimensional interface domain

With the upscaling procedure explained in the previ-

ous section, a lower-dimensional model concept can be

formulated for the interface domain. The idea to model

the droplet-related processes in a lower-dimensional in-

terface domain is inspired by the approach in [12], where

fractures in porous media are represented by lower-

dimensional domains. To conserve the quantities in the

interface domain, the general balance equations have to

be adapted to take the drops’ influence into account.

In the presented approach, the drops influence only

the area for the exchange of mass and energy between

the free flow and the flow in the porous medium. Due

to the small size of the drops, we assume that their in-

fluence on the free-flow velocity field can be neglected.

The drop volumes are computed as secondary variables.

The corresponding water volume in the interface domain

is taken into account in the saturation S l, which is a pri-

mary variable.

Total mass conservation is given by a balance of the

mass storage, fluxes and sinks:∑
α∈{l,g}

∂(%αS α)
∂t

+∇ ·
∑
α∈{l,g}

Fα = qff + qpm − qdetach . (13)
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The fluxes between the flow regimes have to be included

in the sink and source terms qff and qpm. These terms

will be defined in the drop coupling concept in Section

3.2. When a drop detaches, its mass is removed from the

system, which is modeled with the additional sink term

qdetach:

qdetach =

0 drop has not detached
%lVdrop

∆t drop has detached.
(14)

The same principle applies to the component mass

balances: ∑
α∈{l,g}

∂(%αXκ
αS α)

∂t
+ ∇ ·

∑
α∈{l,g}

Fκ
α

= qff,κ + qpm,κ − qdetach,κ . (15)

Again, the source terms represent the coupling fluxes

and the mass loss due to detached drops.

For the energy balance equation, the source terms are

formulated accordingly:∑
α∈{l,g}

∂(%αuαS α)
∂t

+ ∇ ·
∑
α∈{l,g}

FT
α

= qff,T + qpm,T − qdetach,T . (16)

With this approach, the interface can now store mass and

energy in the drop volumes. This means, the interface

has thermodynamic properties in contrast to the model

concept presented in [6].

In a first scenario, only vertical fluxes are assumed.

Therefore, the flux terms Fα, Fκ
α and FT

α for α ∈ {g, l}

are zero. Consequently, mass, momentum and energy

are only exchanged with the free flow and the porous

medium, not along the interface domain. Drops can only

form, grow and detach, but not move along the interface

or merge.

2.3.4. Drop formation, growth and detachment

Water drops form at the surface of a hydrophobic

porous medium due to a pressure gradient towards the

porous surface. If the liquid pressure ppm
l is larger than a

surface pore’s entry pressure pe and the gas pressure pff
g

above the pore, a drop forms:

ppm
l ≥ −

2γlg cos θ
rpore︸        ︷︷        ︸
pe

+pff
g . (17)

Since θ > 90◦, cos(θ) is negative and pe is multiplied by

−1 to obtain the total pressure which has to be exceeded

by ppm
l .

Once formed, the drops are fed by liquid fluxes from

the porous medium due to the pressure gradient towards

the interface. For vff
g > 0, the surrounding free flow pulls

on the drops and exerts a drag force

Fdrag =
1
2
%gv2

g,tcd(Re)Aproj , (18)

where Aproj is the projected drop area perpendicular to

the flow direction. The drag coefficient is defined as

cd = 46.247
(

ddrop

hchannel

)0.1757

· Re0.2158
ddrop

hchannel
−0.6384

, (19)

as suggested in [23]. Opposed to the drag force, the re-

tention force, holds the drop on the surface

Fret = 2rdropπγlg sin2(θ) sin
(
∆θ

2

)
, (20)

where ∆θ is the contact angle hysteresis between advanc-

ing and receding contact angle ([23]).

If the drag force exceeds the retention force, the drop

detaches from the surface, which is expressed by the de-

tachment criterion

Fdrag > Fret . (21)

A new drop might form if the formation condition

(17) is still fulfilled. Depending on the surface tension

and free-flow velocity, other dynamic processes such as

spreading, merging and film flow might occur. Detached

drops can either be transported away from the surface

immediately, or they can break up, roll or slide on the

surface. If the liquid flux from the porous medium and
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the evaporative flux into the free flow balance out, the

drop volume stays constant. Drops can also form due

to condensation of water vapor on the porous surface

and shrink due to evaporation or seepage into the porous

medium, or both.

2.3.5. Film flow

For a more detailed description, we take lateral fluxes

along the interface into account in a second scenario.

The free-flow shear forces might deform the drops such

that they spread on the surface and merge. Merged drops

build a thin film on the surface. This film flow only per-

sists on a hydrophobic surface if a continuous water flux

from the porous medium is provided.

For the advective gas fluxes along the interface, the

free flow velocity vif
g is reduced by the presence of the

drops. We assume the following kr − S l relationship to

account for this reduction:

krg = (1− S 2
l )

2(S l + 2) − 3
µl(1 − S 2

l ) + µgS 2
l

µl(1 − S l) + µgS l

 . (22)

This derivation for this approach is given in Appendix

A. The gas phase velocity can then be computed as

vif
g = −K

krg

µg
(∇pg − %gg) , (23)

with K = h2

12 , yielding the gaseous mass flux

Fg = (%gvif
g ) · nif (24)

with nif ⊥ npm.

If many drops have formed, the distances between

them become very small such that they eventually touch

and merge. Therefore, we assume that the liquid phase

velocity in the interface depends on the liquid saturation

via the relative permeability krl:

krl =

0 S l ≤ S merge
l

4S 3
l S l > S merge

l

. (25)

Fig. 4: Exemplary kr − S l relationships for S merge
l = 0.5

The kr − S l relationships are depicted in Figure 4. Note

that the liquid saturation is the non-wetting phase satu-

ration in our case.

For S if
l ≥ S merge

l , film flow is assumed. The liquid

mass flux is given as

Fl =

(
−%lK

krl

µl
(∇pl − %lg)

)
· nif = (%lvif

l ) · nif, (26)

with ∇pl = ∇pg + ∇pc.

3. Coupling concept

Modeling coupled flow regimes requires conditions

to describe the exchange of mass, momentum and en-

ergy. In the following, we present the established sim-

ple coupling concept for free-flow/porous-medium-flow

systems first. Then, we introduce the three-domain ap-

proach which takes interface drops into account.

3.1. Simple coupling concept

The following coupling concept for compositional,

non-isothermal systems was first presented in [6]. It is

based on the assumption of a local thermodynamic equi-

librium at the interface, as well as the continuity of fluxes

across the interface.

3.1.1. Local thermodynamic equilibrium

For the local mechanical equilibrium, the normal

forces acting on the interface from both sides have to
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Greek letters
γ surface tension ( N

m )
λ heat conductivity ( J

m s K )
θ contact angle (deg)
µ dymamic viscosity (Pa s)
% mass density ( kg

m3 )
Φ porosity (−)
Latin letters
c specific heat capacity ( J

kg K )
D diffusion coefficient ( m

s )
g gravity vector ( m

s2 )
h enthalpy (J)
I identity tensor (−)
K instrinsic permeability tensor (m2)
kr relative permeability (−)
p pressure (Pa)
q source/sink term
S saturation (−)
T temperature (K)
t time (s)
u specific internal energy ( J

kg )
v velocity ( m

s )
X mass fraction (−)
Subscripts
α phase
g gas phase
l liquid phase
n non-wetting phase
s solid phase
w wetting phase
Superscripts
κ component
a air
ff free flow
if interface domain
pm porous medium
w water

Table 2: Nomenclature

be equal:[
n ·

((
%gvgvT

g − µg(∇vg + ∇vT
g ) + pgI

)
n
)]ff

=
[
pg

]pm
.

(27)

We apply the Beavers-Joseph-Saffman condition [24]

for the tangential forces. This condition is actually a

Robin boundary condition for the tangential velocity

component in the free flow domain:− √K
αBJ

(∇vg + ∇vT
g )n

 · ti

ff

=
[
vg · ti

]ff
. (28)

For local chemical equilibrium, the chemical poten-

tial has to be continuous across the interface. Due to the

possible pressure jump in condition (27), the pressure ist

not locally constant as stated in the definition of chemi-

cal equilibrium. Therefore, we require the continuity of

mole fractions across the interface:

[x]ff ≈ [x]pm . (29)

Local thermal equilibrium can be assumed by the con-

tinuity of temperature:

[T ]ff ≈ [T ]pm . (30)

3.1.2. Continuity of fluxes

The continuity of normal mass fluxes is given by[(
%gvg

)
· n

]ff
= −

[(
%gvg + %lvl

)
· n

]pm
. (31)

For the normal component mass fluxes, continuity yields[(
%gXκ

gvg − Dκ
g%g∇Xκ

g

)
· n

]ff

= −

 ∑
α∈{l,g}

(
%αXκ

αvα − Dκ,pm
α %α∇Xκ

α

)
· n

pm

. (32)

The heat flux continuity is achieved by the condition[(
%ghgvg − λ

ff
g∇T

)
· n

]ff

= −


 ∑
α∈{l,g}

%αhαvα − λpm∇T

 · n
pm

. (33)

In Equations (31), (32) and (33), direct evaporation of

the liquid phase at the coupling interface is assumed. De-

tails and derivations are given in [6].
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3.2. Drop coupling concept

In the following, the influence of the drops is taken

into account with the help of an additional interface

domain as described in Section 2.3. In contrast to

the two-domain approach, two sets of coupling condi-

tions become necessary for the three-domain approach.

Free flow and interface as well as interface and porous

medium are coupled directly. Interactions between the

free flow and the flow in the porous medium are not mod-

eled with explicit coupling conditions, but taken into ac-

count via their interactions with the interface domain.

If a drop is sitting on a pore, only the liquid phase can

flow across the interface through this pore. Gas-filled

pores without drops allow direct gas fluxes between free

flow and porous medium. The flux between free flow

and interface consists of direct gas fluxes coming from

the porous medium as well as evaporative fluxes from

the drops on liquid-filled pores.

For local thermodynamic equilibrium, only the sub-

scripts in Fquations (29) and (30) are adapted such that

[. . . ]ff = [. . . ]if and [. . . ]pm = [. . . ]if. The equations for

mechanical equilibrium are given as

[
n ·

((
%gvgvg − µg(∇vg + vT

g ) + pgI
)

n
)]ff

=
[
pg

]if
,[

pg

]if
=

[
pg

]pm
.

(34)

The Beavers-Joseph-Saffman condition (28) is now

only applied to the free-flow/interface coupling.

For the continuity of fluxes, the area fractions pre-

sented in Section 2.3.2 are used. The flux between the

porous medium and the interface is then given as

qpm = [(%gvg) · n]upagAΓ + [(%lvl) · n]upalAΓ , (35)

where %α and vα are taken from the upstream domain

up ∈ {pm, if}. Between free flow and interface domain,

Fig. 5: Structure of the global Jacobian matrix for the three-domain
coupled system.

only the gas phase can be exchanged:

qff = [(%gvg) · n]up (ag + al)︸   ︷︷   ︸
=1

AΓ , (36)

with up ∈ {ff, if}.

The same applies to the component mass and energy

fluxes.

4. Numerical model

Discretizing the balance equations in Sections 2.1, 2.2

and 2.3 as well as the coupling conditions in Section 3.2

leads to a global non-linear system

J(u) · u = b, (37)

where J is the Jacobian matrix, u the vector of unknowns

and b the right-hand side. The whole system is solved

monolithically with the Newton’s method. The structure

of the global Jacobian matrix J is shown in figure 5. It

contains three sub-matrices for the three domains on the

diagonal as well as four coupling matrices on the off-

diagonals. The lower left and upper right sub-matrices

are zero matrices because the free flow and the porous

medium do not interact directly.

4.1. Discretization

For the temporal discretization, a fully-implicit Euler

scheme is applied. The spatial discretizations are based

on finite-volume methods. We use a staggered grid [25]
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(a) Without lateral fluxes (b) With lateral fluxes

Fig. 6: Interaction between interface grid cells only happens if lateral
fluxes along the interface are taken into account

in the free flow domain. Shifting the velocity compo-

nents by half a cell to the cell boundaries avoids pressure

oscillations caused by numerics. The interface domain

and the porous medium domain are discretized with cell-

centered finite volumes and a two-point flux approxima-

tion. For now, only square grid cells which coincide in

conformity are used.

For the interaction regions, two scenarios have to be dis-

tinguished. If lateral fluxes along the interface are ne-

glected, no exchange between interface grid cells takes

place, as shown in Figure 6a. Taking lateral fluxes into

account leads to a full interaction scheme between all

neighboring cells, see Figure 6b.

4.2. Lower-dimensional interface domain

The lower-dimensional interface domain Γ is defined

by the intersections of neighboring free-flow and porous-

medium-flow grid cells. This approach is based on [12],

where fractures are modeled as lower-dimensional in-

terface domains in a full-dimensional porous medium.

Within the interface domain, the balance equations (13),

(15) and (16) are integrated over the respective grid cells

Ωi: ∫
Ωi

∂u
∂t

+ ∇ · F(u) dΩi =

∫
Ωi

qu dΩi , (38)

Fig. 7: Extrusion to 3D according to the factors ξ1 and ξ2

where u is either the pressure, momentum or energy

respectively. The coupling fluxes qff and qpm are im-

plemented as sources in the interface domain. In the

two full-dimensional domains, Neumann boundary con-

ditions serve as coupling conditions.

4.3. Extrusion

Evaluating the integrals as given in Equation (38)

would lead to inconsistent units for the full- and lower-

dimensional domains. Therefore, when computing

volume-related terms in the lower-dimensional domain,

the grid cell volume is multiplied by an extrusion fac-

tor ξ1 in m2 to extrude the one-dimensional to a three-

dimensional domain. All volume-related terms in the

two-dimensional subdomains Ωff and Ωpm are multi-

plied by a factor ξ2 in m to extrude the domain in the

third dimension. This procedure is illustrated in Figure

7. The lower-dimensional extrusion factor is chosen as

ξ1 = ξ2 ·h, where h is the maximum possible drop height

for a drop sitting on the largest pore.

4.4. Pressure gradients

The pressure gradients to compute the convective

fluxes across the interface depend on acutal and extrap-

olated pressure values as shown in Figure 8. The cir-

cles represent actual pressures, which are computed and

stored in the cell centers of the respective grid cells. The

squares represent extrapolated pressure values. The gra-

dients between actual and extrapolated values determine

the fluxes from cell centers to cell faces. The gas flux
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Fig. 8: Grid positions of the actual (circles) and extrapolated (squares)
gas pressures as well as the free-flow velocity components

from the porous medium towards the interface depends

on the pressure gradient between ppm
g and pif,pm

g , which

is represented by the lower orange squares. The gradient

between pif,pm
g and pif

g determines the gas flux from the

interface domain’s boundary towards its center. On the

other side, the blue squares represent the extrapolated

pressure pif,ff
g . If a drop is present in an interface grid

cell, the two gradients between ppm
l and pif,pm

l as well as

between pif,pm
l and pif

l are computed accordingly.

Since the coupling flux qpm is computed between the

cell centers of the respective domains, the extrapolated

pressure values are eliminated. Therefore, qpm can be

computed with cell-center values only as given in Equa-

tion (35). For the coupling flux qff, the velocity vff
g,y is

known on the grid face due to the staggered grid dis-

cretization and can be used directly.

4.5. Algorithm

Updating the drop information and solving the global

system is done explicitely in two steps. First, the drop

volumes and area fractions are updated according to the

initial solution or the solution of the previous time step.

Then, the global system is solved monolithically, apply-

ing the updated area fractions in the coupling conditions

(35) and (36).

The global system is solved monolithically with a New-

ton solver. The linearized equations are then solved by

Fig. 9: Model domain Ω with outer boundary conditions.

the direct linear solver UMFPack [26].

5. Results

The coupled model is implemented in DuMux ([27],

[10]), an open-source simulator for flow in porous me-

dia and free-flow scenarios. The code to reproduce the

results of this work is available under https://git.iws.uni-

stuttgart.de/dumux-pub/Ackermann2020b.

The general set-up and the outer boundary conditions

for all numerical experiments are depicted in Figure 9.

The free-flow domain extends the interface and porous-

medium domains to ensure a stable velocity field.

5.1. Drop formation, growth and detachment

In the first numerical experiment, lateral fluxes along

the interface are neglected. Therefore, only storage and

sink terms are evaluated in the interface domain Γ. This

means that only vertical fluxes between free flow and

porous medium are taken into account. For the sake of

simplicity, only one pore-size class is assumed here.

5.1.1. Initial and boundary values

Initially, the gas pressure is set as pg = 105Pa and the

water mass fraction as Xw
g = 0.01 in the whole model do-

main Ω. A parabolic velocity profile is set for the free-

flow velocity vg on the left boundary with a maximum

of vg,x = 4.0 m
s . The porous medium is initially com-

pletely gas-filled. At the bottom boundary of the porous

medium, an inflow rate of qbottom = 0.02 kg
m2 s is set as a
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Fig. 10: Drop volume over time: formation, growth and detachment

Neumann boundary condition. Inflow and outflow con-

ditions at the left and right boundaries of the free-flow

domain ensure a continuous component intake and re-

moval respectively. If not stated differently, isothermal

conditions are assumed.

5.1.2. Drops in the interface domain

Figure 10 shows the drop volume over time in a cen-

tral interface element. Due to the pressure gradient in

the porous medium, the liquid phase reaches the inter-

face and drops form. As soon as the drag force exceeds

the retention force, the drops detach. Due to the con-

stant liquid inflow at the bottom boundary of the porous

medium, liquid accumulates again which leads to a ris-

ing liquid pressure below the interface. Since the for-

mation condition (17) is still fulfilled, a new drop forms

and grows. The same development can be observed for

the liquid saturation in the interface domain in Figure

11. Due to the coupling fluxes, the primary variable S l

increases according to the growing drop volume. After

the drop detachment, only the gas phase is left in the in-

terface domain and S l = 0.

The growth of the drops is reduced under non-

isothermal conditions, as shown in Figure 12. The evap-

oration of water vapor from the drops into the free flow

Fig. 11: The liquid saturation evolution fits the drop volume evolution

Fig. 12: Drop volume evolution for isothermal and non-isothermal
conditions

slightly reduces the drop volume, leading to a delayed

detachment compared to the isothermal case.

5.1.3. Parameter variations

The drop volume evolution depends on various param-

eters. As shown in Figure 13, reducing the inflow rate

at the bottom boundary of the porous-medium domain

leads to slower drop growth (green dashed line). In con-

trast, a higher inflow rate accelerates the drop growth,

leading to an earlier detachment compared to the refer-

ence case (red solid line).

Varying the free-flow velocity directly influences the

drop detachment. A higher velocity leads to a higher



14 Sina Ackermann etal / Journal of Computational Physics (2020)

Fig. 13: Drop volume evolution for varying inflow rates

Fig. 14: Drop volume evolution for varying free-flow velocities

drag force, therefore the drops are detached earlier for

vff
g = 4.5 m

s (green dashed line) than for the reference case

with vff
g = 4 m

s . For smaller velocities, such as vff
g = 3.5 m

s

(blue dotted line), it takes longer for the drag force Fdrag

to overcome the retention force Fret, resulting in larger

drop volumes at the time of detachment.

5.1.4. Influence on free flow and porous medium

Besides the drop evolution at the interface, the drops’

influence on the adjacent flow regimes can be captured.

Figure 15 compares the resulting liquid saturation along

the central y-axis of the porous medium for coupling

without drops and coupling with drops. If drops are ne-

glected, as in the simple coupling concept, the saturation

Fig. 15: Liquid saturation in the porous medium

Fig. 16: Temperature in the free flow

at the upper boundary of the porous medium rises con-

tinuously (dashed line). Considering drops allows the

liquid phase to leave porous medium across the upper

boundary, leading to a reduced saturation (solid line).

Under non-isothermal conditions, the influence of the

drops on the temperature T and the mass fraction Xw
g

due to evaporation can be observed. If drops are ne-

glected, the temperature along th x-axis stays almost

constant (dashed line), see Figure 16. A coupling con-

cept with drops leads to higher evaporative cooling, due

to the larger liquid surface areas of the curved drops. As

a consequence, the water mass fraction in gas rises due to

higher evaporation rates if drops are taken into account,

compared to the result obtained with a coupling concept

without drops, as shown in Figure 17.

5.2. Horizontal fluxes

For the second numerical experiment, lateral fluxes

along the interface are taken into account. The gas phase

as well as the liquid phase can now transfer mass, mo-

mentum and energy across the boundaries of the inter-
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Fig. 17: Water mass fraction in the free flow

face grid cells. For the free flow, the velocity is now set

to zero, and a pressure gradient with a horizontal pres-

sure difference of ∆pg = 0.006Pa is set. On the right

boundary of the interface domain, an outflow condition

is set.

Figure 18 shows the saturation evolution in each of

the six interface grid cells. We choose S merge
l = 0.5 as

the threshold saturation, where the drops are assumed to

touch and merge. Due to the horizontal pressure gradi-

ent, the liquid starts to flow from left to right, as soon

as the threshold saturation is exceeded in two neighbor-

ing grid cells. The water saturation is slightly higher in

the right part of the interface domain, but does not accu-

mulate continuously due to the outflow condition on the

right boundary. After t ≈ 200s, the saturation levels stay

constant. The saturation jumps between the grid cells are

mainly caused by the coarse spatial discretization.

6. Conclusions

We present a new multi-scale coupling concept based

on a three-domain approach to model drops at the in-

terface of a free flow and a flow in a porous medium.

Criteria for drop formation, detachment and merging are

formulated and evaluated to determine the drop volume

evolution. Additionally, the drops’ presence at the inter-

face is taken into account when computing the coupling

fluxes between free flow and porous medium.

The results presented in the previous section show that

Fig. 18: Saturation evolution due to lateral fluxes along the interface
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drop formation, growth and detachment can be captured

with the multi-scale coupling concept. In addition, evap-

oration from the drops influences the drop volume evo-

lution in case of non-isothermal conditions. Since the

liquid phase leaves the porous medium across its upper

boundary, the liquid saturation is smaller compared to

the one obtained with a simpler coupling concept with-

out drops. If drops are taken into account, the liquid sur-

face area available for evaporative fluxes is larger than in

the case without drops. This leads to lower temperatures

and higher water mass fractions in the free flow when

drops are considered.

To obtain more precise results, the merging criterion

should be determined with the help of experiments or

analytical considerations. Additionally, the influence of

the drops on the free-flow velocity field should be taken

into account.
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Appendix A. Derivation of relative permeabilities
for interface domain

We here derive the relative permeabilities (22) and

(25) from Section 2.3.5, to describe the thin film and gas

flow in the interface domain for the setting depicted in

Figure 2b. Here we consider the full-dimensional de-

scription of Ωif, which is hence a layer of height h. In

the layer there is a liquid film of height 0 ≤ ` ≤ h. In

the general case, ` = `(t, x, y). The interface domain

is assumed to have length/width L, where h << L as

the interface is thin. We divide Ωif into the two time-

dependent domains Ωif
l (t) and Ωif

g (t), with the separating

interface Γif(t):

Ωif
l (t) = {0 < x, y < L, 0 < z < `(t, x, y)},

Ωif
g (t) = {0 < x, y < L, `(t, x, y) < z < h},

Γif(t) = {0 < x, y < L, z = `(t, x, y)}.

We consider conservation of mass and momentum bal-

ance using Navier-Stokes for both fluids; namely (1) and

(3) for gas in Ωif
g (t), and

∂%l

∂t
+ ∇ · (%lvl) = 0, (A.1)

∂(%lvl)
∂t

+ ∇ ·
(
%lvlvT

l

)
= ∇ ·

(
µl

(
∇vl + ∇vT

l

)
− plI

)
+ %lg . (A.2)

for the water in Ωif
l (t). At the interface Γif(t) we have

jump conditions ensuring conservation of mass and mo-

mentum:

(%lvl − %gvg) · n = (%l − %g)vn,

vl · ti = vg · ti, i = 1, 2,(
− (pl − pg)I + (τl − τg)

)
· n = %l(vl · n − vn)(vl − vg)

− γlgκn,

where τα = µα(∇vα+∇vT
α ). Further, the interface normal

vector n, tangent vectors t1, t2 and normal velocity vn are

given by

n =
(−∂x`,−∂y`, 1)√

1 + |∇`|2
, vn =

∂t`√
1 + |∇`|2

,

t1 =
(1, 0, ∂x`)√
1 + (∂x`)2

, t2 =
(0, 1, ∂y`)√
1 + (∂y`)2

,

The curvature κ is given by κ = ∇ · n. To derive the rel-

ative permeabilities in Ωif we need boundary conditions

for the top and bottom. We will for simplicity use

vg = 0 on z = h, vl = 0 on z = 0.

We non-dimensionalize the equation to better deter-

mine which are important for the effective behavior. To
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this aim we introduce the small number ε = h/L << 1.

We introduce the following, non-dimensional variables

x̂, ŷ =
x, y
L
, ẑ =

z
h
, ˆ̀ =

`

h
, t̂ =

t
tref
,

v̂α =
vα
vref

, p̂α =
pα
pref

, %̂α =
%α
%ref

.

We then have the non-dimensional domains and inter-

face

Ω̂if
l (t̂) = {0 < x̂, ŷ < 1, 0 < ẑ < ˆ̀(t̂, x̂, ŷ)},

Ω̂if
g (t̂) = {0 < x̂, ŷ < 1, ˆ̀(t̂, x̂, ŷ) < ẑ < 1},

Γ̂if(t̂) = {0 < x̂, ŷ < 1, ẑ = ˆ̀(t̂, x̂, ŷ)},

To remain in the range of Darcy’s law we assume

ρrefLvref

µl
= 1,

pref

v2
refρref

= ε−2.

We let tref = L/vref. As surface tension driven motion

is not expected to be important for the thin film we as-

sume µlvref/γlg = 1. For simplicity we assume that the

viscosities are constant and introduce the viscosity ratio

M = µl/µg. This gives the non-dimensional model equa-

tions and boundary conditions:

∂%̂α

∂t̂
+ ∇̂ · (%̂αv̂α) = 0 in Ω̂if

α(t̂), (A.3)

ε2
(∂(%̂lv̂g)

∂t
+ ∇̂ ·

(
%̂gv̂gv̂T

g

) )
= ε2 1

M
∇̂ ·

(
∇̂v̂g + ∇̂v̂T

g

)
− ∇̂p̂g + %̂gĝ in Ω̂if

g (t), (A.4)

ε2
(∂(%̂lv̂l)

∂t
+ ∇̂ ·

(
%̂lv̂lv̂T

l

) )
= ε2∇̂ ·

(
∇̂v̂l + ∇̂v̂T

l

)
− ∇̂p̂l + %̂lĝ in Ω̂if

l (t̂), (A.5)

(%̂lv̂l − %̂gv̂g) · n̂ = (%̂l − %̂g)v̂n on Γ̂if(t̂), (A.6)

v̂l · t̂i = v̂g · t̂i, i = 1, 2 on Γ̂if(t̂), (A.7)(
− ( p̂l − p̂g)I + ε2(τ̂l −

1
M
τ̂g)

)
· n̂

= ε2(v̂l · n̂ − v̂n)(v̂l − v̂g) − ε2(∇̂ · n̂)n̂ on Γ̂if(t̂), (A.8)

v̂l = 0 on ẑ = 0, (A.9)

v̂g = 0 on ẑ = 1. (A.10)

Here, the normal vector, tangent vector and normal ve-

locity expressed using non-dimensional variables are

n̂ =
(−ε∂x̂ ˆ̀,−ε∂ŷ ˆ̀, 1)√

1 + |ε∇̂ ˆ̀|2
, v̂n =

ε∂t̂ ˆ̀√
1 + |ε∇̂ ˆ̀|2

,

t̂1 =
(1, 0, ε∂x̂ ˆ̀)√
1 + (ε∂x̂ ˆ̀)2

, t̂2 =
(0, 1, ε∂ŷ ˆ̀)√
1 + (ε∂ŷ ˆ̀)2

.

Further, τ̂ = ∇̂v̂+∇̂v̂T and ĝ = Lg/v2
ref. However, we will

for simplicity ignore the gravity as it does not affect the

relative permeability. Finally, note that ∇̂ = (∂x̂, ∂ŷ,
1
ε
∂ẑ).

We assume all variables have asymptotic expansions

with respect to ε; that is,

v̂α = v̂α,0 + εv̂α,1 + ε2v̂α,2 + . . .

and similarly for the other variables. We insert these into

(A.3)-(A.10) and collect the dominating terms with re-

spect to ε.

The dominating term from (A.3) gives

∂ẑv̂(3)
l,0 = 0 for 0 ≤ ẑ ≤ ˆ̀, ∂ẑv̂(3)

g,0 = 0 for ˆ̀ ≤ ẑ ≤ 1,

which combined with the dominating terms from (A.9)

and (A.10) leads to

v̂(3)
l,0 ≡ 0 and v̂(3)

g,0 ≡ 0 for all ẑ.

Assuming that the viscosity ratio M = O(1), we obtain

from the dominating terms in (A.4) and (A.5) that

∂ẑ p̂α,0 = 0,

which means that p̂α,0 = p̂α,0(t̂, x̂, ŷ). Continuing to the

next order terms, the first and second component give

∂2
ẑ v̂(1)

l,0 = ∂x̂ p̂l,0 and ∂2
ẑ v̂(1)

g,0 = M∂x̂ p̂g,0,

∂2
ẑ v̂(2)

l,0 = ∂ŷ p̂l,0 and ∂2
ẑ v̂(2)

g,0 = M∂ŷ p̂g,0.

Integrating these twice with respect to ẑ, and using the

dominating terms from (A.7), (A.9) and (A.10) together

with the O(ε) from (A.8) to determine the integration
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constants, we get

(v̂(1)
l,0 , v̂

(2)
l,0 ) =

1
2

(∂x̂ p̂l,0, ∂ŷ p̂l,0)(ẑ2 −
M(1 − ˆ̀2

0) + ˆ̀2
0

M(1 − ˆ̀0) + ˆ̀0
ẑ),

(v̂(1)
g,0, v̂

(2)
g,0) =

1
2

M(∂x̂ p̂g,0, ∂ŷ p̂g,0)
(
(ẑ2 − 1)

−
1
2

M
M(1 − ˆ̀2

0) + ˆ̀2
0

M(1 − ˆ̀0) + ˆ̀0
(ẑ − 1)

)
.

By averaging the lowest order velocities over the height

of the domain (which in this case is 1) we obtain the

(non-dimensional) Darcy velocities:

v̂l,0 =

∫ ˆ̀0

0
v̂l,0dẑ

= −
1
12
∇̂p̂l,0

(
− 2 ˆ̀3

0 + 3
M(1 − ˆ̀2

0) + ˆ̀2
0

M(1 − ˆ̀0) − ˆ̀0

ˆ̀2
0

)
,

v̂g,0 =

∫ 1

ˆ̀0

v̂g,0dẑ

= −
M
12
∇̂p̂g,0( ˆ̀0 − 1)2

(
2( ˆ̀0 + 2) − 3

M(1 − ˆ̀2
0) + ˆ̀2

0

M(1 − ˆ̀0) − ˆ̀0

)
.

By using the lowest order variables in the interface do-

main, we obtain when returning to dimensional variables

vif
l = −

K
µl

S 2
l

(
− 2S l + 3

µl(1 − S 2
l ) + µgS 2

µl(1 − S l) + µgS l

)
∇pl,

vif
g = −

K
µg

(1 − S l)2
(
2(S l + 2) − 3

µl(1 − S 2
l ) + µgS 2

l

µl(1 − S l) + µgS l

)
∇pg.

where we have used S l = `/h for the saturation and K =

h2

12 I. Rewriting this way enables us to identify the relative

permeabilities:

krl(S l) = S 2
l

(
− 2S l + 3

µl(1 − S 2
l ) + µgS 2

l

µl(1 − S l) + µgS l

)
, (A.11)

krg(S l) = (1 − S l)2
(
2(S l + 2) − 3

µl(1 − S 2
l ) + µgS 2

l

µl(1 − S l) + µgS l

)
.

(A.12)

Since the viscosity ratio between water and gas is

quite large, an alternative relative permeability can be

derived for the liquid phase. Letting M = O(ε−1) and

repeating the steps we obtain

vif
l = −

K
µl

4S 3
l ∇pl,

which corresponds to the relative permeability

krl(S l) = 4S 3
l . (A.13)

With this approach no expression is obtained for the ve-

locity in the gas phase. We hence use (A.12) for the

relative permeability of the gas phase, and (A.13) for the

liquid phase.
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