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Abstract

The radiation hydrodynamics equations for smoothed particle hydrodynamics are derived by operator split-
ting the radiation and hydrodynamics terms, including necessary terms for material motion, and discretizing each
of the sets of equations separately in time and space. The implicit radiative transfer discussed in the first paper
of this series is coupled to explicit smoothed particle hydrodynamics. The result is a multi-material meshless ra-
diation hydrodynamics code with arbitrary opacities and equations of state that performs well for problems with
significant material motion. The code converges with second-order accuracy in space and first-order accuracy
in time to the semianalytic solution for the Lowrie radiative shock problem and has competitive performance
compared to a mesh-based radiation hydrodynamics code for a multi-material problem in two dimensions and
an ablation problem inspired by inertial confinement fusion in two and three dimensions.
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1 Introduction

Radiation hydrodynamics adds important physics to the standard hydrodynamics equations, including energy trans-
fer by radiative processes and radiation effects that alter the hydrodynamics equations directly. Radiation typically
transfers energy at speeds that far exceed those of fluid flow or thermal conduction, and can noticeably affect
the hydrodynamic system at temperatures of thousands of degrees Kelvin. Due to the dependence of radiation
energy on the fourth power of the temperature, when the temperature increases a few orders of magnitude beyond
that, the radiation additionally imparts significant momentum and pressure to the fluid [1]. The coupled radiation
hydrodynamic equations are necessary in order to study a wide variety of problems in astrophysics such as star for-
mation, stellar structure and evolution, accretion around stellar and collapsed objects (such as neutron stars, white
dwarves, and black holes), supernova, active galactic nuclei, galaxy formation, etc. Radiation hydrodynamics is
also important for high-energy density experiments, such as inertial confinement fusion research [2, 3]. In this paper
radiation hydrodynamics is numerically modeled with the assumption that the radiative and material energies are
significantly (but non-trivially) coupled, i.e. when simplifying assumptions such as the matter is either decoupled
from the radiation (free-streaming) or so tightly bound that the photons are simply another component of the fluid
and can be accounted for by a modified equation of state are not appropriate.
Smoothed particle hydrodynamics (SPH) is a meshfree method typically formulated for hydrodynamics only, i.e.,
without including the effects of radiation. In the first paper of this series (hereafter Paper I) an efficient flux-limited
diffusion treatment for radiation (coupled to the material energy) is derived based upon an SPH differencing
operator, which is therefore both meshfree and well-suited to combine with SPH to create a meshfree radiation
hydrodynamic method. Several implementations of radiation within SPH are discussed in Paper I, including ray
tracing [4] and Monte Carlo methods [5]. Flux-limited diffusion, the approximation used here, remains the most
common method due to its simplicity. Early efforts using ideal gas laws and simple, iterative convergence schemes
[6, 7, 8], which were later generalized to more difficult equations of state and more robust solution methods [9],
including the similar optically-thin Variable Eddington Factor method [10]. Many of the problems that have been
tested in SPH flux-limited diffusion are in 1D, and they do not always have a known solution. The 2D and 3D
problems that have been studied are mostly astrophysical problems such as star formation without a reference
solution, although in at least one case a code-to-code comparison is used to check the solution [10].
The general equations of radiation hydrodynamics contain relativistic terms due to the different reference frames
of the fluid and radiation. Approximations on the order of the fluid velocity over the speed of light are generally
applied to simplify the equations for problems with nonrelativistic fluid velocities [11, 1, 12, 13, 14]. The radiation
transport equation can then be integrated over angle to produce the moment equations. The diffusion equations
presented in Ref. [1] are those used in this paper. Similar equations could be derived from the angularly-dependent
transport equation in Ref. [12] or [14]. While this paper assumes a simple relativistic approximations for the
radiation equations, there are more detailed treatments tailored to diffusion that may provide additional accuracy
in certain regimes [15]. Radiation hydrodynamics has long been studied in the context of meshed methods (such as
Eulerian, Lagrangian, AMR, and ALE methods; see the extensive discussion in [1]), but comparatively little work
has been done on meshfree methods such the one here.
In Paper I, solution methods for the coupled radiation diffusion and material energy equations for SPH are derived
and verified. In Sec. 2 of this paper, the equations of radiation hydrodynamics are introduced and applied to SPH,
including a fast and robust time discretization scheme that limits the number of iterations needed to converge the
system. Sec. 3 briefly discusses the implementation of the methods described in Paper I and Sec. 3, which allows
for the simulation of large systems relatively quickly on distributed architectures. In Sec. 4 multiple tests of the
coupled radiation hydrodynamics method are presented, including a radiation hydrodynamics shock problem with a
semi-analytic solution for comparison, as well as several multidimensional examples where the results are compared
against a meshed method, including a problem with multiple materials and an ablation problem inspired by inertial
confinement fusion.

2 Theory

In this section, the radiation hydrodynamics equations are introduced and discretized. The radiation hydrodynamics
equations are kept general to permit an arbitrary equation of state. The equations are operator split to separate
the thermal radiative transfer equations from the hydrodynamics equations, which isolates the radiation solve. The

2



hydrodynamics equations are discretized explicitly in time, while the radiation equations are discretized implicitly
in time. Finally, SPH spatial differencing is applied to the equations.

2.1 The radiation hydrodynamics equations

The radiation hydrodynamics equations are

Dρ

Dt
= −ρ∂αx vα, (1a)

ρ
Dvα

Dt
= −∂αx p+

σt
c
Fα, (1b)

ρ
De

Dt
= −∂αx pvα − cσaB + cσaE +Qe, (1c)

DE

Dt
= −E∂αx vα − Pαβ∂αx vβ − ∂αxFα − cσaE + cσaB +QE , (1d)

1

c

DFα

Dt
= −1

c
Fα∂βxv

β − c∂βxPαβ − σtFα, (1e)

with the variables

t, time,

x, position,

vα, velocity,

ρ, mass density,

p, pressure,

e specific material energy,

E, radiation energy density,

Fα, radiation flux,

Pαβ , radiation pressure,

T , material temperature,

B, integrated photon emission function,

c, speed of light in a vacuum,

σt, total opacity,

σa, absorption opacity,

a, black-body constant,

Qe, nonhomogeneous material energy source,

QE , nonhomogeneous radiation energy source,

and the Lagrangian (or material) derivative,

D

Dt
= ∂t + vα∂αx . (2)

As in Part I, Greek letters used as superscripts indicate dimensional components of a vector and repeated indices
indicate summation.
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The same energy and angular approximations apply as in Part I, namely that the transport equation has been
integrated over all energy frequencies and over angle to produce the first two moments. The emission function
integrated over energy is

B = aT 4. (3)

To derive the diffusion equation, the time derivative terms in Eq. (1e) are neglected, which results in Fick’s Law,

Fα = − c

3σt
∂αxE. (4)

A flux limiter λ is applied to prevent the radiation from propagating faster than is physical (see Paper I for details).
When these two approximations are applied to Eq. (1d), the result in the flux-limited diffusion equation,

DE

Dt
= −4

3
E∂αx v

α + ∂αx

(
cλ

σt
∂αxE

)
− cσaE + cσaB +QE . (5)

The same approximations are applied to the radiation momentum term [Eq. (1b)],

ρ
Dvα

Dt
= −∂αx p− λ∂αxE. (6)

The flux limiter in this equation prevents the radiation pressure from unphysically exceeding E.

2.2 Time discretization

Two separate operator split procedures are performed on the coupled radiation hydrodynamics equations to make
their solution more tractable. These include splitting the work term from the diffusion equation and splitting the
hydrodynamics from the radiative transfer, which also has the effect of splitting the Lagrangian time derivative for
the radiative transfer equations. The time discretization is done separately for the hydrodynamics equations, the
radiation work equation, and the TRT equations. The hydrodynamics time update is performed explicitly. The
radiation work update is performed based on the explicit hydrodynamics update. Finally, the thermal radiative
transfer update is performed implicitly.

2.2.1 Radiation work

The zeroth-moment equation [Eq. (1d)] with the Lagrangian derivative contains velocity-related terms that are
required to be accurate to order v/c with material motion [1],

∂αx v
αE + Pαβ∂αx v

β . (7)

The term vα∂αxE, which is included in the Lagrangian derivative, serves to entrain the radiation with the fluid flow.
The other terms, E∂αx vα+Pαβ∂αx v

β ,account for the work done in compression or expansion of the radiation energy
density. For the diffusion equation, including the time derivative, this term is simplified to

DE

Dt
+

4

3
E∂αx v

α. (8)

The velocity term is operator split, which produces a standard Lagrangian radiation diffusion equation,

DE

Dt
= ∂αx

(
cλ

σt
∂αxE

)
− cσaE + cσaB +QE , (9)

along with an equation that calculates work done on the radiation field,

DE

Dt
= −4

3
E∂αx v

α. (10)

Using the mass conservation equation [Eq. (1a)], the work equation can be written as

1

E

DE

Dt
=

4

3

1

ρ

Dρ

Dt
. (11)
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The radiation work equation [Eq. (11)] is discretized in time by integrating from the start tn−1 to the end tn of a
time step, ∫ tn

tn−1

1

E

DE

Dt
dt =

4

3

∫ tn

tn−1

1

ρ

Dρ

Dt
dt, (12)

which can be performed analytically,

lnEn − lnEn−1 =
4

3

(
ln ρn − ln ρn−1

)
, (13)

and simplified by exponentiation to
En

En−1
=

(
ρn

ρn−1

)4/3

. (14)

This is similar to the treatment of work in Ref. [16]. After the hydrodynamics update has been performed, the ratio
of the mass densities is used to update the radiation energy density before the thermal radiative transfer update.

2.2.2 Radiation and hydrodynamics operator split

SPH hydrodynamics is traditionally solved using explicit time steps, but explicit time steps for radiation diffusion
would be cost prohibitive due to the small time step needed to resolve the speed of propagation for radiation using
the Courant-Friedrichs-Lewy (CFL) condition, which limits the propagation of a signal within each time step to
some fraction of the element size. To solve the hydrodynamics equations explicitly and the diffusion equations
implicitly, the two must be operator split.
This second operator split produces two sets of equations, the hydrodynamics equations (including a term for the
radiative momentum deposition) which are advanced explicitly in time,

Dρ

Dt
= −ρ∂αx vα, (15a)

ρ
Dvα

Dt
= −∂αx p− λ∂αxE, (15b)

ρ
De

Dt
= −∂αx pvα, (15c)

DE

Dt
= 0, (15d)

and the coupled material and radiation energy equations which are advanced implicitly in time,

ρ∂te = −cσaB + cσaE +Qe, (16a)

∂tE = ∂αx

(
cλ

σt
∂αxE

)
− cσaE + cσaB +QE . (16b)

The hydrodynamics equations remain in the material frame of reference with Lagrangian derivatives, as needed for
SPH. The thermal radiative transfer (TRT) equations are in the lab frame of reference with Eulerian derivatives,
which allows for their solution without consideration of material motion. As described in Sec. 2.2.3, the inclusion
of Eq. (15d) is a formalism and does not require implementation.

2.2.3 Hydrodynamics

The hydrodynamics equations are discretized explicitly in time. Equation (15d), which states that the radiation
energy moves along with the fluid, comes for free in a Lagrangian method if the radiation and hydrodynamics
discretizations use the same points, as is the case here. During the explicit hydrodynamics update, the radiation
energy density is moved along with the fluid, which satisfies Eq. (15d). This leaves a standard set of hydrodynamics
equations, which is discretized using standard SPH methodology.
Each of the hydrodynamics equations [Eqs. (15)] (except for the radiation energy density equation) is written in
the form

Du

Dt
= g (t, u) , (17)
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and discretized explicitly. For example, second-order Runge-Kutta, which is used for the results in this paper, has
the form

k1 = ∆tg (tn, u
n) , (18a)

k2 = ∆tg

(
tn +

∆t

2
un +

1

2
k1

)
, (18b)

un+1 = un + k2. (18c)

The radiation momentum term −λ∂αxE [Eq. (15b)] is lagged to always use the value En−1.

2.2.4 Thermal radiative transfer

The time discretization of the thermal radiative transfer equations is discussed at length in Paper I. In summary,
Eqs. (16) are discretized in time using backward Euler, and solved using Newton iteration. A Schur complement is
used to eliminate part of the Jacobian, which results in the radiation diffusion equation

1

∆t
E`+1 − ∂αx

(
cλ

σt
∂αxE

`+1

)
+ cσafE

`+1 =
1

∆t
En−1 + cσaB − (1− f) cσaE

` +QnE , (19a)

where ` is the iteration index, f is the Fleck factor [17],

f =

(
1 + cσa∆t

4aT 3

ρcv

)−1
, (19b)

and cv is the specific heat. The E values are all at the current time step n except for En−1. The solution of Eq.
(19a) represents a single inexact Newton iteration. The material energy equation,

ρ

∆t

(
e− en−1

)
+ cσaB = cσaE +Qne , (19c)

is solved separately to convergence using a separate Newton iteration process before each diffusion solve. The
solution of these equations (described in Paper I, Alg. 1) is performed after the hydrodynamics and radiation work
equations have been updated. The opacities and other material parameters (σa, f , D, λ, cv, and ρ) are calculated
based on the values from the end of the hydrodynamics update. The flux limiter, which depends on E, is updated
after the radiation work update of E.

2.2.5 Coupled system

The time integration procedure for the coupled radiation hydrodynamics equations is presented in Alg. 1. For the
hydrodynamics update, the radiation momentum term is held constant at the start-of-step value, En−1. Once the
hydrodynamics update is complete, the radiation work is calculated. This updated radiation energy is then used
in the thermal radiative transfer update. Before the radiation update, the opacities, flux limiter, specific heat, the
Fleck factor are evaluated again using the updated hydrodynamics variables and the radiation energy after the work
equation is applied. They are then held constant over the update, which means that the preconditioner for the
diffusion solver only needs to be initialized once.
The material energy is updated twice, first during the hydrodynamics update and again during the radiation update.
During the radiation update, the material energy equation [Eq. (29a)] should include the energy gained or lost over
the hydrodynamics update. This is done by providing this energy as a source to the material energy equation,

Qne =
ρ

∆t
∆enhydro =

ρ

∆t

(
enhydro − en−1

)
. (20)

2.3 Spatial discretization

The spatial discretization of the radiation hydrodynamics equations is performed using SPH, as described in Paper
I. In review, the equations are interpolated using a kernel, W (x− x′, h), with the notation

〈g (x)〉 =

∫
V

W (x− x′, h) g (x) dV ′

≈
∑
j

VjW (x− xj , h) g (xj) . (21)
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Derivatives are approximated similarly,

〈∂αx g (x)〉 =

∫
V

W (x− x′, h) ∂αx′g (x′) dV ′

= −
∫
V

∂αx′W (x− x′, h) g (x′) dV ′

= ∂αx

∫
V

W (x− x′, h) g (x′) dV ′ − g (x) ∂αx

∫
V

W (x− x′, h) dV ′

≈
∑
j

Vj (gj − g (x)) ∂αxW (x− xj , h) . (22)

Note that the g (x) term is zero in the continuous derivative (since W is an even function), but is not necessarily
zero in the discrete approximation, as the quadrature points xj are not always symmetric. This term ensures that
the discrete derivative is zero for a constant function.
The equations without spatial derivatives are multiplied by W (xi − x′, h), integrated, and then evaluated using the
approximation 〈g (x)〉i ≈ gi. For the radiation work equation, this means the interpolated value,〈

En

En−1

〉
i

=

〈(
ρn

ρn−1

)4/3
〉
i

, (23)

becomes a simple evaluation at point i,
Eni
En−1i

=

(
ρni
ρn−1i

)4/3

, (24)

which means the update in time can be done independently for each point.

2.3.1 Hydrodynamics

The spatial discretization of the hydrodynamics equations [Eqs. (15)] is similar, but includes derivatives in addition
to the values evaluated at specific points. To derive the SPH form of the mass conservation equation, the original
equation is multiplied by the kernel centered at point xi, W (xi − x′, h), and integrated,〈

1

ρ (x′)

Dρ (x′)

Dt

〉
i

= −〈∂αx vα (x′)〉i . (25)

Using the approximation 〈g (x)〉i ≈ gi for the time derivative term and the derivative approximation in Eq. (22)
for the velocity derivative, the equation becomes

1

ρi

Dρi
Dt

= −
∑
j

Vj
(
vαj − vαi

)
∂αxi

W (xi − xj , h) dV ′. (26)

Performing similar manipulations to the other hydrodynamics equations results in a standard set of SPH equations
[18],

Dρi
Dt

= ρi
∑
j

Vj
(
vαi − vαj

)
∂αxi

Wij , (27a)

Dvαi
Dt

= −
∑
j

mj

(
pj
ρ2j

+
pi
ρ2i

)
∂αxi

Wij , (27b)

Dei
Dt

= −
∑
j

mj

(
piv

α
j

ρ2i
+
pjv

α
i

ρ2j

)
∂αxi

Wij , (27c)

where
Wij = W (xi − xj , h) .

Note that for the examples shown in this paper, the mass density ρi is advanced using the SPH summation form,

ρi =
∑
j

mjWij , (28)
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rather than the continuity relation of Eq. (27a), which is only used to form the half-step estimate of the mass
density during the Runge-Kutta time advancement of the mass density. Similarly the material energy relation
in Eq. (27c) is only used for the half-step estimate, while the actual hydrodynamic work is evaluated using the
compatible energy update described in Ref. [19].

2.3.2 Thermal radiative transfer

The spatial discretization of the radiation equations [Eqs. 19] is described in Paper I. The result of this discretization
is the equations

ρi
∆t

(
en,`+1
i − en−1i

)
+ cσa,iB

n,`+1
i − cσa,iEn,`+1

i −Qne,i = 0, (29a)

1

∆t
En,`+1
i −

∑
j

Vj (Di +Dj)
(
En,`+1
i − En,`+1

j

) xαij

xβijx
β
ij

∂αxi
Wij + cσa,ifiE

n,`+1
i

=
1

∆t
En−1i + cσa,iB

n,`
i − (1− fi) cσa,iEn,`i +QnE,i, (29b)

with the diffusion coefficient D and Fleck factor f evaluated at point i,

Di =
cλi
σt,i

, (29c)

fi =

(
1 + cσa,i∆t

4aT 3
i

ρicv,i

)−1
. (29d)

The diffusion equation is solved using GMRES with the Hypre BoomerAMG preconditioner [20].

3 Methodology

The radiation hydrodynamics methods from this paper are implemented in the SPH code Spheral, which is available
at https://github.com/jmikeowen/spheral. Note, however, that the publicly available version of Spheral does
not include the radiation evolution described here and in Paper I. Please contact the authors for access to the
thermal radiative transfer code and the input scripts for the problems in Sec. 4.
As in Paper I, the Wendland C4 kernel is used for the results in this paper,

Wwendland (xij , h) =

{
k (1− r)5 (5r + 1) , r ≡ xij/h ≤ 1,

0, otherwise,
(30)

where k is a normalization constant. The standard SPH evaluation of the kernel ψ (r) uses a scalar h,

r =

√
(xα − xα,′) (xα − xα,′)

h
. (31)

Although Spheral incorporates ASPH (a tensor generalization of the scalar smoothing scale h, as described in [21]),
the examples in this paper simply use the scalar smoothing scale of SPH. The smoothing scale hi is spatially (point-
wise) varying, and is adapted such that each point samples approximately a constant number of neighbors within
the sampling kernel [Eq. (30)]. The algorithm for adjusting the smoothing scale per point is described in Ref [22].
Unlike in Part I, this smoothing scale is recalculated at every time step due to the movement of the SPH particles.
The code is also run with the hydrodynamics in compatible energy mode, as described in Ref. [19], which makes
the hydrodynamics step exactly energy conserving. The artificial viscosity used for the problems in this paper is
based on the Monaghan and Gingold viscosity [23].

4 Results

Three problems are considered, including a radiating shock with a semianalytic solution, a multi-material problem
with strong radiation coupling, and an ablation problem. For the latter two problems, the results are compared to
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Kull, a mesh-based, arbitrary Lagrangian-Eulerian (ALE) inertial confinement fusion code at Lawrence Livermore
National Laboratory [24]. All three problems use an ideal gas equation of state, with

p = (γ − 1) ρe, (32a)

T =
(γ − 1)µmp

kB
e, (32b)

where γ is the heat capacity ratio, µ is the molecular weight, mp is the proton mass, and kB is the Boltzmann
constant.

4.1 Lowrie radiating shock

To test the coupled radiation hydrodynamics, the planar shock wave from Lowrie and Edwards [25] is considered.
The spatial profile of the solution is semianalytic and moves at a constant velocity. This problem simply translates
the semianalytic solution with time across the simulated volume, so the initial conditions can be obtained from the
solutions described in [25]. Two cases are considered, a Mach 2 shock with constant opacities and a Mach 45 shock
with opacities that depend on density and temperature. The parameters for these shocks are listed in Table (1).
The equation of state is for an ideal gas, with the atomic mass calculated from the heat capacity cv. A radiation
wave ahead of the shock, called a precursor, heats the material up to pre-shock temperatures. When the shock hits,
the material is discontinuously heated up to a peak temperature, known as the Zel’dovich spike [26]. Finally, the
material cools through radiative losses to post-shock temperatures. The Mach 2 case is a subcritical shock, meaning
the pre-shock temperature is lower than the post-shock temperature, whereas the Mach 45 case is supercritical,
meaning the pre-shock and post-shock temperatures are equal.
Ten points at the left and the right side of the problem are chosen to be boundary points with constant values of
velocity, density, material energy, and radiation energy. The positions are set to move with the constant velocities
assigned to the points. The smoothing parameter is fixed to its initial value for these boundary points. As the
support of the kernel is less than ten points across, this mimics a constant boundary condition for the remainder of
the points not on the boundary.
The solution for the Mach 2 case at the end time (after the shock has traveled 0.06 cm) with 16384 total points is
shown in Fig. 1a. The radiation temperature is calculated based on Eq. (3),

T =

(
E

a

)1/4

. (33)

The Zel’dovich spike is well-resolved, and the pre-shock and post-shock temperatures agree with the semianalytic
solution. The error appears to be largest in the precursor region (around 0.2 percent Linf relative error), where the
numerical solution appears to be more diffusive than the semianalytic solution. For the Mach 45 case, also with
16384 points, the solution after the shock has traveled 2000 cm is shown in Fig. 1b. The maximum relative error
in this case is 0.07 percent for the material and 0.01 percent for the radiation, both of which occur near the shock
front where the temperature is smallest. For the Mach 45 case, the radiation momentum term (see Sec. 2.1) is vital
to calculating the solution correctly. Without radiation momentum (which has the same form as a hydrodynamic
pressure), the shock lags behind the semianalytic solution, causing a density spike that changes the spatial profile
of the solution (Fig. 2).
Convergence results for the Mach 2 and Mach 45 cases are shown in Figs. 3a and 3b, respectively. The numeric
solution converges with second-order spatial accuracy to the semianalytic solution. For a high number of points, the
error levels off due to the first-order radiation time discretization, which is chosen for stability and not accuracy. The
time step for both Mach 2 and Mach 45 is limited by the CFL condition (see Sec. 2.2.3), which decreases linearly
as the spacing between solution points is decreased, ∆t ∝ ∆x. This couples the temporal and spatial resolution,
leading to an effective first-order convergence unless the time step is manually set to lower values. To see full
second-order convergence in space, the time step needs to decrease as ∆t ∝ ∆x2, but this becomes cost-prohibitive
for large simulations. For lower numbers of points, the solutions converge with second-order accuracy despite the
shock, which is because the error is largest in the precursor region.

4.2 Triple point with radiation

The triple point problem is traditionally a hydrodynamics-only test problem, and has been researched previously
for various meshed methods such as finite element methods [27], as well as the meshfree conservative reproducing
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kernel (CRKSPH) example in [28]. The problem is changed here to start with significant radiation energy in the
high-pressure side, as shown in the initial conditions in Fig. 4. The pressure of the two low-pressure regions is
also decreased to allow the hydrodynamics to act on similar time scales to the radiation hydrodynamical effects.
Reflecting boundary conditions are applied to each of the four boundary surfaces. The unit system for Spheral is
set to agree with the fixed unit system of Kull, which is in terms of centimeters for length, grams for mass, shakes
for time (1 sh = 10−8 s), jerks for energy (1 jrk = 1016 erg), and keV for temperature (1 keV = 1.16045× 107 K).
The initial conditions are also in this unit system (Fig. 4), with opacities of σa = σs = 100.0ρ cm−1 in all regions
of the problem. Similarly, while the ratio of specific heats (γ) is set per region as shown in Fig. 4, the molecular
weight is set to a constant value of µ = 1 in all three regions.
The problem is run in Spheral and Kull in low and high resolution, with the run parameters in Table 2. In Spheral,
the points are mass-matched, meaning that in the low-density region, the points have a volume that is ten times
larger than in the high-density regions. Without mass matching, the boundaries between materials can become
unstable and lead to unphysical instabilities. In Kull, the zones are volume-matched, meaning that the mass of
the cells in the low-density region is ten times lower than the mass of the cells in the high-density regions. These
differences imply there are regional resolution differences between the codes, though the number of total elements
(points vs. zones) is the same in each code. The problem is run to a final time of 7.0 sh.
Figure 5 shows a comparison of the results for Spheral and Kull. The first visible feature of the problem is a radiation
wave traveling in the +x̂ direction through the upper low-density region. This causes the surface of the lower region
to ablate upwards, sending an impulse in the −ŷ direction. Meanwhile, the high-pressure region creates a shock in
the +x̂ direction, which meets the shock formed due to the ablation. At the end time, the most prominent features
are the roll-up due to the Kelvin-Helmholtz instability and the trailing tails of high-density material left from the
colliding shocks. For the high-resolution cases, the Spheral and Kull solutions are nearly indistinguishable. For
the low-resolution cases, the arbitrary Lagrangian-Eulerian remap in Kull leads to a very diffuse result, while the
limited number of particles in Spheral leads to shock boundaries that are smoothed compared to the high-resolution
cases.
The difference between Kull and Spheral for the high-resolution cases, defined as

diffu =
|ukull − uspheral|

1
2 (ukull + uspheral)

, (34)

where u is the radiation energy, material energy, pressure, or density, is shown in Fig. 6. The difference is between
a fraction of a percent and ten percent in most of the domain for all the state variables shown. The most visible
differences are in the shock and wave timings, where the Kull radiation wave and the Kull shocks are faster than
those in Spheral. This leads to large relative differences of up to 200 percent where the variables have low values in
pre-shock regions. The post-shock regions agree within two percent in most cases. As the radiation energy density
ranges over six orders of magnitude, small differences in the timing lead to differences that appear larger there than
for the other state variables. The interfaces between the three materials are very similar in the two codes, and the
main difference is in the material energy, where the timing difference between the two is most visible.
The relative difference between the initial and final energy, including kinetic, internal, and radiation, is below 0.001
for both Kull and Spheral, as shown in Table 2. The number of steps for the low-resolution cases with around
21,500 points is similar for the two codes at around 3,200. For the high-resolution case with around 2,150,000
points, Spheral took 22,244 steps and Kull took 152,843 steps, which is mostly due to deforming zones that decrease
the time step though the CFL condition. The wall time per time step is about 2.5 times more in Spheral than
Kull, mostly due to a higher level of connectivity in the SPH diffusion matrix that slows the computation of the
multigrid preconditioner in Spheral.

4.3 Ablation problem

A target for inertial confinement fusion (ICF) [2, 3] generally consists of an outer spherical shell (or ablator) and an
inner shell made from deuterium-tritium (DT) ice, which contains a low-density DT gas. A radiation source heats
up the ablator, which causes it to expand outward near the surface. Due to conservation of momentum, this causes
an implosion that compresses the DT ice and gas. Under appropriate conditions, this leads to fusion of the DT. For
this problem, the physics of ICF are simplified to allow for comparison of the SPH discretization in Spheral with
the mesh-based discretization in Kull. Unlike an actual ICF simulation, there is no radiation source outside of the
initial conditions and there is no thermonuclear burn.

10



The capsule is modeled with a DT gas, an inner shell of DT ice, and an outer plastic shell (CH 1% Si) surrounded
by helium gas [29]. In 2D, the shells are circles (or infinite cylinders) and the helium is bounded by a square, while
in 3D, the shells are spheres and the helium is bounded by a cube. Figure 7 shows the initial geometry in 2D, or a
slice through the geometry at z = 0 in 3D. The problem is run with quadrant symmetry in 2D and octant symmetry
in 3D, with reflecting boundary surfaces along the coordinate axes and at the edges of the square or cube. The
unit system is identical to the one in Sec. 4.2. The initial parameters are listed in Table 3. The opacities are least
squares fits of tabulated opacity data [30]. To make mass matching of the points easier, the initial densities of the
DT gas and the helium are around 100 times larger than what would be expected in a standard ICF capsule. The
material temperature and the radiation temperature [Eq. (33)] are set equal at the starting time. In 2D, the codes
are run until 1.75 sh, while in 3D, the codes are run until 0.7 sh.
The number of points used in each code is listed in Table 4. In Kull, the initial mesh is created with a square (2D)
or cube (3D) meshed region in the center of the DT gas sphere with rounded edges, with a half-length equal to
half of the radius of the DT gas region. Zones are then placed radially outward from there, with the resolution in
angle fixed based on the number of regions in the square or cube. The zones are mass matched across interfaces,
which leads to zones in the ice and ablator that are much smaller in the radial dimension than in the swept angular
dimensions. In Spheral, the number of radial points for each region is chosen based on mass matching. The points
are initialized on concentric rings, with azimuthal spacing set equal to the local radial spacing. The radial spacing
is ratioed, with the ratio defined as the radial distance at the outside radius over the radial distance at the inside
radius. The ratios are chosen in 2D such that the points have smoothing lengths that do not differ drastically
at material boundaries. Spheral supports anisotropic point spacing through adaptive SPH [21, ?], which would
decrease the number of points needed for a given radial resolution, but to keep these examples consistent with
standard SPH, this is not employed here.
The comparison results for 2D are shown in Fig. 8. At the initial time, the radiation in the helium gas heats the
surface of the ablator. As the ablator heats up, its opacities decrease, letting the radiation penetrate further into the
ablator. The rate at which this occurs is governed by the thermal radiative transfer equations. The ablation of the
outer surface of the capsule creates an inward-moving shock. This shock travels through the DT ice and eventually
compresses the DT gas. The shock travels through the DT gas and converges at the center of the problem before
the DT ice has stopped traveling inward. The shock in the gas rebounds and bounces back off the ice before the
inward momentum of the ice is halted and the gas reaches peak densities. The DT gas then pushes back against
the DT ice, which causes Rayleigh-Taylor instabilities at the gas-ice interface.
The ablation rate of the capsule in the two codes is very similar. The difference in the position of the ablator-ice
interface, divided by the initial radius of the interface, is around 0.15 percent (0.0001 cm) for most of the simulation,
and is at most 1.5 percent (0.001 cm) near the end of the simulation. The ice-gas interface has similar differences
until the Rayleigh-Taylor instability develops, which makes visual comparison difficult. The velocity plot shows
the Spheral shocks in the gas leading by about 0.02 sh, or 1.1 percent of the total simulation time. The velocities
between the codes are otherwise very similar. The thermal energy and density are also very similar, with the
exception of the shape of the Rayleigh-Taylor instability near the end time, which may be seeded by asymmetric
initial conditions. Table 5 shows the timing and energy balance information for each case. The computational cost
for the two codes is similar, as Spheral is more expensive per time step but takes fewer time steps. The relative
difference between the initial and final energies is approximately the same between the two codes, at about 0.001
for Spheral and 0.002 for Kull.
Figure 10 shows the results in 3D, which are not as well resolved as in 2D due to computational cost (see Table
5), and because of this has only a fraction of the radial zones of the 2D calculation (see Table 4). Despite having
fewer points, the radial direction is more finely resolved in Kull due to anisotropic cell lengths. The results are not
converged for either code, meaning that they may change significantly if the spatial resolution is increased. Because
of this, the results are less similar than in 2D. Compared to 2D, the volume of the DT gas and ice is much smaller
compared to the ablator volume, which makes the implosion progress more quickly.
The ablator-ice interface position is around 5 percent (0.003 cm) different for the two codes throughout the simula-
tion. The ice-gas interface differs by more, at around 5.3 percent (0.008 cm) during the implosion and 9.3 percent
(0.014 cm) after the gas rebounds. The stagnation points for the two simulations are similar in the outer regions.
The shocks in Spheral are behind those in Kull by around 0.01 sh, or 1.4 percent of the total simulation time,
but otherwise have similar behavior. Due to the comparatively low resolution of the 3D simulations, the gas-ice
instability on shock rebound is not visible.
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5 Conclusions and future work

In this work a meshfree radiation hydrodynamics discretization based on smoothed particle hydrodynamics has
been demonstrated. A careful splitting of the radiation hydrodynamics equations allows for the hydrodynamics to
be solved using an explicit time advance and the radiation to be solved using an implicit time advance. The thermal
radiative transfer equations are solved using the discretization from Paper I, while the hydrodynamics equations
are solved using standard SPH methodology. This allows for fully meshless radiation hydrodynamics with arbitrary
opacities and equations of state. By coupling with the efficient radiation solve from Paper I, the meshfree method
has competitive performance when compared with a contemporary ALE radiation hydrodynamics code designed to
study inertial confinement fusion.
The Lowrie shock problem in 1D has a semianalytic solution that allows verification of the radiation hydrodynamics
equations. The numeric solution converges to the semianalytic solution with second-order accuracy for both the
Mach 2 shock and the Mach 45 shock. Correct implementation of the coupling terms between radiation and hydro-
dynamics is essential for the Mach 45 problem, which has high radiation pressure and tests both the propagation
of radiation and hydrodynamic shocks.
The triple point problem with radiation and an ablation problem based off of an ICF capsule are tested against a
mesh-based code, Kull. In both cases, the main difference is minor timing differences in the shock propagation. The
triple point problem tests the ablation rate of the top surface and the effects of radiation on the hydrodynamics.
The meshless results for a highly-converged case are visually indistinguishable from the mesh-based code, and the
difference between the two codes apart from the shock timing differences is between a fraction of a percent and
10 percent throughout the domain. For the ablation problem, the interface positions agree to within 0.15 to 1.5
percent to a percent in 2D and within 5.3 to 9.3 percent in 3D. For both problems, the meshless code runs with
similar speed to the mesh-based code due to a smaller number of time steps required by the hydrodynamics in the
meshless code.
As stated in Paper I, some improvements can be made to the diffusion discretization to ensure zeroth-order consis-
tency, either based on the reproducing kernel particle method [31] or moving least squares particle hydrodynamics
[32, 33]. For accuracy in energy, a multigroup treatment would be needed, preferably coupled to an acceleration
method such as linear multifrequency-grey acceleration [34]. Finally, other angular treatments, such as spherical
harmonics or discrete ordinates transport, could be considered for problems with small opacities or where radiation
is anisotropic.
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Mach 2 Mach 45

cv (erg · g−1K−1) 1.911373 ∗ 108 1.246685× 108

σa (cm−1) 5.773503× 102 7.565304× 1022ρ2T−3.5

σs (cm−1) 0.0 0.4006ρ

γ (ratio of specific heats) 5/3 5/3
µ (molecular weight) 1.0 1.0
ρ pre-shock (g · cm−3) 1.0 1.0
ρ post-shock (g · cm−3) 2.286075 6.426142

T pre-shock (K) 1.410643× 106 1.160452× 106

T post-shock (K) 2.930711× 106 8.69881× 107

v pre-shock (cm · s−1) 0.0 0.0
v post-shock (cm · s−1) −3.461705× 107 −5.705363× 108

End time (s) 1.733250× 10−9 3.505474× 10−6

Distance traveled (cm) 0.06 2000.0

Domain (cm) 0.0 ≤ x ≤ 0.12 0.0 ≤ x ≤ 2500.0

Table 1: Description of the Lowrie shock problem for Mach 2 and Mach 45. For opacity evaluation, the density is
in g · cm−3, while the temperature is in K.

Algorithm 1 Time integration procedure for smoothed particle radiation hydrodynamics.
1: t = 0
2: set initial conditions
3: while t < end time do
4: evaluate σa, σs, λ using initial state
5: perform the explicit hydrodynamics update to get ρn, vn, enhydro
6: calculate radiation momentum using En−1
7: update the radiation energy density to En using Eq. (14)
8: store as En−1 for the radiation update
9: evaluate σa, σs, λ, cv, f using the values from the hydrodynamics update

10: calculate the net energy gain over the hydrodynamics update using Eq. (20)
11: perform the material/radiation update as described in Paper I, Alg. 1
12: use net energy gain as material energy source
13: t = t+ ∆tn

14: end while
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Figure 1: Comparison of numerical and semianalytic material and radiation temperatures for the Lowrie shock,
16,384 points.
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Figure 2: Comparison of numerical and semianalytic material and radiation temperatures for the Lowrie shock
without radiation momentum, 16,384 points.

Points/Cells Procs Points/proc Steps Wall time Time per step Energy error

Spheral
21,410 36 595 3253 1,641 0.505 −7.466× 10−4

2,149,550 1152 1,866 22,244 62,259 2.799 −1.137× 10−4

Kull
21,504 36 598 3101 563 0.182 −7.449× 10−4

2,150,400 1152 1,867 152,843 170,800 1.117 2.993× 10−4

Table 2: Run parameters and comparison of computational cost for the triple point problem. The energy error is
the initial minus the final energy, divided by the initial energy.

Material Outer radius (cm) Initial ρ (g · cm−3) Initial T (keV) γ µ σa (cm−1) σs (cm−1)

DT Gas 0.08628 3.0× 10−2 1.7× 10−6 1.45 1.0
83.0ρ1.56T−2.5

1.0ρ
DT Ice 0.0943 0.25 4.2× 10−7 1.45 1.0

CH 1% Si 0.1108 1.073 8.6× 10−6 1.3 13.0 5.7ρ1.62T−2.7

Helium 0.2 1.0× 10−2 0.4 1.66 2.0 0.30ρ1.73T−3.3

Table 3: Input parameters for ablation problem. For opacity evaluation, density is in g · cm−3 and temperature is
in keV. The listed radius for helium is the half-length of the square or cube. The (γ, µ) columns are the (ratio of
specific heats, mean molecular weight) for the gamma-law gas equations of state in each region.
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Figure 3: Convergence of the numerical result for the Lowrie shock to the semianalytic solution.

Code Dimension DT Gas DT Ice CH 1% Si Helium Points/cells

Spheral
2 134 (0.5) 36 (0.5) 154 (1.0) 155 (20.0) 328,465
3 38 (1.0) 7 (1.0) 23 (1.0) 52 (10.0) 1,058,392

Kull
2 96, 96 144 1296 128 328,704
3 14, 14 22 192 19 147,980

Table 4: Number of radial points or zones in each region for the ablation problem. The numbers in parentheses for
Spheral are the ratio of the radial distance between points at the inner radius to the outer radius. In the DT gas,
Kull uses two parameters, the number of zones across a square or cube at the center of the region and the number
of radial regions outside of it.
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Figure 4: Initial conditions for the triple point problem, including density ρ, pressure p, radiation energy density
E, and the ratio of specific heats, γ. The units are listed in Sec. 4.2.

Code Dimension End time Points/cells Procs Steps Time per step Energy error

Spheral
2 1.75 328,465 288 19,264 1.814 9.286× 10−4

3 0.7 1,058,392 1152 3,156 25.360 Not recorded

Kull
2 1.75 328,704 144 63,488 0.880 −2.416× 10−3

3 0.7 147,980 144 4,795 1.754 1.181× 10−3

Table 5: Timing and step information for the ablation problem. The energy error is the initial minus the final
energy, divided by the initial energy.
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(a) Radiation energy

(b) Material energy

(c) Density

Figure 5: Comparison of four test cases for the triple point problem at 7 sh. For each plot, the top half is Spheral
and the bottom half is Kull. The left half is the high-resolution version, and the right half is the low-resolution
version. This figure is also available as a video. 20



Figure 6: The difference between Spheral and Kull state variables, divided by the average [Eq. (34)], for the triple
point problem run with around 2,150,000 points or cells at 7 sh. This figure is also available as a video.

Figure 7: Geometry for the ablation problem. From the origin out, the regions are DT gas, DT ice, CH 1% Si
plastic, and helium gas. In 2D, the shells are infinite cylinders, while in 3D, the shells are spheres.
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(a) Material energy

(b) Density

(c) Velocity

Figure 8: Comparison of Kull and Spheral for the ablation problem in 2D at 1.2 sh, at maximum compression of
the gas. See Table 4 for the spatial discretization information. This figure is also available as a video.
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Figure 9: The difference between Spheral and Kull state variables, divided by the average [Eq. (34)], for the ablation
problem in 2D at 1.2 sh. This figure is also available as a video.
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(a) Material energy

(b) Density

(c) Velocity

Figure 10: Comparison of Kull and Spheral for the ablation problem in 3D at 0.48 sh. See Table 4 for the spatial
discretization information. This figure is also available as a video.
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