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Abstract

This work presents efficient solution techniques for radiative transfer in the smoothed particle hydrodynamics
discretization. Two choices that impact efficiency are how the material and radiation energy are coupled, which
determines the number of iterations needed to converge the emission source, and how the radiation diffusion
equation is solved, which must be done in each iteration. The coupled material and radiation energy equations
are solved using an inexact Newton iteration scheme based on nonlinear elimination, which reduces the number
of Newton iterations needed to converge within each time step. During each Newton iteration, the radiation
diffusion equation is solved using Krylov iterative methods with a multigrid preconditioner, which abstracts and
optimizes much of the communication when running in parallel. The code is verified for an infinite medium
problem, a one-dimensional Marshak wave, and a two and three-dimensional manufactured problem, and ex-
hibits first-order convergence in time and second-order convergence in space. For these problems, the number
of iterations needed to converge the inexact Newton scheme and the diffusion equation is independent of the
number of spatial points and the number of processors.
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1 Introduction

Smoothed particle hydrodynamics (SPH) is a meshless approach to solving the hydrodynamics equations, in which
the fluid is separated into discrete masses that are used as interpolation points (for an overview, see Refs. [1, 2]).
SPH has several desirable properties, such as automatic conservation of mass and enforced conservation of energy
and momentum, flexible point topology, and Galilean invariance. Like mesh-based Lagrangian codes, the resolution
of the problem follows the mass, but unlike mesh-based codes, SPH does not have issues with mesh tangling.
Drawbacks of SPH include a lack of zeroth-order consistency (the interpolant cannot generally reproduce a constant
exactly) [3] and additional expense that comes from computing connectivity at each time step. There are extensions
to SPH that correct some of these issues, such as moving least squares particle hydrodynamics [4, 5] and conservative
reproducing kernel smoothed particle hydrodynamics [6].
The thermal radiative transfer equations have been solved using a smoothed particle hydrodynamics discretization
previously. The most popular method is implicit, two-temperature, flux-limited diffusion, first implemented in Refs.
[7, 8]. These papers assume an ideal gas equation of state. In the latter paper, the system is reduced to solving
a quartic equation per point within a Gauss-Seidel iteration scheme. This method has been extended to include
the physics of a diffuse interstellar medium for star formation [9]. There are other implementations of flux-limited
diffusion, most of which have been applied to astrophysical problems [10, 11]. The form of the second derivative used
most often for the radiation diffusion second derivative was first applied to heat diffusion [12]. The optically-thin
variable Eddington factor equations with Eddington factors determined by source information (as opposed to by
a full transport calculation) have been applied to cosmological simulation [13]. Similar methods that have been
studied include ray-tracing [14], Monte Carlo [15], and neutrino flux-limited diffusion [16].
Thermal radiative transfer couples the transport of photons with the hydrodynamic state. Common coupling
techniques for the radiation and material equations include simple convergence of the residuals of both equations
(including Newton-Krylov methods), using a single Newton iteration, lagging the nonlinear terms in the equation,
predictor-corrector schemes, and linearization of the nonlinear emission source [17, 18]. Another common method
is linear multifrequency-grey acceleration, which accelerates multigroup convergence and can be used as a precon-
ditioner for a Krylov iterative solve [19, 20]. For more information on time discretization methods, see the following
papers, which compare time integration methods for radiative transfer: block Jacobi, Schur complement, and op-
erator splitting approaches [21]; Newton’s method, Newton-Krylov, and linearized approaches [17]; and Newton’s
method, linearized approaches, and operator splitting [22]. A common thread among these is that while full New-
ton’s method is expensive, it is more stable than the alternatives. The method used in this paper is based on
nonlinear elimination methods, as described in Ref. [23] and applied to radiation diffusion in Ref. [24], which fully
converges the nonlinear solution with only a marginal cost increase over the linearized solution.
The radiation diffusion and transport equations have also been solved using meshless methods other than SPH,
including for coupled radiative transport and conductive heat transfer [25, 26, 27], neutron transport [28], and
neutron diffusion [29, 30]. Many of these discretizations involve either relatively flat meshless functions (which
increases accuracy but makes the system ill-conditioned) or integration of the meshless functions. The advantage
of using the SPH discretization directly is that the same functions that are used for hydrodynamics can be reused
for the radiation, without recomputing the topology.
Some particle methods map unknowns to a background grid for certain physics, such as electromagnetic particle-in-
cell methods that map the charge of the particles to a background grid for the solution of Maxwell’s equations [31].
A similar method could be employed for radiation diffusion with SPH, in which the density and material energy
would be mapped to a background mesh for a radiation diffusion solve, but this would introduce complications with
mesh creation and diffusivity due to the mapping. For consistent SPH diffusion, the solution points are the same for
hydrodynamics and radiation, which simplifies the solution process and eliminates possible errors due to mapping.
SPH diffusion is not computationally competitive with mesh-based diffusion due to the large number of neighbors,
but is compatible with SPH hydrodynamics, which can handle problems that mesh-based methods struggle with.
The goal of this research is to make SPH radiation diffusion more efficient. This is done by improving the solution
of the diffusion problem using fast and accurate preconditioners and applying material-radiation coupling methods
that speed up the convergence of the radiation emission and absorption. With appropriate time step constraints,
the solver is stable and exhibits first-order convergence in time and second-order convergence in space to analytic
solutions and manufactured problems. The methods used here scale well with the number of points and under
domain decomposition due to the use of fast multigrid solvers [32], which also makes the method simple to implement
on distributed architectures. The remainder of this paper is structured as follows. In Sec. 2, the SPH thermal
radiative transfer equations are derived and discretized in time and space. In Sec. 3, the implementation of the
equations is discussed. Finally, in Sec. 4, results for problems in one, two and three dimensions with known solutions
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are presented to verify the accuracy of the code. In Paper II, the full SPH radiation hydrodynamics equations
are derived with appropriate radiation-material coupling terms, and results for full radiation hydrodynamics are
presented.

2 Theory

The smoothed particle hydrodynamics method is used to discretize the thermal radiative transfer equations in space.
The discretization in time reduces a coupled set of equations for the material and radiation energies to separate
updates for the material and radiation energies in an iterative process. The resulting equations conserve energy.

2.1 The thermal radiative transfer equations

The thermal radiative transfer equations are

ρ∂te = −cσaB + cσaE +Qe, (1a)
∂tE = −∂αxFα − cσaE + cσaB +QE , (1b)

1

c
∂tF

α = −c∂βxPαβ − σtFα, (1c)

with the variables

t, time,

x, position,

ρ, mass density,

e specific material energy,

E, radiation energy density,

Fα, radiation flux,

Pαβ , radiation pressure,

T , material temperature,

B, integrated photon emission function,

c, speed of light in a vacuum,

σt, total opacity,

σa, absorption opacity,

a, black-body constant,

Qe, nonhomogeneous material energy source,

QE , nonhomogeneous radiation energy source.

Greek letters used as superscripts (e.g. Fα) indicate dimensional components of a vector. For derivatives, a similar
definition holds, where ∂αxE would indicate the α component of the gradient of E with respect to x. Repeated
indices indicate summation, so ∂αxFα is the divergence of F with respect to x.
The radiation transport equation has been integrated over all energy frequencies (the grey approximation) and
integrated over angle to produce the first two angular moments. For the derivation in Paper I, the material is
assumed to be stationary. The emission term is defined as

B = aT 4, (2)
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where the black body constant a is defined in terms of the Stefan-Boltzmann constant σSB and the speed of light
c as a = 4σSB/c. The material energy and temperature are connected through an equation of state. An example
is the ideal gas equation of state, in which the temperature is proportional to the energy,

T =
µ (γ − 1)mp

kB
e, (3)

where µ is the molecular mass, kB is the Boltzmann constant, and γ is the ratio of heat capacities. The opacities
generally depend on material, temperature and density.
Assuming the specific intensity is linearly anisotropic in angle, the pressure term becomes

Pαβ =
1

3
IαβE, (4)

where I is the tensor identity. Assuming that the time derivatives are neglected, the first angular moment of the
transport equation [Eq. (1b)] can be solved for the radiation flux to get Fick’s law,

Fα = − c

3σt
∂αxE. (5)

Replacing the flux term in the zeroth angular moment equation [Eq. (1c)] with Fick’s law and replacing the pressure
term by the linearly anisotropic value results in the diffusion equation,

∂tE = ∂αx
c

3σt
∂αxE − cσaE + cσaB +QE . (6)

In the original radiation equations [Eqs. (1b) and (1c)], if the pressure were not isotropic, the radiation would
propagate correctly at the speed of light. However, when the time derivative on the first moment equation is
dropped, this adds an error that allows the radiation to propagate faster than the speed of light, |F | > cE. This
effect can be prevented by applying a flux limiter λ to the diffusion equation,

∂tE = ∂αx
cλ

σt
∂αxE − cσaE + cσaB +QE . (7)

With a constant λ = 1/3, the original equation is recovered. The flux limiter is usually written in terms of the
constant R,

R =

√
(∂αxE) (∂αxE)

σtE
, (8)

with examples such as the Levermore flux limiter [33],

λ =
2 +R

6 + 3R+R2
, (9)

and the Larsen flux limiter [34],

λ =
1

(3k +Rk)
1/k

, (10)

where k is a chosen constant. Both of these have the correct limits for diffusive regions (R→ 0), which is the
diffusion equation, and optically thin regions (R→∞), which describes radiation propagating at the speed of light
[35],

Fα →

−
c

3σt
∂αxE, R→ 0,

− ∂αxE√
(∂βxE)(∂βxE)

cE, R→∞. (11)

The Larsen flux limiter with k = 2 is used in most of the results in this paper.

2.2 Time discretization

The coupled material and radiation energy equations [Eqs. (1a) and (7)] are discretized fully implicitly in time,
using the nonlinear elimination methodology described in Ref. [24]. The derivation begins with the coupled material
and radiation diffusion equations discretized using backward Euler,

G =

[
m (en, En)

r (en, En)

]
=


ρ

∆t

(
en − en−1

)
+ cσaB

n − cσaEn −Qne
1

∆t

(
En − En−1

)
− ∂αx

cλ

σt
∂αxE

n + cσaE
n − cσaBn −QnE

 =

[
0

0

]
, (12)
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where U =
[
e E

]>
. Newton’s method updates the state according to

J `δ` = −G`, (13a)

U `+1 = U ` + δ`, (13b)

where J is the Jacobian with respect to e and E,

J =

[
Jm,e Jm,E

Jr,e Jr,E

]
=


ρ

∆t
+

c

cv
σa∂TB −cσa

− c

cv
σa∂TB

1

∆t
− ∂αx cλσt ∂

α
x + cσa

 , (13c)

and δ = [δe, δE ]
> is the change in the state variables and cv = ∂e

∂T is the specific heat capacity.
To simplify the Newton iteration, the Schur compliment of the Jacobian is taken, resulting in the Jacobian system[

Jm,e Jm,E

0 Jr,E − Jr,eJ−1m,eJm,E

][
δe

δE

]
=

[
−Gm

−Gr + Jr,eJ
−1
m,eGm

]
(14)

that can be solved first for δE and then δe. This system of equations can be first solved for δE and then δe. The
solution in Eq. (14) combined with the update in Eq. (13b) is full Newton iteration without approximation. Noting
that ∂TB = 4aT 3, the term Jr,eJ

−1
m,e can be written in terms of the Fleck factor commonly used in implicit Monte

Carlo [36],

f =

(
1 + cσa∆t

4aT 3

ρcv

)−1
, (15)

which is used to forward-predict the emission source, as

Jr,eJ
−1
e,e = f − 1. (16)

Finally, the temperature is held constant in f during each time step, which results in an inexact Newton iteration
scheme,

1

∆t
En,`+1 − ∂αx

cλ

σt
∂αxE

n,`+1 + cσafE
n,`+1 =

1

∆t
En−1 + cσaB

n,` − (1− f) cσaE
n,` +QnE , (17)

with the time step index n and the iteration index `. When En has converged, the terms involving f in the diffusion
equation cancel out and the original, time-discretized diffusion equation is recovered.
Equations (13) represent the standard Newton solution method for the thermal radiative transfer equations. Here,
a nonlinear acceleration technique from Ref. [24] is additionally applied. The following two functions are helpful in
describing the iterative process of solving the equations,

m (e?, E) =
ρ

∆t

(
e? − en−1

)
+ cσaB

? − cσaE −Qne = 0, (18a)

r† (e, E,E?) =
1

∆t
E? − ∂αx

cλ

σt
∂αxE

? + cσafE
? − 1

∆t
En−1 − cσaB + (1− f) cσaE −QnE = 0 (18b)

where e? and E? represent the values to be solved for. Note the use of r† to distinguish the diffusion equation from
the starting equation r. The solution of r† (e, E,E?) = 0 represents solving a spatially-coupled linear equation, as
discussed in Sec. 3.2. Note that the value of the material energy in these equations is entirely dependent on the
radiation energy, which means that a solution of r† represents an inexact Newton iteration of the full material and
radiation energy system. After a solution of r† for the radiation energy, the material energy is updated by solving
m (e∗, E) = 0, which represents a nonlinear solve using Newton’s method,

e? ← e? −
(
J?m,e

)−1 [ ρ
∆t

(
e? − en−1

)
+ cσaB

? − cσaE −Qne
]
, (19)

where ← represents an update to the value of e?. This update is performed until e? is converged. This differs from
standard Newton iteration, where the material energy update would be done simultaneously with the radiation
energy update and without solving m (e∗, E) = 0 until e∗ is converged. The iterative solution procedure for these
two equations is described in Alg. 1. Note that because the material energy has been eliminated through the
nonlinear elimination process and can be considered a function of the radiation energy E, not an independent
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variable. This means that when the radiation energy is updated, the material energy is recomputed. The initial
update makes the material energy consistent with the value of the radiation energy before iterations start.
The outer iterations, or the inexact Newton iteration of the material and radiation energy system, continue until
the convergence criteria are met, ∣∣∣∣en,`+1 − en,`

en,`+1

∣∣∣∣ < εe, (20a)∣∣∣∣En,`+1 − En,`

En,`+1

∣∣∣∣ < εE . (20b)

The inner iterations, or the iterations required to converge m and r within an outer iteration, use similar equations
for determining convergence. As the absorption term appears with both En,` and En,`+1, convergence is required
for energy conservation to be preserved (see Sec. 2.5).

2.3 Introduction to smoothed particle hydrodynamics

In this section, the standard SPH derivatives needed for the thermal radiative transfer approximation are derived.
For a more complete review of the SPH approximation, see Ref. [1].
Smoothed particle hydrodynamics involves interpolation of fields using kernels, which are functions centered at inter-
polation points. The initial assumption needed is that SPH kernels approximate delta functions, orW (x− x′, h)→
δ (x− x′) as h→ 0, where h is the smoothing parameter that determines the width of the kernels,

g (x) =

∫
V

δ (x− x′) g (x′) dV ′

≈
∫
V

W (x− x′, h) g (x′) dV ′. (21)

This also means that the integral of the kernel should be equal to one,∫
V

W (x− x′, h) dV ′ = 1. (22)

In practice, the h can depend on both x and x′. The second assumption is that a set of kernels in space can be
used to form a quadrature, with abscissas at the kernel centers xi and weights equal to the kernel volume Vi. With
these two assumptions, the kernels can be used to interpolate a function,

〈g (x)〉 =

∫
V

W (x− x′, h) g (x′) dV ′

≈
∑
j

VjW (x− xj , h) gj . (23)

Here gj is the function evaluated at point j, gj = g (xj), and 〈·〉 indicates an interpolated quantity. The interpolant
is used to calculate derivatives of the field. This interpolant does not have the Kronecker delta property,

〈g (x)〉i =
∑
j

VjW (xi − xj , h) gj 6= gi. (24)

To approximate a derivative in SPH, another three properties are needed from the kernel: that the kernel does not
intersect a boundary, that the derivative of the kernel is antisymmetric in x and x′, and that the integral of the
derivative of the kernel is zero. With these approximations, the derivative of a function can be approximated as

〈∂αx g (x)〉 =

∫
V

W (x− x′, h) ∂αx′g (x′) dV ′

= −
∫
V

∂αx′W (x− x′, h) g (x′) dV ′

= ∂αx

∫
V

W (x− x′, h) g (x′) dV ′ − g (x) ∂αx

∫
V

W (x− x′, h) dV ′

≈
∑
j

Vj (gj − g (x)) ∂αxW (x− xj , h) . (25)
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Note that because of the added g (x) term (which equals zero in integral form due to the derivative), this approxi-
mation of the derivative goes to zero for a constant function.
For a diffusion-like problem, a second-order series expansion for g (x) about x′ and g (x′) about x,

∂αx′g (x′) ≈ xα − xα,′

(xβ − xβ,′) (xβ − xβ,′)
[g (x′)− g (x)] , (26)

can be used to produce a commonly-used second-order approximation to the second derivative [1],

〈∂αx [k (x) ∂αx g (x)]〉 =

∫
V

W (x− x′, h) ∂αx′ [k (x′) ∂αx′g (x′)] dV ′

= −
∫
V

k (x′) ∂αx′W (x− x′, h) ∂αx′g (x′) dV ′

= ∂αx

∫
V

k (x′)W (x− x′, h) ∂αx′g (x′) dV ′ + k (x) ∂αx g (x) ∂αx

∫
V

W (x− x′, h) dV ′

=

∫
V

[k (x) ∂αx g (x) + k (x′) ∂αx′g (x′)] ∂αxW (x− x′, h) dV ′

≈
∫
V

[k (x) + k (x′)] [g (x)− g (x′)]
xα − xα,′

(xβ − xβ,′) (xβ − xβ,′)
∂αxW (x− x′, h) dV ′

≈
∑
j

Vj (k (x) + kj) (g (x)− gj)
xα − xαj(

xβ − xβj
)(

xβ − xβj
)∂αxW (x− xj , h) . (27)

Like the first derivative approximation, the second derivative is zero for a constant function because the g terms
cancel.
When discretizing an equation in SPH, the equation is first multiplied by the kernel W (x− x′, h) and integrated,
similar to the finite element method. The distinction is that the interpolant is only used to calculate derivatives.
The terms without derivatives are approximated using the definition of the interpolant,

〈g (x)〉 =

∫
V

W (x− x′, h) g (x′) dV ′ ≈ g (x) . (28)

The terms with derivatives are approximated as derivatives of the interpolant, as in Eq. 25. The final step in
an SPH discretization is to add constraints to match the free variables in the equations. This can be done by
multiplying the equations by a delta function δ (x− xi) and integrating, or equivalently, evaluating the functions
at x = xi. This results in the fully-discrete approximations to Eqs. (23), (25), and (27),

〈g (x)〉i ≈
∑
j

VjWijgj , (29a)

〈∂αx g (x)〉i ≈
∑
j

Vj (gj − gi) ∂αxiWij , (29b)

〈∂αx [k (x) ∂αx g (x)]〉i ≈
∑
j

Vj (ki + kj) (gi − gj)
xαij

xβijx
β
ij

∂αxiWij , (29c)

where

xαij = xαi − xαj , (30a)

Wij = W (xij , h) , (30b)
∂αxiWij = ∂αxiW (xij , h) . (30c)

The smoothing length h connects the analytic kernel in Eq. (32c) with the SPH kernels,

W (x− x′, h) = ψ

(√
(xα − xα,′) (xα,′ − xα,′)

h

)
. (31)

In practice, the smoothing length is not constant and instead has discrete values at the SPH nodes. To retain
symmetry in the derivatives [such that ∂αxiW (xi − xj , h) = ∂αxjW (xj − xi, h)], the kernel values are taken to be an
average of the evaluations using these two smoothing lengths,
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Wij =
1

2
[W (xij , hi) +W (xij , hj)] (32a)

∂αxiWij =
1

2

[
∂αxiW (xij , hi) + ∂αxiW (xij , hj)

]
. (32b)

The Wendland functions [37] are one example of a kernel that can be used in SPH. The Wendland C4 kernel is used
here,

Wwendland (xij , h) =

{
k (1− r)5

(
8r2 + 5r + 1

)
, r ≡ xij/h ≤ 1,

0, otherwise,
(32c)

with a dimensionally-dependent normalization constant k that is chosen such that Eq. (22) is satisfied. The choice
of interpolation kernel is of course arbitrary for meshfree methods such as these, and many have been used over the
years. Wendland kernels are common in many modern SPH studies (e.g. [38, 39]), but this choice is not necessarily
unique.
Note in this section the per point volume Vj has been used (such as in Eq. 23), leading to explicitly volume weighted
relations throughout. SPH does not define a volume element per point as such, so in this paper the volume is defined
as Vj = mj/ρj . It is common in the SPH literature to substitute this relation for Vj and then rearrange terms to
remove the density from inside the summation, such that only the fixed (and well defined) mass per point remains
(see for instance the discussion in Sec. 2.2 of [1].) In this work the volume remains inside the second derivative,
which may affect the accuracy of the method in regions of high density contrast. This definition is consistent
with the diffusion derivative in Refs. [12] (where the mass of the particles is constant) and [1] (where the mass is
variable). It is possible these results might be improved by rearranging such definitions analogously to how first
derivatives are typically handled, but such an investigation is left to follow-on studies.

2.4 Spatial discretization

To perform the spatial discretization, the material and radiation energy equations [Eqs. (18)] are multiplied by
W (xi − x′, h) and integrated,〈 ρ

∆t

(
en,`+1 − en−1

)
+ cσaB

n,`+1 − cσaEn,`+1 −Qne
〉
i

= 0, (33a)〈
1

∆t
En,`+1 − ∂αx

cλ

σt
∂αxE

n,`+1 + cσafE
n,`+1

〉
i

=

〈
1

∆t
En−1 + cσaB

n,` − (1− f) cσaE
n,` +QnE

〉
i

, (33b)

where 〈·〉 is the interpolant notation as defined in Sec. 2.3. The terms not involving derivatives can be approximated
using Eq. (28), e.g. 〈 ρ

∆t
en−1

〉
≈ ρi

∆t
en−1i , (34)〈

cσafE
n,`+1

〉
i
≈ cσa,ifiEn,`+1

i . (35)

The second derivative in the radiation energy equation can be approximated using Eq. (27),

〈−∂αxD (x) ∂αxE (x)〉 ≈ −
∑
j

Vj (Di +Dj) (Ei − Ej)
xαij

xβijx
β
ij

∂αxiWij , (36)

with the diffusion coefficient
Di =

cλi
σt,i

. (37)

With these approximations, the material and radiation equations are

ρi
∆t

(
en,`+1
i − en−1i

)
+ cσa,iB

n,`+1
i − cσa,iEn,`+1

i −Qne,i = 0, (38a)

1

∆t
En,`+1
i −

∑
j

Vj (Di +Dj)
(
En,`+1
i − En,`+1

j

) xαij

xβijx
β
ij

∂αxiWij + cσa,ifiE
n,`+1
i

=
1

∆t
En−1i + cσa,iB

n,`
i − (1− fi) cσa,iEn,`i +QnE,i. (38b)
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The material energy equation is independent for each point i, while the radiation energy equation for point i linearly
couples to the radiation energy from nearby nodes. For more information on how these equations are solved, see
Sec. 3.2.

2.5 Conservation

The coupled material and radiation equations [Eqs. (38)] are conservative in energy to the tolerance of the nonlinear
iteration process once converged. The quantity that is conserved is the total energy over all points, which is the
material energy plus the radiation energy, ∑

i

(miei + ViEi) = const. (39)

At convergence, en,`+1 ≈ en,` and En,`+1 ≈ En,`, which results in the simplified equations

ρi
∆t

(
eni − en−1i

)
+ cσa,iB

n
i − cσa,iEni = Qne,i, (40a)

1

∆t

(
Eni − En−1i

)
−
∑
j

Vj (Di +Dj)
(
Eni − Enj

) xαij

xβijx
β
ij

∂αxiWij + cσa,iE
n
i − cσa,iBni = QnE,i. (40b)

Adding the two equations, multiplying by Vi, and summing over i results in∑
i

[
mi

(
eni − en−1i

)
+ Vi

(
Eni − En−1i

)]
= ∆t

∑
i

(
Qne,i +QnE,i

)
. (41)

Because the diffusion spatial derivative is antisymmetric about i and j, it disappears under summation over both i
and j. This final equation says that any gains or losses in the total energy are as a result of specified sources. At
equilibrium and absence external sources, both the material and the radiation equations reduce to an equilibrium
absorption-emission rate at every point xi, which is Ei = Bi.

3 Methodology

The thermal radiative transfer methods described here are implemented within the open-source SPH code Spheral,
described at https://wci.llnl.gov/simulation/computer-codes/spheral and publicly available at https://
github.com/jmikeowen/spheral, although the radiative transfer methods are not available in the open source
version. For access to the full code, including thermal radiative transfer and input scripts for the problems presented
in this paper, please contact the authors. Spheral is written in C++ with a Python interface, which allows for simple
addition of new physics in either programming language. The opacities, flux limiters, and equations of state can be
chosen arbitrarily for subsets of the SPH points as needed, allowing problems with any number of distinct materials
to be studied.

3.1 Meshless implementation

In the succeeding examples Spheral’s default method [40] for computing the smoothing scale per point (hi) is used
with the C4 Wendland kernel [Eq. (32c)]. The target radius of support is 4 points, i.e., the local smoothing scale
for each point is chosen to be 4 times the local particle spacing. The smoothing scale algorithm from [40] is iterated
until the desired support for each point is achieved during problem initialization. Since the points in these examples
are not moving, the smoothing scale is unchanged after this initialization.
Boundary conditions are handled with ghost nodes, which provide sufficient support for the internal nodes and
allow the boundary terms in SPH to be neglected. The ghost points can be set to have constant values independent
of internal nodes or to represent an internal node. For reflective or periodic boundaries, the points adjacent to
the boundary are copied across the boundary. The domain decomposition is done similarly, where all neighboring
points for those in the subdomain for a processor are copied as ghost points.
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3.2 Material and radiation energy solve

The iterative process in Alg. 1 [24] can be written in terms of operator matrices as[
e`+1

E`+1

]
=

[
M−1 0

0 I

][
R A
0 I

][
I 0

0 D−1

][
I 0

N S

][
e`

E`

]
, (42)

with the operators defined by

M−1 (P ) Solve the nonlinear material equation, given a source Pi,

ρi
∆t

(
ei − en−1i

)
+ cσa,iaT

4
i = Pi, (43)

for each ei,

D−1 (P ) Solve the diffusion equation, given a source Pi,(
1

∆t
+ cσa,ifi

)
Ei −

∑
j

Vj (Di +Dj) (Ei − Ej)
xαij

xβijx
β
ij

∂αxiWij = Pi, (44)

for all Ei,

S (E) Calculate the radiation diffusion source,
1

∆t
En−1i − (1− fi) cσa,iEi +QE,i,

N (e) Calculate the emission of radiation from the material, cσa,iaT 4
i ,

A (E) Calculate the radiation energy absorption, cσa,iEi,

R (e) Set the material energy source, Qne,i,

and the identity operator I. This simplifies the addition of new physics, reduces code duplication, and allows testing
of each operator independently. Note that M−1 and N are nonlinear operators, and should not be mistaken for
matrices. The operators D−1, S,and A are linear, but in practice, they are not explicitly formed into matrices. The
application of the combined operator in Eq. (42) is equivalent to a single outer iteration in Alg. 1. The opacities
and other material data (σa, σs, D, f , λ, and cv) are calculated at the start of the time step and held constant
within the time step.
The material energy solve in Eq. (43) is done independently for each point using Newton’s method, as shown in
Eq. (19). Defining the function and Jacobian for the material energy solve as

u (ei) =
ρ

∆t

(
ei − en−1

)
+ cσaaT

4 − P, (45a)

Jm,e (e) =
ρ

∆t
+

4cσaaT
3

cv
, (45b)

the material energy is solved iteratively as

ek+1
i = eki − J−1m,e

(
eki
)
u
(
eki
)

(45c)

until converged, where k is the Newton iteration index. As the call to an external equation of state can be expensive,
the temperature is updated for all points simultaneously, followed by an update of the material energy for each
point independently. The iterative process in Eq. (45c) proceeds until convergence each time theM−1 operator is
called.
The radiation energy solve in Eq. (44) is done using the Hypre BoomerAMG preconditioner with GMRES [32].
Because the material properties (opacities, specific heats, hydrodynamic variables) are held constant within a time
step, the preconditioner can be initialized once at the start of each time step and then reused each time the D−1
operator is called within the time step. The radiation energy E` is used as an initial guess for the GMRES solver
when calculating E`+1, which reduces the number of GMRES iterations as the solution nears convergence, as is
discussed in Sec. 4.3.
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3.3 Time step choice

Due to the implicit solve, the time step is updated not based on the propagation speed of the radiation, but instead
based on the observed change in radiation energy over a time step. This is a heuristic for the stability and accuracy
of one Newton step. The idea is to limit the fractional change in the material and radiation energies to some finite
value and increase or decrease the time step according to the change from the previous time step. For example, for
the material energy, the fractional change in energy is calculated as

ηe = max
i

( ∣∣eni − en−1i

∣∣
eni + ηtarget

e ēn

)
, (46)

where ηtarget
e is the target fractional change (ηtarget

e = 0.05 for the problems in this paper) and ēn is the volume-
averaged energy,

ēn =

∑
i e
n
i Vi∑
i Vi

. (47)

The ēn in the denominator of the fractional change prevents points with very small radiation energy from dominating
the time step when changing a small magnitude relative to the other points in the problem. Given the fractional
change over the previous time step, a proposed time step is calculated as

∆tn+1
e = ∆tn

(
ηtarget
e

ηe

)1/2

. (48)

The fractional change in energy [Eq. (46)] depends on the energy being nonzero somewhere in the problem. If it is
anticipated that the energy might be zero everywhere in the problem, a small number (e.g. 10−15) can be added to
the denominator to prevent division by zero.
The same is process is done for the radiation energy E, and the time step is chosen to be the more restrictive of
these, ∆tn+1 = min

(
∆tn+1

e ,∆tn+1
E

)
, within the minimum and maximum time steps specified by the user. For more

information on time stepping strategies for thermal radiative transfer with diffusion, including the one used here,
see Ref. [41].

4 Results

The results include three problems. The first is an infinite medium equilibrium test, which is designed to show
that the material and radiation energies come to equilibrium at the correct rate, testing the time discretization,
emission, and absorption. The second is the Su-Olson Marshak wave, which simulates the diffusion of a planar
radiation source into a vacuum, additionally testing the diffusion rate of the radiation. The final problem is a
manufactured solution that extends the results to two and three dimensions. The tolerances used for each of these
problems are listed in Table 1, with the inner tolerances referring to the convergence metric for ending the Newton
solve for the material energy and the GMRES solve for the radiation energy and the outer tolerances used for ending
the nonlinear elimination iteration process (see Sec. 3.2).

4.1 Infinite medium equilibrium test

The first problem involves a single material in an infinite medium in which the material and radiation energies are
initially out of equilibrium, similar to the tests performed in Refs. [7, 8]. The units of length, time, temperature,
and mass are chosen such that the absorption opacity σa, speed of light c, black body constant a, and ratio of
proton mass to the Boltzmann constant, mp/kB , are all one. The equation of state is chosen to be an ideal gas [Eq.
(3)], which in these units is defined as

T = (γ − 1)µe. (49)

The problem can be written in the simplified unit system as a system of two ordinary differential equations,

ρ
∂e

∂t
= E − (αe)

4
, (50)

∂E

∂t
= −E + (αe)

4
. (51)
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These equations are solved using a fifth-order Radau IIA integrator [42] for comparison to the results given by the
code.
The problem is run for two different cases, both of which have (γ − 1)µ = 1 and a density of ρ = 1, and in each case,
the simulation proceeds until tend = 10, which allows the material and radiation energies to reach equilibrium. The
first case starts with hot material and cold radiation, while the second starts with cold material and hot radiation,
as shown in Table 2. The time step is allowed to increase by up to an order of magnitude per time step, up to the
limit set by the changing material and radiation energies, with a hard cap of ∆tmax = 0.1 (see Sec. 3.3).
The first and second cases take, respectively, 779 and 155 time steps to reach the goal time. The results are shown
in Fig. 1. The reference and numeric solutions agree well for both problems. The L1 relative error for this problem
is calculated with an integral in time,

L1 error =

∫ tend
0
|Tref − Tnum| dt∫ tend
0

Trefdt
, (52)

using Simpson’s rule evaluated at the time steps. The error between the reference and numeric solutions for the first
case (with hot material) is 3.32× 10−4 for the material temperature and 2.55× 10−4 for the radiation temperature.
The error calculated in the same way for the second case (with hot radiation) is 1.22 × 10−3 for the material
temperature and 6.21 × 10−4 for the radiation temperature. For a fixed time step ∆t, the error decreases linearly
with ∆t as expected, as shown in Fig. 2.
The relative error between the initial and final energies ranges from 1.11× 10−15 (hot radiation) and 4.44× 10−16

(hot material) for ∆t = 0.1 to 4.22× 10−13 (hot radiation) and 5.53× 10−13 (hot material) for ∆t = 0.0001, which
is of the correct order given the outer tolerance of 10−12 and inner tolerance of 10−14 (Table 1).

4.2 Su-Olson Marshak wave

The second problem is a Marshak planar wave as described in Ref. [43]. The problem consists of a reflecting plane
at x = 0.0 and a radiation source from 0 ≤ x ≤ x0 that is turned on for 0 ≤ τ ≤ τ0, where x is a scaled distance
and τ is a scaled time (z is used in the paper for physical distance). The problem is started with a material and
radiation energy of 10−5 so the heat capacity (an analytic cv ∝ T 3) is nonzero. The equation of state from the
original paper [43] is

e =
4a

ε
T 4, (53)

where ε is a time scaling factor. The units for the problem are chosen such that σt = 1, εc = 1, and a = 1, which
makes the scaled units referenced in the paper equal to the physical units (x = z and τ = t). The solution to the
problem is semianalytic, and involves evaluating integrals to high precision over η ∈ [0, 1] for each spatial point
at each time. For these results, due to the complicated structure of the solution near η = 1, a quadrature is first
generated in ξ ∈ [−1, 1] and then transformed into η via the relation

η =
1

`
ln

(
1

2

(
1− ξ + e` (1 + ξ)

))
, (54)

in which the transformation becomes linear as ` → 0 and concentrates more points near η = 1 as ` increases.
A 5000-point Gauss-Legendre quadrature with ` = 3 works well for the specific problem considered below. The
numerical result at the end time is compared to this semianalytic result using an L1 error,

L1 error =

∑
i

∣∣∣ei − esemianalytic
i

∣∣∣∑
i e

semianalytic
i

, (55)

which differs from the standard approach of comparison to specific x and τ values tabulated in the paper.
The parameters used for these results include an absorption fraction of ca = 0.5, a time scaling factor of ε = 1.0, a
radiation source extent of x0 = 0.5, and a scaled time at which the source is turned off of τ0 = 10.0. The problem
is run until τ = 100.0. The spatial extent of the problem is 0 ≤ x ≤ 100.
The time evolution of the semianalytic and numeric solutions is shown in Fig. 3. The spatial convergence results
are shown in Fig. 4 for three different time steps. The code converges to the semianalytic result with second-order
accuracy spatially as the point spacing decreases and with first-order accuracy temporally as the time step decreases,
as expected based on SPH spatial interpolation and backward Euler time integration.
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4.3 Manufactured solution for material-radiation coupling

This problem tests the material-radiation coupling using the method of manufactured solutions (MMS). To apply
MMS to Eqs. (38), solutions for e and E are chosen for the equations,

em = e0

[
1.2 +

dim∏
α=1

cos

(
2π
xα − vmt

dm

)]
, (56a)

Em = E0

[
1.2 +

dim∏
α=1

cos

(
2π
xα + vmt

dm
− ωm

)]
, (56b)

with e0 = 1013 ergs·g−1, E0 = 7a (e0/cv)
4 ergs·cm−3, vm = 5 × 109 cm·s−1, dm = 5 cm, and ωm = 1/16. The

opacities are set to constant values of σa = 0.05 cm−1 and σs = 0.95 cm−1. These solutions are inserted into the
non-discretized equations [Eqs. (1a) and (7)] to calculate sources, Qe and QE . The solutions are chosen such that
the magnitude of the individual terms in Eqs. (1a) and (7) is approximately equal, with the opposite time movement
of the waves ±v allowing each individual piece of physics to dominate at certain times. The spatial extent of the
problem is set to one full wavelength, or dm in each dimension (to allow for periodic boundary conditions), and the
problem is run for one cycle, or until tend = dm/vm, using a time step of ∆t = tend/1000. At tend, the numerical
solution is compared to the analytic solution in Eqs. (56) to calculate the L1 relative error,

L1 error =

∑
i |ei − em,i|∑

i em,i
(57)

(with a similar equation for E). The ideal gas equation of state is used [Eq. (3)] with γ = 5/3 and α = 1.
The solution for the problem with 1282 points is shown in Fig. 5. At the end time, the solution should be equal
to the initial condition. The relative error between the solution after one cycle (at 10−9 s) and the manufactured
solution for the specific thermal energy and radiation energy density is shown in Fig. 6. The relative error is highest
where the solution is lowest, with maxima of 0.006 for the specific material energy and 0.008 for the radiation energy.
For much of the domain, the relative error is below 0.001 for both the material and radiation energy. At the end
time, the relative difference between the starting and ending energy of the system is 1.67× 10−12, which indicates
good energy conservation.
The L1 error for the manufactured problem in 1D for several time step values is shown in Fig. 7. The numeric
solution converges to the manufactured solution with second-order accuracy in space and first-order accuracy in
time (again as expected). For a time step of 2 × 10−13, the error in the radiation energy indicates second-order
convergence for all values of point spacing. The error in the material energy, which only has spatial coupling
through the radiation, is much more dependent on the time step for this problem than the radiation energy. As in
the previous problems, the error decreases linearly with the time step, when not limited by the spatial error.
Based on the results in 1D, a time step of 4× 10−13 is chosen for the comparison of 1D, 2D, and 3D results up to
128d points (for the dimension d). The convergence results for 1D, 2D, and 3D are shown in Fig. 8. The 2D and
3D results have similar errors compared to the manufactured solution for similar spacing of points, although not
identical due to differences in the interpolation functions for 2D and 3D, and also show second-order convergence
when not limited by the time step.
While the number of processors used for each case was not chosen to show scaling with a constant number of points
per processor or a constant number of total points, the performance results in Table 3 show some general scaling
trends. In 2D, the small number of points per processor means that communication costs dominate, and adding
more points per each processor helps reduce that cost. In 3D, the cases with 910 points per processor show around
a 74 percent efficiency when the number of points and processors are quadrupled. With many more points per
processor than the other cases, the 2,097,152-point problem on 576 processors runs with a similar efficiency to the
262,144-point problem in 288 processors. Note that the 3D results take a long time to run due to the high level of
support, up to several hundred neighbors per point.
The number of outer iterations per time step is governed for this problem by the tolerance. For the tolerance given
in Table 1, the solver needed two outer iterations to converge (and a third to check for convergence) in each time
step. The number of GMRES iterations per outer iteration is around 3-4 on average. At the start of a time step,
when the guess for the material and radiation energies is based on the values from the previous time step, the
number is generally higher, around 6-8. On the last outer iteration, the number of GMRES solves is 1, indicating
that the guess from the previous iteration satisfies the diffusion equation.
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The solution to the problem is the same at the start and end times, so despite adding and subtracting energy in
certain regions of the problem, the initial and final energies should be equal. The relative error between the initial
and final energy in 2D ranges from 6.35 × 10−14 for the 256 points to 1.69 × 10−12 for 16,384 points. For 3D, the
relative error ranges from 1.33 × 10−13 for 4,096 points to 4.53 × 10−12 for 2,097,152 points. In both cases, the
relative error is on the order of the tolerance for the radiation solve of 10−12 and much lower than the tolerance of
the coupled radiation and material energy solve of 10−8.

5 Conclusions and future work

The thermal radiative transfer equations with grey diffusion is discretized fully implicitly in time and solved us-
ing an efficient nonlinear elimination method that leads to fast convergence of the emission source. A standard
SPH diffusion derivative is applied to the modified equations to form a fully discretized set of equations that are
conservative in energy. The diffusion term is solved using optimized linear solvers, which permits good parallel
efficiency.
The code is verified by comparison to three test problems with known solutions. The code gets the correct infinite
medium behavior for either a hot material emitting radiation or a cold material absorbing radiation, with the
expected first-order convergence in time. The results for a one-dimensional semianalytic Marshak wave problem
are consistent with second-order spatial convergence. Finally, the code is run in 2D and 3D for a manufactured
problem with sinusoidal radiation and material energy solutions traveling in opposite directions, which likewise
exhibits second-order convergence in space and first-order convergence in time.
The diffusion discretization for SPH is stable and performs well, but lacks zeroth-order consistency. Other methods,
such as reproducing kernel particle methods [44] and moving least squares particle hydrodynamics [4, 5], do not lack
the zeroth-order consistency and perform better near boundaries. Conservative reproducing kernel smoothed particle
hydrodynamics is implemented in the SPH code used for these results [6], and a similar diffusion discretization
would make the hydrodynamics and radiation discretizations consistent. Other discretizations would also make the
application of vacuum or incoming radiation boundary conditions more feasible.
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Problem
Inner Outer

Material Radiation Material Radiation

Infinite medium 10−14 10−14 10−12 10−12

Marshak wave 10−12 10−12 10−8 10−8

Manufactured problem 10−12 10−12 10−8 10−8

Table 1: Convergence tolerances for the results. Then inner tolerance is for the independent radiation and material
energy solves, while the outer tolerance is for the combined solve.

Case e0 E0 Te,0 Tr,0 ∆tinit

Hot material 1.0 10−16 1.0 10−4 10−20

Hot radiation 10−4 1.0 10−4 1.0 10−7

Table 2: Initial conditions for infinite medium problem for two cases, one starting with a high thermal temperature
and low radiation temperature and one with the temperatures reversed. See Sec. 4.1 for units.

Algorithm 1 Material and radiation energy update, which is based on Ref. [24]. The material and radiation
energy equations m and r† are defined in Eq. (18), while the Newton update for m is described in Eq. (19). The
convergence criteria are defined in Eqs. (20).
1: ` = 0
2: set initial guesses to en,` = en−1 and En,` = En−1

3: solve m
(
en,`, En,`

)
= 0 for en,`

4: (perform Newton updates until converged to inner tolerance for e)
5: while en and En not converged to outer tolerances do
6: solve r†

(
en,`, En,`, En,`+1

)
= 0 for En,`+1

7: (if iterative solver is used, iterate until converged to inner tolerance for E)
8: solve m

(
en,`+1, En,`+1

)
= 0 for en,`+1

9: (perform Newton updates until converged to inner tolerance for e)
10: ` = `+ 1
11: end while
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(a) Hot material at initial time
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(b) Hot radiation at initial time

Figure 1: Comparison of reference and numerical results for the infinite medium problem. The time step is fixed at
∆t = 0.0001.
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Figure 2: Convergence of the numerical solution for the infinite medium problem to the reference solution with
decreasing time step. The error is calculated using Eq. (52).

Dimension Points Procs Points/proc GMRES/Outer Outer/Step Wall time (s) Time×Proc/Point

2

256 36 7 3.66 3 59 8.29
1,024 36 28 4.66 3 79 2.78
4,096 36 113 3.33 3 261 2.29
16,384 36 455 3.66 3 817 1.79

3

4096 36 113 3.66 3 815 7.21
32,768 36 910 4.66 3 5,610 6.20
262,144 288 910 3.33 3 7,660 8.41
2,097,152 576 3,640 3.66 3 31,975 8.78

Table 3: Timing for the manufactured problem in 3D.
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(a) Material energy (b) Radiation energy

Figure 3: The numeric and semianalytic solutions to the Marshak wave problem at t = 10.0. This figure is also
available as a video.
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(a) Material energy
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Figure 4: Convergence of the numeric solution to the semianalytic solution for the Marshak wave with an increasing
number of spatial points for three time step values. The error is calculated using Eq. (55).
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(a) Material energy (b) Radiation energy

Figure 5: The numeric solution to the manufactured problem in 2D for 1282 points after one cycle. This figure is
also available as a video.

(a) Material energy (b) Radiation energy

Figure 6: Pointwise relative error of the numeric solution to the manufactured problem at 10−9 s in 2D for 1282

points.
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(a) Material energy
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Figure 7: Convergence of the numeric solution to the manufactured problem for several time step values in 1D. The
error is calculated using Eq. (57). Note that the material energy is more dependent on the time step for convergence
than the radiation energy, and thus does not show the same second-order convergence for the time steps shown
here.
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Figure 8: Convergence of the numeric solution to the manufactured problem in 1D, 2D, and 3D with a fixed time
step of ∆t = 4× 10−13. The error is calculated using Eq. (57).
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