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A FINITE ELEMENT METHOD FOR ELECTROWETTING ON

DIELECTRIC

QUAN ZHAO∗ AND WEIQING REN†

Abstract. We consider the problem of electrowetting on dielectric (EWoD). The system involves
the dynamics of a conducting droplet, which is immersed in another dielectric fluid, on a dielectric
substrate under an applied voltage. The fluid dynamics is modeled by the two-phase incompressible
Navier-Stokes equations with the standard interface conditions, the Navier slip condition on the
substrate and a contact angle condition which relates the dynamic contact angle and the contact
line velocity, as well as the kinematic condition for the evolution of the interface. The electric force
acting on the fluid interface is modeled by the Maxwell’s equations in the domain occupied by the
dielectric fluid and the dielectric substrate. We develop a numerical method for the model based on
its weak form. This method combines the finite element method for the Navier-Stokes equations on a
fixed bulk mesh with a parametric finite element method for the dynamics of the fluid interface, and
the boundary integral method for the electric force along the fluid interface. Numerical examples
are presented to demonstrate the accuracy and convergence of the numerical method, the effect of
various physical parameters on the interface profile and other interesting phenomena such as the
transportation of droplet driven by applied non-uniform electric potential difference.
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1. Introduction. Since the pioneer work of Lippmann [23] on electro-capillarity,
it has been found that applied electric fields have a great effect on the wetting behavior
of small charged droplets. This phenomenon is referred to as electrowetting and has
received much attention in recent years [27, 44, 7]. In the device of electro-wetting on
dielectric (EWoD), a dielectric film is placed on the substrate to separate the droplet
and the electrode to avoid electrolytic decomposition [4] (see Fig. 1.1 for the set-up
of EWoD). EWoD has found many applications in various fields, such as adjustable
lenses [20], electronic displays [18], lab-on-a-chip devices [31, 8], suppressing coffee
strain effects [15], etc.

The static problem of EWoD has been extensively studied in recent years, for
example, in Refs. [19, 6, 38, 5, 28, 25, 37, 16, 11, 12, 13] and many others. These
work has revealed the structure of the static interface profile. It was found that the
electric force does not contribute to the force balance at the contact line, therefore
the local static contact angle θY still satisfies the Young-Dupré equation

(1.1) γ cos θY = γ2 − γ1,

where γ, γ1 and γ2 are the surface tension coefficients of the fluid-fluid and fluid-solid
interfaces. On the other hand, the divergent electric force incurs a large curvature
and causes a significant deformation of the fluid interface in a small neighborhood of
the contact line. The contact angle of the interface outside this small region, called
the apparent contact angle and denoted by θB, is well characterized by the Lippmann
equation [32, 6, 13]

(1.2) cos θB = cos θY +
ǫφ2

2γ d
,

∗Department of Mathematics, National University of Singapore, Singapore 119076
(matzq@nus.edu.sg).

†Corresponding author. Department of Mathematics, National University of Singapore, Singa-
pore, 119076 (matrw@nus.edu.sg).

1

http://arxiv.org/abs/2006.07592v1


2 Q. Zhao and W. Ren

where φ is the applied voltage, ǫ and d are the permittivity and thickness of the
dielectric substrate, respectively. Except in the extreme case of contact angle satura-
tion, this equation also matches experimental results quite well for different types of
droplets and insulators, and wide range of φ and d (see [39, 40, 26] for example).

In this work, we consider the dynamical problem of EWoD. Because of its impor-
tance in industrial applications, a lot of efforts have been devoted to this problem and
some numerical methods have been proposed in recent years. These include Lattice
Boltzmann methods [9, 22, 36], molecular dynamics simulations [14, 21], the level set
method [41, 17], the phase-field approach [24, 16, 30], and others [8, 29, 10], etc. Here,
we develop a finite element method for EWoD based on our earlier work on moving
contact lines [43].

The model we use in this work for EWoD is based on the contact line model
developed by Ren et al. [33, 35, 34]. It contains the incompressible Navier-Stokes
equations for the two-phase fluid dynamics, the Navier slip condition on the substrate
and a dynamic contact angle condition at the contact line. On the fluid interface,
besides the viscous stress and the curvature force, the electric force also contributes
to the force balance thus the interface conditions. We assume that the electric charging
time is negligible compared to the time scale of the fluid motion, therefore model the
electrostatic potential using the Maxwell’s equation [13].

Based on the previous work for two-phase fluid dynamics [3] and moving contact
lines [43], we develop a finite element method for the EWoD model. The method
couples the finite element method for the incompressible Navier-Stokes equations and
a semi-implicit parametric finite element method for the evolution of the fluid inter-
face. We use unfitted mesh such that the discretization of the moving fluid interface is
decoupled from the fixed bulk mesh. Besides, the electric force on the fluid interface
is computed by using the boundary integral method. The numerical method obeys a
similar energy law as the continuum model when the electric field is absent, which is
a desired property for the numerical method.

This paper is organzied as follows. In section 2, we present the EWoD model and
its dimensionless form. In section 3, we develop the numerical method based on a
weak form of the continuum model, and present the full discretized scheme for the
Navier-Stokes equations, the dynamics of the fluid interface, and the electric force on
the fluid interface. In section 4, we present numerical examples to demonstrate the
convergence and accuracy of the numerical method, the effect of the various physical
parameters on the interface profiles, as well as the wetting dynamics driven by non-
uniform electric potential. Finally, we draw the conclusion in section 5.

2. The mathematical model. We consider the EWoD problem in the 2d space
as shown in Fig. 1.1(a). In this setup, a conductive liquid droplet (shaded in blue),
is immersed in another dielectric fluid such as vapor or oil, and deposited on a thin
dielectric substrate/insulator (shaded in orange), below which we place an electrode
(shaded in gray). Between the electrode and the droplet, we apply a voltage difference,
which generates electric fields and influences the wetting behavior of the charged
droplet.

The corresponding mathematical setup is shown in Fig. 1.1(b). We consider the
system in a bounded domain and use the Cartesian coordinates, where the fluid-
insulator interface is on the x-axis. For simplicity, we assume the periodic structure
along x-direction for the system, and moreover, another electrode is placed on the top
Γ4. The domain is composed of three regions, the conducting droplet, the dielectric
fluid, and the dielectric substrate, which are labeled as Ω1, Ω2, and Ω3, respectively.
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Fig. 1.1. (a) An illustration of the EWoD, where a conductive liquid droplet (shaded in blue) is
deposited on a dielectric-coated electrode (shaded in gray). (b) Geometric setup of the EWoD system
with moving contact lines in two-phase flows in a bounded domain where Ω1 ∪ Ω2 = [−Lx, Lx] ×
[0, Ly] and Ω3 = [−Lx, Lx]× [−d, 0].

The fluid interface is denoted by the open curve Γ, which intersects with the flat insula-
tor at two contact points, labeled as xl and xr . Γ1 and Γ2 represent the corresponding
fluid-insulator interfaces, and Γ5 : y = −d is the insulator-electrode interface.

Some relevant parameters are defined as follows: ρi and µi are the density and
viscosity of fluid i (i = 1, 2), respectively; ǫi is permittivity of the dielectric medium in
Ωi (i = 2, 3); γ denotes the surface tension of the fluid interface Γ, and γi denotes the
surface tension of the fluid-solid interface Γi (i = 1, 2). Furthermore, we denote by n

the unit normal vector on Γ pointing to fluid 2, and nw = (0,−1)T and tw = (1, 0)T

the unit normal and tangent vector on Γ1 ∪ Γ2 respectively.

2.1. Governing equations for the fluid dynamics. The mathematical model
is an extension of the contact line model proposed by Ren et al. [33, 35, 34] to include
the contribution of electric field in EWoD. It consists of the two-phase incompressible
Navier-Stokes equations for the fluid dynamics and the Maxwell’s equation for the
electrostatic potential.

First we consider the two-phase fluid dynamics in the domain Ω = Ω1(t) ∪Ω2(t).
Let u(x, t) : Ω × [0, T ] → R

2 be the fluid velocity and p(x, t) : Ω × [0, T ] → R be
the pressure. The dynamic of the system is governed by the standard incompressible
Navier-Stokes equations in Ωi(t)(i = 1, 2),

ρi(∂tu+ u · ∇u) = −∇p+∇ · τd,(2.1a)

∇ · u = 0,(2.1b)

where τd = 2µiD(u) is the viscous stress with D(u) = 1
2 (∇u+ (∇u)T ).

On the fluid interface Γ(t), we have the following conditions

[u]21 = 0,(2.2a)

[pI2 − τd]
2
1 · n =

(

γκ+
ǫ2
2
|∇Φ|2

)

n,(2.2b)

vn = u|Γ(t) · n,(2.2c)

where [·]21 denotes the jump from fluid 1 to fluid 2, I2 ∈ R
2×2 is the identity matrix,

κ is the curvature of the fluid interface Γ, Φ is the electrostatic potential, and vn
denotes the normal velocity of the fluid interface. Equation (2.2a) states the fluid
velocity is continuous across the interface. Equation (2.2b) states that the tangential
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stress is continuous across the interface and the normal stress jump is balanced by
the curvature force γκn together with the electric force ǫ2

2 |∇Φ|2n. Equation (2.2c) is
the kinetic condition for the interface, where the fluid interface evolves according to
the local fluid velocity.

At the lower solid wall Γi(t) (i = 1, 2), the fluid velocity satisfies the no-penetration
condition and the Navier boundary condition

u · nw = 0,(2.3a)

tw · τd · nw = −βius,(2.3b)

where βi (i = 1, 2) is the friction coefficient of fluid i at the wall, and us = u · tw is
the slip velocity of the fluids.

At the contact points xl and xr, the dynamic contact angles, denoted by θld and
θrd respectively, depend on the contact line velocity [33, 35],

γ(cos θld − cos θY ) = β∗ẋl,(2.4a)

γ(cos θrd − cos θY ) = −β∗ẋr ,(2.4b)

where θY is the equilibrium contact angle satisfying the Young’s relation (1.1), and
β∗ is the friction coefficient of the fluid interface at the contact line. The contact
line velocity is determined by the slip velocity of the fluids: ẋl,r = us|x=xl,r

. The

contact angle condition (2.4) is a force balance at the contact point: the Young stress
resulted from the deviation of the dynamic contact angle from the equilibrium angle
is balanced by the friction force. Note that the electric force does not contribute to
the force balance at the contact line.

Furthermore, we use the no-slip boundary condition on the upper wall Γ4 and the
periodic boundary conditions along Γ3.

2.2. Governing equations for the electrostatic field. The applied voltage
induces electrostatic fields in the fluid region Ω2 and the dielectric substrate Ω3, where
the electric potential, denoted by Φ, satisfies the Laplace equation,

(2.5) ∇2Φ =
∂2Φ

∂x2
+
∂2Φ

∂y2
= 0, x ∈ Ω2, Ω3.

On the interface Γ∪Γ1 and at the top/bottom electrode Γ4∪Γ5, the electric potential
satisfies the Dirichlet boundary conditions

Φ = φ, on Γ ∪ Γ1,(2.6a)

Φ = 0, on Γ4 ∪ Γ5,(2.6b)

where φ > 0 is the imposed voltage difference. Since there is no free charge density
across the interface between the dielectric fluid and the dielectric substrate, we have

(2.7) nw · [ǫ∇Φ]
3
2 = 0,

where [·]32 denotes the jump from Ω2 to Ω3, ǫ = ǫ2 in Ω2 and ǫ = ǫ3 in Ω3. Furthermore,
the periodic boundary condition is prescribed along Γ3 ∪ Γ6.

2.3. Nondimensionlization. Next we present the above governing equations
and the boundary/interface conditions in their dimensionless form. By choosing L
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and U as the characteristic length and velocity respectively, we rescale the physical
quantities as

ρ̂i =
ρi
ρ1
, µ̂i =

µi

µ1
, β̂i =

βi
β1
, β̂∗ =

β∗

µ1
, γ̂i =

γi
γ
, ǫ̂i =

ǫi
ǫ3
,

x̂ =
x

L
, t̂ =

Ut

L
, û =

u

U
, p̂ =

p

ρ1U2
, κ̂ = Lκ, Φ̂ =

Φ

φ
.

We define the Reynolds number Re, the Capillary number Ca, the slip length ls, the
Weber number We and the parameter η as

(2.8) Re =
ρ1UL

µ1
, Ca =

µ1U

γ
, ls =

µ1

β1L
, We = Re · Ca, η =

ǫ3φ
2

2γL
,

where η measures the relative strength of the electric force compared to the surface
tension at the fluid interface.

For ease of presentation, we will drop the hats on the dimensionless parame-
ters and variables. In the dimensionless form, the governing equations for the fluid
dynamics in Ωi (i = 1, 2) read

ρi(∂tu+ u · ∇u) +∇ ·T = 0,(2.9a)

∇ · u = 0,(2.9b)

where T = pI2 − 1
Reτd is the stress tensor. These equations are supplemented with

the following boundary/interface conditions:
(i) The interface conditions on Γ(t):

[

u
]2

1
= 0,(2.10a)

We
[

T
]2

1
· n =

(

κ+ ǫ2η |∇Φ|2
)

n,(2.10b)

κ = ∂ssX · n,(2.10c)

vn = u|Γ(t) · n,(2.10d)

where X denotes the fluid interface, s is the arc length parameter with s = 0
being at the left contact point.

(ii) The condition for the dynamic contact angles:

1

Ca
(cos θld − cos θY ) = β∗ẋl(t),(2.11a)

1

Ca
(cos θrd − cos θY ) = −β∗ẋr(t).(2.11b)

(iii) The boundary conditions on Γ1(t) ∪ Γ2(t):

(2.12) u · nw = 0, lstw · τd · nw = −βius.

(iv) The no-slip condition on Γ4

(2.13) u = 0.

(v) Periodic boundary conditions on Γ3:

(2.14) u|x=−Lx
= u|x=Lx

, T|x=−Lx
= T|x=Lx

.
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The governing equations for the electric field potential Φ(x, t) in Ωi(i = 2, 3) read

(2.15) ∇2Φ = 0,

subject to the following boundary conditions:
(i) The Dirichlet Boundary conditions on Γ, Γ1, Γ4 and Γ5:

Φ = 1, on Γ(t) ∪ Γ1(t),(2.16a)

Φ = 0, on Γ4, Γ5.(2.16b)

(ii) The interface condition on Γ2(t):

(2.17) [Φ]32 = 0, nw · [ǫ∇Φ]
3
2 = 0.

(iii) Periodic boundary conditions on Γ3 ∪ Γ6:

(2.18) Φ|x=−Lx
= Φ|x=Lx

,
∂Φ

∂n

∣

∣

∣

∣

x=−Lx

= − ∂Φ

∂n

∣

∣

∣

∣

x=Lx

,

where n is the unit outward normal to Ω2 on Γ3.

Equations (2.9) and (2.15) together with the boundary/interface conditions (2.10)-
(2.14) and (2.16)-(2.18) form the complete model for the problem of EWoD. For this
dynamical system, we define the total energy as

W (t) =
∑

i=1,2

∫

Ωi(t)

1

2
ρi|u|2dL2 − cos θY

We
|Γ1(t)|+

1

We
|Γ(t)|

− η

We

∑

i=2,3

∫

Ωi

ǫi|∇Φ|2dL2,(2.19)

where |Γ1(t)| and |Γ(t)| are the total arc length of Γ1(t) and Γ(t), respectively. The
four terms represents the kinetic energy of the fluids, the interfacial energy at the solid
wall, the interfacial energy of the fluid interface and the electrical energy, respectively.
The dynamical system obeys the energy dissipation law

d

dt
W (t) = −

∑

i=1,2

1

Re

∫

Ωi

2µi‖D(u)‖2FdL2 −
∑

i=1,2

1

Re · ls

∫

Γi

βi|us|2ds

− β∗

Re
(ẋl

2 + ẋr
2),(2.20)

where the three terms represent the viscous dissipation in the bulk fluid with ‖ · ‖
being the Frobenius norm, the dissipation at the solid wall due to the friction and the
dissipation at the contact points, respectively. Details for the derivation of (2.20) are
provided in the Appendix A.

3. The numerical method. The numerical method consists of a finite element
method for the fluid dynamics, a parametric finite element method for the dynamics
of the fluid interface, and the boundary integral method for the electric field. The
numerical method is based on a weak formulation for the EWoD model, which we will
present first.
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3.1. Weak formulation. To propose the weak formulation for equations (2.9)-
(2.14), we define the function space for the pressure and the velocity, respectively as

P :=

{

ζ ∈ L2(Ω) :

∫

Ω

ζdL2 = 0

}

,(3.1a)

U :=
{

ω = (ω1, ω2)
T ∈

(

H1(Ω)
)2

: ω · nw = 0 on Γ1 ∪ Γ2, ω = 0 on Γ4,(3.1b)

ω(−Lx, y) = ω(Lx, y), ∀ 0 ≤ y ≤ Ly

}

,

with the L2-inner product on Ω = Ω1(t) ∪Ω2(t)

(3.2) (u, v) :=
∑

i=1,2

∫

Ωi(t)

uv dL2, ∀ u, v ∈ L2(Ω).

We parameterize the fluid interface as X(α, t) = (X(α, t), Y (α, t))T , where α ∈ I =
[0, 1], and α = 0, 1 corresponding to the left and and right contact points, respectively.
We define the function spaces for the interface curvature and the interface as

K := L2(I) =

{

ψ : I → R, and

∫

I

|ψ(α)|2|∂αX|dα < +∞
}

,(3.3a)

X :=
{

g = (g1, g2)
T ∈ (H1(I))2 : g2|α=0,1 = 0

}

,(3.3b)

equipped with the L2-inner product on I

(3.4)
(

u, v
)

Γ
:=

∫

I

u(α)v(α) |∂αX| dα, ∀ u, v ∈ L2(I).

Taking the inner product of (2.9a) with ω ∈ U then using the boundary/interface
conditions in (2.10)-(2.14) and ∇ · u = 0, we obtain [3, 43]

(

ρ[∂tu+ (u · ∇)u],ω
)

=
1

2

[

d

dt
(ρu,ω) + (ρ ∂tu,ω)

]

+
1

2

(

ρ, [(u · ∇)u] · ω − [(u · ∇)ω] · u
)

,(3.5)

where ρ = ρ1χΩ1(t)
+ ρ2χΩ2(t)

with χ being the characteristic function. With the
special treatment of the inertia term in (3.5), the numerical scheme enjoys the discrete
stability for the fluid kinetic energy in the absence of electric field. This will be
discussed later in section 3.4. For the viscous term, integrating by parts then applying
the boundary/interface conditions yields

(

∇ ·T, ω
)

= −
(

p, ∇ · ω
)

+
2

Re

(

µD(u), D(ω)
)

−
(

[T]21 · n, ω
)

Γ

+
(

T · nw, ω
)

Γ1∪Γ2

= −
(

p, ∇ · ω
)

+
2

Re

(

µD(u), D(ω)
)

− 1

We

(

κ+ ǫ2η|∇Φ|2, n · ω
)

Γ

+
1

Re · ls

(

β us, ωs

)

Γ1∪Γ2

,(3.6)
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where µ = µ1χΩ1(t)
+ µ2χΩ2(t)

, β = β1χΓ1(t)
+ β2χΓ2(t)

, and ωs = ω · tw.
Equation (2.10c) for the curvature can be rewritten as κn = ∂ssX. Taking the

inner product of it with g = (g1, g2)
T ∈ X on Γ(t) then applying integration by parts

yields

0 =
(

κ, n · g
)

Γ
+
(

∂sX, ∂sg
)

Γ
− (∂sX · g)

∣

∣

∣

α=1

α=0

=
(

κ, n · g
)

Γ
+
(

∂sX, ∂sg
)

Γ
− (g1∂sX)

∣

∣

∣

α=1

α=0

=
(

κ, n · g
)

Γ
+
(

∂sX, ∂sg
)

Γ
+ β∗ Ca [ẋlg1(0) + ẋrg1(1)]

− cos θY [g1(1)− g1(0)] ,(3.7)

where we have used the fact that ∂sX |α=0 = cos θld, ∂sX |α=1 = cos θrd, and the
dynamic contact angle conditions in (2.11).

Combining these results, we obtain the weak formulation for the dynamic system
(2.9)-(2.14) as follows: Given the initial fluid velocity u0 and the interface X0(α), find
the fluid velocity u(·, t) ∈ U, the pressure p(·, t) ∈ P, the fluid interface X(·, t) ∈ X,
and the curvature κ(·, t) ∈ K such that

1

2

[

d

dt

(

ρu, ω
)

+
(

ρ ∂tu, ω
)

+
(

ρ (u · ∇)u, ω
)

−
(

ρ (u · ∇)ω, u
)

]

+
2

Re

(

µD(u), D(ω)
)

−
(

p, ∇ · ω
)

− 1

We

(

κn, ω
)

Γ

− ǫ2η

We

(

|∇Φ|2n, ω
)

Γ
+

1

Re · ls

(

βus, ωs

)

Γ1∪Γ2

= 0, ∀ω ∈ U,(3.8a)

(

∇ · u, ζ
)

= 0, ∀ ζ ∈ P,(3.8b)

(

n · ∂tX, ψ
)

Γ
−
(

u · n, ψ
)

Γ
= 0, ∀ψ ∈ K,(3.8c)

(

κ, n · g
)

Γ
+
(

∂sX, ∂sg
)

Γ
+ β∗Ca

[

ẋl g1(0) + ẋr g1(1)
]

− cos θY [g1(1)− g1(0)] = 0, ∀ g ∈ X.(3.8d)

Eq. (3.8a) is obtained from Eq. (3.5) and Eq. (3.6). Eq. (3.8b) results from the
incompressibility condition (2.9b). Eq. (3.8c) is obtained from the kinetic condition
(2.10d). Eq. (3.8d) is obtained from (3.7).

The above system (3.8a)-(3.8d) is an extension of the weak formulation introduced
in Ref. [3] for two-phase flows and Ref. [43] for moving contact lines. In the current
problem for EWoD, we have the additional term for the electric force in (3.8a). The
electric force is obtained from solving (2.15)-(2.18).

3.2. Finite element discretization. We solve equations (3.8a)-(3.8d) for u

and p on the fluid domain Ω and for X and κ on the reference domain I using the
finite element method on unfitted meshes. To that end, we uniformly partition the
time domain as [0, T ] = ∪M

m=1[tm−1, tm] with tm = mτ , τ = T/M , and the reference
domain as I = ∪JΓ

j=1Ij with Ij = [αj−1, αj ], αj = jh and h = 1/JΓ. We approximate
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the function spaces K and X by the finite element spaces

K
h :=

{

ψ ∈ C(I) : ψ|Ij ∈ P1(Ij), ∀ j = 1, 2, · · · , JΓ
}

,(3.9a)

X
h :=

{

g = (g1, g2)
T ∈ (C(I))2 : g|Ij ∈ (P1(Ij))

2, ∀ j = 1, 2, · · · , JΓ;(3.9b)

g2|α=0,1 = 0
}

,

where P1(Ij) denotes the space of the polynomials of degree at most 1 over Ij . Denote
by Γm := Xm(·) ∈ X

h the numerical approximation to the fluid interface Γ(t) at
t = tm. Then Γm (0 ≤ m ≤ M) are polygonal curves consisting of ordered line
segments. The unit tangential vector tm and normal vector nm of Γm are constant
vectors on each interval Ij with possible jumps at the nodes αj , and they can be easily
computed as

(3.10) tmj := tm|Ij =
hm
j

|hm
j | , nm

j := nm|Ij = (tmj )⊥, 1 ≤ j ≤ J
Γ

where hm
j := Xm(αj) − Xm(αj−1), and (·)⊥ denotes the counter-clockwise rotation

by 90 degrees.
Let T h = {ōj}Nj=1 be a triangulation of the bounded domain Ω, and

Sh
k :=

{

ϕ ∈ C(Ω̄) : ϕ|oj ∈ Pk(oj), ∀ j = 1, 2, · · · , N
}

,(3.11a)

Sh
0 := {ϕ ∈ L2(Ω) : ϕ|oj ∈ P0(oj), ∀j = 1, 2, · · · , N},(3.11b)

where k ∈ N
+, and Pk(oj) denotes the space of polynomials of degree k on oj . Let U

h

and P
h denote the finite element spaces for the numerical solutions for the velocity

and pressure, respectively. In this work, we choose them as

(3.12)
(

U
h, Ph

)

=
(

(

Sh
2

)2 ∩ U,
(

Sh
1 + Sh

0

)

∩ P

)

,

which satisfies the inf-sup stability condition [1, 43]

(3.13) inf
ϕ∈Ph

sup
0 6=ω∈Uh

(ϕ,∇ · ω)

‖ϕ‖0‖ω‖1
≥ c > 0,

where ‖·‖0 and ‖·‖1 denote the L2 and H1-norm on Ω respectively, and c is a constant.
In the simulation, the partition of the reference domain I for the interface and

the triangulation T h of the fluid domain Ω are both fixed in time. As a result, the
triangulation of Ω is decoupled from the discretization of the interface Γm, thus may
not fit the interface, i.e. the line segments comprising of Γm are in general not the
boundaries of the elements in T h. At t = tm, the interface Γm divides Ω into two sub-
domains, Ωm

1 and Ωm
2 . Correspondingly, we split T h into three disjoint subsets: T m

1

being the set of elements in Ωm
1 , T m

2 being the set of elements in Ωm
2 , and T m

f being
the set of elements that intersect with the interface (see Fig. 3.1 for an illustration).
The splitting can be easily done by using a recursive algorithm as follows:

(1) First form T m
f by locating all elements that intersect with Γm.

(2) Locate one element oj∗ in Ωm
1 , for example, the one that contains the point

with coordinate (12 (x
m
l + xmr ), 0), and set T m

1 = {oj∗}.
(3) Check all neighbours of the elements in T m

1 . If a neighbor is not in T m
f , then

add it to T m
1 .
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Fig. 3.1. (a) Illustration of the discretization of the fluid domain Ω and the fluid interface Γm

(red curve) at t = tm. The fluid interface divides Ω into two sub-domains: Ωm
1

being the region
enclosed by Γm and the lower wall, Ωm

2
being the region outside. (b) Intersection of the interface

Γm with the bulk mesh. The elements of intersection form T m
f

.

The last step is repeated until no element can be added to T m
1 . This gives the set

T m
1 . The rest of the elements not belonging to T m

1 ∪ T m
f form the set T m

2 .
Denote by ρm, µm and βm the numerical approximations of the density ρ(·, t), the

viscosity µ(·, t) and the friction coefficient β(·, t) at t = tm, respectively. We define
ρm and µm as

ρm|oj :=











ρ1, if oj ∈ T m
1 ,

ρ2, if oj ∈ T m
2 ,

1
2 (ρ1 + ρ2), if oj ∈ T m

f ,

µm|oj :=











µ1, if oj ∈ T m
1 ,

µ2, if oj ∈ T m
2 ,

1
2 (µ1 + µ2), if oj ∈ T m

f ,

where 1 ≤ j ≤ N , 0 ≤ m ≤M . Similarly, we denote by Γm
1 and Γm

2 the boundary of
Ωm

1 and Ωm
2 at the lower wall respectively, and define βm at the lower wall as

(3.14) βm|∂oj :=











β1, if ∂oj ⊂ Γm
1 ,

β2, if ∂oj ⊂ Γm
2 ,

1
2 (β1 + β2), if xml ∈ ∂oj or x

m
r ∈ ∂oj ,

where ∂oj is the boundary of oj at the lower wall, and xml = Xm|α=0 and xmr =
Xm|α=1 are the two contact line points.

The finite element method is given as follows. First we partition the time domain
[0, T ], the reference domain I for the interface and the fluid domain Ω as described
above. Let Γ0 := X0(·) ∈ X

h and u0 ∈ U
h be the initial interface and velocity field,

respectively. For m ≥ 0, we compute um+1 ∈ U
h, pm+1 ∈ P

h, Xm+1 ∈ X
h, and
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κm+1 ∈ K
h by solving the linear system

1

2

[(ρmum+1 − ρm−1um

τ
,ωh

)

+
(

ρm−1u
m+1 − um

τ
,ωh

)

+
(

ρm(um · ∇)um+1,ωh
)

−
(

ρm(um · ∇)ωh, um+1
)]

−
(

pm+1, ∇ · ωh
)

+
2

Re

(

µmD(um+1), D(ωh)
)

− 1

We

(

κm+1nm, ωh
)

Γm

− ǫ2η

We

(

|∇Φ|2 nm, ωh
)

Γm
+

1

Re · ls

(

βmum+1
s , ωh

s

)

Γm
1 ∪Γm

2

= 0,

∀ωh ∈ U
h,(3.15a)

(

∇ · um+1, ζh
)

= 0, ∀ ζh ∈ P
h,(3.15b)

(Xm+1 −Xm

τ
· nm, ψh

)h

Γm
−
(

um+1 · nm, ψh
)

Γm
= 0, ∀ψh ∈ K

h,(3.15c)

(

κm+1 nm, gh
)h

Γm
+
(

∂sX
m+1, ∂sg

h
)h

Γm
− cos θY

[

gh1 (1)− gh1 (0)
]

+
β∗Ca

τ

[(

xm+1
r − xmr

)

gh1 (1) +
(

xm+1
l − xml

)

gh1 (0)
]

= 0, ∀ gh ∈ X
h.(3.15d)

Here, gh = (gh1 , g
h
2 )

T , ωh
s = ωh · tw, um+1

s = um+1 · tw, and xml = Xm|α=0, x
m
r =

Xm|α=1. The electric force ǫ2η|∇Φ|2 in (3.15a) is computed by solving equations
(2.15)-(2.18) in the domain Ωm

2 ∪Ω3; its computation will be presented in section 3.3.
In (3.15d), the derivative ∂sX

m+1 is taken with respect to the arc length of Γm:
∂sX

m+1 = 1
|∂αXm|∂αX

m+1, and similarly for ∂sg
h. At the first time step, we set

ρ−1 = ρ0.
In the numerical method, the inner product (·, ·)Γ(tm) is approximated by using ei-

ther the trapezoidal rule, denoted by (·, ·)hΓm , or the Simpson’s rule, denoted by (·, ·)Γm .
Since we are using unfitted mesh, the interface Γm intersects with the bulk mesh. De-

note by
{

α′
j

}J′

Γ

j=1
the set, in ascending order, of both the α-values of the intersecting

points and the mesh points of the reference interval I, αj = j/JΓ (j = 0, · · · , JΓ).
Then the inner products involving interface and bulk quantities are approximated by

the Simpson’s rule on the mesh
{

α′
j

}J′

Γ

j=1
,

(3.16)

(u, v)
Γm =

1

6

J′

Γ
∑

j=1

∣

∣

∣X
m(α′

j)−Xm(α′
j−1)

∣

∣

∣

[

(u · v)(α′+
j−1) + 4(u · v)(α′

j− 1
2
) + (u · v)(α′−

j )
]

,

and the inner products involving only quantities on the interface are simply approxi-
mated by the trapezoidal rule on the mesh {αj}JΓ

j=1,

(

u, v
)h

Γm =
1

2

JΓ
∑

j=1

∣

∣

∣
Xm(αj)−Xm(αj−1)

∣

∣

∣

[

(

u · v
)

(α+
j−1) +

(

u · v
)

(α−
j )

]

,(3.17)

where α′
j− 1

2

= 1
2

(

α′
j−1 + α′

j

)

, u(α′±
j ) are the one-sided limits of u at α′

j , and similarly

for u(α±
j ).
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(b)

(a)

Fig. 3.2. The boundary integral method is applied to the domain D1 = Ωm
2

(upper panel) and
the domain D2 = Ω3 (lower panel) separately. The electrostatic potential Φ and its directional
derivative Ψ are evaluated at the discrete points indicated by ” ◦ ” and ” × ” respectively along the
boundaries.

3.3. Computation of the electric force. The electric force on the fluid inter-
face is computed by solving Eqs. (2.15)-(2.18) using the boundary integral method.
Without loss of generality, we assume that Φ satisfies the Laplace equation on a do-
main D with boundary Σ. Denote the directional derivative of Φ in the outward
normal direction of the boundary by Ψ = n ·∇Φ, where n is the outward unit normal
vector on Σ. For any point p lies on the smooth part of Σ, we have the boundary
integral equation

(3.18)
1

2
Φ(p) =

∫

Σ

[

Φ(q)
∂G(p,q)

∂n(q)
−Ψ(q)G(p,q)

]

ds(q),

where G(p,q) = 1
2π ln |p − q| is the Green function for the Laplace equation in R

2,

and ∂G(p,q)
∂n(q) = n · ∇qG(p,q).

Eq. (3.18) can be used to compute Φ and/or its derivative Ψ on the boundary
Γ. To that end, we partition Σ then approximate it by a collection of line segments:
Σ ≃ ∪M

j=1Σ
(j). We further approximate Φ(p) and Ψ(p) by constants on each line

segment: Ψ ≃ Φj and Ψ ≃ Ψj on Σ(j), 1 ≤ j ≤ M . Denote by pj the mid-point of
the line segment Σ(j). It lies on a smooth part of the approximation boundary Σ(j).
Then we can apply Eq. (3.18) to p = pj and obtain

(3.19)
1

2
Φj =

M
∑

k=1

[

AjkΦk −BjkΨk

]

, j = 1, · · · ,M,

where

(3.20) Ajk =

∫

Σ(k)

∂G(pj ,q)

∂n(q)
ds(q), Bjk =

∫

Σ(k)

G(pj ,q)ds(q).

For the current problem, we apply the boundary integral method to the domain
D1 = Ωm

2 and the domain D2 = Ω3 separately. A discretization of the boundary
of the two domains is shown in Fig. 3.2. Eq. (3.19) is applied at each discrete
point. These equations, together with the prescribed Dirichlet boundary conditions
Φ|Γm = Φ|Γ1 = 1 and Φ|Γ4 = Φ|Γ5 = 0, the periodic boundary conditions Φ|Γ3 = Φ|Γ′

3
,

Ψ|Γ3 = −Ψ|Γ′

3
, Φ|Γ6 = Φ|Γ′

6
and Ψ|Γ6 = −Ψ|Γ′

6
, as well as the interface conditions
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[Φ]
3
2 = 0 and [ǫΨ]

3
2 = 0 on Γm

2 form a system of linear algebraic equations for Φ and
Ψ at the discrete points. After the linear system is solved, Ψ is used to compute the
electric force: |∇Φ|2 = Ψ2 on Γm.

3.4. Properties of the numerical method. For the numerical method (3.15a)-
(3.15d), we can show that it yields a unique solution. Furthermore, in the special case
when the electric force is absent, the numerical method is unconditionally energy
stable. We make the following assumptions on the interface Γm, ∀ 0 ≤ m ≤M ,

i) the interface Γm does not intersect with itself;
ii) the parameterization is such that |∂αXm| > 0, and
iii) the first and last segments of Γm are not parallel to the x-axis.

These assumptions particularly imply that the mesh points on Γm do not merge, and
the dynamic contact angle is not 0 or π.

Theorem 3.1 (Existence and Uniqueness). Let the finite element spaces (Uh,Ph)
satisfy the inf-sup stability condition (3.13) and the fluid interface Γm satisfy the ab-
voe assumptions i)–iii). Then the numerical method (3.15a)-(3.15d) admits a unique
solution.

Theorem 3.2 (Unconditional Energy Stability). Assume the electric force is
zero. Let

(

um+1, pm+1,Xm+1, κm+1
)

be the solution to the numerical scheme (3.15a)-
(3.15d). Then the following stability bound holds

W̃ (ρm,um+1,Xm+1) +
2τ

Re
‖
√
µmD(um+1)‖20 +

τ

Re · ls

(

βmum+1
s , um+1

s

)

Γm
1 ∪Γm

2

+
β∗

Re · τ
[

(

xm+1
r − xmr

)2
+
(

xm+1
l − xml

)2
]

≤ W̃ (ρm−1,um,Xm),(3.21)

where W̃ (ρ,u,X) = 1
2 (ρu,u) −

cos θY
We |Γ1| + 1

We |Γ| is the total energy of the system.
Moreover, for m ≥ 1, we have

W̃ (ρm−1,um,Xm) +
2τ

Re

m−1
∑

k=0

‖
√

µkD(uk+1)‖20 +
τ

Re · ls

m−1
∑

k=0

(

βkuk+1
s , uk+1

s

)

Γk
1∪Γk

2

+
β∗

Re · τ

m−1
∑

k=0

[

(

xk+1
r − xkr

)2
+
(

xk+1
l − xkl

)2
]

≤ W̃ (ρ0,u0,X0).(3.22)

The three summation terms in (3.22) correspond to the energy dissipation due
to the viscous stress in the bulk, the friction force on the wall and the contact line
friction, respectively.

The above theorems are extensions of the previous work by Barrett et al. [3] to
problems with moving contact lines. In another related work [43], similar results were
obtained for moving contact lines but on fitted meshes. There the energy stability
only holds locally in time due to the required interpolation of the velocity and density
between the fitted meshes at each time step. Here the global energy stability of the
discrete system is established on the unfitted mesh. The proof of the theorems is
similar to that in Ref. [43] and is provided in the Appendix B and C.

The discrete scheme (3.15c)-(3.15d) introduces an implicit tangential velocity for
the mesh points along the fluid interface such that they tend to be uniformly dis-
tributed according to the arc length in long time [2, 42]. In our numerical experiments
presented below, no re-meshing for the fluid interface is needed during the simulation.
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Fig. 4.1. Upper panel: the electric force along the interface (a semi-circle) computed using
different mesh sizes for ǫ2 = ǫ3 = 1 (left) and ǫ2 = 0.25, ǫ3 = 1 (right). Lower left: the log-log
plot of the electric force versus the arc length computed using h = 1/210. Lower right: the relative
errors defined in (4.3) versus the mesh sizes h.

4. Numerical results. In this section, we present some numerical results for
EWoD obtained using the proposed numerical method. We first test the accuracy
and convergence of the boundary integral method for the computation of the electric
force on a given fluid interface in section 4.1. Then we test the convergence of the
numerical method (3.15a)-(3.15d) using the example of a spreading droplet in section
4.2. Subsequently, we examine the effect of the different parameters in the model on
the equilibrium interface profiles in section 4.3. Finally, in section 4.4 the numerical
method is applied to the spreading and migration dynamics of a droplet on various
substrates.

Unless otherwise stated, we will choose ρ1 = 1, ρ2 = 0.1, µ1 = 1, µ2 = 0.1,
β1 = 1, β2 = 0.1, β∗ = 0.1, Re = 10, Ca = 0.1, ls = 0.1 and the initial velocity
u0 = 0 in the numerical examples. The computational domain occupied by the fluids
is Ω = [−1, 1]× [0, 1].

4.1. Convergence test for the electric force. The electrostatic potential Φ
satisfies the Maxwell’s equations in the domain Ω2 ∪ Ω3. This is outside the domain
Ω1, which has a wedge-like geometry with an open angle θ at the contact points xl,r.
The open angle is equal to the contact angle. In this geometry, the electric force |∇Φ|2
in the vicinity of the contact point behaves as [6]

(4.1) |∇Φ|2 ∼ O((∆s)2(ν−1)), as ∆s→ 0+,

where ∆s is the distance to the contact point, and ν ∈ (12 , 1) is related to the contact
angle and satisfies

(4.2) ǫ3 tan [ν(π − θ)] + ǫ2 tan (νπ) = 0.

In particular, we have ν = π
2π−θ when ǫ2 = ǫ3 = 1.
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Fig. 4.2. The evolution of the (left) contact point (upper panels) and the contact angle (lower
panels) computed using different mesh sizes and time steps. In the coarse mesh, the mesh size is
h = h0 = 1/32 for the interface and hΩ = h1 = 1/8 in the bulk, and the time step is τ0 = 0.01. Left
panels: η = 0; Right panels: η = 0.1.

To assess the performance of the boundary integral method for the current prob-
lem, we compute the electric force along a given interface. The interface is the semi-
circle of radius r = 0.4 centered at (0, 0). The thickness of the dielectric substrate
is d = 0.2. The numerical results are shown in Fig. 4.1. In the two upper panels,
we plot the electric force along the interface. The different curves are obtained using
different mesh sizes for ǫ2 = ǫ3 = 1 (left) and ǫ2 = 0.25, ǫ3 = 1 (right). It is evident
that the electric force exhibits a singular behavior at the contact points: the force at
the contact point (more precisely, the force at half grid point away from the contact
point) keeps increasing as the mesh is refined.

To further examine the singular structure, we depict the log-log plot of the electric
force against the arc-length in the lower-left panel of the figure. It can be seen that the
electric force behaves as |∇Φ|2 ∼ O(sp) as the contact line is approached. This is in
good agreement with the the theoretical prediction of Eqs. (4.1)-(4.2), which is shown
as the straight lines with slope 2(ν − 1) ≈ −0.667 for ǫ2 = 1 and 2(ν − 1) ≈ −0.8718
for ǫ2 = 0.25. These lines fit the numerical results very well.

To examine the convergence of the numerical solution as the mesh is refined, we
compute the relative error defined as

(4.3) e(h) =

∫

I

∣

∣

∣|∇Φh|2 − |∇Φ
h
2 |2

∣

∣

∣ dα
∫

I
|∇Φ

h
2 |2dα

,

where ∇Φh denotes the numerical solution obtained with mesh size h. The error for
different mesh sizes is shown in the lower-right panel of Fig. 4.1. As expected, the
error decreases as the mesh is refined. In this simulation, we used the uniform mesh
along the interface. In practice, one may use local mesh refinement near the contact
point to obtain more accurate solutions.

4.2. Convergence test for contact line dynamics. We assess the perfor-
mance of the numerical method (3.15a)-(3.15d) for the contact line dynamics by car-
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rying out simulations under different mesh sizes. We consider the spreading dynamics
of a droplet. Initially the fluid interface is given by a semi-circle with center (0, 0)
and radius r = 0.4. The equilibrium contact angle of the droplet is θY = 2π/3. The
thickness of the dielectric substrate is d = 0.2, and the permittivities are ǫ2 = 1 and
ǫ3 = 1.

We use uniform mesh (see Fig. 3.1), and denote the mesh size in the bulk by
hΩ = 1/JΩ and the mesh size on the reference domain of the interface Γ by h = 1/JΓ.
In the boundary integral method, all the boundaries and interfaces are discretized
into line segments; for example, the fluid-solid interface Γ1∪Γ2 is also discretized into
JΓ line segments. Different values of JΩ and JΓ will be used in the mesh refinement
for the convergence test. For simplicity, we shall fix the discretization of the outer
boundaries.

The evolution of the (left) contact point is shown in Fig. 4.2 for η = 0 (upper-left
panel) and η = 0.1 (upper-right panel), respectively. In both cases, we can observe the
convergence of the contact line dynamics as the mesh and the time step are refined.
In the lower panels of the same figure, we plot the time history of the contact angle.
Similar convergence can also be observed.

Table 4.1
Relative change of the droplet area at t = 4. h, hΩ are the mesh size in the discretization

of the interface and Ω, respectively, and τ is the time step. In the coarse mesh, h = h0 = 1/32,
hΩ = h1 = 1/8 and τ0 = 0.01.

(h, h
Ω
, τ)

η = 0 η = 0.1 η = 0.2
|∆A|(t = 4) order |∆A|(t = 4) order |∆A|(t = 4) order

(h0, h1, τ0) 2.16E-3 - 3.38E-4 - 3.11E-4 -

(h0

2 ,
h1

2 ,
τ0
22 ) 6.28E-4 1.78 7.51E-5 2.17 1.50E-4 1.05

(h0

22 ,
h1

22 ,
τ0
24 ) 1.70E-4 1.88 1.77E-5 2.09 4.82E-5 1.64

(h0

23 ,
h1

23 ,
τ0
26 ) 4.33E-5 1.97 4.14E-6 2.10 1.36E-5 1.82

Table 4.2
Convergence of the contact angle to the equilibrium angle at t = 4. h, hΩ are the mesh size in

the discretization of the interface and Ω, respectively, and τ is the time step. In the coarse mesh,
h = h0 = 1/32, hΩ = h1 = 1/8, τ0 = 0.01.

(h, h
Ω
, τ)

η = 0 η = 0.1 η = 0.2
|∆θ|(t = 4) order |∆θ|(t = 4) order |∆θ|(t = 4) order

(h0, h1, τ0) 7.12E-2 - 2.00E-1 - 3.79E-1 -

(h0

2 ,
h1

2 ,
τ0
22 ) 3.54E-2 1.01 1.40E-1 0.51 3.11E-1 0.29

(h0

22 ,
h1

22 ,
τ0
24 ) 1.77E-2 1.00 9.74E-2 0.52 2.27E-1 0.45

(h0

23 ,
h1

23 ,
τ0
26 ) 8.90E-3 0.99 6.61E-2 0.55 1.53E-1 0.57

Next we examine the conservation of area for the droplet. The finite element space
P
h for the pressure given in (3.12) contains piecewise constant functions, which ensures

the local mass conservation particularly over each element. Besides, by choosing
ζ = χ

Ω1(t)
in (3.8b) and ψ = 1 in (3.8c), we can establish the mass conservation law
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within the weak form as

d

dt
|Ω1(t)| =

(

n · ∂tX, 1
)

Γ(t)

=
(

u · n, 1
)

Γ(t)
=

∫

Ω1(t)

∇ · u dL2 =
(

∇ · u, χ
Ω1(t)

)

= 0.(4.4)

Therefore in this and the following simulations, we further enrich the pressure space
P
h with the basis function χ

Ωm
1
, the characteristic function over the domain occupied

by the droplet. This helps preserving the area of the droplet [3]. In addition, the
pressure jump across the interface can be captured with this function. In practical
numerical implementations, the new contribution of the single basis function to (3.15a)
and (3.15b) can be written in terms of the integrals over Γm as

(4.5)
(

∇ · ωh, χ
Ωm
1

)

=

∫

Ωm
1

∇ · ωhdL2 =
(

ω
h, nm

)h

Γm , ∀ωh ∈ U
h.

In Table. 4.1, we present the relative area change |∆A| of the droplet at t = 4.
At this time the droplet has evolved close to the steady state. Here, ∆A is defined as

(4.6) ∆Ah(tm) =
|Ωm

1 | − |Ω0
1|

|Ω0
1|

,

where |Ωm
1 | is the area of the droplet at time tm. From the table, we observe that the

droplet area is well-preserved. As the mesh is refined, the area change |∆A| converges
to zero with order close to 2.

After the droplet reaches the steady state, the theoretical value of the contact
angle should converge to the equilibrium angle θY = 2π/3. In table 4.2, we present
∆θ, the deviation of the contact angle from this equilibrium angle at t = 4, obtained
with different mesh sizes. We observe that in all three cases for the different values
of η, the contact angle indeed converges to the equilibrium angle. When η = 0, i.e.
in the absence of electric field, the convergence order is close to 1; however, the order
is reduced to about 0.5 for η = 0.1, 0.2.

The order of convergence for the contact angle can be understood as follows.
Denote by Γh = Xh and κh the numerical solution for the interface and its curvature
at the steady state, respectively. Then from (3.15d), we have

(4.7)
(

κh nh, gh
)h

Γh
+
(

∂sX
h, ∂sg

h
)h

Γh
− cos θY

[

gh1 (1)− gh1 (0)
]

= 0, ∀ gh ∈ X
h.

By choosing g
h = (gh1 , g

h
2 )

T := (φ0(α), 0)T in (4.7), where φ0(α) is the piecewise
linear function taking the value 1 at α0 = 0 and 0 at all other nodes, we obtain

(4.8)
1

2
κh(0)nh

1,1

∣

∣Xh(α1)−Xh(α0)
∣

∣− cos θh + cos θY = 0,

where nh
1,1 is the first component of nh

1 , and θ
h is the contact angle of Xh. This yields

(4.9)
∣

∣cos θh − cos θY
∣

∣ =
1

2

∣

∣κh(0) sin θh
∣

∣∆s,

where ∆s =
∣

∣Xh(α1)−Xh(α0)
∣

∣. On the other hand, the interface condition im-
plies that the curvature of the fluid interface has the same singular structure as the
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Fig. 4.3. Left panel: Equilibrium profiles of the interface. Right panel: The value of cos θapp
versus η/d (discrete points with dash lines) and the prediction of Lippmann equation (straight line).

electric field at the contact point. Therefore, we have κh(0) ∼ O
(

(∆s)2(ν−1)
)

, and
consequently

(4.10)
∣

∣θh − θY
∣

∣ ≤ C1(∆s)
2ν−1 ≤ C2h

2ν−1,

where C1 and C2 are constants independent of the mesh size h. When η = 0, we have
ν = 1 and the curvature is constant along the interface at the steady state, therefore
the convergence order of the contact angle is 1. On the other hand, in the presence of
the electric field, we have 1/2 < ν < 1, and the convergence order is lowered. In the
current example, we have ν = 3/4 from Eq. (4.2), thus

∣

∣θh − θY
∣

∣ ∼ O(h1/2), which is
consistent with the numerical results.

4.3. Equilibrium interface profiles. In this example, we investigate the influ-
ence of the various model parameters, such as η, ǫ2 and d, on the equilibrium profile of
the fluid interface. The fluid interface of the droplet is initially given by a semi-circle
with centre (0, 0) and radius r = 0.4. The equilibrium contact angle of the droplet
is θY = 2π/3. The fluid domain Ω = [−1, 1]× [0, 1] is discretized into 4848 triangles
with 2534 vertices, and the fluid interface is discretized into JΓ = 512 elements. The
time step is τ = 2× 10−4.

The numerical results are shown in Fig. 4.3. The left panel shows the equilibrium
profiles of the interface for different values of η, ǫ2 and d. Comparing with the interface
profile when η = 0 (i.e. in the absence of electric field), we see that the electric force
flattens the interface and make the droplet spread.

A more quantitative assessment of the effect of the electric force is shown in the
right panel, where we plot cos θapp against η/d for different values of ǫ2 and d. The
apparent contact angle θapp is computed by fitting the interface by a circular arc using
the apex of the interface and the given area of the droplet. From the numerical results,
we observe that the ratio η/d plays the dominant role here; more specifically, cos θapp
increases linearly with η/d with the slope close to 1. In contrast, the permittivity
of the fluid outside the droplet, ǫ2, has little effect on the interface profile. This is
in good agreement with the Lippmann equation (1.2). In terms of the dimensionless
parameters, Eq. (1.2) reads

(4.11) cos θB = cos θY +
η

d
.

The contact angle θB computed using this equation is also shown in the figure, and
good agreement with the numerical results can be observed. The discrepancy might
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Fig. 4.4. Snapshots of the interface and the velocity field on a hydrophilic dielectric substrate
with θY = π/3. Parameters are η = 0.125, ǫ2 = ǫ3 = 1 and d = 0.2. (a) t = 0; (b) t = 0.06,
maxx∈Ω |u| = 1.027 (c) t = 0.2, maxx∈Ω |u| = 0.740; (d) t = 1.5, maxx∈Ω |u| = 0.004.

be due to the finite system size, the effect of the boundary conditions, or the finite
value of d and η. After all, the Lippmann equation is an asymptotic result which is
derived in the limit of d→ 0 and η → 0 [13].
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Fig. 4.5. Snapshots of the interface and the velocity field on a hydrophobic dielectric substrate
with θY = 2π/3. Parameters are η = 0.2, ǫ2 = ǫ3 = 1 and d = 0.2. (a) t = 0; (b) t = 0.06,
maxx∈Ω |u| = 0.282; (c) t = 0.2, maxx∈Ω |u| = 0.284; (d) t = 1.5, maxx∈Ω |u| = 0.003.

4.4. Applications. We investigate the detailed dynamics of a droplet on dielec-
tric substrates driven by the electric force. We consider a hydrophilic case with the
contact angle θY = π/3 and a hydrophobic case with the contact angle θY = 2π/3.
The initial configuration of the system and the discretizations of the computational
domain and the interface are the same as those in the previous example. Several
snapshots of the interface profile are shown in Fig. 4.4 for the hydrophilic case and
in Fig. 4.5 for the hydrophobic case. Also shown in the figures are the respective
velocity field. We observe that vortices are generated near the contact points, driving
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Fig. 4.6. The energy loss ∆W (t) = W (t) −W (0) (left panel) and the kinetic energy Wk(t) =
1

2

∫
Ω
ρ|u|2dL2 (right panel) as functions of time. Here the discrete energy W (t) is computed using

the dimensionless from of (A.2).

the droplet to spread on the substrate.
In Fig. 4.6, we plot the loss of the total energy ∆W :=W (t)−W (0) (left panel)

and the kinetic energy of the fluids Wk(t) =
∫

Ω
1
2ρ|u|2dL2 (right panel) as functions

of time. The total energy, as given in Eq. (2.19), consists of the kinetic energy, the
interfacial energies and the electrostatic energy. We observe that the total energy of
the discrete system decays in time, a desired property of the numerical method.
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Fig. 4.7. Snapshots of the droplet migrating on a dielectric substrate. The electrostatic potential
on the lower boundary of the substrate is prescribed as Φ|y=−d = 3

8
(x + 1). Other parameters are

η = 0.2, ǫ2 = ǫ3 = 1, d = 0.2, and θY = 2π/3. (a) t = 0; (b) t = 0.1; maxx∈Ω |u| = 0.99; (c) t = 0.5;
maxx∈Ω |u| = 0.34; (d) t = 1.2, maxx∈Ω |u| = 0.56; (e) t = 1.8, maxx∈Ω |u| = 0.90; (f)t = 2.3,
maxx∈Ω |u| = 0.41.

In the last example, we simulate the migration of a droplet on a substrate with
non-uniform electrostatic potential prescribed on the boundary. The non-uniform
potential mimics an array of electrodes placed below the substrate that is used to
transport the droplet in experiments. The electrostatic potential on the lower bound-
ary of the substrate is given as Φ|y=−d = 3

8 (x + 1). Other parameters are chosen as
η = 0.2, ǫ2 = ǫ3 = 1, d = 0.2, and θY = 2π/3. The initial interface of the droplet

is given by a semi-ellipse as (x−0.5)2

0.32 + y2

0.22 = 1, y ≥ 0. Numerical results for the
interface profile and the velocity field are shown in Fig. 4.7. We observe that the
droplet first de-wets the substrate to form a near-circular shape with contact angle
close to θY = 2π/3. In this stage, the dynamics is mainly driven by the surface ten-
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sion. Afterwards, the electric force plays dominant role, and it drives the droplet to
migrate from the right to the left.

5. Conclusions. In this work, we presented a hydrodynamic model for elec-
trowetting on dielectric based on the earlier work on moving contact lines, and devel-
oped an efficient numerical method for the model. The numerical method combines a
semi-implicit parametric finite element method for the dynamics of the fluid interface
and the finite element method for the Navier-Stokes equations as well as the boundary
integral method for the electric field. We proved that the numerical method admits a
unique solution. In the case without the electric field, we showed that the numerical
method obeys a similar energy law as the continuum model.

In the numerical experiments, we assessed the accuracy and convergence of the
numerical method and investigated the effect of the different physical parameters on
the interface dynamics and its equilibrium profile. Numerical results for the equilib-
rium profile of the interface agree well with the predictions of the Lippmann equation.

The numerical solution for the electric force exhibits a singular structure near the
contact point that is consistent with theoretical results. This singularity incurs large
curvature of the interface near the contact point, which deteriorates the convergence
order of the numerical solution, particularly the convergence of the contact angle to
the equilibrium angle.

In this work, we focused on simulations in two dimensions. The numerical method
can be readily extended to three-dimensional problems. This will be left to our future
work.

Acknowledgement. The work was partially supported by Singapore MOE RSB
grant, Singapore MOE AcRF grants (No. R-146-000-267-114, No. R-146-000-285-114)
and NSFC grant (No. 11871365).

Appendix A. Energy law for the continuum model. The total energy for
the EWoD model (2.1)-(2.7) in its original dimension form reads

(A.1) W (t) =
∑

i=1,2

∫

Ωi

1

2
ρi|u|2dL2−γ cos θY |Γ1(t)|+γ|Γ(t)|−

∑

i=2,3

∫

Ωi

1

2
ǫi|∇Φ|2 dL2.

Integrating by parts and using the electrostatic potential equation in (2.5) as well
as the boundary conditions for Φ, we can transform the electrical energy in (A.1)
into expressions only involving line integrals over Γ and Γ1. This gives the following
alternative form of the total energy

W (t) =
∑

i=1,2

∫

Ωi

1

2
ρi|u|2dL2 − γ cos θY |Γ1(t)|+ γ|Γ(t)|

+
φ

2

(∫

Γ

ǫ2 (n · ∇Φ) ds+

∫

Γ1

ǫ3 (nw · ∇Φ) ds

)

,(A.2)

which can be used to compute the discrete electrical energy in view of the boundary
integral method in (3.19). The dynamic system obeys the energy dissipation law

(A.3)
d

dt
W (t) = −

∑

i=1,2

∫

Ωi

2µi‖D(u)‖2FdL2 −
∑

i=1,2

∫

Γi

βi|us|2ds− β∗(ẋ2l + ẋ2r) ≤ 0.
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We show the proof of (A.3). The dissipation of the fluid kinetic energy is

d

dt

∑

i=1,2

∫

Ωi(t)

1

2
ρi|u|2 dL2 =

∑

i=1,2

∫

Ωi

ρiu · (∂tu+ u · ∇u) dL2

=
∑

i=1,2

∫

Ωi

u · (−∇p+∇ · τd) dL2

= −
∑

i=1,2

∫

Ωi

∇u : τd dL2 −
∑

i=1,2

∫

Γi

u · τd · nw ds+

∫

Γ

u · [pI2 − τd]
2
1 · n ds

= −
∑

i=1,2

∫

Ωi

2µi‖D(u)‖2F dL2 −
∑

i=1,2

∫

Γi

βi|us|2 ds

+

∫

Γ

(γκ+
ǫ2
2
|∇Φ|2)(u · n) ds,(A.4)

where we have used the divergence free condition in (2.1b), the interface conditions
in (2.2a)-(2.2b), the boundary condition (2.3), the no-slip boundary condition on the
upper wall Γ4 and the periodic boundary conditions along Γ3.

The time derivative of the interfacial energies is

d

dt

(

−γ cos θY |Γ1(t)|+ γ|Γ(t)|
)

= −γ cos θY (ẋr − ẋl)−
∫

Γ

γκ vn ds+ γ
(

ẋr cos θ
r
d − ẋl cos θ

l
d

)

= −
∫

Γ

γκ (u · n) ds− β∗
(

ẋr
2 + ẋl

2
)

,(A.5)

where we have used (2.2c) and (2.4).
Denote by n̂ the outward unit normal vector on the boundary of Ω2 and Ω3.

Differentiating the electrical energy yields

d

dt



−1

2

∑

i=2,3

∫

Ωi

ǫi|∇Φ|2 dL2





= −1

2

∑

i=2,3

∫

Ωi

2ǫi∇Φ · ∇(∂tΦ) dL2 − 1

2

∑

i=2,3

∫

∂Ωi

ǫi|∇Φ|2(u · n̂) ds

= −1

2

∑

i=2,3

∫

Ωi

2ǫi∇ · (∂tΦ∇Φ) dL2 +
1

2

∫

Γ

ǫ2|∇Φ|2(u · n) ds

= −
∑

i=2,3

∫

∂Ωi

ǫi∂tΦ (∇Φ · n̂) ds+ 1

2

∫

Γ

ǫ2|∇Φ|2(u · n) ds

= −1

2

∫

Γ

ǫ2|∇Φ|2 (u · n) ds,(A.6)

where the first equality results from the Reynolds transport theorem, the second
equality is obtained from (2.5), the third equality comes from the divergence theorem,
and for the last equality, we have used the boundary conditions in (2.6)-(2.7), the
periodic boundary condition along Γ3 ∪ Γ6 as well as the fact that

(A.7) ∂tΦ+ u · ∇Φ = 0, on Γ ∪ Γ1 ∪ Γ4 ∪ Γ5.



A Finite Element Method for Electrowetting on Dielectric 23

Combining Eqs. (A.4)-(A.6), we obtain the energy dissipation law in (A.3). In terms
of the dimensionless variables defined in section 2.3, the energy law in (A.3) gives
Eq. (2.20) (scaled by ρ1U

2L2).

Appendix B. Proof of Theorem 3.1. It suffices to show that the correspond-
ing homogeneous system has only zero solution. By noting that electric force ǫ2η|∇Φ|2
in (3.15a) is explicitly evaluated on Γm, thus we can consider solving the following
homogeneous system for

(

uh, ph, Xh, κh
)

∈
(

U
h, Ph, Xh, Kh

)

such that

1

2

[((ρm + ρm−1)uh

τ
, ωh

)

+
(

ρm(um · ∇)uh, ωh
)

−
(

ρm(um · ∇)ωh, uh
)]

−
(

ph, ∇ · ωh
)

+
2

Re

(

µmD(uh), D(ωh)
)

− 1

We

(

κh nm, ωh
)

Γm

+
1

Re · ls

(

βm uhs , ω
h
s

)

Γm
1 ∪Γm

2

= 0, ∀ωh ∈ U
h,(B.1a)

(

∇ · uh, ζh
)

= 0, ∀ζh ∈ P
h,(B.1b)

(Xh

τ
· nm, ψh

)h

Γm
−
(

uh · nm, ψh
)

Γm
= 0, ∀ψh ∈ K

h,(B.1c)

(

κh nm, gh
)h

Γm
+
(

∂sX
h, ∂sg

h
)h

Γm

+
β∗Ca

τ

[

xhr g
h
1 (1) + xhl g

h
1 (0)

]

= 0, ∀gh ∈ X
h,(B.1d)

where Xh = (Xh, Y h)T , uhs = uh · tw, and xhl := Xh|α=0 and xhr := Xh|α=1.
Taking ω

h = uh, ζh = ph, ψh = 1
Weκ

h and g
h = 1

WeX
h, then combining these

equations yields

(ρm + ρm−1

2
uh,uh

)

+
2τ

Re

(

µmD(uh), D(uh)
)

+
τ

Re · ls

(

βm uhs , u
h
s

)

Γm
1 ∪Γm

2

+
1

We

(

∂sX
h, ∂sX

h
)h

Γm
+

β∗

Re · τ [(x
h
r )

2 + (xhl )
2] = 0.(B.2)

By Korn’s inequality, we have

(B.3) ‖uh‖1 ≤ C
[1

2

(

(ρm + ρm−1)uh, uh
)

+
2τ

Re

(

µmD(uh), D(uh)
)]

≤ 0,

thus we immediately obtain uh = 0. We also have Xh = 0 by noting xhr = xhl = 0.
Substituting Xh = 0 into Eq. (B.1d), we obtain

(B.4)
(

κh nm, gh
)h

Γm
= 0, ∀gh ∈ X

h.

Denote nm
j = (nm

j,1, n
m
j,2)

T , j = 1, 2, · · · , J
Γ
. Choosing g

h in (B.4) as

(B.5) g
h
∣

∣

αj
=



















[

hm
j+1 + hm

j )
]⊥
κh(αj), 1 ≤ j ≤ J

Γ
− 1,

(

nm
1,1κ

h(αj), 0
)T
, j = 0,

(

nm
J
Γ
,1 κ

h(αj), 0
)T

, j = JΓ ,



24 Q. Zhao and W. Ren

and by noting the norm in (3.17), we obtain

0 =
(κh(α0))

2

2
|hm

1 |(nm
1,1)

2 +
(κh(αJ

Γ
))2

2
|hm

J
Γ
|(nm

J
Γ
,1)

2

+
1

2

J
Γ
−1

∑

j=1

(

κh(αj)
)2 |hm

j + hm
j+1|2,(B.6)

which implies κh(αj) = 0, ∀0 ≤ j ≤ J
Γ
from the assmuptions i)–iii). We then

substitute uh = 0 and κh = 0 into (B.1a) and obtain

(B.7)
(

ph, ∇ · ωh
)

= 0, ∀ωh ∈ U
h.

Using the stability condition in (3.13), we consequently obtain ph = 0. This shows
that the homogeneous linear system (B.1a) - (B.1d) has only the zero solution. Thus,
the numerical scheme (3.15a)-(3.15d) admits a unique solution.

Appendix C. Proof of Theorem 3.2. Setting ω
h = um+1, ζh = pm+1,

ψh = 1
We κ

m+1 and g
h = 1

We·τ (X
m+1 − Xm) in Eqs. (3.15a)-(3.15d), noting η = 0

and then combining these equations yield

1

2τ

[(

ρmum+1 − ρm−1um, um+1
)

+
(

ρm−1
(

um+1 − um
)

, um+1
)]

+
2

Re

(

µmD(um+1), D(um+1)
)

+
1

Re · ls
(

βm um+1
s , um+1

s

)

Γm
1 ∪Γm

2

+
1

We · τ
(

∂sX
m+1, ∂s(X

m+1 −Xm)
)h

Γm

− cos θY
We · τ

[

(xm+1
r − xm+1

l )− (xmr − xml )
]

+
β∗

Re

[

(

xm+1
r − xmr

τ

)2

+

(

xm+1
l − xml

τ

)2
]

= 0.(C.1)

It is easy to see that the following inequalities hold:
(

ρmum+1 − ρm−1um, um+1
)

+
(

ρm−1
(

um+1 − um
)

, um+1
)

≥
(

ρm um+1, um+1
)

−
(

ρm−1 um, um
)

.(C.2)

(

∂sX
m+1, ∂s(X

m+1 −Xm)
)h

Γm
≥ |Γm+1| − |Γm|.(C.3)

Using (C.2) and (C.3) in (C.1) and noting xm+1
r −xm+1

l = |Γm+1
1 |, xmr −xml = |Γm

1 |, we
immediately obtain Eq. (3.21). Replacing m by k in Eq. (3.21) and by summarising
up for k from 0 to m− 1, we obtain the global discrete energy dissipation law (3.22).
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