
A thermodynamically consistent pseudo-potential
lattice Boltzmann model for multi-component,

multiphase, partially miscible mixtures

Cheng Penga,∗, Luis F. Ayalaa, Orlando M. Ayalab

aDepartment of Energy and Mineral Engineering and EMS Energy Institute, The
Pennsylvania State University, University Park, PA 16802, USA

b111A Kaufman Hall, Department of Engineering Technology, Old Dominion University,
Norfolk, VA, 23529, USA

Abstract

Current multi-component, multiphase pseudo-potential lattice Boltzmann mod-
els have thermodynamic inconsistencies that prevent them to correctly predict
the thermodynamic phase behavior of partially miscible multi-component mix-
tures, such as hydrocarbon mixtures. This paper identifies these inconsisten-
cies and attempts to design a thermodynamically consistent multi-component,
multiphase pseudo-potential lattice Boltzmann model that allows mass trans-
fer across the phase interfaces and is capable to predict the phase behavior of
typically partially miscible hydrocarbon mixtures. The designed model defines
the total interaction force for the entire phase and split the force into individ-
ual components. Through a properly derived force split factor associated with
the volatility of each component, the model can achieve precise thermodynamic
consistency in multi-component hydrocarbon mixtures, which is described by
the iso-fugacity rule.

Keywords: multi-component multiphase, partial miscibility, hydrocarbon
mixtures, pseudo-potential lattice Boltzmann models, thermodynamic
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1. Introduction

In the oil and gas industry, there has always been a need for reliable numer-
ical tools able to conduct direct numerical investigations for pore-scale multi-
component multi-phase flows in porous media to understand and predict the
fluid behaviors in conventional and unconventional reservoirs [1]. Oil and nat-
ural gases are multi-component hydrocarbon mixtures that behave as highly
non-ideal fluids that undergo phase transitions under pressure, temperature and

∗Corresponding author
Email address: czp341@psu.edu (Cheng Peng)

Preprint submitted to Journal of LATEX Templates November 25, 2020

ar
X

iv
:1

90
9.

12
39

0v
2 

 [
ph

ys
ic

s.
co

m
p-

ph
] 

 2
4 

N
ov

 2
02

0



composition changes [1, 2]. When such a multi-component mixture separates
into two phases, i.e., liquid and vapor phases, not only each phase may contain
all components, but also the composition of those components in each phase will
be often very different. Within each phase, molecules form a homogeneous (fully
miscible) mixture with thermodynamic properties that are significantly different
from those of pure phases containing only one component [2]. Accounting for,
and allowing mass transfer of every component across interfaces is a necessity
in these types of thermodynamic systems.

Over the last two decades, multiphase (MP) lattice Boltzmann (LB) models
have been developed and deployed in a variety of applications. The pseudo-
potential (PP) LB models, also known as Shan-Chen models, are among one of
the most popular categories of multiphase LB models, due to their conceptual
simplicity and numerical efficiency [3, 4]. The PP LB models define external
body forces, known as Shan-Chen forces that mimic the molecular interactions
to achieve phase separation. There are many variations of PP LB models for
multi-component (MC) applications [5, 6, 7, 8, 9, 10]. In those models, each
individual component was assigned with a set of distribution functions, and
a Shan-Chen force was defined to control its diffusion into other components.
Through a Chapman-Enskog analysis, Shan and Doolen showed that the mutual
diffusivities of a two-component system were controlled by the Shan-Chen forces
and the relaxation times in the lattice Boltzmann equation (LBE), adjusting
which the desired diffusivities could be obtained [7]. By assigning different
mutual diffusivities, authors suggested that these MC models could be applied
to components with various miscibilities. However, as we shall see later in Sec. 2,
this way of directly defining Shan-Chen forces in terms of individual components
is not thermodynamic consistent and triggers thermodynamic problems in multi-
component systems in a number of ways described in this document.

Another typical constraint in the available MCMP PP LB models is the
difficulty to achieve large density and viscosity ratios between phases. So far,
the most successful application of these available MCMP PP LB models is the
study of oil-water-type flow in porous media and microchannels [11, 12]. For
such applications, each component can be treated as an incompressible fluid with
close densities and viscosities, and repulsive Shan-Chen forces were assigned to
prevent different components from diffusing into each other. There are several
recent attempts (e.g. [8, 9, 13, 10, 14]) to combine the single-component (SC) PP
LB models with MC PP models to achieve higher density ratios, as reviewed by
Chen et al. [15]. These attempts usually target applications such as air bubbles
rising in water environment or water droplets appearing in air environment,
where water and air are fully immiscible, which disallowing mass transfer across
the interface. These applications do not incorporate the most important features
of multi-component thermodynamics.

There have been attempts to study the flow of miscible fluids in the LB
literature. Some of them are constrained to single-phase flow scenarios. For
example, in the early work of Flekkøy [16] and the recent work of Meng and
Guo [17], “miscible fluids” correspond to solvents. LB models were developed
to study how the transport of a solute through a solvent was affected by the
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flow of the solvent. This type of single-phase LB models is not applicable to
multiphase scenarios. Luo and Girimaji [18] and later Zhu et al. [19] developed
two-fluid LB models that introduced extra collision terms in additional to the
regular collision terms in LBE to handle the mutual diffusivities between two
fluids. Compared to MC PP LB models, this type of models is better rooted to
the Boltzmann equation and resulting mutual diffusivities solely depend on the
relaxation times of the extra collision terms [18]. Through the adjustment of mu-
tual diffusivities in the two-fluid system, the authors state the entire spectrum of
full miscibility to full immiscibility may be achieved. However, multi-component
thermodynamics considerations are still absent from these models. Therefore,
these methods are unlikely to be able to achieve thermodynamic consistency
when applied to partially miscible multi-component hydrocarbon mixtures due
to the absence of such information.

Our main targets in this document are: 1) discussing the thermodynamic
inconsistencies in the previous MCMP PP LB models on predicting the phase
behavior of partially miscible hydrocarbon mixtures, and 2) developing a correct
model for this purpose and contrasting it against other recent efforts. In the
developed model, we will define the total interaction force in terms of bulk phases
and split it into components, and create a force split factor that is consistent
with the PP LB models by rigorously deriving its definition. The developed
model allows each phase to not only contain all components in the system, but
also have fluid properties that are fully consistent with the MC thermodynamics.

The remaining of this document is arranged as follows. In Sec. 2, we will
briefly introduce the MCMP PP LB models for immiscible components and
discuss their inadequacies for applications with miscible MC mixtures. Then, a
correct model will be introduced in Sec. 3. Particularly, the design of a proper
force split factor to satisfy precise thermodynamic consistency will be discussed
in detail. The proposed model will be validated in four cases, a limiting case with
components being identical and three general cases of two-component propane
and pentane hydrocarbon mixtures in Sec. 4. Conclusions and final remarks
will be summarized in Sec. 5.

2. Thermodynamic inconsistencies in MCMP PP LB models

2.1. MCMP PP LB models

In MCMP PP LB models, each component is assigned with a separate set of
particle distribution functions, whose evolution is described by LBE as [20, 21]

fσ,α (x + eαδt, t+ δt)− fσ,α (x, t) = −1

τ

[
fσ,α (x, t)− f (eq)

σ,α (x, t)
]

+ Fσ,α (x, t) ,

(1)
where fσ,α is the particle distribution function of component σ that is associated
with the particle velocity eα, x and t are the spatial and temporal coordinates,
respectively, δt is the time step size, τ is the non-dimensional relaxation time
that is related to the kinematic viscosity ν of the fluid as τ = ν/

(
c2sδt

)
+ 0.5.

f
(eq)
σ,α is the equilibrium distribution of fσ,α, Fσ,α is the forcing term representing
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the effect of external body force on the evolution of fσ,α. These two terms can
be defined in terms of the macroscopic properties as [21]

f (eq)
σ,α = ρ̄σwα

[
1 +

eα · u
c2s

+
(eα · u)

2

2c4s
− u · u

2c2s

]
, (2a)

Fσ,α =

(
1− 1

2τ

)
wα

[
eα − u

c2s
+

(eα · u) eα
c4s

]
· Fσδt, (2b)

where wα is the weighting factor, ρ̄σ is the cell-volume density of component
σ, i.e., the mass of component σ per the control volume of a grid cell, u and Fσ
are the fluid velocity, and the external body force acting on the component σ,
respectively. Through the Chapman-Enskog multiscale expansion, the Navier-
Stoke equations (NSE) can be recovered from above LBE [22], i.e.,

∂ρ

∂t
+ ∇ · (ρu) = 0, (3a)

∂

∂t
(ρu) + ∇ · (ρuu) = ∇ · (−pI + T) + F. (3b)

In Eq. (3), ρ without an overbar is the thermodynamic (bulk) density of the
fluid or the density of the phase, which is the summation of all the cell-volume
densities for individual components, p is the pressure, I is a unit matrix, T is
the viscous stress tensor, and F is the total external body force.

In standard LB models, the pressure p and the fluid density ρ are linearly
coupled, which does not reflect the non-ideal pressure-density relationship that
triggers phase transitions. PP LB models achieve multiphase flow simulations
via adding external body forces, usually referred as Shan-Chen forces, to NSE
to mimic the macroscopic effects of molecular interactions [3, 4]. In MCMP PP
LB models, such Shan-Chen forces are applied to individual components [5, 22].
A representative design of Shan-Chen forces for MC systems that allows high
density ratios between two phases was given by Bao and Schaefer [9]. In this
work, the total Shan-Chen force acting on the component σ is formulated as [9]

Fσ (x) =− gσσψσ (x)
∑
α

wαψσ (x + eα) eα

− gσσ̄ψσ (x)
∑
α

wαψσ̄ (x + eα) eα,
(4)

where the first term is the intra-molecular interaction force within component σ,
and the second term is the inter-component interaction force (assuming a binary
system) with another component σ̄. gσσ and gσσ̄ are the forcing intensities of the
two parts of the force, ψσ and ψσ̄ are the pseudo-potential or effective mass of
the component σ and σ̄, respectively. x and x+eα are the spatial location of the
current location and its neighboring location, eα is the αth lattice direction. The
intra-molecular interaction in Eq. (4) serves two purposes. First, it is expected
to reproduce the pressure of the non-ideal fluid in each phase. Second, it is found
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to help achieving a higher density ratio between different phases. It should be
emphasized that in these previous works, terms “component” and “phase” were
used interchangeably because each component was allowed to be present in only
one phase1. Rigorously speaking, the concept of thermodynamic (bulk) density
applies to phases only. Components in a phase do not have thermodynamic
meaningful density.

To implement Eq. (4), one must define the two effective masses ψσ and ψσ̄.
Bao and Schaefer [9] suggested that ψσ and ψσ̄ could be calculated using the
equations of state (EOS) of pure substances as

ψσ =

√
2 [pEOS (ρ̄σ)− c2sρσ]

gσσc2s
, ψσ̄ =

√
2 [p′EOS′ (ρ̄σ̄)− c2sρσ̄]

gσ̄σ̄c2s
, (5)

where gσ̄σ̄ is the forcing intensity of the other component σ̄, pEOS and p′EOS′

are the thermodynamic pressure of component σ and σ̄ calculated from the
thermodynamic EOS, e.g., Peng-Robinson EOS [23]

pEOS (ρ) =
ρRST

1− bρ
− aα(T )ρ2

1 + 2bρ− b2ρ2
,

α(T ) = [1 + (0.37464 + 1.54226ω − 0.26992ω2)(1−
√
T/Tc)]

2

(6)

where a = 0.45724R2
ST

2
c /pc, b = 0.0778RSTc/pc, RS is the specific gas constant,

pc, Tc are the critical pressure and critical temperature of the pure substance,
respectively, and ω is Pitzer’s acentric factor of the substance. Note that the
density ρ in the Peng-Robinson EOS in Eq. (6) must be the density of a phase
and not of a component. However, in the MCMP PP model by Bao and Schae-
fer [9], the densities ρ̄σ and ρ̄σ̄ being substituted into EOSs to calculate ψσ and
ψσ̄ are the cell-volume densities of individual components. These two concepts
are different and we will detail their differences shortly. To distinguish the two
types of densities, ρ without an overbar is used to represent the density of a
phase, or “thermodynamic (bulk) density”, while ρ̄ with an overbar is used to
represent the mass of an individual component within a grid cell volume, or
“cell-volume density”. These notations are used through the whole paper.

2.2. Thermodynamic inconsistencies in the available MCMP PP LB models

The above MCMP PP LB models are only applicable for the cases with fully
immiscible components. When applying such models to partially miscible MC
mixtures, such as hydrocarbon fluids, there would be a number of pitfalls and
the thermodynamic information behind phase behavior of fluids would not be
correctly incorporated. These potential pitfalls are:

• First, EOSs as written in Eq. (6) can describe the thermodynamic rela-
tionship between the pressure and the density only for a pure component,

1This assumes full immiscibility of each component. In reality, each phase is more likely
to contain at least trace amounts of all components present in the system.
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i.e., when no other types of molecules are found in the system. When
other molecules appear in the system, thermodynamic behavior of phases
with multiple components will be different, and so would the EOS de-
scribing such behavior. This is particularly true when components have
full or partial miscibility within co-existing phases, such as in the case for
hydrocarbon mixtures. Strictly speaking, EOSs are always deployed to
represent thermodynamic behavior of whole phases (liquid or vapor), and
not of isolated components.

• Second, it is important to realize that any density in an EOS represents the
thermodynamic density, i.e., “mass of fluid phase per the actual volume
occupied by that fluid phase”. A higher thermodynamic density means a
heavier phase. However, the density generated by LB models via summing
up the local distribution functions is the cell-volume density, which means
“the mass of a component per the control volume of a grid cell”. In a
MC system, the cell-volume densities ρ̄σ > ρ̄σ̄ at a spatial location just
means there is more mass of component σ than the mass of component σ̄
inside the control volume of that location. These two density definitions
are equivalent only for pure substances when the fluid phase consists only
one component and occupies the entire grid cell. If a density is not the
thermodynamic density, it should not be put into an EOS. As stated
before, the concept of thermodynamic density in the context of EOSs
applies exclusively to phases. In single phases where both component
σ and σ̄ co-exist (due to miscibility), there is only one phase density
and there are no separate thermodynamic densities for each component.
Thermodynamic densities and cell-volume densities, can be numerically
related through material balance statements.

• Third, at each spatial location, there is only one physically meaningful
pressure. In SC PP models, the effective mass ψ is usually defined by
matching the thermodynamic pressure calculated from EOS and the hy-
drodynamic pressure derived in NSE [24]. However, in the MCMP PP
model described above, there are three pressures: two EOS pressures
pEOS(ρ̄σ) and p′EOS′(ρ̄σ̄) (densities used to calculate the pressures in those
models were cell-volume densities, which is inappropriate), plus the hydro-
dynamic pressure derived in NSE. Unless those three pressure definitions
converge to the same value (and they obviously do not), the definition of
effective mass using Eq. (5) is not thermodynamically meaningful.

For illustration purposes, a multi-component multiphase system of partially
miscible fluids of interest to the present study is sketched in Fig. 1. A vapor
phase multi-component mixture and a liquid phase multi-component mixture are
separated by an interface. Both vapor and liquid phases contain all components.
This is why the system is referred as partially miscible, since within each phase,
all components are fully miscible, but phases are immiscible. The vapor phase
has component molar compositions of yi, and the liquid phase has component
molar compositions of xi, i = 1, 2, · · · , nc, nc is the total number of components
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Vapor phase

Liquid phase

𝜌", 𝑦$

𝜌%, 𝑥$

Figure 1: A sketch of a liquid-vapor two-phase system.

in the system. The overall component molar composition of the whole system
combining both phases is noted as zi. The relationship between the vapor
composition yi, the liquid composition xi, and the overall composition is

zi = yifng + xi (1− fng) , i = 1, 2, · · · , nc (7)

where fng is the molar fractional of vapor that is found in the system. Assuming
each phase is homogeneous, there is only one thermodynamically meaningful
density (thermodynamic density) that is applied to each entire phase, i.e., ρv
for the vapor phase and ρl for the liquid phase. The cell-volume densities of
components in each phase, while not so meaningful in a thermodynamic point
of view, are related to the thermodynamic density of the phase as

ρ̄i,l = ρl
xiMi∑
i xiMi

, ρ̄i,v = ρv
yiMi∑
i yiMi

,

ρlV =
∑
i

ρ̄i,lV, ρvV =
∑
i

ρ̄i,vV
(8)

where ρ̄i,l and ρ̄i,v are the cell-volume densities of the ith component in the
liquid and vapor phases, respectively, Mi is the molar mass of component i, V
is the cell volume.

3. A thermodynamically consistent MCMP PP model

3.1. A MCMP PP model

As discussed earlier, an EOS should not be applied to individual components,
but rather to phases, which are mixtures of miscible components. Rather than
relating the cell-volume density of each component to the thermodynamic pres-
sure, the phase density of the MC mixture should be input to an EOS to com-
pute thermodynamic pressure. Such implementation also avoids any potential
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discrepancy between thermodynamic density (phase density) and cell-volume
density. In LB models, densities calculated from summing up distribution func-
tions of each component are different from the density of the phase when more
than one component exist at the same location. However, once all components
are considered together as a whole, the two concepts of density are always equiv-
alent. In addition, there is only one associated thermodynamic pressure (rather
than one per component). Similar to the SCMP PP models, by matching this
thermodynamic pressure with the hydrodynamic pressure derived in NSE, the
effective mass in the PP models can be calculated. The third issue discussed
earlier regarding multiple pressures at the same location can be also avoided.

To achieve thermodynamic consistency, rather than using Eq. (4) to define
the Shan-Chen force for each component, the total Shan-Chen force should be
defined for the MC mixture as

F (x) = −Gψ (x)
∑
α

wαψ (x + eα) eα, (9)

where G is the intensity of this force. Eq. (9) is actually the same definition of
the Shan-Chen force in SCMP PP models. With the total interaction force in
Eq. (9), the hydrodynamic pressure derived in NSE would become [24]

phydro = c2sρ+
1

2
Gδtc2sψ

2, (10)

where ρ is the density of the phase consist of all components. Eq. (10) is
also identical to its counterpart in SCMP PP models. Same as the SCMP
PP models, the effective mass ψ in Eq. (9) could be calculated by matching
the hydrodynamic pressure in Eq. (10) and thermodynamic pressure calculated
from EOSs,

ψ =

√
2 (pEOS − c2sρ)

Gδtc2s
. (11)

Per the discussion before, the thermodynamic pressure pEOS must be defined
from an EOS applies to the MC system with the density of the phase, i.e.,
input ρ =

∑
i ρ̄i. The interaction force applied to each mixture component

(component 1, 2, 3, ..., i, ..., nc) would just be a portion of this total interaction
force, i.e.,

F1 (x) = χ1F (x) , F2 (x) = χ2F (x) , F3 (x) = χ3F (x) · · · ,∑
i

χi = 1, (12)

where χi is the force split factor of the ith component.
To the best of the authors’ knowledge, the only previous attempt to split the

total interaction force among mixture components has been presented by Gong
et al. [25]. In the study of Gong et al., it was reported that multiple empirical
force split factors were attempted and the best candidate among them ended
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up being

χi =
ci
√
p̂i − p0∑

i ci
√
p̂i − p0

(13)

where ci is the local molar composition, p̂i and p0 are the pressures computed
from the non-ideal EOS and the ideal gas law, respectively, when the pure ith
component has the same molar density as the mixture. There are a few poten-
tial problems with Gong et al.’s force split factor. First of all, as the non-ideal
pressure is typically smaller than the ideal pressure due to molecular attrac-
tion, i.e., p̂i < p0, Eq. (13) would lead to imaginary numbers. Second, there
is no physical justification for such splitting choice, which ignores component
volatility related to its interaction with other molecules.

When a MC fluid separates into two phases, components would have dis-
tinct preferences on which phase to accumulate in, i.e., components have dif-
ferent volatility. For example, consider a two-component (binary) mixture of
propane C3 and pentane nC5. Under a decreasing pressure at constant tem-
perature below mixture’s critical temperature, an initially liquid mixture starts
to evaporate and form a vapor phase once it crosses its bubble point. In this
process, heavier molecules of nC5 will tend to remain in the liquid phase, while
the lighter molecules of C3 will have a stronger tendency to escape to the va-
por. We describe C3 as more volatile compared to nC5, i.e., it has preferential
miscibility in the vapor phase. Molecules of volatile components typically have
a smaller attractive or cohesive force (per unit mass) that prevents them from
bonding tightly in a liquid form. Also, it is reasonable to expect that the force
distributed to a specific component is proportional to the molar or mass fraction
of this component locally. With these considerations, we propose the following
force distribution strategy

χ1 =
γ1ρ̄1V∑
i γiρ̄iV

, χ2 =
γ2ρ̄2V∑
i γiρ̄iV

, χ3 =
γ3ρ̄3V∑
i γiρ̄iV

, · · · , (14)

where γi is the coefficient tied to the volatility of the ith component. For
convenience, we set γi of the least volatile (typically the heaviest) component to
1, which gives it the largest share of total attractive force relative to all other
components. Thus γi < 1 for the rest of the components allocates a smaller
share of the total attractive force per unit mass to more volatile components.

Now let us derive the mathematical expression for γi. Consider a two-
component, two-phase fluid separated by a flat interface. At equilibrium, the
hydrostatic balance is established as

−∂j
(
c2sρ
)

+ Fj = 0, Fj ≈ −∂j
(
Gc2s

ψ2

2

)
. (15)

At the same time, each component should also satisfy (assuming γ2 = 1)

− ∂j
(
c2sρ̄1

)
− γ1ρ̄1

γ1ρ̄1 + ρ̄2
∂j

(
Gc2s

ψ2

2

)
≈ −∂j

(
c2sρ̄1

)
+

γ1ρ̄1

γ1ρ̄1 + ρ̄2
Fj = 0, (16a)

− ∂j
(
c2sρ̄2

)
− ρ̄2

γ1ρ̄1 + ρ̄2
∂j

(
Gc2s

ψ2

2

)
≈ −∂j

(
c2sρ̄2

)
+

ρ̄2

γ1ρ̄1 + ρ̄2
Fj = 0. (16b)
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The above two equations could also be rearranged as

γ1

γ1ρ̄1 + ρ̄2
∂j

(
Gc2s

ψ2

2

)
+ ∂j

(
c2s ln ρ̄1

)
≈ 0, (17a)

1

γ1ρ̄1 + ρ̄2
∂j

(
Gc2s

ψ2

2

)
+ ∂j

(
c2s ln ρ̄2

)
≈ 0, (17b)

which lead to
γ1∂j (ln ρ̄2) ≈ ∂j (ln ρ̄1) , (18)

Note that γ1 is not spatially dependent. Therefore, integrating the above equa-
tion over the interface, we shall have

γ1 ≈
ln (ρ̄1,l/ρ̄1,v)

ln (ρ̄2,l/ρ̄2,v)
=

ln (ρ̃l/ρ̃v)− lnK1

ln (ρ̃l/ρ̃v)− lnK2
, (19)

where K1 = y1/x1 and K2 = y2/x2 are the equilibrium (volatility) ratios of
component 1 and component 2, respectively. The value of γ1 should be deter-
mined by the four cell-volume densities, or the molar densities (ρ̃l and ρ̃v, with
tilde caps in the notation) and molar compositions in both phases that satisfy
thermodynamic equilibrium. According to the Gibbs phase rule, this informa-
tion can be uniquely determined via the iso-fugacity rule when the temperature,
pressure, and the overall composition are given, which will be covered shortly.
As a result, γ1 is also a function of the temperature, pressure, and the overall
composition. This is somehow expected, since γi is related to the volatility of
components. Also, volatility is not constant, but must change with pressure,
temperature, and composition, which is accounted for by the newly proposed
splitting scheme.

3.2. Peng-Robinson EOS for multi-component hydrocarbon mixtures

In order to correctly predict the phase behavior of MC hydrocarbon mix-
tures, it is also important to ensure that the EOS representing the correct MC
thermodynamics is incorporated.

In 1976, Peng and Robinson [23] summarized the following EOS for MC
hydrocarbon system with nc components

pEOS (ρ̃) =
ρ̃RT

1− bmρ̃
−

[aα(T )]m ρ̃
2

1 + 2bmρ̃− b2mρ̃2
, (20)

where ρ̃ is the molar density of the MC hydrocarbon mixture, R is the universal
gas constant. Parameters [aα]m, bm are defined for MC hydrocarbon mixtures
using the following “random mixing rules” [23]

[aα (T )]m =

nc∑
i

nc∑
j

cicj

√
[aiαi (T )] [ajαj (T )] (1− ζij) ,

bm =

nc∑
i

cibi,

(21)
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where ci, cj are the molar composition of ith component and jth component in
the mixture. When implementing EOS Eq. (20), ci and cj should be replaced
by the local molar composition in a specific phase, i.e., xi and xj in the liquid
phase or yi and yj in the vapor phase, rather than the overall composition of
the whole fluid. ζij is the binary interaction coefficient between the ith and jth
components, ζii = ζjj = 0. For hydrocarbon components of similar nature, the
interaction coefficient between any two components is also zero, ζij = 0 [2]. ai,
αi (T ), bi are the attraction parameter and the co-volume parameter for the ith
component

ai = Ωoai
R2T 2

ci

pci
, bi = Ωobi

RTci
pci

,

αi (T ) =
[
1 +mi

(
1−

√
T/Tci

)]2
,

(22)

where Tci, pci are the critical temperature, and critical pressure of the ith com-
ponent. Ωoai = 0.45724 and Ωobi = 0.0778 are constants [26, 27]. Finally, mi is
defined through the Pitzer’s acentric factor ωi as [23]

mi =

{
0.374640 + 1.54226ωi − 0.26992ω2

i , ωi ≤ 0.49
0.379642 + 1.48503ωi − 0.164423ω2

i + 0.016666ω3
i , ωi > 0.49

. (23)

The Peng-Robinson EOS that has been widely used in SCMP PP LB models
(i.e., Eq. (6)) is just Eq. (20) applied to a pure substance. It is often convenient
to recast Eq. (20) in terms of the compressibility factor Z, Z = p/(ρ̃RT ), as a
cubic equation

Z3 + (B − 1)Z2 +
(
A− 2B2 − 2B

)
Z −

(
AB −B2 −B

)
= 0, (24)

where

A =

nc∑
i

nc∑
j

cicjAij , Aij =
√
AiAj (1− ζij) ,

Ai = Ωoai
pri
Tri

[
1 +mi

(
1−

√
Tri

)]2
, B =

i∑
i

ciBi, Bi = Ωobi
pri
Tri

,

(25)

where pri = p/pci, Tri = T/Tci are the reduced pressure and reduced temper-
ature of the ith component, respectively. The cubic equation form of EOS in
Eq.(24) is convenient to solve for Z, which will be used to calculate the fugacity
and examine the thermodynamic consistency.

The thermodynamic consistency of SCMP PP models is usually examined by
comparing the resulting liquid-vapor densities from a simulation with the bench-
mark results obtained from Maxwell equal area rule [28, 29]. The Maxwell equal
area rule is a statement of thermodynamic equilibrium between liquid and va-
por phases when using cubic EOSs valid for pure substances [30]. For a pure
substance at any given temperature, the Maxwell equal area rule applies since
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the saturated vapor and saturated liquid must co-exist at the same pressure,
which also corresponds to both bubble point and dew point pressures. However,
for MC hydrocarbon mixtures, phase transitions occur over a range of pressures
at any given temperature. For a mixture of known components at a given tem-
perature, bubble point and dew point pressures are different, which makes the
Maxwell equal area rule inapplicable. For MCMP PP model, the more general
iso-fugacity criterion should be applied to determine whether the thermody-
namic equilibrium is achieved. The Maxwell equal area rule is essentially a
specific form of the iso-fugacity criterion applied to pure substances.

For a liquid-vapor two-phase system that is at thermodynamic equilibrium,
the chemical potential of each component should be equal in all phases. The
concept of fugacity is closely related to chemical potential, and can be used
interchangeably for the purpose of computing phase equilibria [1]. Fugacity is
usually calculated via the fugacity coefficient as

fvi = φviyip, fli = φlixip, (26)

where fvi and fli are the fugacity of the ith component in the vapor phase and
liquid phase, respectively. φvi and φli are the corresponding fugacity coefficient,
p is the system pressure.

At a constant temperature, the fugacity coefficient of the ith component can
be calculated in terms of the compressibility factor Z as [23]

lnφi = − ln (Z −B) +
Bi
B

(Z − 1)

+
A

2
√

2B

(
2
∑nc

j Aijcj

A
− Bi
B

)
ln

[
Z +

(
1−
√

2
)
B

Z +
(
1 +
√

2
)
B

]
.

(27)

The definitions of A, B, Aij , and Bi are given in Eq. (25). When calculating
the fugacity coefficients of ith component in the vapor and liquid phases, i.e.,
φvi and φli via Eq. (27), ci should be chosen as the molar composition in that
particular phase, i.e., yi for the vapor phase and xi for the liquid phase, instead
of the overall molar composition combining the two phases. Similarly, the com-
pressibility factor Z must also be the unique value calculated for a specific phase.
The value of Z can be calculated from Eq. (24) knowing temperature, pressure,
and phase molar composition. When solving the cubic equation Eq. (24), one
can obtain either one or three real roots for Z. When there is only one real
root of Z, this solution is used. When there are three real roots, the middle
solution is always discarded. A typical approach is to select the smallest root
of Z (smallest compressibility) for the liquid phase and the largest root of Z
(largest compressibility) for the vapor phase, but the most reliable and thermo-
dynamically consistent root selection criterion is to select the root of Z which
minimizes the associated Gibbs energy of the phase under consideration. This
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criterion can be mathematically expressed as [2]:

dG

RT
= (Zmax − Zmin) + ln

(
Zmin −B
Zmax −B

)
+

A

2
√

2B
ln

{[
Zmin +

(
1 +
√

2
)
B
] [
Zmax +

(
1−
√

2
)
B
][

Zmin +
(
1−
√

2
)
B
] [
Zmax +

(
1 +
√

2
)
B
]} , (28)

where dG is the difference of Gibbs energy resulting from the largest solution
of compressibility factor, Zmax, and the smallest solution Zmin. If dG is pos-
itive, then Zmin is selected, otherwise, Zmax is selected. After the unique Z
corresponding to a specific phase is determined, the fugacity coefficient of each
component in this phase is calculated via Eq. (27), then the fugacity itself via
Eq. (26). The fugacity of each component should be equal in the two phases if
a thermodynamic equilibrium is achieved. The deviation from thermodynamic
equilibrium can be quantified as a residual

residual =

nc∑
i

(
fli
fvi
− 1

)2

. (29)

The above iso-fugacity criterion is a more general way to examine the ther-
modynamic consistency of a MC mixture. It can also be used to guide the
searching for the value of γ1 in the present MCMP PP LB model. By run-
ning a MC phase behavior model at the given temperature, pressure and overall
composition, molar densities and phase compositions (and thus the equilibrium
ratios Ki) satisfying the iso-fugacity rule can be uniquely obtained.

3.3. Thermodynamic inconsistency issue of the original Shan-Chen forces

Although the proposed model introduces a correct way to incorporate the
thermodynamic information of partially miscible multi-component fluids to the
PP LB model, it may still not achieve full thermodynamic consistency in simula-
tions. The remaining thermodynamic inconsistency comes from the combination
of the Shan-Chen force in Eq. (9) and the definition of the effective mass ψ us-
ing cubic EOSs in Eq. (11), which has been widely recognized in SCMP PP
models [31, 32]. As the proposed MCMP PP model incorporates cubic EOS
into the model in a similar way to those in SCMP PP models, this problem is
inherited. Here we adopt the refined definition of Shan-Chen force proposed by
Kupershtokh et al. [31] to enforce thermodynamic consistency. Instead of using
Eq. (9), the total Shan-Chen force is calculated as [31, 33]

F (x) = −βGψ (x)
∑
α

wαψ (x + eα) eα −
1− β

2
G
∑
α

wαψ
2 (x + eα) eα, (30)

where β is a tuning parameter whose optimal value is found to achieve full
thermodynamic inconsistency.
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3.4. The implementation of the proposed MCMP PP model

The implementation of the proposed MCMP PP model shares a lot in com-
mon with the SCMP PP models.

• With the local molar density of the phase and the local molar composition,
the thermodynamic pressure pEOS is calculated with Eq. (20).

• By matching the obtained thermodynamic pressure pEOS with the hydro-
dynamic pressure defined in Eq. (10), the effective mass ψ is calculated
with Eq. (11).

• Then, the total Shan-Chen interaction force is calculated as Eq. (30).

• After the total Shan-Chen force is defined, it is distributed to each com-
ponent with the force split factor as Eq. (14).

The determined interaction force for each component is then used to evolve
the particle distribution functions of each component with LBE of that specific
component.

4. Numerical validations and discussion

4.1. A limiting case

A way to examine the capability of a MCMP PP LB model for multi-
component multiphase partially miscible fluids is to benchmark it with a phys-
ically meaningful limiting case. When two components are essentially the same
component, physical reality requires that a correct MCMP PP LB model should
be able to reproduce the same results predicted by the SCMP PP LB model.
For example, a “mixture” of 50% water and 50% water must have precisely
the same phase behavior as 100% pure water under the same thermodynamic
conditions.

As a validation test, let us consider a simple case of a water droplet sus-
pending in water vapor in a periodic domain. The thermodynamic behavior
of water is captured by the reduced Peng-Robinson EOS for pure substances
shown in Eq. (6). For demonstration purposes, we set the parameters a = 2/49,
b = 2/21, and RS = 1 for P-R EOS in the LB unit, as suggested by Yuan and
Schaefer [24]. The acentric factor of water is ω = 0.344. The computational
domain has a size of 200lu× 200lu, lu stands for “length unit”. The relaxation
time τ in the simulation is set to 1.0. The droplet appears at the center of
the domain, (xc, yc) = (100, 100), and has a radius r0 = 30. The initial phase
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density field follows

ρ (x, y, t = 0) =
ρl + ρv

2
− ρl − ρv

2
tanh

2

(√
(x− xc)2

+ (y − yc)2 − r0

)
W

,
(31)

where ρl and ρv are the saturated liquid and vapor phase densities at a given
temperature T below the critical temperature Tc, respectively. At a operation
temperature T = 0.9Tc, ρl and ρg calculated from the Maxwell equal area rule
are 5.90796 and 0.58007, respectively. W = 8 is the initial interface thickness,
which is defined for initialization purposes and it might not maintain the same
value as the simulation reaches its steady state.

The above problem is simulated with both SCMP PP model and the pro-
posed MCMP PP model with two identical components. In the simulation with
the proposed MCMP PP model, for both component 1 and component 2, we
use the same P-R EOS with a1 = a2 = 2/49, b1 = b2 = 2/21, M1 = M2 = 1,
R = 1 in the LB unit, and ω = 0.344. The relaxation time τ = 1.0 is chosen to
match the setting in the SCMP PP simulation. The initial cell-volume densities
of component 1 and component 2 are set as

ρ̄1 (x, y, t = 0) =
ρl
2
− ρl

2
tanh

2

(√
(x− xc)2

+ (y − yc)2 − r0

)
W

,

ρ̄2 (x, y, t = 0) =
ρv
2

+
ρv
2

tanh

2

(√
(x− xc)2

+ (y − yc)2 − r0

)
W

.
(32)

Clearly, the summation of the two initial cell-volume densities matches precisely
the initial phase density distribution in the SCMP model. Since the two com-
ponents are essentially identical, they should have the same volatility, which
leads to γ1 = γ2 = 1. At the steady state, the contours of the phase density ρ
(ρ = ρ̄1 + ρ̄2 with the MCMP model) from the SCMP model and the proposed
MCMP model are shown in Figure 2. As a comparison, results of simulations
with Bao and Schaefer [9]’s MCMP model are also presented in parallel. In
the SCMP model and the proposed MCMP model, the intensity of interaction
force G does not have an impact on the magnitude of the force, but is only
required to ensure the term under the square root in Eq. (11) is non-negative.
On the other hand, in the MCMP model by Bao and Schaefer [9], while the
intensities of intra-molecular interaction forces gσσ and gσ̄σ̄ still have no influ-
ence on the magnitude of the intra-molecular interaction forces, the intensity of
the inter-component interaction force gσσ̄ does become relevant. In our tests,
we set gσσ = gσ̄σ̄ = −1, and examine two values gσσ̄ = −0.05 and 0.05. In all
these simulations, the equilibrium distributions of each component are defined
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Figure 2: Steady state density contours with SCMP model and MCMP model in the limiting
case: (a) SCMP model, (b) proposed MCMP model, (c) Bao and Schaefer [9], gσσ̄ = −0.05,
(d) Bao and Schaefer [9], gσσ̄ = 0.05.

with the cell-volume density of the component with Eq. (2a), the forcing term
in LBE is handled with Guo et al.’s forcing scheme [21] in Eq. (2b).

As shown in Figure 2, only the proposed MCMP model results in identi-
cal density distribution as the SCMP model in this limiting case. The results
from Bao and Schaefer’s MCMP model [9], however, significantly deviate from
the phase density predicted by the SCMP model. The distributions of phase
density on a line cutting through the center of the droplet are shown in Fig. 3,
which further confirm such deviations. While this limiting case is simple, it
clearly indicates that the MCMP model proposed by Bao and Schaefer [9], as
well as those models developed on similar bases [8, 13, 10], are not able to pre-
dict the phase behavior of partially miscible multi-component fluid due to their
false ways to incorporate thermodynamic information. Thus, the use of these
MCMP models for multi-component, multiphase partially miscible mixtures is
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Figure 3: Steady state density distribution on a line cross the droplet center. g12 in the figure
legend means gσσ̄ in the text in Bao and Schaefer’s MCMP model.

not advisable. However, it is expected that these models would remain useful
to examine behaviors of immiscible systems where components would not mix
and would remain fully separated in different phases, but the potential misuse
of EOSs in those models still requires further attention.

4.2. Two-component, two-phase hydrocarbon mixture separated by a flat inter-
face

We now test the proposed MCMP PP model with a realistic two-component
hydrocarbon mixture. Unlike pure substances, whose phase transition happens
only at a specific pressure at a given temperature, the phase transition of a two-
component hydrocarbon mixture of a given molar composition occurs within
a range of pressures at a given temperature. This is shown in the pressure-
temperature (PT) diagram of this multi-component mixture via a “phase enve-
lope”. A phase envelope is a curve that encloses the temperatures and pressures
under which the mixture of a given molar composition will separate into two
phases. As shown in Fig 4, the red solid curve is the bubble point line, whose left-
side indicates the pressure-temperature conditions under which the hydrocarbon
mixture remains single-phase liquid. The blue solid curve is the dew point line,
whose right-side indicates the pressure-temperature conditions under which the
mixture remains single-phase vapor. The intersection of the bubble point line
and the dew point line is the critical point, at which the liquid and vapor phases
are indistinguishable. It should be noted that the phase envelope shown in Fig. 4
does not consider the presence of capillary pressure introduced by curved inter-
faces. When capillary pressure is present, phase-envelope locations will change,
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Dew point:
!𝜌 = 0.2027, 𝜌 = 0.2800, Z = 0.8370

Bubble point:
!𝜌 = 4.7433, 𝜌 = 6.5538
Z = 0.0687

Figure 4: A phase diagram of two-component mixture of 40% propane C3 (component 1) and
60% pentane nC5 (component 2). The densities at the bubble and dew point in the figure
have been scaled to the LB units using a1 = 2/49, b1 = 2/21, M1 = 1, and R = 1.

especially at conditions away from the critical point [34, 35].
In this case study, we simulate a two-component, two-phase fluid separated

by a flat interface. The first component is propane C3 and the second compo-
nent is pentane nC5. For readers’ convenience, the thermodynamic properties of
the common hydrocarbon components are listed in Table 1. The overall molar
composition of the mixture is z1 = 0.4 and z2 = 0.6. The prevailing tempera-
ture is set to T = Tc,C3

= 666.06◦R. With the given temperature and overall
composition, the cell-volume densities that satisfy iso-fugacity rule and the re-
sulting γ1 under different pressures are given in Table 2. For this specific setup,
γ1 is close to a constant under the pressure range that would lead to phase
separation. With the values of γ1 obtained from the thermodynamic proper-
ties of the hydrocarbon mixture, the performance of the proposed MCMP PP
model is tested at two selected pressures p = 200 psia and p = 240 psia. The
simulations are conducted in a periodic domain of nx× ny = 400× 2, and the
initial cell-volume density distribution of each component is set as

ρ̄i (x, y, t = 0) =


ρ̄i,l + ρ̄i,v

2
+
ρ̄i,l − ρ̄i,v

2
tanh

[
2 (x− L0)

D

]
, x ≤ L/2

ρ̄i,l + ρ̄i,v
2

− ρ̄i,l − ρ̄i,v
2

tanh

[
2 (x− L+ L0)

D

]
, x > L/2

(33)
where D = 8, L = 400, and

L0 =
(ρ̄1,lz1 + θρ̄2,lz1 − ρ̄1,l)L

2 (ρ̄1,v − ρ̄1,l − ρ̄1,vz1 − θρ̄2,vz1 + ρ̄1,lz1 + θρ̄2,lz1)
, (34)
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Table 1: Thermodynamic properties of hydrocarbon components, from first column: compo-
nent, critical pressure, critical temperature, Pitzer’s acentric factor, molar mass, specific gas
constant [2].

pci
(psia)

Tci
(◦R)

ωi
Mi

(lbm/lbmol)
Ri

(psia ft3/lbm ◦R)

C1 666.40 343.33 0.0104 16.043 0.669
C2 706.50 549.92 0.0979 30.070 0.357
C3 616.00 666.06 0.1522 44.097 0.243
iC4 527.90 734.46 0.1822 58.123 0.185
nC4 550.60 765.62 0.1995 58.123 0.185
iC5 490.40 829.10 0.2280 72.150 0.149
nC5 488.60 845.80 0.2514 72.150 0.149
nC6 436.90 913.60 0.2994 86.177 0.125
C7+ 305.20 1112.00 0.4898 142.285 0.075

Table 2: Thermodynamic properties and the resulting force splitting coefficients of a 40% C3

(component 1) and 60% nC5 (component 2) mixture at T = Tc,C3
under different pressures.

p
(psia)

Zl Zv x1 y1
ρ̄1,l

(lb/ft3)
ρ̄1,v

(lb/ft3)
ρ̄2,l

(lb/ft3)
ρ̄2,v

(lb/ft3)
γ1

(γ2 = 1)

246.0 0.06877 (-) 0.40000 (-) 8.829 (-) 21.668 (-) (-)
240.0 0.06716 0.76441 0.38792 0.71917 8.554 22.083 1.393 0.890 0.56515
220.0 0.06180 0.77837 0.34334 0.68507 7.542 23.601 1.195 0.899 0.56378
200.0 0.05644 0.79194 0.29768 0.64462 6.508 25.124 1.004 0.906 0.56242
180.0 0.05108 0.80509 0.25094 0.59567 5.457 26.650 0.822 0.913 0.56107
160.0 0.04568 0.81779 0.20313 0.53506 4.390 28.175 0.646 0.918 0.55973
140.0 0.04025 0.82993 0.15422 0.45783 3.310 29.699 0.477 0.923 0.55839
127.9 (-) 0.83699 (-) 0.40000 (-) (-) 0.377 0.926 (-)
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θ = M1/M2 is the ratio of molecular weight. The cell-volume densities ρ̄i,l, ρ̄i,v,
i = 1, 2 are given in Table 2 under the given pressures. Eq. (34) is used to
make sure the desired overall composition z1 is obtained with the initial cell-
volume density distribution. The parameters in the LB simulations are still
scaled from the physical scaling with a1 = 2/49, b1 = 2/21, M1 = 1, and
R = 1. Then the values of a2, b2, M2 are defined accordingly. This setup is
also adopted in all later validation test cases. The relaxation time τ is set to
0.8. The equilibrium distributions and the forcing term in LBE are defined
by the corresponding expression in Eq. (2). At the steady state, the resulting
density and composition distribution are presented in Fig. 5. Here we compare
the results from four different realizations, 1) the proposed MCMP PP model
with the total Shan-Chen force defined by Eq. (9), 2) the proposed MCMP PP
model with the Shan-Chen force defined by Eq. (30) with β = 1.945, 3) Gong et
al.’s MCMP PP model [25] with the total Shan-Chen force defined by Eq. (9),
and 4) Gong et al.’s MCMP PP model with the Shan-Chen force defined by
Eq. (30) with β = 1.945. It is worth emphasizing that for Gong et al.’s force
split factor to be calculated, the two pressures under the square root in Eq. (13)
must be swapped to make the whole term positive.

As shown in Figure 5, with Gong et al.’s force split factor, the predicted
molar composition distribution is quantitatively and qualitatively incorrect as
the light component C3 has higher molar fraction in the liquid phase compared
to the vapor phase. On the contrary, the proposed force split factor always en-
sures that the light component would have a higher molar fraction in the vapor
phase. When the total Shan-Chen force is calculated as its original definition in
Eq. (9), certain thermodynamic inconsistency is still observed. This remaining
thermodynamic inconsistency can be further suppressed via the modified def-
inition of the Shan-Chen force in Eq. (30) with a proper choice of the tuning
parameter β = 1.945. It should be noted that this optimal value of β is specif-
ically obtained with Guo et al.’s [21] forcing scheme in LBM. It may change if
another forcing scheme is adopted.

Next, the resulting phase density and the molar composition in each phase
under different pressures for the 40% C3 and 60% nC5 mixture at T = Tc,C3

are
compared with the corresponding physical value in Figure 6. These simulations
are conducted with the identical setting as before expect that the computational
domain is extended to nx×ny = 1600× 2 to create a larger region of the liquid
phase under small pressures. The total Shan-Chen forces in all these simulations
are again defined with Eq. (30) with β = 1.945. It can be clearly seen that the
LB simulation results match quite well with the benchmark results satisfying
the iso-fugacity rule. The maximum relative error for the molar composition
is 4.0% and the maximum relative error for the phase density is 2.1%. This
comparison indicates that the present MCMP PP LB model is able to honor
the thermodynamics of MC hydrocarbon mixtures.

This validation case is further utilized to conduct a spatial convergence study
on the simulation results of phase density. For this 40% C3 and 60% nC5 mixture
at T = Tc,C3

, we simulate the same flat interface case with different mesh sizes
from nx = 200 to nx = 3200, again at two selected pressures p = 200 and 240
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(a) (b)

(c) (d)

Figure 5: Density and molar distribution of a 40% propane and 60% pentane mixture at
T = Tc,C3 under two pressures p = 200 psia and 240 psia. Subfigures: top row: p = 200
psia; bottom row: p = 240 psia; left column: phase density distribution; right column: molar
composition distribution. The corresponding results satisfying thermodynamic consistency
are represented by the horizontal thin solid lines in each subfigure.

21



(a) (b)

Figure 6: Comparisons of the (a) phase density, and (b) molar composition between the LB
simulation with the physical values satisfying the iso-fugacity rule.

psia. The relative errors of phase densities compared to the results with the
highest grid resolution, i.e., | (ρnx − ρ3200) /ρ3200| are plotted in Figure. 7. The
spatial accuracy of the phase density has a slight dependency on the specific
thermodynamic conditions chosen for the simulation, but being roughly first-
order.

4.3. Two-component, two-phase hydrocarbon mixture separated by curved inter-
faces

We now move to more general cases with curved interface. The third valida-
tion test is a stationary droplet suspending in the vapor phase. Here we mainly
validate the case against the Laplace’s law, which for a two-dimensional droplet
states ∆p = σ/R, where ∆p = pl − pv is the pressure difference between the
liquid droplet and its vapor environment, σ is the surface tension, and R is the
radius of the liquid droplet. For a given two-phase system of multi-component
hydrocarbon fluids at thermodynamic equilibrium, the surface tension should
remain a constant, which does not change with the radius of the droplet. Ac-
cording to the Laplace law, this would require the pressure difference ∆p to
decrease inverse proportionally as the droplet radius increases.

The simulations are conducted in different sizes of periodic computational
domains to accommodate different size of droplet. The size of the computational
domain varies from nx×ny = 50×50 to 800×800, and for each size, the droplet
has an initial radius of R0 = nx/5 and locates at the center of domain. The
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Figure 7: Errors of phase densities in the case of a two-component, two-phase hydrocarbon
fluid as functions of grid size. The two thin straight lines are the reference lines for the first
and second-order convergence rate.

initial distribution of the cell-volume density is set to

ρ̄i (x, y, t = 0) =
ρ̄i,l + ρ̄i,v

2
+
ρ̄i,l − ρ̄i,v

2
tanh

2

(√
(x− xc)2

+ (y − yc)2 −R0

)
W

,
(35)

where the ρ̄i,l and ρ̄i,v, i = 1, 2 are chosen from Table 2 for p = 200 and 240
psia, (xc, yc) is the center location of the droplet, and the initial width of the
interface W is set to 4. For this case with curved interface, β in Eq. (30) is
slightly adjust to 1.915 from its optimal value 1.945 in the flat interface case to
ensure thermodynamic consistency. The relaxation time τ = 0.8 is still applied
in the simulations.

At the steady state, the radii of droplet, which are measured by the location
of 0.5(ρl + ρv) in each case, and the pressure differences are recorded. The
relationships between the reciprocal of the droplet radius and pressure difference
across the two-phase interface are presented in Figure 8 for the two selected
settings. It is clear that the pressure difference does proportionally increase with
reciprocal of the droplet radius, which confirms the Laplace’s law. The slope of
the increase in each case, is the surface tension in the lattice unit generated by
the proposed MCMP PP LB model for the chosen two-component, two-phase
system under different saturated pressures, and they are 0.1289 at p = 200 psia
and 0.1112 at p = 240 psia. Using the results from different domain sizes, we
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Figure 8: The validation of the Laplace’s law with the proposed MCMP PP LB model.

perform a spatial convergence study for the generated surface tension σ. The
relative errors are computed by comparing with the surface tension generated
from the highest grid resolution nx = ny = 800. As shown in Figure 9, the
surface tension generated from the proposed MCMP PP LB model is roughly
second-order accurate in space.

At last, the dynamic performance of the proposed MCMP PP LB model
is examined. Here we adopt the case of elliptical droplet oscillation under its
surface tension force. This test case was widely performance in the past to
validate the dynamic performance of SCMP PP LB models [36, 37, 38]. The
elliptical droplet is created by having an initial cell-volume density distribution
as

ρ̄i (x, y, t = 0) =
ρ̄i,l + ρ̄i,v

2
+
ρ̄i,l − ρ̄i,v

2
tanh

2

(√
(x− xc)2

+ (y − yc)2
/h2 −R0

)
W

,
(36)

where h 6= 1 and in this test, it is set to 0.9.
The simulation is again conducted with different grid sizes. The grid size

varies from nx = ny = 200 to nx = ny = 800, and the initial major axis of
the initial elliptical droplet changes accordingly as R0 = 0.15nx. To reduce
the effect of the environmental fluids around the droplet, for the C3 and nC5

hydrocarbon mixture, we reduce the prevailing temperature to T = 580◦R, and
lower the saturated pressure to p = 70 psia, which creates an enhanced phase
density ratio about 58. Under this thermodynamic condition, the optimal value
of β to ensure thermodynamic consistency in the droplet case changes to 1.815.
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Figure 9: The spatial convergence rate of the predicted surface tension through Laplace’s law.
The two thin straight lines are the reference lines for the first and second-order convergence
rate.

In Figure 10, the evolution of the major and minor axis with lattice time is
presented for the case with nx = ny = 400. It is clear that the elliptical droplet
keeps oscillating from its equilibrium circular shape. The reducing amplitude
of the oscillation is due to the viscous dissipation. For the oscillation motion to
persist longer, the kinematic viscosity of the fluid has been reduce to a relatively
small value ν = 0.03. This leads to a relaxation time τ = 0.59 in the simulations.

For this case, we mainly compare the oscillation period, which has a classic
theoretical solution [39]

Ta = 2π

[
n
(
n2 − 1

)
σ

ρlR3
e

]
(37)

where n = 2 is the mode for initial elliptical droplet shape, Re is the equi-
librium radius of the droplet, which is computed as Re =

√
RmaxRmin, with

Rmax = R0 and Rmin = R0h. With different grid resolutions, the resulting os-
cillation periods are compared with the theoretical values, and this comparison
is tabulated in Table 3. The differences between the numerical and theoretical
results mainly come from two sources, the existence of a vapor phase around the
droplet, which is neglected in the derivation of Eq. (37), and the finite interface
thickness. With the proposed MCMP PP LB model, the thickness of diffused
interface remains constant in lattice length under a given thermodynamic con-
dition. Therefore, when the grid size is expanded, the region of the interface
would occupy a smaller section of physical domain, which leads to more accurate
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Figure 10: The major and minor axes of the oscillating elliptical droplet as functions of lattice
time.

Table 3: Comparison between theoretical and numerical periods of oscillating elliptical droplet.

Ta nx = 200 nx = 300 nx = 400 nx = 600 nx = 800

Theory (Eq. (37)) 2129 4011 6165 11310 17403
Proposed model 2407 4308 6548 11861 18112

Error 9.86% 7.40% 6.21% 4.87% 4.08%

prediction of the oscillation period. This is confirmed by the reducing relative
errors with larger grid sizes in Table 3.

5. Concluding and remarks

In this work, we pointed out the thermodynamic inconsistencies found in
MCMP PP LB models used for immiscible fluids and the potential pitfalls in-
volved in applying those models to predict phase behavior of miscible fluids, such
as hydrocarbon mixtures. In order to be consistent with MC thermodynamics,
thermodynamic information must be incorporated to LB models based on phase
information, rather than for individual components. Following this philosophy,
a MCMP PP LB model that can predict the phase behavior of hydrocarbon
mixtures should be designed via defining the Shan-Chen force for the whole
phase with a thermodynamically meaningful MC EOS, and then non-uniformly
distributing this total force to each component via a properly designed force
split factor associated with the volatility of the component. The only prior
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attempt of force splitting in a MCMP PP LB model was proposed by Gong
et al. [25]. However, in Gong et al.’s pioneer study, the force split factor was
designed empirically through trial and error with no clear physical justification.
In this study, we derived a mathematical expression for the force split factor
that is consistent with how the total Shan-Chen force was defined in MCMP PP
LB model. This force split factor allows the MCMP PP LB model to reproduce
phase densities and molar composition consistent with MC thermodynamics,
which is controlled by the iso-fugacity rule.

We validated the proposed model using four cases, a limiting case of two com-
ponents being identical water, three cases of hydrocarbon mixtures of propane
and pentane. In the limiting case, we showed that the MCMP PP LB mod-
els designed for immiscible components failed to reproduce the phase behavior
of pure water, which confirmed their thermodynamic inconsistency. With the
case of realistic hydrocarbon mixtures, we demonstrated that Gong et al.’s force
split factor could not predict the correct molar composition in both phases. The
present MCMP PP LB model, on the other hand, ensured that the resulting
phase densities and molar fractions were qualitatively consistent with equilib-
rium thermodynamics. Full thermodynamic consistency, however, also relied on
the use of Kupershtokh et al. [31]’s definition with a properly tuned parame-
ter β to compute the total Shan-Chen force. To complete the validation, we
also provided benchmark tests in cases with more general curved interface. It
had been shown that the proposed MCMP could confirm the Laplace’s law and
correctly predict the oscillation period of an elliptical droplet under the surface
tension force.
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