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A B S T R A C T

In this paper, a ghost structure (GS) finite di↵erence method is proposed to
simulate the fractional FitzHugh-Nagumo (FHN) monodomain model on a
moving irregular computational domain. In the GS formulation the moving
irregular domain is converted into a fixed regular domain (called ghost struc-
ture), and the transmembrane potential is described in the Eulerian coordi-
nates, while the membrane dynamics are described in the Lagrangian coordi-
nates. The transformation between the Lagrangian variables and the Eulerian
variables is achieved by an integral transformation which involves a delta func-
tion. The GS formulation allows to compute the transmembrane potential in
a fixed regular domain using the finite di↵erence method on a Cartesian grid,
which has a huge advantage for approximating domain-dependent fractional
derivatives. To overcome the di�culty caused by running time-consuming
loops to compute the transformation between the Eulerian and Lagrangian
variables, two fast algorithms are proposed to compute the transformation.
Extensive numerical tests are provided to demonstrate the e↵ectiveness and
robustness of the proposed GS finite di↵erence method for solving the frac-
tional FHN monodomain model. We first numerically study the transmem-
brane potential propagation in both healthy hearts and hearts with arrhythmia
by simulating the model in the transverse of a ventricle. We then study the
transmembrane potential propagation during the pumping process, which re-
quires to simulate the model in the moving longitudinal section of a ventricle.
Our numerical results show that the change of spatial derivatives can a↵ect the
propagation velocity and the width of the transmembrane potential wave, and
for a heart with arrhythmia, the transmembrane potential begins to enter cycli-
cally the region where cardiomyocytes have been excited and then stimulates
cardiomyocytes to contract again.

c� 2020 Elsevier Inc. All rights reserved.
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1. Introduction

A heart can be thought of as a rhythmic pump that maintains blood circulation throughout the body[1]. The
rhythmic beating of the heart is the result of the regular spread of action potential (AP) in the heart. Abnormal
conduction of AP in the heart can cause arrhythmias. Sudden cardiac death accounts for 15% of global fatalities,
and about 80% of sudden cardiac deaths is caused by ventricular arrhythmias [2]. Thus, studying and understanding
the mechanism of arrhythmia becomes crucial for preventing and curing cardiac deaths and diseases. Numerical
simulations of electrical activity have become a powerful tool for understanding and studying the mechanism of
arrhythmia and cardiac electrophysiology [3, 4, 5], because numerical simulations can be done to examine extreme
situations that are di�cult and/or expensive to achieve by experiments.

As the cardiac tissue is composed of cardiomyocytes, consequently, the electrophysiological modeling of car-
diomyocytes is the most basic study of heart research, in which the excitatory di↵usion in the cardiomyocytes is often
sought-after. The best known such a model is the widely used unicellular monodomain electrophysiological model
proposed by FitzHugh and Nagumo [6] which has been used to describe the potential propagation in heterogeneous
heart tissues [7, 8]. The spatial complexity of a medium is expected to alter the laws of standard di↵usion [9, 10], but
it is still unclear to what extent the electrical propagation is influenced by the heterogeneity of the heart tissue [11].
Most heart models treat the tissue as continuum media with spatially averaged properties and neglect the contribution
of its microstructure in modulating electrical conduction. While many mechanical characteristics have been obtained
by using those traditional models, their limitations in characterizing tissue structures have already been noticed [12].
Improved models must be developed in order to overcome these limitations. One idea is to replace the classical
FitzHugh and Nagumo (FHN) model by a fractional FHN model (see Section 2) to describe the complex material
properties of cardiomyocytes and to simulate the AP propagation in a heart. Indeed, Feng et al. [13] and Yang et al.
[14] developed some finite element methods for the fractional FHN model, and the latter work focused on solving
the involved nonlinear reaction-di↵usion equation in irregular domains. Liu et al. [15] proposed a new fractional
finite volume method for fractional di↵usion equations and applied it to the fractional FHN model. Cai et al. [16]
developed a modified nonstandard finite di↵erence method for the two-dimensional Riesz space fractional reaction-
di↵usion equations, and established the stability and convergence for the proposed scheme. It should be noted that
all these works only considered the fractional models in a fixed domain, their results do not apply when the physical
domain varies in time (called a moving domain), which is the case for heart simulation.

We also note that fractional calculus and fractional di↵erential models have gained a lot attention and popularity
in the past fifteen years (cf. [17] and the references therein). Compared with the integer-order di↵erential equations,
fractional di↵erential equations can more e↵ectively describe the memory e↵ect, heredity, and non-locality involved
in complex environments [17, 18]. As a result, they have been widely used in many scientific fields, such as bioengi-
neering [19], pharmacokinetics [20], electrical conduction system [21], and image processing [22], just name a few.
As in the integer-order case, most nonlinear fractional di↵erential equations are not solvable by analytical methods,
hence, numerical methods, including the finite di↵erence method [23, 24], the finite element method [25, 26], the
spectral method [27] and the finite volume method [28], must be employed to solve them. In addition, high-order
numerical methods were also developed for fractional di↵erential equations. Jiang et al. [29] introduced high-order
finite element methods for solving a class of time fractional partial di↵erential equations, and established the optimal
rate of convergence for the proposed method. Ren et al. [30] proposed a fourth-order compact scheme for solving the
time fractional di↵usion-wave equation with Neumann boundary conditions, and proved the unconditional stability
and the global convergence of the compact di↵erence scheme. However, all these existing methods only can solve the
fractional di↵erential equations in regular rectangular domains, they could not be easily extended irregular and moving
domains, because the definitions of fractional derivatives are strongly domain-dependent and dimension-dependent.

The goal of this paper is to develop a ghost structure (GS) finite di↵erence method for solving the fractional
FitzHugh-Nagumo (FHN) monodomain model on a moving irregular computational domain. In the GS formulation,
the moving irregular domain is converted into a fixed regular domain (called ghost structure), and the transmembrane

⇤Corresponding author:
e-mail: caili@nwpu.edu.cn (Li Cai), xfeng@math.utk.edu (Xiaobing Feng)
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potential is described in the Eulerian coordinates, while the membrane dynamics are described in the Lagrangian co-
ordinates. The transformation between the Lagrangian variables and the Eulerian variables is achieved by an integral
transformation which involves a delta function, fast algorithms ought be used to e�ciently compute this transforma-
tion. The GS formulation allows to compute the transmembrane potential in the fixed regular ghost structure using
the finite di↵erence method on a Cartesian grid, which has a huge advantage for approximating domain-dependent
fractional derivatives. The proposed GS finite di↵erence method can simulate the fractional monodomain model in
the moving deformed structure similar to the immersed boundary method [31, 32, 33] does for the fluid-solid coupling
problems.

The remainder of this paper is organized as follows. In Section 2, we introduce the preliminaries and the fractional
FHN monodomain model to be solved in this paper. In Section 3, we present the ghost structure formulation for the
fractional FHN model. In Section 4, we first introduce our space and time finite di↵erence discretization of the
GS formulation, we then propose two fast algorithms for computing the integral transformation involving the delta
function. In Section 5, we present several numerical experiments to verify the e↵ectiveness and robustness of the
proposed GS finite di↵erence method and provide the numerical results of the transmembrane potential propagation
in the stationary transverse section of a ventricle. In the meantime, in order to verify the e↵ectiveness of the GS
method for handling moving domains, we also provide a numerical test which simulates the transmembrane potential
propagation in the moving longitudinal section of a ventricle. Finally, the paper is concluded with some concluding
remarks and discussions given in Section 6.

2. The fractional FitzHugh-Nagumo monodomain model

Before introducing the fractional FitzHugh-Nagumo (FHN) monodomain, we first recall that the classical integer-
order (dimensionless) FHN monodomain model has the following form (cf. [34, 35]):

@eu
@t
= r · (eKreu) + Iion(eu,ev) in ⌦s(t) ⇥ (0,T ), (1a)

@ev
@t
= g(eu,ev) in ⌦s(t) ⇥ (0,T ), (1b)

where eu and ev are two scalar-valued functions which denote, respectively, the Lagrangian transmembrane potential
and recovery variable, Iion is a known function of eu and ev which describes the ionic current through a number of
di↵erent types of ion channels. eK denotes the Lagrangian di↵usion coe�cient. g is a nonlinear function of eu and ev
that relates the ionic flux to the total ionic current. X = (X,Y) 2 ⌦s(0) stands for Lagrangian (material) coordinates.
The mapping �(X, t) = (Xt,Yt) provides the physical position of each Lagrangian point X at time t. Therefore, the
physical region occupied by myocardium at time t is given by⌦s(t) = �(⌦s(0), t), which is a moving domain. Figure 1
depicts such an example. The segments of the whole boundary �⌦s

(t) of the moving domain ⌦s(t) can be described
as follows:

eBa (Yt) = min{Xt : (Xt, ⌘) 2 ⌦s(t), ⌘ = Yt},
eBb (Yt) = max{Xt : (Xt, ⌘) 2 ⌦s(t), ⌘ = Yt},
eBc (Xt) = min{Yt : (⇠,Yt) 2 ⌦s(t), ⇠ = Xt},
eBd (Xt) = max{Yt : (⇠,Yt) 2 ⌦s(t), ⇠ = Xt},

where eBa(Yt) and eBb(Yt) represent, respectively, the left and right portion of �⌦s
(t), and eBc(Xt) and eBd(Xt) are the

lower and upper portion of �⌦s
(t).

The 2D fractional FHN monodomain model considered in this paper is given by

@eu
@t

:= eKX

@↵eu
@ |Xt |↵

+ eKY

@�eu
@ |Yt |�

+ Iion(eu,ev) in ⌦s(t) ⇥ (0,T ), (2a)

@ev
@t

:= g(eu,ev) in ⌦s(t) ⇥ (0,T ), (2b)
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(a) (b)

Fig. 1. Sketch of the physical region ⌦s(t).

which can be obtained simply by replacing the integer-order di↵usion term r·(eKreu) by an anisotropic Riesz fractional
di↵usion, namely, the sum of the first two terms on the right-hand side of (2a), where the two 1D Riesz fractional
derivatives are defined as follows for 1 < ↵, � < 2:

@↵eu
@ |Xt |↵

:= �C↵

✓
eBa(Yt)D

↵
Xt
eu + Xt

D
↵
eBb(Yt)

eu
◆
, (3a)

@�eu
@ |Yt |�

:= �C�

✓
eBc(Xt)D

�
Yt

eu + Yt
D
�
eBd(Xt)

eu
◆
, (3b)

and the definitions of involved fractional Riemann-Liouville derivatives are given by

eBa(Yt)D
↵
Xt
eu :=

1
� (2 � ↵)

@2eu
@X2

t

Z
Xt

eBa(Yt)

eu (⇠,Yt, t)
(Xt � ⇠)↵�1 d⇠, (4a)

Xt
D
↵
eBb(Yt)

eu :=
1

� (2 � ↵)
@2eu
@X2

t

Z eBb(Yt)

Xt

eu (⇠,Yt, t)
(⇠ � Xt)↵�1 d⇠. (4b)

eBc(Xt)D
�
Yt

eu :=
1

� (2 � �)
@2eu
@Y2

t

Z
Yt

eBc(Xt)

eu (Xt, ⌘, t)
(Yt � ⌘)��1 d⌘, (4c)

Yt
D
�
eBd(Xt)

eu :=
1

� (2 � �)
@2eu
@Y2

t

Z eBd(Xt)

Yt

eu (Xt, ⌘, t)
(⌘ � Yt)��1 d⌘, (4d)

C↵ :=
1

2 cos
⇣
⇡↵
2

⌘ , C� :=
1

2 cos
⇣
⇡�
2

⌘ . (4e)

Moreover, eKX and eKY are two positive constants and they represent the x- and y-components of Lagrangian di↵usion
matrix eK = diag{eKX , eKY }.

The following initial conditions are prescribed for system (2):

eu(X, 0) = eu0(X, 0) 8X 2 ⌦s(0), (5a)
ev(X, 0) =ev0(X, 0) 8X 2 ⌦s(0), (5b)

which specify the values of the Lagrangian transmembrane potential and recovery variable at the initial time t = 0.
Finally, to close system (2), we also need to impose some boundary condition for eu. To the end, we divide

the whole boundary �⌦s
(t) of the structure ⌦s(t) into the Dirichlet part �D(t) and the Neumann part �N(t), hence,

�⌦s
(t) = �D(t) [ �N(t). Let n denote the outward normal to �⌦s

(t). We then impose the following mixed boundary
condition on eu:

eu(X, t) = g1(X, t) 8�(X, t) 2 �D(t), t 2 (0,T ), (6a)
@eu(X, t)
@n

= g2(X, t) 8�(X, t) 2 �N(t), t 2 (0,T ), (6b)

where g1 and g2 are two given scaler-valued functions which are defined on �D(t) and �N(t), respectively.
To sum up, the initial-boundary value problem, which defines the fractional FitzHugh-Nagumo monodomain

model and will be solved in this paper, consists of equations (2), (5) and (6).
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From (4), we see that the Riemann-Liouville derivatives are domain-dependent, since the physical domain ⌦s(t)
is irregular and also changes in time, this makes the limits of the integrals in (4) also change in time. As a result,
numerical discretizations of the Riesz fractional derivatives in 2D on such an irregular moving domain is not only
complicated and expensive but also challenging. In the next section, we shall propose a ghost structure reformula-
tion of the above monodomain model so that the computational domain will be a fixed rectangle, consequently, the
Riesz fractional derivatives become cleanly defined with fixed limits in the integrals, which in turn can be e�ciently
discretized.

3. Formulation of the ghost structure method

The original ghost structure (GS) method was proposed in [8] for solving the monodomain equation and simulate
the action potential(AP) propagation in a heart. In the GS formulation, the membrane dynamics, including the ion
concentration and stimulation current density, are described using the Lagrangian coordinates, while the transmem-
brane potential is described using the Eulerian coordinates. The interchange between the Lagrangian variables and
the Eulerian variables is achieved by an integral transformation which involves a delta function. As a result, the GS
method can handle e↵ectively the AP propagation problem in a complexly deformed heterogeneous structure such as
a heart by the finite di↵erent method.

The goal of this section is to extend the GS method for the integer-order FHN monodomain model to the fractional
FHN monodomain model. Specifically, we shall derive a GS formulation for the fractional FHN monodomain model
(2), (5), (6). As expected, the complexity and non-locality of fractional operators will cause some di�culties in de-
riving its GS reformulation. On the other hand, since the GS formulation employs a fixed rectangular computational
domain, it significantly simplifies the definition and computation of the fractional derivatives appear in the model be-
cause there is no need to deal with variable limits in the Riemann-Liouvlle fractional derivatives given in (2a). Hence,
the GS formulation has a clear advantage to handle fractional di↵erential equations in two or higher dimensions.

3.1. Computational domain and ghost region extension

The first step in the GS formulation is to choose a computational domain, usually a rectangular domain, which
strictly contains the structure over the whole computational time interval 0 < t  T . The complement of the structure
region in the computational domain is called the ghost region, and the interface between the structure region and the
ghost region is the boundary of the structure. Then the next step is to give an appropriate extension of the materials
properties of the structure and functions defined on it into the boundary and ghost region, which will be done using a
delta function technique.

Figure 2(a) shows the whole computational domain denoted by D = [Ba, Bb] ⇥ [Bc, Bd], where x = Ba and x = Bb

describe, respectively, the left and right edges of D, and y = Bc and y = Bd represent, respectively, the bottom and
top edges of D. Next, we introduce a marking function e�(X, t) : ⌦s (0) ! [0, 1] such that e�(X) = 1 whenever
�(X, t) 2 ⌦s(t). By the definition of the delta function �, we get

�(x, t) =
Z

⌦s(t)
e�(X, t)�

�
x � � (X, t)

�
dX 8x 2 D. (7)

where {x 2 D; �(x, t) = 1} represents the structure region ⌦s(t), {x 2 D; 0 < �(x, t) < 1} indicates the boundary �⌦s
(t),

and {x 2 D; �(x, t) = 0} represents the ghost region. Set ⌦ex(t) := D �⌦s(t) [ �⌦s
(t).

(a)
(b)

Fig. 2. (a) shows the sketch of the computational domain for the GS method; (b) shows the sketch of the fast algorithm.
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In this paper, we assume that each part of the regions consists of a uniformly distributed propagation medium and
use Ks and Kboun to denote the Eulerian di↵usion coe�cients in ⌦s(t) and on �⌦s

(t), respectively. Then, the global
Eulerian di↵usion coe�cient K (x) in D can be expressed as

K (x) = � (x, t) Ks + (1 � � (x, t)) Kboun 8x 2 D. (8)

Since the Eulerian transmembrane potential u and Eulerian recovery variable v are defined in the whole compu-
tational domain D in the Eulerian coordinates and their counterparts eu and ev in the Lagrangian coordinates are only
defined in the structure region ⌦s(t), we need to have some e�cient conversion formulas for computing u and v from
eu and ev. Below we present a strategy for achieving this goal using the boundary values of eu and ev on �⌦s

(t). We shall
use u as an example to describe the detailed extension procedure.

For any x 2 ⌦ex(t) [ �⌦s
(t), we first determine the Lagrangian point X on the boundary �⌦s

which is closest to x

and set
Xmin =

n
X 2 �⌦s(t); ||�(X, t) � x||2 is minimized

o
.

If there are m boundary points in Xmin, say, Xmin = {X1,X2, · · · ,Xm}, we define the approximate transmembrane
potential at x to be the average value of eu over Xmin, denoted by

uave(x) =
1
m

mX

p=1

eu|�⌦s
(t)(Xp).

The extension of the Eulerian variable in the ghost region can be obtained by using uave(x). To ensure the continuity
of the variable in the computational domain D after being extended to the ghost domain, the variable in the boundary
domain �⌦s

(t) should be modified by using �(x, t) and uave(x).
Then we have

u (x, t) :=

8>>>>><
>>>>>:

u (x, t) if x 2 ⌦s(t), t 2 (0,T ),
� (x, t) u (x, t) + (1 � � (x, t)) uave(x) if x 2 �⌦s

(t), t 2 (0,T ),
uave(x) if x 2 ⌦ex(t), t 2 (0,T ).

(9)

On the boundary �GD(t) of the regular ghost computational domain D, we impose the following (artificial) homo-
geneous Dirichlet boundary condition:

u(x, t) = 0 8x 2 �GD(t), t 2 (0,T ). (10)

We also need to extend the definitions of the Riesz and Riemann-Louville fractional derivatives to the computa-
tional domain D, which can be done easily by changing the limits of the integrations in the previous definitions (4).
Then, the new Riesz and Riemann-Louville fractional derivatives @

↵
u

@|x|↵ and @�u
@|y|� are defined as follows:

@↵u

@ |x|↵ = �C↵

⇣
Ba

D
↵
x
u +x D

↵
Bb

u

⌘
, (11a)

@�u

@ |y|�
= �C�

⇣
Bc

D
�
yu +y D

�
Bd

u

⌘
, (11b)

where for 1 < ↵, � < 2

Ba
D
↵
x
u :=

1
� (2 � ↵)

@2
u

@x2

Z
x

Ba

u (⇠, y, t)
(x � ⇠)↵�1 d⇠, (12a)

xD
↵
Bb

u :=
1

� (2 � ↵)
@2

u

@x2

Z
Bb

x

u (⇠, y, t)
(⇠ � x)↵�1 d⇠. (12b)

Bc
D
�
yu :=

1
� (2 � �)

@2
u

@y2

Z
y

Bc

u (x, ⌘, t)
(y � ⌘)��1 d⌘, (12c)

yD
�
Bd

u :=
1

� (2 � �)
@2

u

@y2

Z
Bd

y

u (x, ⌘, t)
(⌘ � y)��1 d⌘, (12d)

C↵ :=
1

2 cos
⇣
⇡↵
2

⌘ , C� :=
1

2 cos
⇣
⇡�
2

⌘ . (12e)
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Thus, the coe�cients of the partial di↵erential equation with the spacial fractional operators can be easily obtained
without considering the complicated geometry of the real moving structure.

3.2. The governing equations of the ghost structure method

Summing up the above setup, we have transformed the original fractional moving boundary monodomain model
into a fractional PDE problem with variable coe�cients on a fixed domain. Specifically, the governing equations of
the GS method for our fractional monodomain model is given as follows:

@u

@t
= Kx(x)

@↵u

@ |x|↵ + Ky(x)
@�u

@ |y|�
+ Iion(u, v) in D ⇥ (0,T ), (13a)

eu(X, t) =
Z

D

u(x, t)�
�
x � � (X, t)

�
dx in ⌦s(t) ⇥ (0,T ), (13b)

@ev(X, t)
@t

= g (eu (X, t) ,ev (X, t)) in ⌦s(t) ⇥ (0,T ), (13c)

v(x, t) =
Z

⌦s(t)
ev(X, t)�

�
x � � (X, t)

�
dX in D ⇥ (0,T ). (13d)

In the above system, the Eulerian transmembrane potential u and Eulerian recovery variable v are described in the Eu-
lerian coordinates; while the Lagrangian transmembrane potential eu and Lagrangian recovery variableev are described
in the Lagrangian coordinates. ⌦s(t) represents the moving structure which is immersed in the larger computational
domain D. The above system is also subject to the initial condition (5) and the boundary condition (10) as well as the
internal (interface) condition (6), which then gives a complete fractional order initial-boundary value problem. During
diastolic filling and systolic contraction, heart is subjected to large deformation. The fractional FitzHugh-Nagumo
monodomain model does not include an equation used to update the coordinates of the Lagrange points. In this pa-
per, the deformation and the displacement of heart are obtained by using the nuclear magnetic resonance images. In
the future, we intend to determine the deformation and the displacement of heart by simulating the fluid-structure
coupling system. The procedure of solving the fractional FHN monodomain model will be introduced in Section 4.

4. Numerical method

Since the Eulerian transmembrane potential u and Eulerian recovery variable v are described in the Eulerian coor-
dinates, it is natural to compute them on a fixed regular Cartesian grid. On the other hand, the transmembrane potential
eu and recovery variable ev are described in the Lagrangian coordinates, they must be computed at the corresponding
Lagrangian points. The transformation between the Eulerian and Lagrangian coordinates is done by an integral trans-
formation which involves a delta function as given in (13b) and (13d). Moreover, since the initial conditions are given
for the transmembrane potential eu and recovery variableev at the Lagrangian points in the structure, it is necessary first
to generate the initial values for the transmembrane potential u and recovery variable v at the Eulerian points in the
whole computational domain D using the transformation formula (13d), which then allows us to solve the fractional
FHN monodomain model in the whole computational domain D.

One of the main advantages of the GS method is its ability to e↵ectively handle problems with complex boundaries
using equations (13b) and (13d) which involve a delta function. This advantage becomes even more significant for
solving fractional FHN monodomain model because it allows us to avoid evaluating complicated domain-dependent
fractional partial derivatives.

Below we propose the following algorithm/procedure to solve the fractional FHN monodomain model: first, we
use a combined implicit-explicit Euler scheme and third order total variation diminishing (TVD) Runge-Kutta scheme
for the time discretization; second, at each time step, we use the finite di↵erence method for the spatial discretization
to compute the Eulerian transmembrane potential u(x, t) by solving equation (13a) and to convert u(x, t) into the
Lagrangian transmembrane potential by equation (13b); finally, we calculate the Lagrangian recovery variable by
equation (13c), and then convertev(X, t) into the Eulerian recovery variable by equation (13d) for updating the Eulerian
transmembrane potential at the next time step. For the moving structure, before updating the Eulerian transmembrane
potential at the next step, we also need to use eu(X, t) to reassign the u(x, t) in the same way as ev(X, t) does.



8 Yongheng Wang et al. / Journal of Computational Physics (2020)

4.1. Time discretization

Various time-stepping schemes, such as explicit scheme, implicit schemes, implicit-explicit schemes etc. can be
used for the time discretization. Explicit schemes are easy to implement but require stringent mesh conditions in order
to ensure the stability of the numerical schemes. On the other hand, implicit schemes allow the use of large mesh sizes
but require to solve nonlinear algebraic systems at each time step, which is expensive especially for the large-scale
nonlinear problems. In this paper, we take the middle road by using the implicit-explicit schemes, in which the linear
terms are treated implicitly and the nonlinear terms explicitly in time. Thus, only linear systems are solved at each
time step under some mild mesh conditions. Let {tn}Nn=1 be a uniform partition of [0,T ] with time step size �t 2 (0, 1),
where N is a positive integer, hence, �t := T/N. We propose the following implicit-explicit Euler time-stepping
scheme for the nonlinear equation (13a): for n = 1, 2, · · · ,N,

u
n � �t

"
Kx(x)

@↵un

@ |x|↵ + Ky(x)
@�un

@ |y|�
#
= �t Iion(un�1, vn�1) + u

n�1 in D. (14)

It is easy to verify that the truncation error of the above implicit-explicit Euler scheme is of order O(�t), which is
consistent with the numerical results in Test 1.

In (13c), the function g is nonlinear in eu and ev that relates the ionic flux to the total ionic current. In order to
maintain the stability and accuracy, we discretize (13c) using the third-order TVD Runge-Kutta method (cf. [36])
although other schemes can also be employed. For n = 1, 2, · · · ,N, we define

evn�1,1 =evn�1 + �tg(eun,evn�1), (15a)

evn�1,2 =evn�1,1 +
�t

4

h
�3g(eun,evn�1) + g(eun,evn�1,1)

i
, (15b)

evn =evn�1,2 +
�t

12

h
�g(eun,evn�1) � g(eun,evn�1,1) + 8g(eun,evn�1,2)

i
. (15c)

The TVD Runge-Kutta method can maintain stability in the total variation seminorm, or any other seminorm or norm,
of the first order Euler forward method with the same spatial discretization[37]. The TVD Runge-Kutta method
mentioned above can achieve the third order accuracy, which is illustrated in [36, 37, 38].

4.2. Spatial discretization

To obtain fully discrete schemes, we also need to discretize (14) in space. To the end, let N1 and N2 be two
positive integers, and �x := Bb�Ba

N1
and �y := Bd�Bc

N2
be the mesh sizes in x- and y-direction, respectively. Define

xi, j := (Ba+ i�x, Bc+ j�y) for i = 0, 1, · · · ,N1 and j = 0, 1, · · · ,N2, which gives a Cartesian grid over D. As expected,
a key component of a space discretization for (14) is to design e�cient approximation formulas for computing the
Riesz fractional derivatives appear in the equation. Here we adopt the fractional central di↵erence scheme proposed in
[35, 39] to do the job. The spatial truncation error of the fractional central di↵erence scheme is proved in [39], which
is consistent with the results in the Test 1. Then, the Riesz fractional derivative can be discretized as the following
approximation formulas:

@↵u
⇣
xi, y j, tk

⌘

@ |x|↵ = � 1
�x↵

iX

p=�N1+i

g
↵
p
u

⇣
xi�p, y j, tk

⌘
+ O

⇣
�x

2
⌘
, (16)

@�u
⇣
xi, y j, tk

⌘

@ |y|�
= � 1

�y�

jX

p=�N2+ j

g
�
pu

⇣
xi, y j�p, tk

⌘
+ O

⇣
�y

2
⌘
, (17)

where the coe�cients g
↵
p

are defined by

g
↵
p
=

(�1)p � (↵ + 1)

�
⇣
↵
2 � p + 1

⌘
�

⇣
↵
2 + p + 1

⌘ , p = 0,±1,±2 · · ·

for which we have following facts.



Yongheng Wang et al. / Journal of Computational Physics (2020) 9

Lemma 1 ([34]). The coe�cients {g↵
p
}p=1p=�1 defined above satisfy

(1) g
↵
k
= g

↵
�k
 0 and g

↵
0 � 0; for all |k| > 0;

(2)
1X

p=�1
g
↵
p
= 0;

(3) for any two positive integers n and m, there holds

nX

p=�m+n

g
↵
p
> 0.

Applying the formulas (16)–(17) to (14) we obtain the following space-time discretization of equation (13a): for
n = 1, 2, · · · ,N,

u
n

i, j +
�tKx

�x↵

iX

p=�N1+i

g
↵
p
u

n

i�p, j +
�tKy

�y�

jX

p=�N2+ j

g
�
pu

n

i, j�p
(18)

= u
n�1
i, j + �t Iion

⇣
u

n�1
i, j , v

n�1
i, j

⌘
, i = 0, 1, · · · ,N1, j = 0, 1, · · ·N2,

which gives an N1N2 ⇥ N1N2 linear system for each n, and will be solved using the biconjugate gradient method [40]
in our numerical tests.

4.3. Computing Lagrangian-Eulerian interaction

4.3.1. Approximating the delta function

The discretization of equations (13b) and (13d) requires to approximate the delta function. To that end, we define
the following approximate 2D delta function:

�h(x) =  h(rx) h(ry); rx :=
x

�x
, ry :=

y

�y
, (19)

where

 h(r) =

8>>>>><
>>>>>:

1
2 (|r|2 � 1)(|r| � 2), |r|  1,
� 1

6 (|r| � 1)(|r| � 2)(|r| � 3), 1  |r|  2,
0, otherwise.

(20)

We note that the above �h(x) is a regularization of a delta function proposed in [41]. For all real number r, the
continuous function  h(r) defined above satisfies (cf. [41])

X

p=1,2,...

 h (r � p) = 1, (21a)

X

p=1,2,...

(r � p) h (r � p) = 0, (21b)

X

p=1,2,...

(r � p)2 h (r � p) = 0. (21c)

These formulas guarantee that constant, linear and quadratic functions can be interpolated exactly by �h (cf. [41]).
Moreover, they ensure that the discrete delta function �h has the second order accuracy (cf. [41, 42, 43]).

We shall use the integral transformation of the approximate delta function to define an approximate transformation
formula between Eulerian variables and Lagrangian variables. In general, the Lagrangian points must be finer than
the Eulerian points to avoid leaks [43]. In order to obtain accurate approximate values for the physical quantity and to
avoid overcrowding the Lagrange points, we employ an accurate Gaussian quadrature rule. To the end, we introduce
a quasi-uniform triangulation T n

h
= {⌧n

e
} of ⌦s(0) and let

n
X

n

l

oM

l=1
denote the nodes of T n

h
, which are regarded as

Lagrangian points. For the moving structure, the Eulerian coordinates of Lagrangian points
n
X

n

l

oM

l=1
change in time.
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Let {�n

l
(X)}M

l=1 be the continuous piecewise linear finite element basis functions associated with T n

h
. Then on each ⌧n

e

we choose the Gaussian quadrature points {Xn,e
q }N

n,e

q=1 with X
n,e
q 2 ⌧n

e
and denote the associated weights by {!n,e

q }N
n,e

q=1.
The value of a physical quantity/function at each Gaussian point can be obtained by the finite element interpolation
using the basis functions

n
�n

l
(X)

oM

l=1
and the nodal values of the function. We now use v as an example to demonstrate

the procedure, that is, the approximate value of v at an Eulerian point x 2 D is computed approximately by

v(x, tn) ⇡
X

⌧n
e2T n

h

N
n,eX

q=1

ev(Xn,e
q

)�h
�
x � �(Xn,e

q
, tn)

�
!n,e

q
, (22)

where ev(Xn,e
q ) is computed by the finite element interpolation as described above. Obviously, formula (22) provides a

discretization for equation (13d).
Similarly, using the discrete delta function and the composite trapezoidal quadrature rule on D, we can obtain an

approximate value of eu at each Gaussian quadrature point X
n,e
q and at tn as follows:

eu(Xn,e
q
, tn) ⇡

X

i, j

u(xi, j)�h(xi, j � �(Xn,e
q
, tn))�x�y, (23)

where {xi, j} are the Cartesian grid points introduced in Section 4.2. Formula (23) gives a discretization for equation
(13b).

Finally, in order to update the recovery variable at the next time step, we need to obtain the transmembrane
potential eu at the Lagrangian point, which can be obtained by using its approximate values at the Gaussian points
defined in (23) and an L

2-projection method based on the quasi-uniform triangulation T n

h
(cf. [31]).

In summary, our fully discrete numerical method for system (13a)-(13d) consists of (15), (18), (22), and (23).

4.3.2. Fast algorithms for computing the integral transformations of the delta function

In the GS formulation, the transformations between the Lagrangian variables and the Eulerian variables are
achieved by the integral transformation formulas (13b) and (13d) which involve a delta function. Since the trans-
formations require to evaluate the distance between the Lagrangian points and the Eulerian points, it is necessary to
run time-consuming loops to compute the transformation. Notice that the value of the approximate delta function is
0 when the distance between the Lagrangian point and the Eulerian point is greater than min{2�x, 2�y}. Recall that
�(X, t) = (Xt,Yt), define

i = floor
✓

Xt � Ba

�x

◆
, j = floor

 
Yt � Bc

�y

!
,

where floor(a) stands for the integer part of a. The a↵ected region of a Lagrangian point X is defined as the set/region
of the Eulerian points which can be a↵ected by the point X. As shown in Fig. 2(b), the a↵ected region can be
determined by extending two spatial steps in both positive and negative directions along the coordinate axes from the
Eulerian point xi, j. If the Eulerian points x is outside the region, then �(x � �(X)) = 0. Hence, the Lagrangian point
X is only influenced by the Eulerian points in the a↵ected region. In order to improve the computational e�ciency,
we adapt two fast algorithms for the integral transformations of the delta function. The key idea of the fast algorithms
is to determine the a↵ected region and only to compute the transformations in the a↵ected region. Algorithm 1 and 2
present the algorithmic process for solving (13b) and (13d) based on (22), and (23), respectively.

In Algorithm 1, we first determine the a↵ected region and then use the discrete scheme (23) to obtain the La-
grangian transmembrane potential in the a↵ected region. On the other hand, each Eulerian point xi, j could be influ-
enced by multiple Lagrangian points in case xi, j is located in the a↵ected regions of multiple Lagrangian points. In
Algorithm 2, we also first determine the a↵ected region of each Lagrangian point. Then, we obtain the converted value
of the Lagrangian recovered variable at each Eulerian point xi, j of the a↵ected region. Thus, the Eularian recovered
variable at xi, j can be obtained by sampling over all Lagrangian points and accumulating the converted values at each
Eulerian point xi, j. Since both Algorithm 1 and 2 only loop through Lagrangian points, their computational e�ciency
is very high.
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Algorithm 1 (converting the Euler variable into the Lagrangian variable)
Require: Eulerian and Lagrangian coordinates, the Eulerian transmembrane potential
Ensure: the Lagrangian transmembrane potential

1: for each element ⌧n

e
2 ⌦s(t) do

2: determine the a↵ected region
3: i = f loor( Xt�Ba

�x
)

4: j = f loor( Yt�Bc

�y
)

5: imin = i � 2, imax = i + 2
6: jmin = j � 2, jmax = j + 2
7: eu(Xn,e

q , t) =
P

i2[imin,imax], j2[ jmin, jmax] u(xi, j)�(xi, j � �(Xn,e
q , t))�x�y

8: end for

Algorithm 2 (converting the Lagrangian variable into the Euler variable)
Require: Eulerian and Lagrangian coordinates, the Lagrangian recovery variable
Ensure: the Eulerian recovery variable

1: v(x, t) = 0, x 2 D

2: for each element ⌧n

e
2 ⌦s(t) do

3: determine the a↵ected region
4: i = f loor( Xt�Ba

�x
)

5: j = f loor( Yt�Bc

�y
)

6: imin = i � 2, imax = i + 2
7: jmin = j � 2, jmax = j + 2
8: for i = imin to imax do

9: for i = imin to imax do

10: v(xi, j, t) = v(xi, j, t) +ev(Xn,e
q )�(x � �(Xn,e

q , t))!n,e
q

11: end for

12: end for

13: end for
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5. Numerical experiments

In this section, we present five numerical tests to demonstrate the accuracy and e�ciency of the proposed numer-
ical method (and algorithms) based on the GS approach. In the first test, we analyze the errors, numerical spatial and
temporal convergence orders of the proposed method by solving the Riesz fractional reaction-di↵usion equation. In
the second and third tests, we use the proposed method to solve the fractional FHN model first in a circular region
and then in a rectangular region with four holes. In the fourth and fifth tests, we use the proposed method to solve the
fractional FHN monodmoain model in the two-dimensional stationary transverse and moving longitudinal sections of
a bi-ventricle heart. In neurons, the membrane potential can be influenced by the voltage-gated ion channels, while
these ion channels are controlled by the membrane potential, which causes feedback loops. The feedback loops allow
for complex temporal dynamics, including oscillations and regenerative events such as AP (cf. [8]). In the transverse
section, we analyze the transmembrane potential propagation in a healthy heart and also in a heart with arrhythmia.
In the longitudinal section, we simulate the transmembrane potential propagation during the pumping process, which
requires to simulate the model in the moving longitudinal section of a ventricle. Since the initial condition of the
transmembrane potential is given at the Lagrangian points in the structure region, it is necessary to first obtain the
transmembrane potential at the Eulerian point in the computational domain D by using an integral transformation
which involves a delta function, and then to solve the fractional FHN monodomain model. All our simulations are
performed on a Windows workstation with Intel(R) Xeon(R) Gold 5122 (4 cores, 3.60GHz, 64GB memory), and
implemented in PETSc [44].

Test 1. We firstly consider the following two-dimensional Riesz fractional reaction-di↵usion equation:

@u

@t
= Kx

@↵u

@ |x|↵ + Ky

@�u

@ |y|�
+ F (u) + v in D ⇥ (0,T ), (24)

with the initial condition

eu (X, 0) = 10X
2 (1 � X)2

Y
2 (1 � Y)2 in ⌦s(0),

and the boundary condition

eu(X, t) = 0 if �(X, t) 2 �⌦s
(t),

where F(u) = �u
2, and

ev (X, t) = �10e
�t

X
2 (1 � X)2

Y
2 (1 � Y)2 + 100e

�2t
X

4 (1 � X)4
Y

4 (1 � Y)4

+ 10KxC↵e
�t

Y
2 (1 � Y)2 (q (X,↵) + q (1 � X,↵))

+ 10KyC�e
�t

X
2 (1 � X)2 (q (Y, �) + q (1 � Y, �)) in ⌦s(t) ⇥ (0,T ),

q (X, ✓) =
� (5)

� (5 � ✓) X
4�✓ � 2� (4)

� (4 � ✓) X
3�✓ +

� (3)
� (3 � ✓) X

2�✓.

The rectangular region ⌦s(t) ⌘ [0, 1] ⇥ [0, 1], which is stationary in t. The regular ghost structure region(i.e., the
computational domain) is taken as D = [�0.1, 1.1] ⇥ [�0.1, 1.1] which contains ⌦s(t). The model parameters are
chosen as Kx(x) = Ky(x) ⌘ 1 in ⌦s(t).

The exact solution of the Riesz fractional reaction-di↵usion equation(24) is

eu (X, t) = 10e
�t

X
2 (1 � X)2

Y
2 (1 � Y)2 in ⌦s(t). (25)

Table 1 gives the errors and spatial convergence orders for di↵erent norms at t = 1. The errors and temporal
convergence orders are given in Table 2. The numerical results show that spatial and temporal convergence orders are
close to 2 and 1, respectively.

Test 2. We consider the fractional FHN monodomain model (13) with following source functions:

Iion(u, v) = � (u (1 � u) (u � ✓) � v + Isti) ,
g(eu,ev) = ✏

�
aeu � bev � c

�
;
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Table 1. Errors and spatial convergence orders of the GS method with �t = 10�4

�x = �y L
2 error Order L

1 error Order

↵ = � = 1.8

0.1 9.8699e-03 - 1.9476e-03 -
0.05 3.8267e-03 1.3669 4.0642e-04 2.2606
0.025 1.1344e-03 1.7542 7.1922e-05 2.4985
0.0125 3.9354e-04 1.5273 2.6823e-05 3.4285

↵ = 1.8, � = 1.5

0.1 9.4208e-03 - 1.7875e-03 -
0.05 3.9626e-03 1.2494 4.1749e-04 2.0981
0.025 1.2558e-03 1.6578 7.8742e-05 2.4069
0.0125 3.5352e-04 1.8288 2.4500e-05 4.0575

Table 2. Errors and temporal convergence orders of the GS method with �x = �y = 0.025
�t L

2 error Order L
1 error Order

↵ = � = 1.8

0.1 4.0717e-02 - 2.0135e-03 -
0.05 2.4176e-02 0.7520 1.0838e-03 0.8936
0.025 1.4513e-02 0.7361 5.6951e-04 0.9283
0.0125 8.3726e-03 0.7936 3.0107e-04 0.9196

↵ = 1.8, � = 1.5

0.1 4.3038e-02 - 2.0917e-03 -
0.05 2.5731e-02 0.7421 1.1487e-03 0.8647
0.025 1.5491e-02 0.7320 6.4191e-04 0.8396
0.0125 9.1138e-03 0.7654 3.5147e-04 0.8690

and initial conditions

eu(X, 0) =

8>>>>><
>>>>>:

1, r �
p

r2 � (r � Y)2 < X  r and
r �

p
r2 � (r � X)2 < Y  r 8X 2 ⌦s(0),

0, otherwise,

ev(X, 0) =

8>>>>><
>>>>>:

0.1, r �
p

r2 � (r � Y)2 < X < r +
p

r2 � (r � Y)2

and r  Y < r +
p

r2 � (r � X)2 8X 2 ⌦s(0),
0, otherwise,

where r = 1.25 and the boundary conditions

eu(X, t) = 0 if �(X, t) 2 �⌦s
(t),

ev(X, t) = 0 if �(X, t) 2 �⌦s
(t).

The model parameters are chosen as � = 1, ✓ = 0.1, ✏ = 0.01, a = 0.5, b = 1, c = 0. eIsti is an imposed Lagrangian
stimulation current. Since the external stimulus is not taken into account in this test, hence, Isti = 0. ⌦s(t) represents
the circular structure given by

⌦s(t) ⌘
�
(x, y); (x � 1.25)2 + (y � 1.25)2  (1.25)2 ,

which does not change in time, and the regular ghost structure region (i.e., the computational domain) is chosen as
D = [�0.1, 2.6] ⇥ [�0.1, 2.6], which obviously contains ⌦s(t). This model is known to produce a stable spiral wave
and relevant computational results of this test problem can be found in [35].

To ensure the consistency with the spatial mesh sizes in references [23, 34], we choose �x = �y = 2.5
256 in this test,

which results in partitioning the computational domain D into 277 ⇥ 277 grids. The time step size �t = 0.1 is used.
Also, in this test we only consider equal order fractional derivatives, that is, ↵ = �.
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Table 3. The CPU time running up to t = 1000
↵ = � = 1.6
Kx = Ky = 10�4

↵ = � = 1.8
Kx = Ky = 10�4

↵ = � = 1.8
Kx = 10�4

Ky = 0.25 ⇥ Kx

↵ = � = 1.8
Ky = 10�4

Kx = 0.25 ⇥ Ky

GS method 685.59s 691.74s 686.86s 688.41s
Liu et al[35] 662.77s 655.14s 662.34s 663.06s

We first consider the isotropic case in which Kx(x) = Ky(x) = 10�4 for all x 2 ⌦s(t). Fig. 3 displays the computed
solutions at t = 1000 for di↵erent ↵, in each scenario, a stable spiral wave of the rotation solution is clearly observed,
in fact, the wave generates a clockwise rotation curve. When ↵ = � = 1.8, Fig. 3(a) shows the spiral waves obtained
by the numerical method of this paper, as a comparison, Fig. 3(b) displays the computed solution of the same model
obtained by the method of [35]. When ↵ = � = 1.6, Fig. 3(c) and Fig. 3(d) show the computed spiral waves obtained
by the method of this paper and in [35], respectively. We also observe from Fig. 3 that the width of the spiral wave
decreases as ↵ and � decrease. When ↵ = � = 1.8, the average width of the spiral wave is 0.16, which is wider than
the average width 0.09 when ↵ = � = 1.6.

(a) (b) (c) (d)

Fig. 3. Test 2. Spiral wave solutions of the fractional FNH model at t = 1000 with Kx = Ky = 10�4
and ↵ = �: (a) computed solution by the

method of this paper with ↵ = 1.8; (b) computed solution by the method of [35] with ↵ = 1.8; (c) computed solution by the method of this

paper with ↵ = 1.6; (d) computed solution by the method of [35] with ↵ = 1.6.

Next, we consider the anisotropic di↵usion case in which Kx(x) . Ky(x). Fig. 4 gives the numerical results
obtained by the method of this paper and that by [35], respectively, with ↵ = � = 1.8 and t = 1000. When Kx(x) =
10�4, Ky(x) = 0.25 ⇥ Kx(x) for all x 2 ⌦s(t), Fig. 4(a) and Fig. 4(b) show the results obtained by the method of
this paper and that by [35], respectively. When Ky(x) = 10�4, Kx(x) = 0.25 ⇥ Ky(x) for all x 2 ⌦s(t), the computed
results obtained by method of this paper and that by [35] are given in Fig. 4(c) and Fig. 4(d), respectively. We observe
from Fig. 4 that in the anisotropy case, the spiral wave generated by the fractional FHN model in the circular region
appears elliptical, and the di↵usion coe�cient component in the long axis direction of the ellipse is larger than that in
the short axis direction. Table 3 shows the CPU time of di↵erent methods. The CPU time required by our method is
comparable to that required by the method in [35].

(a) (b) (c) (d)

Fig. 4. Test 2. Spiral wave solutions of the fractional FHN model at t = 1000 with ↵ = � = 1.8: (a) Kx = 10�4,Ky = 0.25 ⇥ Kx, computed

solution by the method of this paper; (b) computed solution by the method of [35]; (c) Ky = 10�4,Kx = 0.25⇥ Ky, computed solution by the

method of this paper; (d) computed solution by the method of [35].

Test 3. We consider the same fractional FHN monodomain model as in Test 2 but with di↵erent initial and
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boundary conditions which are given below.

eu(X,Y, 0) =
1

1 + exp
�
50

�
(X2 + Y2) 1

2 � 0.1
�� in ⌦s(0),

ev(X,Y, 0) = 0 in ⌦s(0);

and the homogeneous Neumann boundary condition

@eu(X)
@n

= 0 if �(X, t) 2 �⌦s
(t),

@ev(X)
@n

= 0 if �(X, t) 2 �⌦s
(t),

where ⌦s(t) ⌘ [0, 1] ⇥ [0, 1] minus four holes of radius 0.1, see Fig. 5. Again, ⌦s(t) is stationary in t. The regular
ghost structure region (i.e., the computational domain) is taken as D = [�0.04, 1.04] ⇥ [�0.04, 1.04] which contains
⌦s(t). In this test, the model parameters are chosen as � = 100, ✓ = 0.25, ✏ = 1, a = 0.16875, b = 1, c = 0, and
Kx(x) = Ky(x) ⌘ 0.01 in ⌦s(t). It is known that the transmembrane potential will propagate from the lower left corner
of the structure to the whole structure, and it bypasses the four holes along the way during the propagation. Relevant
numerical results of this test problem can be found in reference [45].

In this test, the spatial mesh sizes are chosen as �x = �y = 1
256 and the time step size as �t = 0.2�x, which

results in partitioning the computational domain D into 277 ⇥ 277 grids. Also, in this test we only consider equal
order fractional derivatives, that is, ↵ = �.

Figs. 5(a)-5(d) and Figs. 5(e)-5(h) show numerical results with ↵ = � = 2 obtained by the method of this paper
and that by [45], respectively. In order to analyze the arrhythmia, the following external stimulus is applied in the
central region of the structure at time t = 4:

eIsti(X, 4) =

8>><
>>:

1, (X4 � 0.5)2 + (Y4 � 0.5)2 < (0.2)2 and (X4,Y4) 2 ⌦s(4),
0, otherwise.

(26)

Under the influence of the above external stimulation, the transmembrane potential begins to propagate cyclically
in the structure ⌦s(t). From Fig. 5, we see that the numerical results obtained by the method of this paper are in
agreement with those obtained in [45].

(a) t = 1.95 (b) t = 3.95 (c) t = 5.95 (d) t = 7.95

(e) t = 1.95 (f) t = 3.95 (g) t = 5.95 (h) t = 7.95

Fig. 5. Test 3: The numerical solutions of the fractional FHN model with ↵ = � = 2 at di↵erent time points: (a)-(d) are obtained by the

method of this paper; (e)-(h) are obtained by the method of [45].

For ↵ = � = 1.8, Figs. 6(a)-6(d) display the numerical results obtained by the proposed method. Compared to
Figs. 5 and 6, we see that the propagation velocity of the transmembrane potential gradually decreases as ↵ decreases.
Due to the slow-down of the propagation, the transmembrane potential covers the external stimulation. As shown in
Fig. 6, the transmembrane potential spreads from the lower left corner, bypasses the four holes, and finally disappears
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in the upper right corner. Thus, the external stimulation does not a↵ect the transmission path of the transmembrane
potential when the potential covers the external stimulation. For ↵ = 1.8 and ↵ = 2.0, the CPU time running up to
t = 5 are 889.23s and 930.76s, respectively.

(a) t = 1.95 (b) t = 3.95 (c) t = 5.95 (d) t = 7.95

Fig. 6. Test 3: The numerical solutions of the fractional FHN monodomain model with ↵ = � = 1.8 at di↵erent time points obtained by the

method of this paper.

Test 4. The same fractional FHN monodomain model (i.e., the same model parameters are assumed, isotropic) as
in Test 3 is considered in this test to simulate the transmembrane potential propagation in a two-dimensional transverse
section of the ventricle ⌦s(t), the so-called short-axis view, with both left and right ventricles as shown in Fig. 7. The
transverse section ⌦s(t) is placed into the ghost structure region which is taken as D = [�0.25, 10.25]⇥ [�0.25, 8.75].
The biological ramification is to simulate the transmembrane potential propagation in a healthy heart or in a heart
with arrhythmia. The homogeneous Neumann boundary condition on �⌦s

(t) is imposed, and the initial conditions are
chosen as

eu(X, 0) =
1

1 + exp
�
50

�
(X � 5.5)2 + (Y � 1.75)2) 1

2 � 0.5
�� in ⌦s(0),

ev(X, 0) = 0 in ⌦s(0).

It is known that the transmembrane potential begins to di↵use from the source and travels within the myocardium to
the entire heart wall [46].

In this test, the spatial mesh sizes are chosen as �x = �y = 0.025 and the time step size as �t = 0.2�x, which
results in partitioning the computational domain D into 420 ⇥ 360 grids.

Fig. 7 shows the numerical results for ↵ = � = 2 and ↵ = � = 1.8. Comparing Figs. 7(a)-7(d) with Figs. 7(e)-
7(h), we observe that the propagation velocity of the transmembrane potential on the transverse section of the heart
gradually decreases as ↵ decreases. When ↵ = 2, the propagation time of the transmembrane potential is about 37.75
(unit-less), while the required time is 66.25 (unit-less) when ↵ = 1.8. Moreover, the wave width also decreases with
the decrease of ↵. When ↵ = 2, the average wave width during propagation is 0.24 (unit-less), which is wider than
the average width 0.13 when ↵ = 1.8.

(a) t = 5 (b) t = 15 (c) t = 25 (d) t = 35

(e) t = 5 (f) t = 15 (g) t = 25 (h) t = 35

Fig. 7. Test 4: The computed solutions of the fractional FHN monodomain model in the transverse section of the ventricle at di↵erent time

points: (a)-(d) ↵ = � = 2; (e)-(h) ↵ = � = 1.8.
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It is expected that when two transmembrane potentials meet during propagation, they will stop propagating. Fig. 8
shows the location where the transmembrane potential stops propagating in the left and right ventricles. As seen in
Fig. 8, when ↵ = � = 2, the locations where the transmembrane potentials disappear in the left and right ventricle
are the points (7.80, 7.24) and (0.51, 6.26), respectively. When ↵ = � = 1.8, the stopping points are (7.82, 7.27)
(the left ventricle) and (0.47, 6.17) (the right ventricle). This indicates that although the propagation velocity of the
transmembrane potential and the width of the wave are gradually decreasing as ↵ decreases, the location at which the
transmembrane potential stops propagating essentially does not change.

(a) t = 27.25 (b) t = 37.50 (c) t = 47 (d) t = 65.75

Fig. 8. Test 4: The locations in left and right ventricles where the transmembrane potential disappears: (a)-(b) ↵ = � = 2; (c)-(d)

↵ = � = 1.8.

In order to simulate arrhythmia, an external stimulation is applied in the middle of the interventricular septum at
time t = 10. The location of the external stimulation is chosen as

eIsti(X, 10) =

8>><
>>:

1, (X10 � 4)2 + (Y10 � 3.5)2 < (0.5)2; (X10,Y10) 2 ⌦s(10),
0, otherwise.

(27)

Fig. 9 shows the propagation of the transmembrane potential after applying the external stimulation Isti. Figs. 9(a)–
9(d) show the simulation results for ↵ = � = 2. It is clear that the applied external stimulation falls behind the potential
wave. Figs. 9(b)–9(d) show that a stable spiral wave is formed in the middle of the interventricular septum. Under
the influence of the spiral wave, the transmembrane potential continues to propagate from the middle of the interven-
tricular septum. Figs. 9(e)–9(h) show the propagation of the transmembrane potential after the external stimulation
is applied for ↵ = � = 1.8. It can be seen from Fig. 9(e) that the applied external stimulation just passes through the
potential wave in the middle of the interventricular septum. Figs. 9(f)–9(h) show that the applied external stimula-
tion forms two potential waves that propagate in the upper and lower directions in the middle of the interventricular
septum, respectively. Similarly, the transmembrane potential propagates cyclically in the heart under the influence
of external stimulation. For ↵ = 1.8 and ↵ = 2.0, the CPU time running up to t = 40 are 1975.87s and 3523.25s,
respectively.

(a) t = 10 (b) t = 20 (c) t = 30 (d) t = 40

(e) t = 10 (f) t = 20 (g) t = 30 (h) t = 40

Fig. 9. Test 4: The simulation results of the fractional FHN model with the external stimulation: (a)-(d) show the results with ↵ = � = 2;

(e)-(h) show the results with ↵ = � = 1.8.

Test 5. The same fractional FHN monodomain model as in Test 3 is considered in this test to study the potential
propagation in the two-dimensional moving longitudinal section of the ventricle ⌦s(t), as shown in Fig. 10(a) with
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both the left and right ventricles. Fig. 10 gives the nuclear magnetic resonance (NMR) of a healthy volunteer (cf. [33]).
We employ a improved variational level set method (cf. [47]) to segment the ventricle walls from NMR images. The
myocardium starts to actively contract after diastole. Under the influence of active contraction, the heart can pump the
blood into the systemic circulation (called the pumping process). In this test, the moving boundary e↵ect must be taken
into account. The longitudinal section⌦s(t) is placed into the ghost structure region D = [�3.45, 7.05]⇥ [1.55, 10.45].
The goal is to simulate the propagation of transmembrane potential during the pumping process. The homogeneous
Neumann boundary condition is again imposed on �⌦s

(t), and the following simple homogeneous initial conditions
are used

eu(X, 0) = 0 in ⌦s(0),
ev(X, 0) = 0 in ⌦s(0).

In this test, the spatial mesh sizes are chosen as �x = �y = 0.025 and the time step size as �t = 0.2�x, which
implies that the computational domain D is partitioned into 420 ⇥ 356 grids.

At t = 0, a constant electrical stimulation (eIsti = 1) is applied to the mid-lower part of the endocardium of the
heart (cf. [48, 8]), as shown in the blue region in Fig. 10(a). Under the influence of external electrical stimulation,
the transmembrane potential spreads from the endocardium to the entire heart. The left and right ventricles in the
longitudinal section will contract inward during the whole simulation time. In order to complete the simulation, we
need to determine the location of each Lagrange point during the pumping process. Fig. 10(b)- 10(f) give the NMR
images of the heart at di↵erent time steps, which describe the movement of the heart. Based on the NMR images,
we use the Demon algorithm (cf. [49]) to track the movement and to determine the locations of the Lagrange points
of the ventricular wall in each NMR image. The area of the longitudinal section of the ventricle changes from 20.10
(unit-less) at t = 0 to 23.85 (unit-less) at t = 11.25. Based on the locations obtained by Demon algorithm, we use the
linear interpolation to obtain the locations of the Lagrangian points at di↵erent time steps.

(a) t = 0.0 (b) t = 2.25 (c) t = 4.5

(d) t = 6.75 (e) t = 9 (f) t = 11.25

Fig. 10. Test 5: (a) shows the sketch of Isti in the longitudinal section of the ventricle; (b)-(f) show locations of Lagrangian points at di↵erent

times obtained by the Demon algorithm.

Fig. 11 shows the transmembrane potential propagation during the pumping process. Figs. 11(a)–11(d) show
the propagation of the transmembrane potential when ↵ = � = 2, Figs. 11(e)–11(h) and Figs. 11(i)–11(l) show the
propagation when ↵ = � = 1.8 and ↵ = � = 1.6, respectively. When ↵ = � = 2, the propagation time of the
transmembrane potential is about 9.75 (unit-less), which is less than the required time 10.5 when ↵ = � = 1.8 and
10.75 when ↵ = � = 1.6. Moreover, when ↵ = � = 2, the average wave width of the transmembrane potential wave is
0.29 (unit-less), which is wider than the average wave width 0.23 when ↵ = � = 1.8 and 0.21 when ↵ = � = 1.6. Thus,
the propagation velocity and the wave width of the membrane potential wave decrease with the decrease of ↵. For
↵ = 1.6, ↵ = 1.8 and ↵ = 2.0, the CPU time running up to t = 9 are 10677.2s, 10679.1s and 11083.5s, respectively.
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(a) t = 1 (b) t = 2.5 (c) t = 5 (d) t = 7.5

(e) t = 1 (f) t = 2.5 (g) t = 5 (h) t = 7.5

(i) t = 1 (j) t = 2.5 (k) t = 5 (l) t = 7.5

Fig. 11. Test 5: The simulation results of the fractional FHN monodomain model in the longitudinal section of the ventricle during the

pumping process: (a)-(d) ↵ = � = 2; (e)-(h) ↵ = � = 1.8; (i)-(l) ↵ = � = 1.6.

6. Conclusion

In this paper, we developed a ghost structure (GS) finite di↵erence method for solving the fractional FitzHugh-
Nagumo (FHN) monodomain model on a moving irregular computational domain, which allows e�cient discretiza-
tions of domain-dependent fractional derivatives appeared in the model. The e↵ectiveness and robustness of the
proposed method are verified by a number of numerical tests. In order to analyze the transmembrane potential propa-
gation in both healthy hearts and hearts with arrhythmia, we employed the proposed method to simulate the fractional
FHN monodomain model in a transverse section of a heart. We also studied the potential propagation during the
pumping process by using the proposed method to simulate the fractional FHN model in the moving longitudinal
sections of this heart. The numerical results show that the changes of the fractional derivatives a↵ect the propagation
velocity of the transmembrane potential and the width of the potential wave. At the same time, the numerical re-
sults demonstrate that the proposed GS finite di↵erence method can e�ciently solve the fractional FHN monodomain
model in a complexly deformed structure.

In order to analyze the errors and the convergence orders of method, we used our GS finite di↵erence method to
solve the two-dimensional Riesz fractional reaction-di↵usion equation. The numerical results show that spatial and
temporal convergence orders are close to 2 and 1, respectively. We were able to capture the patterns of heterogeneity
and complex connectivity of electrophysiological dynamics in biological tissues by solving the fractional FHN mon-
odomain model in the circular region. The spiral wave obtained by our GS finite di↵erence method is qualitatively
the same as those obtained by the existing methods. We observed that as the fractional orders ↵ and � decrease,
the wave width of the spiral wave decreases gradually. Compared to the isotropic case, the shape of the spiral wave
changes significantly in the anisotropic case, from circular to elliptical. Despite of solving the problem in an enlarged
computational domain and converting values between the Eulerian and Lagrangian variables, the CPU time required
by the proposed GS finite di↵erence method is comparable to existing methods. By simulating the fractional FHN
model in a rectangular region with four holes with an external stimulation in the central region of the structure, we
analyzed the potential propagation in arrhythmia. For ↵ = � = 2, under the influence of the external stimulation, we
observed that the potential begins to propagate cyclically in the structure and the velocity of transmembrane potential
decreases as ↵ and � decrease.

We further simulated the FHN monodomain model in the stationary transverse and moving longitudinal sections
of the ventricle. When no external stimulation was applied, we found that the propagation velocity and the width of
the transmembrane potential wave decrease with the decrease of ↵ and �. However, the spatial derivatives do not a↵ect



20 Yongheng Wang et al. / Journal of Computational Physics (2020)

the location where the transmembrane potential disappears. In order to analyze the potential propagation in a heart
with arrhythmia, we applied an external stimulation in the transverse section of the heart. Due to the slowdown of the
propagation, the applied external stimulation has di↵erent e↵ects on potential propagation. For ↵ = � = 2, the external
stimulation falls behind the potential wave. Under the influence of the potential and external stimulus, a stable spiral
wave is formed in the middle of the interventricular septum. As the spiral wave propagates outward, the potential
begins to propagate cyclically in the heart. For ↵ = � = 1.8, the applied external stimulation just passes through
the potential wave and forms two potential waves that propagate in the upper and lower directions in the middle of
the interventricular septum, respectively. Due to the influence of the downward propagating potential, the potential
begins to propagate cyclically in the heart. Thus, in a heart with arrhythmia, the transmembrane potential begins
spontaneously and repeatedly to immerse into the region where the excitation occurs, and stimulate cardiomyocytes
to contract again, which explain why arrhythmia leads to unsynchronized active contraction frequency. To analyze
the transmembrane potential propagation during the pumping process, we simulated the fractional FHN monodomain
model in the moving longitudinal section of the ventricle. The numerical results again show that the propagation
velocity and the width of the potential wave gradually decrease with the decrease of ↵ and �. The numerical results
also demonstrate that our GS finite di↵erence method can e↵ectively solve the fraction FHN monodomain model in a
deformed structure.
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