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Abstract

This manuscript presents a new extended linear system for integral equation based techniques for
solving boundary value problems on locally perturbed geometries. The new extended linear system is
similar to a previously presented technique for which the authors have constructed a fast direct solver.
The key features of the work presented in this paper are that the fast direct solver is more efficient for
the new extended linear system and that problems involving specialized quadrature for weakly singular
kernels can be easily handled. Numerical results illustrate the improved performance of the fast direct
solver for the new extended system when compared to the fast direct solver for the original extended
system.

1 Introduction

This manuscript presents an integral equation based solution technique for elliptic boundary value prob-
lems on locally-perturbed geometries. Such problems arise in applications such as optimal shape design.
In each iteration or optimization cycle, the changes to the object shape often stay local to certain parts
of the object. The proposed approach formulates an extended linear system that allows for the boundary
value problem on the new geometry to be expressed in terms of a linear system on the original geometry
plus a correction to account for the local perturbation. This idea was first proposed in [4] and a fast
direct solver was constructed for the resulting formulation in [9]. Unfortunately, the fast direct solver
for the original extended system required inverting a matrix the size of the number of points removed
from the original geometry which is expensive if the removed portion is large. Another difficulty of the
original extended system is that care is required when the technique is applied to systems discretized
using quadrature for weakly singular kernels. The extended linear system proposed in this manuscript
overcomes these two difficulties. Additionally, a fast direct solver for the new extended system can be
constructed from the tools presented in [9] but is more efficient than the original fast direct solver.

This manuscript briefly reviews a boundary integral formulation for a Laplace problem with Dirichlet
boundary data and the linear system that results from the discretization in Section 2. Next, the original
extended system and the new extended system are presented in Section 3. Finally numerical results
illustrate the efficiency of the fast direct solver for the new extended system in Section 4.

2 Boundary integral formulation

Consider the interior Laplace problem with Dirichlet boundary condition

−∆u(x) = 0 for x ∈ Ω,
u(x) = g(x) for x ∈ Γ

(1)

where Ω denotes the interior of the geometry, and Γ denotes the boundary of Ω, as illustrated in Figure
1(a). Let G(x,y) = − 1

2π log |x− y| denote the Green’s function for the Laplace operator and D(x,y) =

1
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∂n(y)G(x,y) denote the double layer kernel where n(x) denotes the outward facing normal vector at the
point x ∈ Γ. The solution to (1) can be expressed as

u(x) =

∫
Γ
D(x,y)σ(y)ds(y) for x ∈ Ω, (2)

where σ(x) is some unknown density defined only on the boundary Γ. Enforcing that u(x) satisfies the
boundary condition results in the following integral equation for σ(x);

− 1

2
σ(x) +

∫
Γ
D(x,y)σ(y)ds(y) = g(x). (3)

Upon discretization via a Nyström or boundary element method, one is left with solving a dense linear
system

Aσ = g, (4)

where A is the discretized boundary integral operator and σ is the vector approximating σ at the dis-
cretization points.

Ω

Γ

x

n(x)

(a)

Γk

Γp

Γc

(b)

Figure 1: (a) A sample geometry Ω with boundary Γ and outward facing
normal vector n(x) at the point x ∈ Γ. (b) A sample locally perturbed
geometry where the original boundary is Γo = Γk ∪ Γc, the portion of the
boundary being removed is Γc, the portion of the original boundary remain-
ing is Γk and the newly added boundary is Γp.

3 Extended linear systems

Consider a boundary value problem on a geometry with a local perturbation as illustrated in Figure 1(b).
Let Γo denote the boundary of the original geometry, Γk denote the portion of the boundary that is not
changing and Γc denote the portion that is cut or removed. So Γo = Γc ∪ Γk. Let Γp denote the new
portion of the boundary. Then the new geometry has a boundary Γn defined by Γn = Γk ∪ Γp.

The discretized linear systems can be partitioned according to this notation. In other words, the original
system can be expressed as

Aooτ o =

[
Akk Akc

Ack Acc

](
τ k
τ c

)
=

(
gk
gc

)
= go, (5)

and the linear system for the perturbed geometry can be expressed as

Annσn =

[
Akk Akp

Apk App

](
σk
σp

)
=

(
gk
gp

)
= gn (6)

where τ k and σk denote the vector whose entries are the approximate solution at the discretization points
on Γk, τ c denotes the vector whose entries are the approximate solution at the discretization points on Γc,
etc.Likewise Akk is the submatrix of the discretized integral equation corresponding to the interaction of
Γk with itself, Akc is the submatrix of the discretized integral equation corresponding to the interaction
of Γk with Γc, etc.
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3.1 Original extended linear system

The discretized problem on Γn can be expressed as an extended linear system [4] by
[
Aoo 0
0 App

]
︸ ︷︷ ︸

Ã

+

 0

(
−Akc

−Bcc

)
Aop

Apk 0 0


︸ ︷︷ ︸

Qorig


σkσc
σp


︸ ︷︷ ︸
σext

=

gk0
gp


︸ ︷︷ ︸
gext

(7)

where Akc denotes the submatrix of Aoo corresponding to the interaction between Γk and Γc, Aop denotes
the discretization of the double layer integral operator on Γp evaluated on Γo, Apk denotes the discretiza-
tion of the double layer integral operator on Γk evaluated on Γp, and Bcc denotes the sub-matrix of Aoo

corresponding to the interaction of Γc with itself but the diagonal entries are set to zero. The matrix
Qorig is called the update matrix. The extended system (7) is obtained by subtracting the contributions
from Γc in Aoo and adding the contributions from Γp. Upon solving (7), only σk and σp are used to
evaluate the solution inside of Γn. Effectively σc is a dummy vector. Details of the derivation of (7) are
provided in [4, 9].

3.2 New extended linear system

The new extended linear system exploits the fact that the contribution from Γc is not used to find the
solution inside of Γn. Specifically, we introduce the vector σdum

c fully knowing a priori that it will contain
useless information. Then solving (6) is equivalent to solving the followingAkk 0 Akp

Ack Acc 0
Apk 0 App

σkσdum
c

σp

 =

gk0
gp

 . (8)

The expanded form of (8) is
[
Aoo 0
0 App

]
︸ ︷︷ ︸

Ã

+

 0 −Akc Akp

0 0 0
Apk 0 0


︸ ︷︷ ︸

Qnew


σkσdum

c

σp


︸ ︷︷ ︸

σext

=

gk0
gp


︸ ︷︷ ︸
gext

. (9)

Here Qnew is the new update matrix. Notice that Qnew has a zero row. As compared to the original
formulation (7), the new formulation has two advantages: first, the update matrix no longer contains
the full-rank block Bcc; second the new formulation does not require evaluating Acp. We postpone the
discussion for the first advantage to Section 3.3. For the problems considered in this paper, Nc and Np

are relatively small compared to Nk, thus evaluating and compressing Acp is not expensive if the kernel
is analytic. However, for problems where the perturbation corresponds to local refinement of the same
geometry, the collection of discretization points removed Ic and those added Ip correspond to different
discretizations of the same boundary segment Γc = Γp. This means that the evaluation of Acp requires
additional care when the kernel is weakly singular. By not including this matrix in the new formulation, the
problem of handling weakly singular kernels (such as when using a combined field integral representation
for Helmholtz problems) is removed.

3.3 A fast direct solver

When constructing the fast direct solver for the locally perturbed boundary value problem, there are
advantages to writing the system in the form of (7) and (9). Since the matrix Aoo is the system resulting
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from the discretization of the integral equation on the original geometry, we assume that a fast direct
solver has already been computed for Aoo. Any fast direct solver such as Hierarchically Block Separable
(HBS) [3], Hierarchically Semi-Separable (HSS) [8, 1], Hierarchical Interpolative Factorization (HIF) [6]
and H and H2- matrix methods [5] can be used. Additionally, the update matrices Qorig and Qnew are low
rank. This allows for the inverse of the extended systems to be applied rapidly via a Sherman-Morrison-
Woodbury formula

σext =
(
Ã+Q

)−1
gext ≈

(
Ã+LR

)−1
gext ≈ Ã

−1
gext − Ã

−1
L
(
I +RÃ

−1
L
)−1

RÃ
−1
gext, (10)

where I is an identity matrix, and LR denotes the low rank factorization of the update matrix Q.

The low rank property of the update matrices Qorig and Qnew can be observed by noting that the matrices
Akc, Akp, Apk and Aop are low rank. The only full rank matrix in the update matrices is Bcc. Let kop,
kkc, kpk, and kkp be the observed numerical ranks for matrix Aop, Akc, Akp, Akp respectively. Then
the low-rank approximation for Qorig has total rank korig = kop + kkc + kpk + Nc. Since Qnew does not
contain the Bcc matrix, its rank is knew = kkc+kpk+kkp, which is smaller than Qorig. Thus the Sherman-
Morrison-Woodbury formula can be applied more rapidly with the new formulation. The details for
efficiently creating the low rank factorizations can be found in [9].

4 Numerical experiments

This section illustrates the performance of the fast direct solver for the proposed extended linear system
for a collection of problems. The integral equations are discretized via the Nyström method with a 16-
point composite Gaussian quadrature. For all problems, the original geometry is discretized with enough
points in order for the boundary value problem to be solved to 10 digits of accuracy. The HBS direct
solver [3] was used in the examples in this section. For all tests, the tolerance for HBS compression and
low-rank approximation is set to ε = 10−10.

Roughly speaking the cost of building fast direct solvers is split into two parts: precomputation and
solve. The time for precomputation is the time for constructing all the parts of the fast direct solver.
For the extended systems, this includes constructing the low rank factorizations of the update matrices
Qorig or Qnew and inverting the small matrix in the Sherman-Morrison-Woodbury formula (10). For
the HBS solver, the precomputation includes creating a compressed approximation of the discretized
system on the new geometry and inverting that approximation. The solve time is the time for applying
the resulting solver to one vector (or right-hand-side). For the extended systems, this is the time for
applying the Sherman-Morrison-Woodbury formula (10). For the HBS solver, it is the time for applying
the approximate inverse.

To illustrate the efficiency of the proposed technique, we compare the performance of the new solution
technique with the fast solver developed for the original extended system and building an HBS solver
from scratch for the new geometry. We report the following:

• No: the number of discretization points on the original geometry;

• Nc: the number of discretization points cut from the original geometry;

• Nk: the number of discretization points remained the same on the original and new geometry,
Nk = No −Nc;

• Np: the number of discretization points added;

• kop, kkc, kpk, and kkp: the observed numerical ranks for matrix Aop, Akc, Akp, and Akp respectively
after compression;

• knew and korig: the observed numerical ranks for Qnew and Qorig respectively, Qnew = kkc+kkp+kpk
and Qorig = kop + kkc + kpk +Nc ;
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• Tnew,p: the time in seconds for the precomputation of the proposed solver;

• Torig,p: the time in seconds for the precomputation of the fast solver based on the original extended
system formulation in [9];

• Thbs,p: the time in seconds for the precomputation of HBS from scratch for the new geometry;

• rp =
Thbs,p

Tnew,p
;

• Tnew,s: the time in seconds for applying the proposed solver to one right-hand-side;

• Torig,s: the time in seconds for applying the original solver in [9] to one right-hand-side;

• Thbs,s: the time in seconds for applying the HBS inverse to one right-hand-side;

• rs =
Thbs,s

Tnew,s
.

The ratios rp and rs are measures for the speed-up (or slow-down) by using the proposed solver versus
building a new fast direct solver from scratch for the new geometry. If rp is greater than 1, the precom-
putation of the proposed solver is faster than building a fast direct solver from scratch. If rp is less than
1, the precomputation of the proposed solver is slower than building a fast direct solver from scratch, etc.

All experiments were run on a dual 2.3 GHz Intel Xeon Processor E5-2695 v3 desktop workstation with
256 GB of RAM. The code is implemented in MATLAB, apart from the randomized linear algebra utilized
in creating low rank factorization rapidly which is implemented in Fortran.

4.1 A local change in the geometry

Consider the Laplace boundary value problem (1) on the geometry illustrated in Figure 2. The corners
are smoothed via the scheme in [2]. A detailed description of this geometry is given in [9]. The Dirichlet
data on the boundary equals to the potential due to a collection of 10 charges with location and charge
value {(sj , qj)}10

i=1 placed on the exterior of domain Ω,

g(x) =
10∑
j=1

qjG(x, sj),

where G(x,y) denotes the Green’s function for Laplace equation.

In the first experiment, the number of points cut remains fixed, Nc = 16, while the number of discretization
points on Γk grows. In Figure 2, this corresponds to the nose height d decreasing as Nk grows. The
attached nose Γp is discretized with Np ∈ [832, 896] number of quadrature points. The timing results are
reported in Table 1. All three solution techniques are linear with respect to No and the precomputation
time for the new solution technique is about the same as the original extended system solver. It is roughly
3.5 times faster than building a new direct solver from scratch for the new geometry. The cost of applying
the proposed solver is almost as fast as applying the HBS approximate inverse. To better understand the
new extended system formulation’s performance as compared to the original formulation in [9], Table 2
reports the numerical ranks for the subblocks in Qorig and Qnew. The total rank of Qnew is observed to
be smaller than that for Qorig by about 20, which is not a very significant reduction. This explains the
timing results in Table 1, where the timings in column Torig,p is slightly larger than those in column Tnew,p

for large tests.

In the next example, Nc grows by the same factor as Nk. The nose height d in Figure 2 remains fixed,
and the fixed nose is discretized with Np = 896 points. Table 3 reports on the performance of all three
solvers for this geometry. The proposed solution technique is the fastest for the precomputation step. It
is much faster than the solver based on the original extended system formulation, especially for the case
where Nc is large. The ranks of the compressed matrices are reported in Table 4. Since Nc grows at
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the same rate as Nk while the problem size increases, korig becomes very large and the dense inversion

of
(
I +RÃ

−1
L
)

dominates the cost of evaluating the solution of the original extended system. This is

in constrast to the new formulation where knew does not depend on Nc and thus the new solver is much
faster than both the original solver in [9] and HBS built from scratch for precomputation. A factor of
roughly 2.9 speed up in the precomputation is observed as compared to an HBS solver built from scratch.
Again applying the proposed solver is slightly slower than applying the HBS approximate inverse.

Ω

Γk

Γc

Γc

Γp

Γp

d
e R

&%
'$

Figure 2: The square with nose geometry. A nose of height d is smoothly
attached to the a square.

No Torig,p Tnew,p Thbs,p rp Torig,s Tnew,s Thbs,s rs
9232 3.69e-01 4.83e-01 1.57e+00 3.25 1.99e-02 1.12e-02 1.32e-02 1.18
18448 5.60e-01 6.50e-01 2.38e+00 3.66 2.76e-02 1.74e-02 1.46e-02 0.84
36880 1.11e+00 1.11e+00 3.79e+00 3.42 5.49e-02 4.00e-02 3.33e-02 0.83
73744 2.25e+00 1.84e+00 6.38e+00 3.47 9.79e-02 8.06e-02 7.04e-02 0.87
147472 3.87e+00 3.56e+00 1.18e+01 3.33 1.95e-01 1.71e-01 1.52e-01 0.89

Table 1: Times for applying the solution technique to (1) on the square with
thinning nose geometry.

No Nc kop kkc kpk kkp korig knew

9232 16 63 9 54 60 142 123
18448 16 64 10 58 58 148 126
36880 16 66 10 57 61 149 128
73744 16 68 10 59 60 153 129
147472 16 69 10 61 61 156 132

Table 2: Observed numerical ranks for compressed matrices in the original
and new extended system formulations for the square with thinning nose
geometry.

4.2 A Laplace problem with a locally refined discretization

Next we consider applying the proposed solution technique to the Laplace boundary value problem (1)
where the local perturbation is a refinement in a portion of the geometry. Figure 3(a) illustrates the
geometry under consideration. It is given by the following parameterization:

x(t) =

(
r(t) cos(t)
r(t) sin(t)

)
, with r(t) = 1 + 0.3 sin(30t) for t ∈ [0, 2π].

The portion of the boundary being refined is highlighted in red. Figure 3(b) is a zoomed in illustration
of that region. Figure 3(c) illustrates the local refinement. Three Gaussian panels (Nc = 48) are replaced
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No Nc Torig,p Tnew,p Thbs,p rp Torig,s Tnew,s Thbs,s rs
9344 128 5.01e-01 5.10e-01 1.28e+00 2.50 2.08e-02 1.02e-02 7.92e-03 0.77
18688 256 1.08e+00 9.25e-01 2.18e+00 2.36 3.44e-02 2.15e-02 1.59e-02 0.74
37376 512 2.67e+00 1.30e+00 3.49e+00 2.69 5.64e-02 3.97e-02 3.00e-02 0.76
74752 1024 7.76e+00 2.31e+00 6.63e+00 2.87 1.16e-01 8.67e-02 6.40e-02 0.74
149504 2048 2.48e+01 4.06e+00 1.19e+01 2.92 2.34e-01 1.71e-01 1.61e-01 0.94

Table 3: Times for applying the solution techniques to (1) on the square
with fixed nose geometry.

No Nc kop kkc kpk kkp korig knew

9344 128 87 12 45 53 272 99
18688 256 80 14 47 55 397 116
37376 512 96 14 45 55 667 114
74752 1024 117 16 46 59 1203 121
149504 2048 125 18 46 56 2237 120

Table 4: Observed numerical ranks for compressed matrices in the origi-
nal and new extended system formulations for the square with fixed nose
geometry.

with Np discretization points (Np/16 Gaussian panels). The number of discretization points on Γk remains
fixed; Nk = 6352. The Dirichlet data is generated similarly as in Section 4.1.

Table 5 reports on the performance of all three solution techniques for this problem. The proposed
solution technique is 13 to 21 times faster than building a new solver from scratch while applying the
solver is less than a factor two slower than applying the HBS approximate inverse.

Γk

(a) (b) (c)

Γc Γp

Figure 3: (a) The sunflower geometry with the portion of the boundary to
be refined in red. (b) The three Gaussian panels in the boxed region from the
original discretization. (c) Six Gaussian panels replacing the original three
panels.

4.3 A Helmholtz problem with a locally refined discretization

Besides being faster than the solver for the original extended system, the proposed solver has the advantage
that it can easily handle problems that are using specialized quadrature for weakly singular kernels. The
issue that arises for the original extended system is that it would be cumbersome to evaluate the entries
of the matrix Aop corresponding to the interaction of Γc with Γp. This matrix does not arise in the new
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Np
Np

No
Torig,p Tnew,p Thbs,p rp Torig,s Tnew,s Thbs,s rs

96 0.015 6.06e-01 5.03e-01 7.52e+00 14.9 1.10e-02 1.30e-02 1.32e-02 1.02
192 0.03 6.16e-01 3.62e-01 7.77e+00 21.4 1.17e-02 1.25e-02 9.30e-03 0.74
384 0.06 6.83e-01 3.90e-01 7.72e+00 19.8 1.36e-02 1.42e-02 9.13e-03 0.64
768 0.12 7.60e-01 4.11e-01 7.78e+00 18.9 2.01e-02 1.20e-02 9.06e-03 0.76
1536 0.24 1.01e+00 6.09e-01 8.03e+00 13.2 4.72e-02 1.66e-02 1.00e-02 0.60

Table 5: Times for applying the solution techniques to (1) on the geometry
in Figure 3 with local refinement.

extended system.

To illustrate the efficiency of the solver for systems that involve specialized quadrature, we consider the
following exterior Dirichlet Helmholtz boundary value problem

−∆u(x) + ω2u = 0 for x ∈ Ωc,
u(x) = g(x) for x ∈ Γ

(11)

with Sommerfeld radiation condition on the sunflower geometry illustrated in Figure 3 where ω denotes
the wave number. The Dirichlet data g is set to be the negative of a plane wave with incident angle
θ = −π

5

g(x) = −eik·x, with k = (ω cos θ, ω sin θ).

We chose to represent the solution with the following combined field

u(x) =

∫
Γ
Dω(x,y)σ(y) ds(y)− iω

∫
Γ
Sω(x,y)σ(y) ds(y), (12)

where σ(x) is the unknown boundary charge distribution, Sω = Gω(x,y) and Dω = ∂n(y)Gω(x,y)
denote the single and double layer Helmholtz kernel, n(y) is the outward facing normal vector, and

Gω(x,y) = i
4H

(1)
0 (ω|x−y|) is the two dimensional free space Green’s function for the Helmholtz equation

with wave number ω and H
(1)
0 is the Hankel function of zeroth order.

The integral equation that results from enforcing the Dirichlet boundary condition is

1

2
σ(x) +

∫
Γ
Dω(x,y)σ(y) ds(y)− iω

∫
Γ
Sω(x,y)σ(y) ds(y) = g(x). (13)

We discretize the operator via Nyström with a composite 16-point generalized Gaussian quadrature [7].
The wave number is set to ω = 20 which corresponds to the geometry being approximately 8.3 wavelengths
in size. Again, we consider the local refinement problem. Table 6 reports on the performance of the
proposed solution technique and building a fast direct solver from scratch. For this problem, the proposed
solver is anywhere from 15 to 35 times faster than building the fast direct solver from scratch. This speed
up is the result of the increased ranks associated with Helmholtz problems. Applying the proposed solver
to a right-hand-side is roughly 1.5 times slower than applying the HBS solver.

5 Concluding remarks

This manuscript presented a new extended linear system for integral equation based solution techniques
for boundary value problems on locally perturbed geometries. A fast direct solver based on the new
extended system formulation is significantly faster than building a new direct solver from scratch for the
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Np
Np

No
Tnew,p Thbs,p rp Tnew,s Thbs,s rs

96 0.015 1.13e+00 3.97e+01 35.2 4.06e-02 2.86e-02 0.71
192 0.03 1.36e+00 4.08e+01 29.9 4.64e-02 2.93e-02 0.63
384 0.06 1.44e+00 4.08e+01 28.4 3.91e-02 2.54e-02 0.65
768 0.12 1.64e+00 4.17e+01 25.4 3.69e-02 2.70e-02 0.73
1536 0.24 2.64e+00 4.08e+01 15.4 4.39e-02 3.33e-02 0.76

Table 6: Times for applying the solution techniques to (11) on the geometry
in Figure 3 with local refinement.

perturbed problem. For some examples, the precomputation is between 10x to 30x faster than building
a direct solver from scratch. Additionally, the new solver shows consistent speed-ups for problems with
a large number of points removed and can be easily applied to problems requiring the discretization
of weakly singular kernels. Neither of these was true for the fast direct solver based on the original
formulation given in [9].

The idea of handling local changes in geometry or discretization via the extended system formulation
can be extended to three dimensional problems. However, additional work is required in processing the
geometry and creating efficient techniques for building the low rank factors of the update matrix. This is
future work.
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