
An unsupervised machine-learning checkpoint-restart algorithm using
Gaussian mixtures for particle-in-cell simulations

G. Chen∗, L. Chacón, T. B. Nguyen

Los Alamos National Laboratory, Los Alamos, NM 87545

Abstract

We propose an unsupervised machine-learning checkpoint-restart (CR) algorithm for particle-in-cell (PIC)

algorithms using Gaussian mixtures (GM). The algorithm features a particle compression stage and a parti-

cle reconstruction stage, where a continuum particle distribution function (PDF) is constructed and resam-

pled, respectively. To guarantee fidelity of the CR process, we ensure the exact preservation of invariants

such as charge, momentum, and energy for both compression and reconstruction stages, everywhere on

the mesh. We also ensure the preservation of Gauss’ law after particle reconstruction. As a result, the GM

CR algorithm is shown to provide a clean, conservative restart capability while potentially affording orders

of magnitude savings in input/output requirements. We demonstrate the algorithm using a recently de-

veloped exactly energy- and charge-conserving PIC algorithm using both electrostatic and electromagnetic

tests. The tests demonstrate not only a high-fidelity CR capability, but also its potential for enhancing the

fidelity of the PIC solution for a given particle resolution.

Keywords: unsupervised machine learning, Gaussian mixture model, particle-in-cell, checkpoint restart,

PACS:

1. Introduction

Resiliency, data locality, and asynchrony are key major challenges facing the practical use of exascale

computing for scientific applications. Because of extreme concurrency, very large system scale, and com-

plex memory hierarchies, hardware failures (both “soft” and “hard”) are expected to become more frequent

towards and beyond exascale. Currently, 100 billion transistors/node , thousands of nodes, 10M-core su-

percomputers are built (e.g. Summit and Sierra [1]). The very large total number of components will lead to

frequent failures, even though the mean time between failures (MTBF) for the individual components may

be large. For instance, while the MTBF of a CPU can be months to years [2], that of current supercomputers

can be within a few hours [3, 4]. With billion-core parallelism at exascale, the MTBF has been projected to

be within (or even far below) one hour [5, 6]. Therefore, it is important to enable efficient strategies that

allow software and algorithms to perform in a frequently interrupted environment.

∗Corresponding author
Email address: gchen@lanl.gov (G. Chen)

Preprint submitted to Elsevier July 27, 2020

ar
X

iv
:2

00
7.

12
27

3v
1

 [
ph

ys
ic

s.
co

m
p-

ph
]

 2
3

Ju
l 2

02
0

Particle-based simulation algorithms are widely employed, at the heart of many algorithmic strate-

gies (e.g., Monte Carlo, particle-in-cell, molecular dynamics) and applications (e.g., aerosol transport in

combustion and climate, radiation transport, and plasma transport). Checkpoint/restart (CR) enables sim-

ulation recovery from previous interrupted simulations due to either finite queue wall-clock-time limits

or hardware (HW) failures. This is commonly done by storing a sufficiently complete data snapshot to

disk at given time intervals, which can be then read back to restart the simulation. Particle-based simu-

lations at the extreme scale are particularly challenged by the input/output (IO) requirements of storing

billions to trillions of particles, as is already the case in the leading-class supercomputers. The challenges

are significantly worsened by the current trend towards hierarchical architectures, featuring many levels of

parallelism, each delivered by different architectural solutions. Synchronous checkpointing in hierarchical

systems would require bulk synchronization across the levels of the hierarchy, and ultimately storage in the

file system via IO. Asynchronous IO, as well as memory-based IO, are being explored as partial solutions

to the CR problem [7]. Nevertheless, any IO-based CR strategy would greatly benefit from a high-fidelity

compression strategy of data for particle simulations.

In this study, we explore the viability of an unsupervised machine-learning, optimization-based CR strat-

egy for plasma particle-in-cell (PIC) simulations, combining optimal (in some sense, to be clarified below)

compression and reconstruction of particle data. Compression of particle data is performed per spatial cell

by construction of a continuum particle distribution function (PDF) with a Gaussian mixture [8], based

on a penalized maximum-likelihood-estimation (PMLE) approach using complexity criteria [9]. The re-

sulting optimization problem is solved by an adaptive Expectation-Maximization (EM) algorithm [10, 9],

which can automatically search for the optimal number of Gaussian components satisfying a generalized

“minimum-message-length (MML)” Bayesian Information Criterion [11]. The method can be formulated

to conserve up to second moments exactly [12]. Particle-data is reconstructed (also locally per cell) by sam-

pling of the PDF in velocity space (here using Monte Carlo), with a simple moment-matching projection

technique [13]. Particle spatial positions within a given cell are re-initialized randomly (i.e, we assume that

the plasma is uniform within a cell). Both compression and reconstruction operations are local in config-

uration space (i.e., each computational cell features an independent PDF reconstruction process) and done

in-situ (assuming that the cell has sufficient particles, e.g., more than 10), and only Gaussian parameters are

checkpointed.

A quiescent restart in plasmas requires, in addition to the preservation of (at least) moments up to

second order, the enforcement of Gauss’ law (i.e.,∇ ·E = ρ where E is electric field, and ρ is charge density)

discretely everywhere on the spatial mesh. Gauss’ law is closely related to charge conservation, and local

violations will result in plasma waves being launched to equilibrate charge. The electric field is saved at

CR, and is thus available at both compression and reconstruction stages. To enforce Gauss’ law discretely,

it is sufficient to ensure resampled particles exactly match the charge density field per species and per cell.

We accomplish this by correcting particle weights according to a straightforward mass-matrix solve [14].

2

The potential for IO compression of particle data using GM is quite large. Each Gaussian component of

the mixture requires ten parameters to be fully specified, which is comparable to the number of degrees of

freedom needed per particle in a 3D-3V PIC method (e.g., three positions and three velocities, plus particle

weight and optionally an integer identifying the cell on the mesh). Given that a few Gaussians (< 10)

are usually sufficient (as demonstrated in our numerical tests) to capture most details of the PDF, and that

typical PIC simulations employ hundreds if not thousands of particles per cell, it follows that GM can easily

result in several orders of magnitude savings in IO requirements for checkpointing particle data.

The proposed CR strategy exactly conserves local (per cell) charge, momentum, and energy, satisfies

Gauss’ law everywhere, is massively parallel, communication-avoiding, locality-aware, and asynchronous

by construction (except for the mass-matrix solve step), and only synchronizes and checkpoints compressed

data. It is worth pointing out that we are not the first ones to realize the potential of GM PDF reconstruc-

tion in PIC algorithms, with various authors having used it in the past for diagnostics [15], to couple with

other physical processes [16], or, more related to this study, for Gaussian-to-Gaussian remapping in 1D-1V

phase-space to eliminate Gaussian-shape distortion in a finite-mass-method-based Vlasov-Poisson algo-

rithm [17]. However, to our knowledge, this is the first application of an adaptive GM algorithm for particle

data compression in CR of PIC simulations.

The rest of the paper is organized as follows. Section 2 introduces the basic concepts of the PMLE

method employed in this study to learn and resample the Gaussian mixture, including the strategies to

enforce Gauss’ law and conserve of up to second moments. Section 3 demonstrates the CR algorithm for

prototypical plasma-physics electrostatic and electromagnetic PIC tests, and demonstrate the potential of

GM to improve the PIC solution for a given particle resolution. We also explore ways to improve the

efficiency of the underlying EM algorithm to find the GM. Finally, we conclude in Section 4.

2. Methodology

We describe the two main elements of the CR GM strategy, namely, GM component estimation (particle-

data compression) and GM sampling (particle-data reconstruction). Specifically, an adaptive EM algorithm

is used to estimate the number of components of the Gaussian mixture and their parameters, and a moment-

matching sampling technique is used to regenerate particles from the Gaussian mixture.

A GM is defined as a convex combination of K Gaussian distributions:

f (x) =
K

∑
k=1

ωk fk(x), (1)

where each Gaussian fk is weighted by ωk with ∑k ωk = 1 and wk > 0. The Gaussian distribution is defined

as

fk(x) =
1√

(2π)D|Σk|
e−(x−µk)

TΣ
−1
k (x−µk)/2, (2)

where µ is a D-dimensional mean vector, Σ is a D× D covariance matrix, and |Σ| is the determinant of Σ.

3

2.1. Adaptive GM models and the penalized maximum likelihood function

The goal is to estimate the parameters θ ≡ {ω, µ,
←→
Σ } of each Gaussian as well as the number of mixture

components, K, given N independent samples X= (x1...xN) drawn from f (x). Conventionally, maximum

likelihood is used to estimate θ for a prescribed number of components [18]. However, estimating the num-

ber of components itself is in fact also important, and can be addressed in the framework of the Bayesian

Information Criterion [8]. In what follows, we give a brief overview of this approach.

We seek to find the maximum likelihood of the model K (given a data set X), which by Bayes’ rule reads:

p(K|X) = p(X|K)p(K)
p(X)

, (3)

where p(K) is the prior probability distribution for the model family, and p(X) = ∑ p(X|K)p(K) is a nor-

malizing constant. If we assume that all models are equally likely a priori, then p(K) is uniform. Therefore,

maximizing p(K|X) is equivalent to maximizing p(X|K), which is the so-called marginal likelihood (also

known as evidence [19] or type II maximum likelihood [20]), and is given by:

p(X|K) =
∫

p(X|θ, K)p(θ|K)dθ, (4)

where p(θ|K) is a prior probability distribution, and p(X|θ, K) is the likelihood function, which for a Gaus-

sian mixture reads:

p(X|θ, K) =
K

∑
k=1

ωk fk(xi|µk, Σk).

We seek to maximize Eq. 4. For completeness, the derivation is carried out in Appendix A, and results in

the penalized log-likelihood function:

L(θ) = ln [p(X|θ, K)]− d
2

lnN − T
2

K

∑
i=1

ln(ωi), (5)

The last term of Eq. 5 is crucial for finding the number of components, and avoiding over-fitting and

singularities of standard maximum likelihood estimate (MLE) [9]. As pointed out in Ref. [9], this term

is an effective Dirichlet prior with negative parameters. Such a prior has a strong tendency to annihilate

redundant components. We refer to Ref. [21] for a theoretical treatment on this important point, and Refs.

[22, 23] for its practical use in the context of Gaussian mixtures.

2.2. Learning the GM model by a penalized MLE

We follow the standard method of MLE to seek optimum values of the Gaussian parameters. This is

achieved by maximizing the penalized likelihood function, Eq. 5. For a given set of particles, the penalized

log-likelihood function is given by

L(θ) =
N

∑
p=1

αpln

[
K

∑
k=1

ωk fk(vp|µk, Σk)

]
− d

2
lnN − T

2

K

∑
k=1

ln(ωk), (6)

4

where vp is particle velocity and αp is the particle weight, which accounts for cases with non-identical

samples [24]. Note that ∑N
p=1 αp = N. Typically, the MLE estimator is found by solving the likelihood

equation:
∂lnL(θ)

∂θ
= 0, (7)

subject to the constraint that ∑k ωk = 1, with:

∂2lnL(θ)
∂θ2 < 0. (8)

Setting the derivative of Eq. 6 with respect to the mean µk of the Gaussian components to zero, we

obtain

µk =
1

Nk

N

∑
p=1

γpkvp, (9)

where

γpk ≡
αpωk fk(vp|µk, Σk)

∑K
k=1 ωk fk(vp|µk, Σk)

, (10)

and

Nk =
N

∑
p=1

γpk.

Note that
K

∑
k=1

γpk = αp. (11)

Setting the derivative of Eq. 6 with respect to Σk to zero, we obtain

Σk =
1

Nk

N

∑
p=1

γpk(vp − µk)(vp − µk)
T. (12)

Maximizing Eq. 6 with respect to the mixing coefficients (again, constrained by ∑k ωk = 1) gives [25, 9]:

ωk =
Nk − T

2

N − T
2 K

, (13)

provided Nk − T
2 > 0. This suggests one should begin with more components than the “true” number of

components of the mixture [21]. A component is eliminated (Knew ← Kold − 1) if Nk − T
2 ≤ 0. In the limit

of N → ∞, Eq. 13 recovers the standard MLE result, i.e.,

ω̃k =
Nk
N

. (14)

The solution to Eqs. 9-13 can only be found iteratively.

2.3. GM component estimation: Expectation-Maximization algorithm (EM-GM)

The EM-GM algorithm provides an iterative procedure to find a local maximum of the log-likelihood

function with respect to the Gaussian parameters. For an extensive review of theoretical and practical as-

pects of EM algorithm for finite mixture models, see Ref [26]. As discussed above, we start with a relatively

5

large number of Gaussians (~10), for each Gaussian, we set its mean to coincide with a randomly cho-

sen particle, and its variance to be the same as the total variance. Each EM-GM iteration consists of the

following steps [27]:

1. For each Gaussian component k, perform E-step: Given the parameter set θit
k , where the superscript

it denotes the iteration level, evaluate Eq. 10.

2. For the same Gaussian component k, perform M-step: Compute θit+1
k = {ω, µ, Σ}it+1

k via Eqs 9,12,

and 13. If ωk ≤ 0, remove the Gaussian, and let Kit+1 = Kit − 1, otherwise, Kit+1 = Kit.

3. Re-normalize weight by ωk = ωk/ ∑Kit+1

i=1 ωi.

4. Repeat steps 1 to 3 until all Gaussians are updated, check for convergence by monitoring the log-

likelihood function, Eq. 6.

Depending on how much the overlap of the Gaussians, convergence of the algorithm may be slow.

In general, convergence is slow when Gaussians are poorly separated, and one should consider ways to

accelerate it for practical applications (see results in Sec. 3).

2.3.1. Properties of the EM-GM algorithm

An important property of the EM-GM algorithm based on the unpenalized MLE is that it conserves up to

second moments of the sample particles exactly, i.e., the mass, mean, and variance of the mixture coincide

with those of sample particles (see Ref. [12] for the 1D MLE, and derivation below for the multivariate

case). As a consequence, physical quantities such as mass, momentum, and energy (or more precisely the

pressure tensor) are conserved by the GM continuum reconstruction of the particle PDF. However, such

conservation property is not inherited by the EM-GM algorithm based on the penalized MLE (for compo-

nent adaptivity) . To recover the moment conservation property, which is desirable for high-fidelity CR in

particle simulations, we perform the estimate in two steps: first use the PMLE to select the optimal number

of Gaussians, and then postprocess the result with one step of unpenalized MLE to regain conservation.

It is useful to derive the conservation properties of the unpenalized-MLE-based EM-GM algorithm as

follows. We begin with the conservation of the first moment (mean):

E(v) =
K

∑
k=1

ωkµk

=
K

∑
k=1

ωk
1

Nk

N

∑
p=1

γpkvp

=
1
N

N

∑
p=1

αpvp = E(vp), (15)

where we use the law of total expectation [28] for the first equality, Eq. 9 for the second equality, and Eq. 14

and 11 for the third equality. It is easily seen that, if Eq. 13 is used instead of 14, the third equality above

would not follow through, breaking conservation of the first moment.

6

The derivation of the preservation of the second moments (variance) follows a similar procedure,

Var(v) = E(Var(v|y)) + Var(E(v|y))

=
K

∑
k=1

ωkΣk + E(E(v|y)2)− E(E(v|y))2

=
K

∑
k=1

ωk
1

Nk

N

∑
p=1

γpk(vp − µk)(vp − µk)
T +

K

∑
k=1

ωkµ2
k − E(x)2

=
1
N

N

∑
p=1

αpv2
p −

(
1
N

N

∑
p=1

αpvp

)2

= Var(vp),

where y is the hidden variable indicating the Gaussian component that a particle belongs to. Here, the first

equality is the law of total variance [28], the second equality uses definitions of expectations and variances,

and the third equality uses Eq. 12 and the so-called Adam’s law [i.e., E(v) = E(E(v|y)] [28]. To get to the

fourth equality, Eqs. 14, 11, and 15 are used. We observe that using Eq. 13 instead of Eq. 14 would again

break the equality of the variance between the Gaussians and particles.

The derivations above indicate that Eq. 14 is critical for the conservation properties we wish to pre-

serve for the Gaussians. Equation 13 is, however, critical for selecting the correct number of Gaussian

components. We have designed a procedure that combines the advantages of both (i.e., conservation and

adaptivity) as follows. We first perform iterations using Eq. 13 to prune out unnecessary Gaussians. Once

converged, we simply perform an extra step using Eq. 14 for the mixing coefficients. This is equivalent to

accounting for the Gaussian weights based only on the data, without penalization. Once we have Eq. 14

satisfied, the conservation properties are recovered as for the unpenalized MLE case.

2.4. GM component particle sampling

In physical space, we employ uniform random sampling independently within each cell, which effec-

tively assumes the PDF is constant within each spatial cell. In velocity space (per spatial cell), we employ

the ancestral (or forward) sampling technique [29] to generate random samples of a Gaussian mixture.

This has the advantage that it allows independent sampling per Gaussian while keeping sampled particle

weights identical. To begin, we re-write Eq. 1 as

f (v) = ∑
z

f (z) f (v|z), (16)

where z is random unit vector of length K (representing the mixture components), with only one non-zero

element zk = 1 (chosen randomly) [29]. The identification variable z has a categorical distribution f (z), and

the conditional distribution of v given z is a Gaussian. We first draw a sample from f (z), which identifies

a Gaussian component k with the probability ωk. We then draw a sample from the multivariate Gaussian

component [30]. In this study, we have used the SPRNG scalable parallel library [31] for random number

generation.

7

Sampling errors in physical space result in violations of Gauss’ law (because the accumulated charge

density on the mesh will not be identical to the pre-checkpoint state). Similarly, sampling errors in veloc-

ity space will break the conservation of mean and variance. Corrections must be made to the sampling

procedure to ensure that Gauss’ law, momentum and energy are exactly preserved [13]. We discuss these

next.

2.4.1. Preservation of Gauss’ law

In plasmas, Gauss’ law is directly related to local charge conservation. After particles are spatially

resampled within a cell, the local charge density on the mesh no longer agrees with the pre-checkpoint

stage. The local charge density at cell i is given by [32]:

ρi =
1

∆xi
∑
p

qpαpS(xi − xp),

with qp the particle charge, αp the particle weight, xp the particle position within a cell, xi the cell center,

∆xi the cell volume, and S(x) a partition-of-unity interpolation kernel (typically a B-spline [32]). Clearly,

changes in xi will generally result in changes in ρi, and therefore in Gauss’ law, ∇ · E = ρ.

In order to recover the original charge density, we use a technique introduced in Ref. [14] to match

the charge density that before checkpointing. The basic idea here is to solve for a slight adjustment of the

weight of particles as follows. To be practical, such a weight adjustment is assumed to be uniform within

a cell. We begin by assigning a weigh-correction degree of freedom per spatial cell, δAj, and define the

particle weight correction for all particles in cell j to be equal to δAj, i.e.:

δαp = ∑
j

δAjS0(xj − xp), (17)

where S0(xj − xp) is the zeroth-order B-spline (top-hat) interpolation kernel. The new particle weight is

found as:

α′p = αp + δαp. (18)

The weight correction δαp is found by matching the desired charge density ρ′i (here, using second-order

B-splines), i.e.:

ρ′i =
1

∆xi
∑
p

qpα′pS2(xi − xp).

Introducing Eqs. 17 and 18 into the last equation, there results:

∑
j

δAj ∑
p

qpS0(xj − xp)S2(xi − xp)︸ ︷︷ ︸
Mij

= ∆xi(ρ
′
i − ρi).

The resulting linear system for δAj is a mass-matrix solve, where the matrix is found from contributions

from particles to each cell according to stated interpolation rules. By construction, the matrix M is sparse,

diagonally dominant (because particles in cell j will contribute to that cell the most), and with all positive

entries. It is not stiff, and typically the resulting linear system can be converged to round-off in a few

iterations.

8

2.4.2. Preservation of mean and variance by local projection

As a result of the mass-matrix Gauss correction step, changes in the particle weight lead to changes in

local momentum and energy, breaking strict momentum and energy conservation in each cell. To recover

them, we use a well-known projection strategy of particle velocities within each cell proposed by Lemons

[13] to correct for momentum and energy errors.

To begin, we follow Ref. [13] and introduce a scaling α and shift β for the particle velocity as:

v′p = α(vp + β).

The parameters α and β are determined from the conservation constraints of momentum p and energy E

(which are obtained from the GM):

∑
p

αpvp = ∑
p

α′pv′p = p ;
1
2 ∑

p
αpv2

p =
1
2 ∑

p
α′p(v

′
p)

2 = E.

An exact solution α and β in terms of E and p can be found as:

α =

√
2EN′p − p2

2E′N′p − (p′)2 ; β =
p− αp′

αN′p
, (19)

where:

N′p = ∑
p

α′p ; p′ = ∑
p

α′pvp ; E′ =
1
2 ∑

p
α′pv2

p. (20)

Note that even though Schwarz inequality guarantees that 2E′N′p ≥ (p′)2 (and therefore the denominator

in Eq. 19 is always positive definite), the numerator may occasionally become negative (we have seen this

when the number of particles is not large enough), and therefore this is a potential failure mode of the

approach. When this occurs, there are two options: increase the targeted number of particles for that cell,

or forgo the local moment-matching step in that cell.

3. Numerical experiments

In this section, we test the proposed CR algorithm using some prototypical test problems, the 1D-1V

electrostatic two-stream instability, and the 2D-3V electromagnetic Weibel instability. We perform the sim-

ulations with the DPIC code, based on a recently proposed implicit, charge and energy conserving multi-

dimensional electromagnetic PIC algorithm [33]. Because of its exact charge- and energy-conserving for-

mulation, DPIC simulations represent a stringent test of the conservation properties (or lack thereof) of the

proposed CR algorithm.

3.1. 1D-1V two-stream electrostatic instability

The two-stream instability [34] is an electrostatic instability in which two counter-streaming particle

beams exchange kinetic and electrostatic energy, and as a result tangle up in to a vortex in phase space

[35]. The simulation is performed for L = 2π (domain size, in Debye length units), vb =
√

3/2 (beam

9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

 0 5 10 15 20 25 30

EE

Unrestarted
GMM restart, no Lemons
GMM restart, w Lemons 10

-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

 0 5 10 15 20 25 30

Gauss’ Law

10
-18

10
-17

10
-16

10
-15

10
-14

 0 5 10 15 20 25 30

Charge conservation RMS

10
-18

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

 0 5 10 15 20 25 30

Energy cons.

Figure 1: Two-stream instability: Semi-log-scale time history of the electric field energy EE (top-left), the rms of Gauss’ law residual
over the whole mesh (top-right), the rms of the residual of the charge conservation equation (bottom-left), and the change of total
energy between subsequent time steps (bottom-right). The simulations are obtained without restart, and with GM restart at t = 10 (in
normalized units) with and without Lemons moment matching.

speed, in electron thermal speed units), Nx = 32 (number of cells), Np = 156 (number of particles per

cell), ∆t = 0.2 (time step in inverse plasma frequency units), with periodic boundary conditions. Figure

1 shows the root-mean-square (rms) of the charge conservation equation residual (∂tρ + ∇ · j) over the

mesh, the electric-field energy EE = ∑i
E2

i
2 , the total energy error between subsequent timesteps, |En+1 −

En|, with E the total sum of particle and electric-field energy, and the rms of the residual of Gauss’ law,

∇ · E− ρ. The plot compares the unrestarted run with two GM-restarted ones at t = 10 (mid/late linear

stage), with and without Lemons’ moment matching. The results show exact conservation of charge for all

cases, also for energy except for the case where Lemons matching was not used (which results in a large

energy conservation error right after restart), and excellent preservation of Gauss’ law (commensurate with

the nonlinear tolerance). They also show excellent agreement in the temporal evolution of the electrostatic

field energy for all cases. For this run, the GM algorithm is started with 8 Gaussian’s per cell, resulting in

an average number of Gaussians per cell of 2, and therefore to an average compression ratio of about 75.

A comparison between 1D-1V phase-space plots between unrestarted (left) and GM-restarted (right)

runs is shown in Fig. 2. It can be appreciated that the GM-restarted phase-space plot (right) captures all

phase-space features present in the unrestarted case (left), except for a bit of beam-spread in the particles

(which is generated by the random uniform spatial initialization per cell in the GM-restarted case).

10

Standard−restart 2−stream instability phase−space plot

0 1 2 3 4 5 6

−
2

−
1

0
1

2

x

v

GMM−restart 2−stream instability phase−space plot

0 1 2 3 4 5 6

−
2

−
1

0
1

2

x

v

Figure 2: Two-stream instability: Phase-space comparison at three different times (green: t = 0, blue: t = 14.0, red: t = 19.4) between
the unrestarted case (left) and the GM-restarted one (right).

3.2. 2D-3V Weibel electromagnetic instability

Next we test with Weibel instability, which is a electromagnetic instability in a plasma with anisotropic

temperatures [36]. Unless otherwise specified, simulations below are performed in a 2D domain 10de× 10de

(where de is the electron skin depth), with 16× 16 cells, ∆t = 1 (in inverse plasma frequency units), with

doubly periodic boundary conditions. A temperature anisotropy is set up for both electrons and ions with

vthx = 0.1, and vthy,z = 0.3 in speed-of-light units. The mass ratio is set to be mi/me = 1836. We initialize

the simulation with a δ-function perturbation in the particle velocities of 10−3, as described in [33]. Note

that the code employed has assumed Darwin approximation [33], which is non-relativistic, and does not

admit any light wave propagation in the system.

Figure 3 shows similar time histories as in Fig. 1 but with the magnetic energy EB = ∑i B2
i /2, obtained

with Np = 128 particles per cell, and with and without restart at t = 20 in normalized time units (late in

the linear phase). It is apparent that conservation properties are preserved before and after restart (except

for energy without Lemons projection, as expected), and that the GM restart quality is quite good, even

with this relatively small number of particles per cell. Increasing the number of particles per cell improves

the agreement, as it is shown in Fig. 4. The initial number of Gaussians per cell is 8, leading to an average

number of Gaussians per cell of 1.8, 2.1, 3.3 for 128, 512, and 1024 particles per cell, respectively, implying a

compression ratio of 70, 240, and 310.

The ability of the approach to deal with particles with different weights is shown in Fig. 5, which depicts

similar time histories as before but now for the unrestarted and twice-GM-restarted (at t = 15 and t = 30)

2D Weibel instability with 512 particles per cell. The simulation begins with identical particles, but their

weights develop differences due to the density mass-matrix solve at the first GM restart. The second GM

restart is therefore performed with non-identical particles. Agreement between restarted and unrestarted

time histories is very good throughout the simulation, and demonstrates the ability of the method to deal

with particles with arbitrary weight.

11

10
-3

10
-2

10
-1

 0 10 20 30 40 50 60 70 80

EB

Unrestarted
GMM restart, no Lemons
GMM restart, w Lemons

10
-10

10
-9

10
-8

 0 10 20 30 40 50 60 70 80

rms Gauss’ Law

10
-18

10
-17

10
-16

10
-15

10
-14

 0 10 20 30 40 50 60 70 80

rms charge conservation

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

 0 10 20 30 40 50 60 70 80

|En+1
-En

|

Figure 3: 2D Weibel instability with Np = 128: Semi-log-scale time history of the magnetic field energy EB (top-left), the rms of the
Gauss’ law residual over the whole mesh (top-right), the rms of residual of the charge conservation equation (bottom-left), and the
change of total energy between subsequent time steps (bottom-right). The simulations are obtained without restart, and with GM
restart at t = 20 (in normalized units) with and without Lemons moment matching.

10
-3

10
-2

10
-1

 0 10 20 30 40 50 60 70 80

EB

Unrestarted
GMM restart, no Lemons
GMM restart, w Lemons

10
-10

10
-9

10
-8

 0 10 20 30 40 50 60 70 80

rms Gauss’ Law

10
-18

10
-17

10
-16

10
-15

10
-14

 0 10 20 30 40 50 60 70 80

rms charge conservation

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

 0 10 20 30 40 50 60 70 80

|En+1
-En

|

10
-3

10
-2

10
-1

 0 10 20 30 40 50 60 70 80

EB

Unrestarted
GMM restart, no Lemons
GMM restart, w Lemons

10
-10

10
-9

10
-8

 0 10 20 30 40 50 60 70 80

rms Gauss’ Law

10
-18

10
-17

10
-16

10
-15

10
-14

 0 10 20 30 40 50 60 70 80

rms charge conservation

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

 0 10 20 30 40 50 60 70 80

|En+1
-En

|

10
-3

10
-2

10
-1

 0 10 20 30 40 50 60 70 80

EB

Unrestarted
GMM restart, no Lemons
GMM restart, w Lemons

10
-10

10
-9

10
-8

 0 10 20 30 40 50 60 70 80

rms Gauss’ Law

10
-18

10
-17

10
-16

10
-15

10
-14

 0 10 20 30 40 50 60 70 80

rms charge conservation

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

 0 10 20 30 40 50 60 70 80

|En+1
-En

|
Figure 4: 2D Weibel instability: Semi-log-scale time history of the magnetic field energy with Np = 128 (left), 512 (center), and 1024
(right). The simulations are obtained without restart, and with GM restart at t = 20 (in normalized units) with and without Lemons
moment matching.

12

10
-3

10
-2

10
-1

 0 10 20 30 40 50 60 70 80

EB

Unrestarted
GMM restart

10
-10

10
-9

10
-8

 0 10 20 30 40 50 60 70 80

rms Gauss’ Law

10
-18

10
-17

10
-16

10
-15

10
-14

 0 10 20 30 40 50 60 70 80

rms charge conservation

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

 0 10 20 30 40 50 60 70 80

|En+1
-En

|

Figure 5: Time histories of the same quantities as in Fig. 3, comparing the twice-restarted 2D Weibel instability with 512 particles per
cell vs. the unrestarted result, demonstrating the ability of the method to deal with particles of arbitrary weight.

3.3. Particle remapping using EM-GM for noise reduction (variance control)

The central goal of machine-learning algorithms is not only to provide a goodness-of-fit to the data, but

also to be able to generalize. The implication in the context of GM is that the estimated continuum PDF

may be able distinguishing between noise and signal, and, if so, provide a measure of noise reduction (i.e.,

variance control), such that the GM PDF, once resampled, may lead to an improved PIC solution vs. the

unrestarted one. The subject of noise control in PIC algorithms has received significant attention recently

[37, 38, 39], but it has mostly been circumscribed to the remapping of the particle PDF via interpolation to

a (semi-)structured phase-space mesh (i.e., bins), and subsequent resampling within bins. Some of these

approaches [39] explicitly embed arbitrary moment conservation in their formulation, which is a desirable

property. However, to our knowledge, the use of Gaussian-mixture techniques for this purpose remains

unexplored.

Here, we provide anecdotal evidence that particle remapping using the GM PDF reconstruction pro-

posed here actually leads to an improvement in PIC solution quality, suggesting that a thorough exploration

of this subject is worthwhile (and will be the subject of future work). For our demonstration, we choose a

Weibel instability in a 1D domain of size π (in de units), with ∆t = 1 (in inverse plasma frequency units),

and periodic boundary conditions. The temperature anisotropy and mass ratio is the same as in the previ-

ous Weibel example. We initialize the simulation with a δ-function perturbation in the particle velocities of

10−2.

13

10
-6

10
-5

10
-4

10
-3

10
-2

 0 20 40 60 80 100

W
B

t

Nx=32, Np=1k

Unrestarted
GM-restart

10
-6

10
-5

10
-4

10
-3

10
-2

 0 20 40 60 80 100

W
B

t

Nx=128, Np=4k

Unrestarted
GM-restart

10
-6

10
-5

10
-4

10
-3

10
-2

 0 20 40 60 80 100

W
B

t

Comparison

Nx=128, Np=4k, Unrestarted
Nx= 32, Np=1k, Unrestarted
Nx= 32, Np=1k, GM-restart

Figure 6: 1D Weibel instability comparison with and without restart at t = 15 for low resolution (left), high resolution (center), and the
comparison of the two (right). Note that, for the right plot, a time shift (t← t + 12) has been applied to the low-resolution histories to
facilitate a meaningful assessment.

0 20 40 60 80 100 120

number of iterations

10
-7

10
-6

10
-5

10
-4

10
-3

lo
g
(s

to
p
p
in

g
 t
o
le

ra
n
c
e
)

standard EM - random init

accel. EM - random init

standard EM - Kmeans init

accel. EM - Kmeans init

(a) Np = 128

0 200 400 600 800 1000

number of iterations

10
-7

10
-6

10
-5

10
-4

10
-3

lo
g
(s

to
p
p
in

g
 t
o
le

ra
n
c
e
)

standard EM - random init

accel. EM - random init

standard EM - Kmeans init

accel. EM - Kmeans init

(b) Np = 512

0 200 400 600 800 1000

number of iterations

10
-7

10
-6

10
-5

10
-4

10
-3

lo
g
(s

to
p
p
in

g
 t
o
le

ra
n
c
e
)

standard EM - random init

accel. EM - random init

standard EM - Kmeans init

accel. EM - Kmeans init

(c) Np = 1024

Figure 7: Performance of EM algorithm (relative change of log-likelihood vs iteration) with and without AA and K-means initialization
at cell (1,3) of 2D Weibel problem at t = 20 with different particle resolutions.

Figure 6 shows a comparison of the magnetic-field energy evolution between unrestarted and GM-

restarted PIC simulations, for a low-resolution case (Np = 1000, Nx = 32, left) and a high-resolution one

(Np = 4000, Nx = 128, center). Both are restarted at t = 15. For the low resolution case (Fig. 6-left),

one can appreciate a relatively big difference in the evolution of the magnetic-field energy between the

unrestarted and GM-restarted simulations, especially when it enters the nonlinear stage. The magnetic

field energy is higher in the GM-restarted simulation, and there are also some phase differences in the

nonlinear oscillation. As we reduce the grid size and increase the number of particles per cell, however, the

history of the magnetic-field energy agree much better between unrestarted and GM-restarted solutions

(Fig. 6-center), indicating that the simulation is converging. More interestingly, when one compares the

low-resolution simulations with the high-resolution ones (Fig. 6-right), it is apparent that the GM-restarted

low-resolution solution is much closer to the high-resolution result than the unrestarted low-resolution one.

It follows that, for a given resolution, the GM-restarted simulation is able to achieve a more accurate B-field

nonlinear saturation energy level than the unrestarted one, suggesting that the generalization capability

rooted in the unsupervised machine-learning algorithm is in fact at play.

3.4. On the acceleration of convergence of the EM-GM nonlinear algorithm

As discussed previously, the EM-GM algorithm is guaranteed to converge [10], but performance can be

slow. There has been recent work trying to accelerate the convergence of the EM algorithm, both by improv-

14

ing the initialization of the iteration (e.g., using K-means [40]), or by improving the Picard iteration itself

(e.g., by using Anderson Acceleration (AA) [41, 40] or by advanced conjugate search direction algorithms

[42, 43]). In this study, we have implemented the K-means initialization and the Anderson Acceleration

algorithm in the standard (non-adaptive) EM-GM algorithm, and tested its impact using Weibel instability

data.

A word is in order about our AA implementation for EM-GM, which to our knowledge is new. We have

included in the residual all degrees of freedom for all Gaussians, namely, all weights ωk, means µk, and

second-moment matrices (i.e., M2,k =
∫

dv vvT fk, instead of covariance matrices, Σk =
∫

dv(v− µk)(v−
µk)

T fk = M2,k − µkµT
k). The latter choice is motivated by the fact that M2,k is linear in the mixture com-

ponents (i.e., the second moment of a linear combination of Gaussians is the linear combination of the

second moments of each individual Gaussian), whereas Σk is nonlinear, and therefore the former are better

suited for acceleration based on a linear combination of past residuals. It also has potential advantages

for the preservation of positivity of Σk (see below). It is important to note that, unlike EM, the standard

AA algorithm does not conserve moments, and does not guarantee that covariance matrices remain posi-

tive definite. To fix conservation, we apply a standard EM step after the AA iteration (as was done for the

penalized EM algorithm for the same reason). To fix positivity, we currently reset the AA iteration after

an indefinite covariance matrix is detected and revert back to a standard EM step. An alternate approach

(enabled by our choice to accelerate M2,k instead of Σk) would be to guarantee that the Anderson mixing

coefficients remain positive (i.e., that the linear combination of residuals in AA remain convex). Recent

studies promote this as a viable globalization procedure for AA [44], and this strategy will be explored in

future work.

In Fig. 7, we report on the impact of these strategies on the convergence rate of the for cell (3,1) of the

2D Weibel test using 128, 512, and 1024 particles per cell. The plots demonstrate that AA and K-means

initialization (both independently and combined) result in a significant speedup of the rate of convergence

of the non-adaptive EM-GM algorithm, which is more noticeable with increasing number of particles per

cell. It is apparent, however, that AA is much more effective in accelerating the EM-GM convergence than

K-means. From these plots, the speedup between the unaccelerated random initialization case to the AA

accelerated K-means initialization case is of more than an order of magnitude. These speedups are in fact

representative of performance in most cells for the Weibel test problem. We are currently exploring ways

of generalizing these strategies for the adaptive EM-GM algorithm, and these will be reported in a future

publication.

4. Discussion and summary

We have proposed a checkpoint-restart strategy for PIC algorithms based on unsupervised machine-

learning strategies using Gaussian Mixture models. The Gaussian components are found adaptively using

a penalized Maximum Likelihood Estimate, solved by an Expectation-Maximization procedure. For the

15

numerical tests presented, the approach has demonstrated significant compression potential (of several

orders of magnitude) without loss of physical fidelity (as demonstrated by actual restarted PIC simulations).

The latter is facilitated by the exact preservation of charge, momentum, and energy in both compression

and reconstruction stages, and by the fact that GMM provides an optimal continuum reconstruction of

the PDF represented by the particles. Key to the fidelity of the approach (particularly if many CRs are

performed) is the use of a mass-matrix procedure to match the density profile on the mesh exactly, and

a projection step to enforce conservation properties after particle resampling. Our numerical experiments

not only demonstrate that the approach successfully restarts both electrostatic and electromagnetic PIC

simulations (with strict conservation of both charge and energy exactly, and which therefore represent a

stringent test of the method), but also suggest that a periodic GM particle remap may in fact improve the

quality of PIC solutions. This point, which is anecdotal in this study, suggests the possibility of machine-

learning variance reduction in particle methods, and will be investigated further in future work. Finally,

we have proposed a simple implementation strategy for Anderson Acceleration in the non-adaptive EM-

GM algorithm that results in convergence speedups of more than an order of magnitude, while strictly

preserving the positivity of the covariance matrices of the mixture. Beyond CR and particle remapping

for enhanced solution quality, we note that the approach outlined in this study enables straightforwardly

particle redistribution over the computational domain, to facilitate various performance goals such as load

balancing and particle-number control. This will also be the subject of future studies.

Acknowledgements

This work was supported by the U.S. Department of Energy, Office of Science, Office of Applied Scien-

tific Computing Research (ASCR), both by the EXPRESS (2016-17) and SciDAC (2018-20) programs. This

research used resources provided by the Los Alamos National Laboratory Institutional Computing Pro-

gram, and was performed under the auspices of the National Nuclear Security Administration of the U.S.

Department of Energy at Los Alamos National Laboratory, managed by Triad National Security, LLC under

contract 89233218CNA000001.

Appendix A. Derivation of Penalized Likelihood Function

We begin by making use of the exact decomposition [45]:

lnp(X|K) = L(q) + KL(q||p), (A.1)

where

L(q) =
∫

q(θ)ln
p(X|θ, K)p(θ|K)

q(θ)
dθ, (A.2)

KL(q||p) =
∫

q(θ)ln
q(θ)

p(θ|X, K)
dθ, (A.3)

16

Note that the decomposition holds for an arbitrary positive-definite distribution q(θ). Since the Kullback-

Leibler divergence KL(q||p) is always greater or equal to zero [19], L(q) is a lower bound of the log-marginal

likelihood. In fact, maximizing L(q) is equivalent to maximizing lnp(X|K) [45]. Various forms of q(θ) can

be adopted. For instance, variational Bayesian methods assume that q(θ) factorizes over subsets {θi}, i.e.,

q(θ) = Πiqi(θi) [46]. Here, q(θ) is assumed to be a uniform distribution in a small interval (a, b) around

a point of θ, i.e., q(θ) = 1/∆, with ∆ ≡
∫ b

a dθ the volume of a d-dimensional hypercube in the space of

parameter θ. Equation A.2 then becomes

L(∆) =
1
∆

∫ b

a
ln [p(θ|K)∆] dθ+

1
∆

∫ b

a
ln [p(X|θ, K)] dθ. (A.4)

In the context of information theory, the maximum of Eq. A.4 is equivalent to the shortest message length

that the data can communicate [19]. The idea is that the model with the minimum message length (thus

so-called MML) should be preferred. The message length, defined as l(x) = −lnP(x), where P(x) is the

probability of an event x, is a measure of the information content of the event x [19]. For a continuous

PDF p(x), l(x) = −ln[p(x)dx], with dx a small interval around x. It is clear from this perspective that the

first term on the right-hand-side (rhs) of Eq. A.4 corresponds to the message length of θ, and ∆ denotes a

discretization of θ (which may be thought as the finite precision of θ). The finite precision of θ has a major

effect on “communicating” the message length of the data. Expectation is taken with respect to the assumed

uniform distribution q(θ) over a small interval (a, b), and an optimum ∆ can be found by maximizing Eq.

A.4.

We next rewrite the log-marginal likelihood function (Eq. A.4) as:

L(∆ξ) =
1

∆ξ

∫ β

α
ln
[
p(ξ|K, ω)p(ω)∆ξ

]
dξ +

1
∆ξ

∫ β

α
ln [p(X|ξ, K, ω)] dξ. (A.5)

where we have made a variable transformation θ = Λ−1/2UTξ with Jacobian J = |∂θ/∂ξ|. Here U is a d× d

orthogonal matrix with columns given by eigenvectors and Λ is a d× d diagonal matrix with elements of

eigenvalues of the observed Fisher information matrix, Ip = − ∂2lnp(X|θ,K,ω)
∂θ2

∣∣∣
θ̃
. Here we have assumed that

the Hessian matrix is a negative semidefinite (e.g., when lnp is concave), so that we can write Ip = UΛUT ,

where U is an orthogonal matrix. It follows that J = |Ip|−
1
2 . Using the chain rule [47] we find that Ip(ξ) =

(∂θ/∂ξ)T Ip(∂θ/∂ξ) = 1. A truncated Taylor expansion with respect to the center (denoted as ξ̃) of ∆ξ is

typically employed to approximate the log-likelihood lnp(X|ξ, K, ω):

lnp(X|ξ, K, ω) ' lnp(X|ξ̃, K, ω) + (ξ − ξ̃) · ∂lnp
∂ξ

∣∣∣∣
ξ̃

+
1
2
(ξ − ξ̃)T · (ξ − ξ̃). (A.6)

Substituting Eq. A.6 into Eq. A.5 results

L(ξ̃, ∆ξ) = ln
[
p(X|ξ̃, K, ω)p(ξ̃|K, ω)p(ω)∆ξ

]
− d

24
∆2/d

ξ , (A.7)

where we have used 1
∆ξ

∫ β
α (ξ − ξ̃)dξ = 0, and 1

∆ξ

∫ β
α (ξ − ξ̃)T · (ξ − ξ̃)dξ = d

12 ∆2/d
ξ , both integrated over the

volume ∆ξ (a d-dimensional hypercube), and assuming that all the other terms are constant within ∆ξ . By

17

setting ∂L
∂∆ξ

= 0, ∆ξ = (12)d/2 is found to maximize Eq. A.7. Substituting ∆ξ = (12)d/2 into Eq. A.7 yields:

L(θ̃) = ln
[
p(X|θ̃, K, ω)p(θ̃|K, ω)p(ω)

]
− 1

2
ln|Ip| −

d
2
(1− ln12), (A.8)

where we have also used p(X|θ̃, K)p(θ̃|K)J = p(X|ξ̃, K)p(ξ̃|K) due to the variable transformation [48]. The

negative of Equation A.8 is the so-called MML criterion [49]:

Message Length = −ln
[
p(X|θ̃, K, ω)p(θ̃|K, ω)p(ω)

]
+

1
2

ln|Ip|+
d
2
(1− ln12). (A.9)

Note that ∆ξ related terms group into the last term, which is in general not that important (see below).

We must further simplify Eq. A.8 because of the difficulties in selecting prior distributions [50] and cal-

culating the Fisher information. We start with noting that Ip = − ∂2∑N
i=1 lnp(xi |θ,K)

∂θ2

∣∣∣∣
θ̃

= −∑N
i=1

∂2lnp(xi |θ,K)
∂θ2

∣∣∣
θ̃
'

NI where I = −Eθ(∂
2lnp(x|θ, K)/∂θ2) is the Fisher information matrix (FIM), and the expectation is taken

with the mixture PDF [8]. To proceed, only an upper bound of |I|, the complete FIM Ic [51], is considered

[52],

Ic = Blockdiag(ω1 I1, ..., ωK IK, Iω), (A.10)

where Ik is a T × T FIM, with T = 1
2 D(D + 3) and recall that D is the dimension of µ. Note that d × d

is the dimension of I, where d = KT + K − 1 is the total number of parameters. The minus one is due to

the constraint that ∑i ωi = 1. The second term on the rhs of Eq. A.8 may be written as − 1
2 ln(Nd|Ic|) =

− 1
2 ln[Nd ∏K

i=1(ω
T
i |Ii|)|Iω |]. With the above approximations, Eq. A.8 yields:

L(θ̃) = ln

(
p(θ̃|K)√

|Iω |∏K
i=1

√
|Ii|

)
+ lnp(X|θ̃, K)− d

2
lnN − T

2

K

∑
i=1

lnωi −
d
2
(1− ln12). (A.11)

If we choose independent priors, i.e., p(θ̃|K) = p(ω)∏K
i=1 p(µi, Σi), and adopt Jeffreys’ prior for ω and for

each (µi, Σi) [53, 9], we obtain

L(ω, µ, Σ) = ln
(

p(X|ω, µ, Σ, K)
)
− d

2
lnN − T

2

K

∑
i=1

ln(ωi), (A.12)

after dropping some constants and∼ O(d) terms (more specifically the condition for dropping the last term

of Eq. A.8 is N � 1 which is typically the case). We have arrived at a simple penalized likelihood function,

Eq. A.12. It is worth noting that the MML estimator of maximizing the likelihood Eq. A.12 is invariant un-

der variable transformation, or re-parameterization of (µ, Σ) and ω. This is due to the invariance property

of maximum likelihood estimators to arbitrary transformations of the parameters of likelihood function

[48].

18

References

[1] J. A. Kahle, J. Moreno, and D. Dreps, “2.1 summit and sierra: Designing ai/hpc supercomputers,” in

2019 IEEE International Solid-State Circuits Conference-(ISSCC), pp. 42–43, IEEE, 2019.

[2] E. B. Nightingale, J. R. Douceur, and V. Orgovan, “Cycles, cells and platters: an empirical analysisof

hardware failures on a million consumer pcs,” in Proceedings of the sixth conference on Computer systems,

pp. 343–356, 2011.

[3] R.-T. Liu and Z.-N. Chen, “A large-scale study of failures on petascale supercomputers,” Journal of

computer science and technology, vol. 33, no. 1, pp. 24–41, 2018.

[4] E. Rojas, E. Meneses, T. Jones, and D. Maxwell, “Analyzing a five-year failure record of a leadership-

class supercomputer,” in 2019 31st International Symposium on Computer Architecture and High Perfor-

mance Computing (SBAC-PAD), pp. 196–203, IEEE, 2019.

[5] D. Dauwe, S. Pasricha, A. A. Maciejewski, and H. J. Siegel, “An analysis of resilience techniques for

exascale computing platforms,” in 2017 IEEE International Parallel and Distributed Processing Symposium

Workshops (IPDPSW), pp. 914–923, IEEE, 2017.

[6] Z. Miao, J. Calhoun, and R. Ge, “Energy analysis and optimization for resilient scalable linear systems,”

in 2018 IEEE International Conference on Cluster Computing (CLUSTER), pp. 24–34, IEEE, 2018.

[7] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin, “Flexible io and integration for scien-

tific codes through the adaptable io system (adios),” in Proceedings of the 6th international workshop on

Challenges of large applications in distributed environments, pp. 15–24, 2008.

[8] G. J. McLachlan and D. Peel, Finite mixture models. John Wiley & Sons, 2004.

[9] M. A. Figueiredo and A. K. Jain, “Unsupervised selection and estimation of finite mixture models,” in

Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, vol. 2, pp. 87–90, IEEE, 2000.

[10] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the em

algorithm,” Journal of the royal statistical society. Series B (methodological), pp. 1–38, 1977.

[11] C. S. Wallace, Statistical and inductive inference by minimum message length. Springer Science & Business

Media, 2005.

[12] J. Behboodian, “On a mixture of normal distributions,” Biometrika, vol. 34, no. 57 Part 1, pp. 215–217,

1970.

[13] D. S. Lemons, D. Winske, W. Daughton, and B. Albright, “Small-angle coulomb collision model for

particle-in-cell simulations,” Journal of Computational Physics, vol. 228, no. 5, pp. 1391–1403, 2009.

19

[14] D. Burgess, D. Sulsky, and J. Brackbill, “Mass matrix formulation of the flip particle-in-cell method,”

Journal of Computational Physics, vol. 103, no. 1, pp. 1–15, 1992.

[15] R. Dupuis, M. V. Goldman, D. L. Newman, J. Amaya, and G. Lapenta, “Characterizing magnetic re-

connection regions using gaussian mixture models on particle velocity distributions,” The Astrophysical

Journal, vol. 889, no. 1, p. 22, 2020.

[16] K. J. Bowers, B. G. Devolder, L. Yin, and T. J. Kwan, “A maximum likelihood method for linking

particle-in-cell and monte-carlo transport simulations,” Computer physics communications, vol. 164,

no. 1-3, pp. 311–317, 2004.

[17] D. J. Larson and C. V. Young, “A finite mass based method for vlasov–poisson simulations,” Journal of

Computational Physics, vol. 284, pp. 171–185, 2015.

[18] B. S. Everitt, “Finite mixture distributions,” Wiley StatsRef: Statistics Reference Online, 2014.

[19] D. J. MacKay and D. J. Mac Kay, Information theory, inference and learning algorithms. Cambridge univer-

sity press, 2003.

[20] I. J. Good, The Estimation of Probabilities: An Essay on Modern Bayesian Methods. MIT Press, 1965.

[21] J. Rousseau and K. Mengersen, “Asymptotic behaviour of the posterior distribution in overfitted mix-

ture models,” Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 73, no. 5,

pp. 689–710, 2011.

[22] Z. Zivkovic, “Improved adaptive gaussian mixture model for background subtraction,” in Proceedings

of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., vol. 2, pp. 28–31, IEEE, 2004.

[23] K. Tu, “Modified dirichlet distribution: Allowing negative parameters to induce stronger sparsity,” in

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 1986–1991,

2016.

[24] V. Hasselblad, “Estimation of parameters for a mixture of normal distributions,” Technometrics, vol. 8,

no. 3, pp. 431–444, 1966.

[25] J.-L. Gauvain and C.-H. Lee, “Maximum a posteriori estimation for multivariate gaussian mixture

observations of markov chains,” IEEE transactions on speech and audio processing, vol. 2, no. 2, pp. 291–

298, 1994.

[26] R. A. Redner and H. F. Walker, “Mixture densities, maximum likelihood and the em algorithm,” SIAM

review, vol. 26, no. 2, pp. 195–239, 1984.

[27] G. Celeux, S. Chrétien, F. Forbes, and A. Mkhadri, “A component-wise em algorithm for mixtures,”

Journal of Computational and Graphical Statistics, vol. 10, no. 4, pp. 697–712, 2001.

20

[28] J. K. Blitzstein and J. Hwang, Introduction to probability. Crc Press, 2019.

[29] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.

[30] Y. L. Tong, The multivariate normal distribution. Springer Science & Business Media, 2012.

[31] M. Mascagni and A. Srinivasan, “Algorithm 806: Sprng: A scalable library for pseudorandom number

generation,” ACM Transactions on Mathematical Software (TOMS), vol. 26, no. 3, pp. 436–461, 2000.

[32] C. K. Birdsall and A. B. Langdon, Plasma physics via computer simulation. CRC press, 2004.

[33] G. Chen and L. Chacon, “A multi-dimensional, energy-and charge-conserving, nonlinearly implicit,

electromagnetic vlasov–darwin particle-in-cell algorithm,” Computer Physics Communications, vol. 197,

pp. 73–87, 2015.

[34] M. A. Lampert, “Plasma oscillations at extremely high frequencies,” Journal of Applied Physics, vol. 27,

no. 1, pp. 5–11, 1956.

[35] K. Roberts and H. L. Berk, “Nonlinear evolution of a two-stream instability,” Physical Review Letters,

vol. 19, no. 6, p. 297, 1967.

[36] E. S. Weibel, “Spontaneously growing transverse waves in a plasma due to an anisotropic velocity

distribution,” Physical Review Letters, vol. 2, no. 3, p. 83, 1959.

[37] B. Wang, G. H. Miller, and P. Colella, “A particle-in-cell method with adaptive phase-space remapping

for kinetic plasmas,” SIAM Journal on Scientific Computing, vol. 33, no. 6, pp. 3509–3537, 2011.

[38] A. Myers, P. Colella, and B. V. Straalen, “A 4th-order particle-in-cell method with phase-space remap-

ping for the vlasov–poisson equation,” SIAM Journal on Scientific Computing, vol. 39, no. 3, pp. B467–

B485, 2017.

[39] D. Faghihi, V. Carey, C. Michoski, R. Hager, S. Janhunen, C.-S. Chang, and R. Moser, “Moment pre-

serving constrained resampling with applications to particle-in-cell methods,” Journal of Computational

Physics, vol. 409, p. 109317, 2020.

[40] J. H. Plasse, “The em algorithm in multivariate gaussian mixture models using anderson acceleration,”

2013.

[41] H. F. Walker and P. Ni, “Anderson acceleration for fixed-point iterations,” SIAM Journal on Numerical

Analysis, vol. 49, no. 4, pp. 1715–1735, 2011.

[42] Y. He and C. Liu, “The dynamic "expectation–conditional maximization either" algorithm,” Journal of

the Royal Statistical Society: Series B (Statistical Methodology), vol. 74, no. 2, pp. 313–336, 2012.

21

[43] W. Xiang, A. Karfoul, C. Yang, H. Shu, and R. L. B. Jeannès, “An exact line search scheme to accelerate

the em algorithm: Application to gaussian mixture models identification,” Journal of Computational

Science, p. 101073, 2020.

[44] X. Chen and C. Kelley, “Convergence of the ediis algorithm for nonlinear equations,” SIAM Journal on

Scientific Computing, vol. 41, no. 1, pp. A365–A379, 2019.

[45] R. M. Neal and G. E. Hinton, “A view of the em algorithm that justifies incremental, sparse, and other

variants,” in Learning in graphical models, pp. 355–368, Springer, 1998.

[46] A. Corduneanu and C. M. Bishop, “Variational bayesian model selection for mixture distributions,” in

Artificial intelligence and Statistics, vol. 2001, pp. 27–34, Morgan Kaufmann Waltham, MA, 2001.

[47] M. J. Schervish, Theory of statistics. Springer Science & Business Media, 2012.

[48] G. Casella and R. L. Berger, Statistical inference, vol. 2. Duxbury Pacific Grove, CA, 2002.

[49] A. D. Lanterman, “Schwarz, wallace, and rissanen: Intertwining themes in theories of model selec-

tion,” International statistical review, vol. 69, no. 2, pp. 185–212, 2001.

[50] R. E. Kass and L. Wasserman, “The selection of prior distributions by formal rules,” Journal of the

American Statistical Association, vol. 91, no. 435, pp. 1343–1370, 1996.

[51] D. M. Titterington, A. F. Smith, and U. E. Makov, Statistical analysis of finite mixture distributions. Wiley„

1985.

[52] A. M. Raim, N. K. Neerchal, and J. G. Morel, “An approximation to the information matrix of exponen-

tial family finite mixtures,” Annals of the Institute of Statistical Mathematics, vol. 69, no. 2, pp. 333–364,

2017.

[53] J. Bernardo and F. Girón, “A bayesian analysis of simple mixture problems,” Bayesian statistics, vol. 3,

no. 3, pp. 67–78, 1988.

22

	1 Introduction
	2 Methodology
	2.1 Adaptive GM models and the penalized maximum likelihood function
	2.2 Learning the GM model by a penalized MLE
	2.3 GM component estimation: Expectation-Maximization algorithm (EM-GM)
	2.3.1 Properties of the EM-GM algorithm

	2.4 GM component particle sampling
	2.4.1 Preservation of Gauss' law
	2.4.2 Preservation of mean and variance by local projection

	3 Numerical experiments
	3.1 1D-1V two-stream electrostatic instability
	3.2 2D-3V Weibel electromagnetic instability
	3.3 Particle remapping using EM-GM for noise reduction (variance control)
	3.4 On the acceleration of convergence of the EM-GM nonlinear algorithm

	4 Discussion and summary
	Appendix A Derivation of Penalized Likelihood Function

