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Abstract

A grouping-circular-based (GCB) greedy algorithm is proposed to promote the efficiency of mesh deformation. By

incorporating the multigrid concept that the computational errors on the fine mesh can be approximated with those on

the coarse mesh, this algorithm stochastically divides all boundary nodes into m groups and uses the locally maximum

radial basis functions (RBF) interpolation error of each group as an approximation to the globally maximum one

of all boundary nodes in each iterative procedure for reducing the RBF support nodes. For this reason, it avoids

the interpolation conducted at all boundary nodes and thus reduces the corresponding computational complexity

from O
(
N2

cNb

)
to O

(
N3

c

)
, where Nb and Nc denote the numbers of boundary nodes and support nodes, respectively.

Besides, afterm iterations, the interpolation errors of all boundary nodes are computed once, thus allowing all boundary

nodes can contribute to error control. Two canonical deformation problems of the ONERA M6 wing and the DLR-

F6 Wing-Body-Nacelle-Pylon configuration are computed to validate the GCB greedy algorithm. The computational

results show that the GCB greedy algorithm is able to remarkably promote the efficiency of computing the interpolation

errors in the data reducing procedure by dozens of times. Because an increase of m results in an increase of Nc, an

appropriate range of [Nb/Nc, 2Nb/Nc] for m is suggested to prevent too much additional computations for solving

the linear algebraic system and computing the displacements of volume nodes induced by the increase of Nc. The

results also show that the GCB greedy algorithm tends to generate a more significant efficiency improvement for mesh

deformation when a larger-scale mesh is applied. Furthermore, this algorithm can produce a deformed mesh with a

comparable quality to the undeformed one and retain the grid orthogonality and grid spacing near the solid surface

for both structured and unstructured meshes.
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1. Introduction

The essential issue for aerodynamic shape optimizations[1–4], aircraft icing simulations[5, 6] and aeroelasticity

predictions[7–10] is to allow the computational mesh deformed so as to facilitate reproductions of aerodynamic effects

induced by shape shifting. To address this issue, various methods for mesh deformation have been developed in prior

works, such as the spring analogy method[11] and its improvements[12, 13], elasticity analogy method[14–16], partially

differential equation (PDE)-based method[17, 18], optimization-based method[19, 20], inverse distance weighted (IDW)

method[21], Delaunay graph method[22] and radial basis functions (RBF) method[23–26] etc. Among these methods,
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the RBF one, first proposed by Boer et al.[23], has been widely adopted for mesh deformation in the past decade due

to its simplicity, robustness and achievable mesh quality. In this method, the displacement of an arbitrary volume

node in the calculation domain is determined by using the RBF interpolation, which is a weighted summation of a set

of the RBFs. Each RBF is associated with a support node that is essentially a boundary node, and it can characterize

the relative displacement between the volume node and the support node according to their radius vectors. This

indicates that no connectivity information is required and the deformations of structured and unstructured meshes

can be therefore treated in a uniform manner.

However, the use of the RBF method poses a challenge that it tends to generate an extensive data manipulation

and computing, which results in a great amount of computational expenditure, especially when a large-scale mesh

with a large number of boundary nodes is applied. As a result, an employment of data reduction for this method

is required to overcome this challenge. Rendall and Allen[24, 25] proposed a greedy algorithm by minimizing the

number of support nodes for data reduction. This algorithm was devised with an incorporation of an error-driven

data reducing procedure, which starts from constructing the set of support nodes based on an arbitrary initial subset

of boundary nodes, then solving the linear algebraic system to obtain the weighting coefficients and computing the

RBF interpolation errors for all boundary nodes, after which adding the node with the maximum interpolation error

to the set of support nodes. This procedure is performed repetitively until the maximum interpolation error is

within allowance and an optimum reduced set of support nodes is then obtained. By using the greedy algorithm,

computational expenditure can be remarkably decreased, thus leading to a significantly improved efficiency of mesh

deformation. Based on the concept of the greedy algorithm, Wang and Mian[26] modified the data reducing procedure

by introducing a multi-level subspace scheme which treats the errors of boundary nodes in present interpolation as the

objects of next interpolation. This modified algorithm can control the dimension of the linear algebraic system in a

small scale and promote the efficiency of data reduction. Wei et al.[27] developed a peak-selection algorithm by using

the error-peak nodes to construct the set of support nodes, which results in a promoted efficiency of data reduction

because multiple nodes can be added at a time

Data reduction can also be achieved by reducing the number of volume nodes at which the displacements need

to be determined. For instance, Fang et al.[28] proposed an algorithm to allow the interpolation is conducted on the

Cartesian background mesh rather than on the computational mesh. Xie and Liu[29] reduced the data by limiting

the deforming region with the use of a restricted wall function. Kedward et al.[30] presented a multiscale RBF

interpolation, aimed at reducing the influence domain of RBF.

It is noteworthy that the computational complexity for solving the linear algebraic system to obtain the RBF

weighting coefficients in the data reducing procedure of the greedy algorithm is N4
c /24. This implies that Nc cannot

be too large, otherwise the computation will be too expensive. On the other hand, if the number of support nodes

is insufficient, the requirement of the interpolation accuracy may not be satisfied. To resolve these conflicting issues,

an algorithm based on the incremental Lower-Upper (LU) decomposition scheme was employed by Selim et al.[31],

which can reduce the computational complexity for solving the linear algebraic system to 4N3
c /3, thus noticeably

promoting the efficiency of data reduction and allowing a use of a sufficient number of support nodes to meet the

requirement of the interpolation accuracy. For the same purpose, Fang et al.[32] proposed an algorithm based on the

recurrence Cholesky (RC) decomposition scheme to acquire the recurrence solution of the lower triangular matrix.
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This algorithm is able to reduce the computational complexity to as small as 2N3
c /3 and further promote the efficiency

of data reduction.

It is also noted that the computational complexity for computing the RBF interpolation errors at boundary nodes

in the data reducing procedure of the greedy algorithm is 3N2
cNb/2 with Nb representing the number of boundary

nodes. It is obvious that too large may result in an unaffordable computation. To overcome this problem, Strofylas et

al.[33] constructed a multigrid agglomeration algorithm to decrease the number of boundary nodes used in the data

reducing procedure and thus promote the efficiency of data reduction. However, the implementation of this algorithm

is complicated, which may limit its application to mesh deformation.

In order to reduce the computational complexity for computing the RBF interpolation errors by decreasing the

number of boundary nodes used in the data reducing procedure with an easy implementation, a concept based on

a stochastic grouping to boundary nodes is proposed, and a grouping-circular-based (GCB) greedy algorithm which

incorporates this concept is accordingly constructed in this work. In the GCB greedy algorithm, all boundary nodes

are stochastically divided into m groups and each of groups is a subset of all boundary nodes, thus allowing the

interpolation conducted in each group rather than at all boundary nodes in each iterative procedure. For this reason,

it is able to make the computational complexity for computing the RBF interpolation errors reduced by m times,

which helps to promote the efficiency of data reduction. Besides, this algorithm uses the node with the maximum

interpolation error of each group to construct the set of support nodes.

In the following sections, the theory of the RBF interpolation is first given and the GCB greedy algorithm is

then introduced in detail. Finally, it is applied in two deformation problems of ONERA M6 wing and DLR-F6

Wing-Body-Nacelle-Pylon configuration for algorithm validation.

2. RBF interpolation

The RBF interpolation is shown as below.

F (~r) =

Nc∑
i=1

wiϕ (‖~r − ~ri‖) (1)

Here, ~r and ~ri are the radius vectors of an arbitrary volume node in the calculation domain and the support node

of the ith RBF, respectively; ϕ is the general form of the RBF and it is a function of ‖~r − ~ri‖ which stands for the

distance between ~r and ~ri; wi is the weighting coefficient of the ith RBF and F represents the weighted interpolation

with a set of RBFs. The Wendland’s C2 function[34, 35] as given in Eq. (2), which is recognized applicable to the

RBF-based mesh deformation, is employed in this work.

ϕ (η) =

 (1− η)
4

(4η + 1) , for η ≤ 1

0, for η > 1
(2)

Here, η is the non-dimensional distance normalized by the RBF radius. In the case that all boundary nodes are used

to construct the set of support nodes, the following equation must be satisfied to ensure that the RBF interpolation
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holds for all boundary nodes.

F (~rj) = ∆~rj =

Nb∑
i=1

wiϕ (‖~rj − ~ri‖), j = 1, 2, · · · , Nb (3)

Here, Nb is the numbers of all boundary nodes; ∆~rj is the displacement vector of the jth boundary node. In three

dimensions, Eq. (3) can be rewritten in the matrix forms as below.

ΦWx = ∆X

ΦWy = ∆Y

ΦWz = ∆Z

(4)

Here ∆X = {∆x1, · · · ,∆xj , · · · , ∆xNb
}T and ∆Y = {∆y1, · · · ,∆yj , · · · , ∆yNb

}T and ∆Z = {∆z1, · · · ,∆zj , · · · , ∆zNb
}T

are the displacement components of boundary nodes in the x, y and z directions, respectively; Φ is the RBF matrix

and it can be expressed in the following form.

Φ =



ϕ (‖~r1 − ~r1‖) · · · ϕ (‖~r1 − ~ri‖) · · · ϕ (‖~r1 − ~rNb
‖)

...
...

...
...

...

ϕ (‖~rj − ~r1‖) · · · ϕ (‖~rj − ~ri‖) · · · ϕ (‖~rj − ~rNb
‖)

...
...

...
...

...

ϕ (‖~rNb
− ~r1‖) · · · ϕ (‖~rNb

− ~ri‖) · · · ϕ (‖~rNb
− ~rNb

‖)


(5)

With the use of Eq. (2), Φ becomes a symmetric and positive definite matrix[34], which indicates that the Cholesky de-

composition scheme can be employed to solve the linear algebraic system as shown in Eq. (4), with a promoted efficiency

to obtain the weighting coefficient vectors of Wx =
{
wx

1 , · · · , wx
j , · · · , wx

Nb

}T
and Wy =

{
wy

1 , · · · , w
y
j , · · · , w

y
Nb

}T
and Wz =

{
wz

1 , · · · , wz
j , · · · , wz

Nb

}T
. After these vectors are obtained, the displacements of any volume node in

the calculation domain in three dimensions can be therefore determined by using the following equations, where Nv

denotes the number of volume nodes.

∆xk =
Nb∑
i=1

wx
i ϕ (‖~rk − ~ri‖)

∆yk =
Nb∑
i=1

wy
i ϕ (‖~rk − ~ri‖), k = 1, 2, · · · , Nv

∆zk =
Nb∑
i=1

wz
i ϕ (‖~rk − ~ri‖)

(6)

It is clearly seen that the RBF interpolation based on Eq. (6) requires no connectivity information, thus avoiding

the dependence on mesh topology. As a result, this method can be applied to mesh deformation with arbitrary mesh

types, including structured mesh, unstructured mesh and hybrid mesh etc.

3. GCB greedy algorithm

Using all boundary nodes to construct the matrix Φ is prohibitively expensive, especially for a three-dimensional

large-scale mesh. For this reason, a greedy algorithm, proposed by Rendall and Allen[24], is used to minimize the

dimension of Φ by reducing the number of support nodes. However, as introduced in section 1, the computational
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complexity for computing the RBF interpolation errors at boundary nodes in the data reducing procedure of this

algorithm is 3N2
cNb/2, which can result in a great amount of computation. Table 1 summarizes the computational

complexities and the corresponding amounts of computation for different processes when performing mesh deformation

with the use of the greedy algorithm for a typical mesh deformation problem which involves boundary layers. In

this problem, the numbers of volume nodes, boundary nodes and support nodes are 4,000,000, 80,000 and 2,000,

respectively. It is shown that the percentage of the total amount of computation resulted from computing the RBF

interpolation errors is as high as 84.67%, indicating that data reducing efforts should focus on this process to promote

the efficiency of the greedy algorithm.

Table 1: Computational complexities and amounts of computation when performing mesh deformation with the use of the greedy algorithm.

Process
Computational

complexity

Amount of

computation
Percentage of total amount

of computation(%)

Solving linear algebraic system with RC

decomposition scheme
2N3

c /3 5.3 × 109 0.93

Computing RBF interpolation errors 3N2
cN

2
b /2 4.8 × 1011 84.67

Computin displacements of volume nodes 10NcNv 8.0 × 1010 14.11

Others - - 0.29

In order to meet the requirement of the interpolation accuracy, the number of support nodes (Nc) should be

sufficient. Therefore, the key to minimize the computational complexity is to decrease the number of boundary nodes

used in the data reducing procedure (Nb). It is noted that the principle of the greedy algorithm is to construct a

reduced set of support nodes by adding the node with the maximum interpolation error to the set in an iterative

procedure of data reduction until the required interpolation accuracy is satisfied. For this reason, it is essentially an

error-driven successive approximation algorithm and the exact computation for the maximum interpolation error is

therefore not required. Furthermore, the sequence in which the support nodes are added does not affect the accuracy.

Based on these considerations, the GCB greedy algorithm is constructed in this work. This algorithm treats the locally

maximum interpolation error in a subset of all boundary nodes as an approximation to the globally maximum one to

decrease Nb and adds the node with the locally maximum interpolation error to the set of support nodes. It is similar

to the multigrid concept which treats the computational errors on the coarse mesh as approximations to those on the

fine mesh.

The procedure of performing the GCB greedy algorithm is given in Algorithm 1. Prior to mesh deformation, the

set of all boundary nodes, denoted as G, are stochastically divided into m groups: G0, G1, · · · , Gm−1. These groups

satisfy the following conditions.

G = {Gi| i = 1, 2, · · · ,m− 1}

Gi ∩Gj = ∅ i 6= j i, j = 1, 2, · · · ,m− 1

|card(Gi)− card(Gj)| ≤ 1 i, j = 1, 2, · · · ,m− 1

Here, card represents the number of nodes of the group. In the kth iterative procedure of data reduction, only the ith

(i = k mod m) group is active and the interpolation errors of the nodes in this group are computed, after which the
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node with the locally maximum interpolation error is added to the set of support nodes. After iterative procedures are

performed, the interpolation errors of all boundary nodes are computed once. As a result, all boundary nodes are used

for error control, which facilitates ensuring the accuracy, thus leading to a superiority to other boundary node-based

reducing algorithms which compute the errors only at selected boundary nodes. In addition, the stochastic grouping

is helpful to approximate the globally maximum interpolation error of all boundary nodes with the locally maximum

one of each group, which can accelerate the iteration. Another advantage of the GCB greedy algorithm is that it is

easier to implement compared to other algorithms.

Algorithm 1: The Grouping-Circular-Based(GCB) greedy algorithm

Input: G,∆X,∆Y,∆Z,m,E∗,Nmax
c

Output: S ,Wx,Wy,Wz

1 Divide G stochastically and uniformly into G0, G1, · · · , Gi, · · · , Gm−1;

2 Select any 3 nodes n0, n1, n2 from set G and add them to S (the set of support nodes);

3 for k = 3 to Nmax
c step 1 do

4 Compute Φ for S ;

5 Get Wx,Wy,Wz by solving Φ(Wx,Wy,Wz) = (∆X,∆Y,∆Z);

6 i = k mod m;

7 Compute the interpolation error in Gi;

8 Get the locally maximal interpolation error E and the corresponding node n in Gi;

9 if E > E∗ then

10 App n to S

The GCB greedy algorithm is able to promote the efficiency of data reduction by reducing the computational

complexity for computing the interpolation errors from 3N2
cNb/2 of the traditional greedy algorithm to 3N2

cNb/(2m).

It is noteworthy that this number will decrease to 2N3
c /3 in the premise of m = 9Nb/(4Nc), which is equivalent to

solve the linear algebraic system with the use of the RC decomposition scheme. Since the percentage of the total

amount of computation for this process is less than 1% as shown in Table 1, it can be expected that the use of the

GCB greedy algorithm is able to remarkably promote the efficiency of data reduction.

4. Results and discussions

In this section, two cases are employed to validate the GCB greedy algorithm. The first is the deformation of the

ONERA M6 wing. The second is the deformation of the DLR-F6 Wing-Body-Nacelle-Pylon configuration.

4.1. Deformation of ONERA M6 wing

The schematic diagram of the ONERA M6 wing is illustrated in Fig. 1. A structured mesh, comprised of 1,310,720

elements and 1,353,105 nodes with 10,499 nodes on surface, is used to discretize the calculation domain and its

distribution is also illustrated in this figure. To reproduce the boundary layer on surface, the height of the first layer
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mesh is set to 1× 10−5 A bending-twisting-coupled deformation, as described in Eqs. (7) and (8), is employed to

validate the GCB greedy algorithm.

∆y = 0.05z sin
( z

2b
π
)

(7)

θ = θm sin
( z

2b
π
)

(8)

Here, b is the length of the root chord and equals to 0.805; θm is the wing twisting angle around the 1/4 chord and is

set to 30◦. The shapes of the wing before and after experiencing this coupled deformation are shown in Fig. 2. The

RBF radius is valued as 7 and the allowable error for the RBF interpolation is specified as 1× 10−6.

Figure 1: The schematic diagram of the ONERA M6 wing with its

mesh distribution.

Figure 2: Shapes of the ONERA M6 wing before and after defor-

mation.

The mesh deformation is first conducted using the traditional greedy algorithm and a total number of 1,104 nodes

are selected as support nodes. For purpose of comparison, the number of support nodes is fixed at 1,104 when

performing the GCB greedy algorithm. The distributions of support nodes on surface as m varies from 1 to 80 are

summarized in Fig. 3. It is noted that the distributions of the GCB greedy algorithm are little deviated from that of

the traditional greedy algorithm which is essentially a reduced GCB greedy algorithm in the case of m = 1. On the

contrary, the distributions of the two cases (Random-1 and Random-2) in which 1,104 support nodes are randomly

selected are distinctly deviated from that of the traditional greedy algorithm. The deviations can be quantitatively

evaluated by the Kullback-Leibler (KL) divergence which is defined in the following form.

KL (m1||m2) =

Nb∑
i=1

dm1
i log

dm1
i

dm2
i

(9)

dmk
i = min

i∈G,j∈Smk
(‖~ri − ~rj‖) ,k = 1, 2 (10)

Here, Smk denotes the set of support nodes and dmk
i describes the mapping relation between Smk and G. According

to Eq. 9, a smaller KL divergence indicates the distributions of support nodes of two sets are more similar. Table 2 lists

the KL divergences for different sets of supports nodes. It can be seen that the KL divergences for the distributions
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Figure 3: Distributions of support nodes for the deformation of the ONERA M6 wing (Nc = 1, 104)
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of the GCB greedy algorithm are much smaller than those for the random cases, indicating that this algorithm is able

to generate a more reasonable set of support nodes.

Table 2: KL divergences for the deformation of the ONERA M6 wing (Nc = 1, 1104)

Sm2 KL (m1||m2) (m1 = 1)

m2 = 2 182.5

m2 = 5 183.8

m2 = 10 182.1

m2 = 20 183.6

m2 = 40 194.4

m2 = 80 189.3

Random− 1 1445.2

Random− 2 1404.3

Fig. 4 displays the maximum interpolation error histories. For the traditional greedy algorithm, this error is

globally determined among all boundary nodes, while for the GCB greedy algorithm, it is locally determined in the

active group. It can be seen that the use of the GCB greedy algorithm results in a significantly reduced CPU time

compared to that of the traditional greedy algorithm. Table 3 further manifests the superiority of the GCB greedy

algorithm by listing the time consumptions for computing the interpolation errors (t1) in the data reducing procedure.

It is shown that t1 decreases as the grouping number (m) increases. Compared to the traditional greedy algorithm,

the GCB greedy algorithm with m = 40 reduces t1 from 7.74 s to 0.37 s, and the efficiency is therefore promoted by

as high as 20.9 times. Considering that computing the interpolation errors using the traditional greedy algorithm

takes over 80% of the total amount of computation as shown in Table 1, it is implied that the GCB greedy algorithm

is able to overcome the challenge of the extensive data manipulation and computing posed by the traditional greedy

algorithm. Table 3 also lists the time consumptions for solving the linear algebraic system (t1). It is noted that t1

and t2 are of the same order of magnitude for m ≥ 10, indicating that the corresponding computational complexity

for computing the interpolation errors can decrease to O
(
N3

c

)
as long as m satisfies certain condition.

Table 3: Time consumptions for the deformation of the ONERA M6 wing (Nc = 1, 104).

Algorithm t1(s) t2(s) t1 + t2(s)

Traditional greedy algorithm 7.74 0.55 8.29

GCB greedy algorithm (m = 5) 1.69 0.56 2.25

GCB greedy algorithm (m = 10) 0.75 0.59 1.34

GCB greedy algorithm (m = 20) 0.55 0.57 1.12

GCB greedy algorithm (m = 40) 0.37 0.56 0.93

Given in 5 are the maximum interpolation error histories in terms of the number of support nodes. It is clearly seen
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Figure 4: Maximum interpolation error histories for the deformation of the ONERA M6 wing (Nc = 1,104).
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Figure 5: Maximum interpolation error histories in terms of the number of support nodes for the deformation of the ONERA M6 wing

(Nc = 1,104).
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Table 4: Number of support nodes and time consumptions for the deformation of the ONERA M6 wing.

Algorithm Nc t1(s) t2(s) t3(s) t1 + t2 + t3(s)

Traditional greedy algorithm 1104 7.74 0.55 4.45 12.74

GCB greedy algorithm (m = 5) 1107 1.69 0.57 4.44 6.70

GCB greedy algorithm (m = 10) 1107 0.76 0.59 4.49 5.84

GCB greedy algorithm (m = 20) 1137 0.57 0.58 4.60 5.75

GCB greedy algorithm (m = 40) 1155 0.41 0.61 4.67 5.69

GCB greedy algorithm (m = 80) 1202 0.23 0.67 4.83 5.73
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that the errors of the GCB greedy algorithm decrease in a similar trend to that of the traditional greedy algorithm.

This is associated with the similarity in the distribution of supports nodes as illustrated in Fig. 3. Fig. 6 compares the

globally maximum interpolation error histories of the two algorithms. It can be seen that the error decreasing trends

of the two algorithms, on the whole, are in the similar manner, though slight deviations exist, especially in the case

of m ≥ 20. Fig. 7 further gives the root-mean-square (RMS) interpolation error histories for an overall comparison.

It shows that the curves of the GCB greedy algorithm with m varying from 5 to 40 are almost coincided with that of

the traditional greedy algorithm. This indicates that the interpolation errors of each group are good approximations

to those of all boundary nodes, thus validating the accuracy of the GCB greedy algorithm. After m iterations, the

interpolation errors of all boundary nodes are computed once, thus allowing all boundary nodes can contribute to error

control. Other boundary node-based reducing algorithms, such as the multigrid agglomeration algorithm, however,

compute the interpolation errors only at selected boundary nodes, which implies that the errors at unselected ones

cannot be controlled.

The influences of m on Nc are also studied by removing the above fix on Nc and is presented in Table 4. It is

noted that as m grows to 80, Nc is slowly increased by only 8.9% from 1,104 to 1,202 in the premise of achieving

the same interpolation accuracy (1× 10−6 ). This can decrease the time consumption for computing the interpolation

errors (t1), but at a cost that it tends to increase the time consumptions for solving the linear algebraic system (t2)
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and computing the displacements of volume nodes (t3), which may reduce the efficiency of mesh deformation. This is

because that the corresponding computational complexities for solving the linear algebraic system and computing the

displacements of volume nodes increase as cubic and linear functions of Nc, respectively, as shown in Table 1. For this

reason, m cannot be too large. It is generally appropriate to set m in the range of [Nb/Nc, 2Nb/Nc], which can ensure

that the order of magnitude of the computational complexity for computing the interpolation errors is O
(
N3

c

)
, and

can also prevent too much additional computations induced by the increase of Nc. For present case, it is appropriate

to set m to 40.

Mesh quality is another indicator to examine the algorithm. The mesh distribution after deformation for the GCB

greedy algorithm is illustrated in Fig. 8 and the mesh quality defined in Eq. (11) [36] after deformation for this

algorithm is shown in Fig. 9.

q = 1−max

(
αmax − α
180◦ − α

,
α− αmin

α

)
(11)

Here, α is the interior angle of the grid; αmax and αmin are the largest and smallest interior angles of the grid,

respectively. If the value of q tends to 1, the shape of the grid tends to a regular polygon and the mesh quality is

considered fine. It is shown that the mesh qualities before and after deformation are comparable. In addition, the

grid orthogonality and the grid spacing near surface are retained after deformation.

12  

 max min1 max ,
180

q
   

 
        (9) 

Here,   is the interior angle of the grid; max  and min  are the largest and smallest interior 

angles of the grid, respectively. If the value of q  tends to 1, the shape of the grid tends to a 
regular polygon and the mesh quality is considered fine. It is shown that the mesh qualities 
before and after deformation are comparable. In addition, the grid orthogonality and grid spacing 
near the wing surface are retained after deformation. 

 
Fig. 8. Mesh distribution of the ONERA M6 wing after deformation. 

 

Fig. ???. Mesh qualities of the ONERA M6 wing undeformed and deformed. 

4.2 Deformation of DLR-F6 Wing-Body-Nacelle-Pylon configuration 

For present case, an unstructured mesh is applied to discretize the calculation domain. This 
mesh, as illustrated in Fig. 9, is comprised of 9,233,536 elements and 4,007,571 nodes with 
79,079 nodes on surface, which is larger than that of the case in section 4.1. The height of the 
first layer mesh is also set to 51 10 . The configuration is deformed in a mode as below. 

Figure 8: Mesh distribution of the ONERA M6 wing after deformation.
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Figure 9: Mesh qualities of the ONERA M6 wing unde-

formed and deformed.

4.2. Deformation of DLR-F6 Wing-Body-Nacelle-Pylon configuration

For present case, an unstructured mesh is applied to discretize the calculation domain. This mesh, as illustrated

in Fig. 10, is comprised of 9,233,536 elements and 4,007,571 nodes with 79,079 nodes on surface, which is larger than

that of the case in section 4.1. The height of the first layer mesh is also set to 1× 10−5 The configuration is deformed

in a mode as below.

∆y = 0.3c
z2

b2
sin
(

8π
z

b

)
(12)
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Here, b and c are the span length and the mean aerodynamic chord length, respectively. A comparison of the

configurations before and after deformation is given in Fig. 11. The values of the RBF radius and the allowable error

for the RBF interpolation are 5 and 2× 10−6 , respectively.

Figure 10: The schematic diagram of the DLR-F6 Wing-Body-Nacelle-Pylon configuration with its mesh distribution.

Figure 11: The DLR-F6 Wing-Body-Nacelle-Pylon configurations before and after deformation.

The number of support nodes selected by the traditional greedy algorithm is 2,520. This number is fixed when

performing the GCB greedy algorithm for purpose of comparison. The distribution of support nodes generated by the

traditional greedy algorithm is presented in Fig. 12. Consistent with the case in section 4.1, the GCB greedy algorithm

can also generate similar distributions of support nodes to the traditional greedy algorithm for present case. Fig. 13

shows the maximum interpolation error histories of the traditional greedy algorithm and the GCB greedy algorithm

with m varying from 5 to 80. It can be seen that data reduction takes much more CPU time for a larger-scale mesh

compared to the case in section 4.1 and the use of the GCB greedy algorithm is able to greatly reduce the CPU time.

Table 5 quantitatively shows the magnitude of the decrease of the time consumptions in the data reducing procedure.

For the traditional greedy algorithm (m = 1), the sum of the time consumptions for computing the interpolation errors

13



(t1) and solving the linear algebraic system (t2) are 362.75 s, while for the GCB greedy algorithm with m = 80, it

decreases to 10.95 s, indicating that the efficiency of data reduction is remarkably promoted by as high as 33.1 times.

Since t2 of the two algorithms are comparable, the efficiency promotion is mainly resulted from the employment of

the grouping-circular concept.

Figure 12: The distribution of support nodes for the deformation of the DLR-F6 Wing-Body-Nacelle-Pylon configuration (Nc = 2, 520)
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Figure 13: Maximum interpolation error histories for the deformation of the DLR-F6 Wing-Body-Nacelle-Pylon configuration (Nc = 2, 520).

The accuracy of the GCB greedy algorithm for present case can also be validated by examining the error histories

in terms of the number of support nodes in comparison with the traditional greedy algorithm as summarized in Figs.

14 ∼ 17. It is noted that the errors of the two algorithms generally follow similar decreasing trends, though as m

grows, the globally maximum interpolation error of the GCB greedy algorithm gradually deviates from that of the

traditional greedy algorithm, and the order of magnitude of the deviations is O
(
10−6

)
as illustrated in Fig. 16. It is

also noted in Fig. 17 that the RMS interpolation error histories of the GCB greedy algorithm with m varying from 5 to

14



Table 5: Time consumptions for the deformation of the DLR-F6 Wing-Body-Nacelle-Pylon configuration (Nc = 2, 520.)

Algorithm t1(s) t2(s) t1 + t2(s)

Traditional greedy algorithm 357.24 5.51 362.75

GCB greedy algorithm (m = 5) 67.70 5.49 73.19

GCB greedy algorithm (m = 10) 32.68 5.58 38.26

GCB greedy algorithm (m = 20) 16.86 5.39 22.25

GCB greedy algorithm (m = 40) 9.41 5.44 14.85

GCB greedy algorithm (m = 80) 5.58 5.37 10.95

80 are all in good agreement with that of the traditional greedy algorithm, demonstrating that using the interpolation

errors of each group to approximate those of all boundary nodes is able to ensure the accuracy.
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Figure 14: Maximum interpolation error histories in terms of the number of support nodes for the deformation of the DLR-F6 Wing-Body-

Nacelle-Pylon configuration (Nc = 2, 520).

By allowing Nc to vary, Table 6 shows the influences of m on the time consumptions when performing mesh

deformation. It is clearly seen that an increase of m results in an increase of Nc from 2520 to 2773 and a remarkable

decrease of the time consumption for computing the interpolation errors (t1) from 357.24 s to 6.49 s. However, it tends

to generate increasing time consumptions for solving the linear algebraic system (t2) and computing the displacements

of volume nodes (t3) in the case of m > 50, since the computational complexities for these two processes increases as

functions of N3
c and Nc, respectively. For this reason, the efficiency of mesh deformation indicated by the sum of t1, t2

and t3 doesn’t keep increasing as m grows. According to Table 6, this sum decreases from 393.6 s to the minimum of

46.2 s when m grows to 50, which is in the range of [Nb/Nc, 2Nb/Nc] (Nb/Nc ≈ 31.7) suggested in section 4.1, and the

efficiency of mesh deformation is therefore improved by 8.5 times that is almost one order of magnitude. Compared
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Figure 15: Globally maximum interpolation error histories in terms of the number of support nodes for the deformation of the DLR-F6

Wing-Body-Nacelle-Pylon configuration (Nc = 2, 520).
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Figure 16: Globally maximum interpolation error histories in terms of the number of support nodes for the deformation of the DLR-F6

Wing-Body-Nacelle-Pylon configuration in a locally enlarged drawing (Nc = 2, 520).
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Figure 17: RMS interpolation error histories in terms of the number of support nodes for the deformation of the DLR-F6 Wing-Body-

Nacelle-Pylon configuration (Nc = 2, 520).

to the case as shown in Table 4, it is manifested that the use of the GCB greedy algorithm tends to generate a more

significant efficiency improvement for mesh deformation when a larger-scale mesh is applied.

Table 6: Number of support nodes and time consumptions for the deformation of the DLR-F6 Wing-Body-Nacelle-Pylon configuration.

Algorithm Nc t1(s) t2(s) t3(s) t1 + t2(s) + t3(s)

Traditional greedy algorithm 2520 357.24 5.51 30.85 393.60

GCB greedy algorithm (m = 5) 2544 69.32 5.57 31.45 106.48

GCB greedy algorithm (m = 10) 2577 34.78 6.13 32.03 72.94

GCB greedy algorithm (m = 20) 2567 17.99 5.92 31.85 55.76

GCB greedy algorithm (m = 40) 2640 10.10 6.43 32.43 48.96

GCB greedy algorithm (m = 50) 2655 7.99 5.58 32.63 46.20

GCB greedy algorithm (m = 80) 2773 6.49 7.44 34.10 48.03

The mesh distribution after deformation is given in Fig. 18 and a comparison of the mesh qualities before and

after deformation is given in Fig. 19. It is shown that the GCB greedy algorithm can produce a deformed mesh with

a comparable quality to the undeformed one for complex problems involving large deformations, which contributes to

the subsequent aerodynamic simulation based on the computational fluid dynamics (CFD) technique.

5. Conclusions

In present work, a GCB greedy algorithm aimed at improving the efficiency of mesh deformation is proposed and

validated in deformations of the ONERA M6 wing and the DLR-F6 Wing-Body-Nacelle-Pylon configuration. The

conclusions are made in the following.

1. By incorporating the multigrid concept, the GCB greedy algorithm treats the maximum interpolation error of

each group as an approximation to that of all boundary nodes and uses the node with the maximum interpolation
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Figure 18: Mesh distribution of the DLR-F6 Wing-Body-Nacelle-Pylon configuration after deformation.
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Figure 19: Mesh qualities of the DLR-F6 Wing-Body-Nacelle-Pylon configuration undeformed and deformed.
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error in each group to construct the set of support nodes. Unlike other boundary node-based reducing algorithms,

it allows all boundary nodes can contribute to error control, thus ensuring the accuracy.

2. The computational results indicate that the GCB greedy algorithm is able to reduce the computational com-

plexity for computing the interpolation errors in the data reducing procedure from O
(
N2

cNb

)
to O

(
N3

c

)
and

therefore promote the efficiency of this process by dozens of times. In addition, m should be appropriately set

in the range of [Nb/Nc, 2Nb/Nc] to prevent too much additional computations for solving the linear algebraic

system and computing the displacements of volume nodes induced by the increase of Nc which is resulted from

the increase of m.

3. It is manifested that the superiority of the GCB greedy algorithm in improving the efficiency of mesh deformation

is more distinct for the use of a larger-scale mesh. For the deformation of the DLR-F6 Wing-Body-Nacelle-Pylon

configuration, the efficiency of mesh deformation is improved by almost one order of magnitude.

4. For both structured and unstructured meshes, the GCB greedy algorithm can ensure the mesh quality after

deformation and retain the grid orthogonality and the grid spacing near surface, which can therefore contribute

to the subsequent aerodynamic simulation based on the CFD technique.
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