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Abstract

To simulate the dynamics of structural deformation and fracture caused by

fluid-structure interactions accurately and efficiently, a strong coupling between

the peridynamic model and the lattice Boltzmann method using the immersed

boundary method is developed here. In this novel method, the peridynamic

model predicts structural deformation and fracture, the cascaded lattice Boltz-

mann method serves as the flow solver, and the immersed boundary method

is to enforce a no-slip boundary condition on the fluid-solid interface. The

strong coupling is achieved by adding velocity corrections for the fluid and solid

phases simultaneously at each time step, which are calculated by solving a lin-

ear system of equations derived from an implicit velocity correction immersed

boundary scheme. Therefore, this new scheme based on the immersed bound-

ary method eliminates the need to iteratively solve the dynamics of the fluid

and solid phases at each time step. The proposed method is rigorously vali-

dated considering the plate with a pre-existing crack under velocity boundary

conditions, the sedimentation of an elastic disk, the cross-flow over a flexible

beam, and the flow-induced deformation of an elastic beam attached to a rigid

cylinder. More importantly, the structural deformation, crack formation, and
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fracture due to interaction with the fluid flow are captured innovatively.

Keywords: Peridynamics, immersed boundary method, lattice Boltzmann

method, fluid-structure interaction, hydraulic fracturing, strong coupling
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1. Introduction

The formation and propagation of cracks and the breakup and movement

of crack fragments in a fluid flow are of primary importance for many medical

and industrial applications, such as rupture of the aneurysm [1], microstruc-

tural damage of articular cartilage [2], and silt erosion in hydro turbines [3].5

Considering the great challenges in the development of analytical solutions and

laboratory experiments for these complicated fluid-structure interaction (FSI)

problems, an accurate and efficient numerical tool is key to developing novel

FSI technologies and improving structure integrity of industrial systems.

As the continuity assumption underlying the classical continuum mechan-10

ics [4–6] becomes invalid in the presence of solid cracks, some researchers at-

tempted to utilize other methods including the diffuse-interface model [7] and

the particle-based model [8]. Here, we will use the peridynamics theory to de-

scribe structural deformation and dynamic fracture, which is implemented as a

particle solver where the solid is discretized using a set of material points, and15

the interactions between these points are expressed in an integral form [9–11].

Hence, the continuity assumption is not required and the discontinuities such

as fractures are captured inherently [12]. Moreover, many constitutive models

have been developed for different materials, such as rubbery membranes [13],

composite structures [14], brittle and ductile materials [15–17]. To build a con-20

sistent computational framework to model the dynamical processes of structural

deformation, crack formation and propagation, and final breakup, the peridy-

namic theory as a solid solver is then coupled with a flow solver via a partitioned

scheme for its flexibility [5, 6, 18, 19].

A coupled immersed boundary-cascaded lattice Boltzmann method (IB-CLBM) [20]25
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has been applied successfully for many complex FSI problems [18, 21–25]. The

CLBM is a promising flow solver, which has been applied in the simulation of

turbulent, multiphase [26], and thermal flows [27]. The immersed boundary

method (IBM) [28] tracks the fluid-solid interface with a moving Lagrangian

grid to effectively enforce the no-slip boundary condition on the interface [29–30

32], thereby circumventing the time-consuming re-meshing procedure used in

conventional body conformal boundary schemes [33–38]. Moreover, it has been

demonstrated that the relaxed multi-direct-forcing (MDF) scheme can signifi-

cantly improve efficiency and accuracy of implementing the no-slip boundary

condition in an IB scheme [22].35

Coupling of the fluid and solid solvers using a partitioned approach can be

achieved through a weak or strong scheme. We have previously developed a

weak scheme to couple the peridynamic model with the IB-CLBM solver [39]

by launching the two solvers sequentially. It has been demonstrated that this

multi-physics computational framework can predict the erosive impact of solid40

particles in a flow correctly. Recently, a weak coupling scheme for the peridy-

namic model and an open-source solver based on the Navier-Stokes equations

has also been achieved by Dalla Barba and Picano [40, 41]. However, in the

above attempts, the solid-fluid density ratio should be much larger than unity

and a sub-evolution step of the peridynamic solver is needed to ensure the nu-45

merical stability, as the numerical errors arise from the asynchronously satisfied

interface condition in the weak coupling scheme [42].

Here, we will develop a strong coupling scheme, so the concurrent solutions

of the fluid and solid phases will improve the temporal accuracy and numerical

stability, which is essential to capturing structural deformation, crack formation50

and propagation, and breakup. The traditional strong coupling approach [29] is

computationally expensive due to the iterative solution of fluid flow and struc-

ture dynamics until convergence at each time step. To alleviate this drawback,

the IBM was used as an efficient bridge to connect the fluid and solid solvers

within a linear system of equations. These efforts have been pioneered by Wang55

and Eldredge [43], Lācis et al. [44], Goza and Colonius [45], who demonstrated
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that the iterative solution of the fluid and solid phases at each time step is not

necessary.

Moreover, there are many iterative methods employed to solve the linear

system of equations based on the IBM. For example, in the flow solvers based60

on the Navier-Stokes equations, the block-LU decomposition linear equation

was employed to solve the implicit coupling between fluid dynamics and rigid

body dynamics [44], and between fluid dynamics and thin elastic structures [45].

Wang and Eldredge [43] used a block Gauss-Seidel scheme to solve the strong

coupling between the fluids and rigid-body systems, and a relaxation scheme65

based on the virtual fluid inertia was employed to reduce the number of itera-

tions.

In the current paper, the peridynamic model and the LBM are coupled

through a strong coupling scheme based on the IBM to model the flow-induced

structural deformation and fracture. Different from using the force corrections70

like Wang and Eldredge [43], the velocity corrections for the fluid and solid

phases are calculated by solving a linear system of equations derived from an

implicit velocity correction scheme of the IBM. Moreover, the simultaneous

velocity corrections in the current method are solved iteratively with the efficient

relaxed MDF scheme of the IBM [22].75

This paper is organised as follows. In Section 2, the peridynamic model and

the IB-CLBM are introduced, the strong coupling scheme is derived, and the

algorithm is summarised. In Section 3, the proposed method is validated rigor-

ously by the plate with a pre-existing crack under velocity boundary conditions,

the sedimentation of an elastic disk, the cross-flow over a deformable beam, and80

the flow-induced deformation of an elastic beam attached to a rigid cylinder.

The conclusions are drawn in Section 4.
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2. Methodology

2.1. The peridynamic theory

The peridynamic theory uses an integral equation to describe the relative85

displacement and force between neighbouring material points and hence it in-

herently captures the discontinuities, such as crack and material damages [46].

The peridynamic theory is introduced briefly here, and more information can be

found in the literature, e.g. Refs. [11, 46]. Here, the variables of the peridynamic

model are marked with a subscript s.90

The peridynamic theory formulates the motion of material points as

ρsd̈(xs, t) = Fpd(xs, t) + Fb(xs, t), (1)

where ρs is the density of material points; xs is the initial location of a material

point, which refers to the material points moving in the Lagrangian frame; d

is the displacement vector of the material point xs at time t. The acceleration

of each material particle d̈ is related to the peridynamic long-range force term

of the peridynamics Fpd and an external body force density Fb. A bond-based

peridynamic model is used to calculate Fpd, i.e.

Fpd(xs, t) =

H∑
x′
s

f(η, ξ)Vx′
s
. (2)

In Eq. (2), H represents the neighbourhood of the material point xs, and the

region is determined by a horizon radius δ = 3.015∆, where ∆ is the size of

material points. Eq. (2) shows that the long-range force Fpd, exerted on the

material point xs by the other points x′s within H, is the integral of a force

density f(η, ξ) over the volume Vx′
s
, where ξ = x′s − xs and η = d′ − d [11].95

A prototype micro-elastic brittle (PMB) material with a bond-based peri-

dynamic formulation [46] is used in this study. The force density takes the form

of

f(η, ξ) = cskn, (3)
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where the unit vector n points from xs + d to x′s + d′. For two-dimensional

structures, the bond constant c is defined as

c = 9E/πhδ3, (4)

where E is the Young’s modulus, and h is structure thickness (h = ∆). The

scalar bond stretch s in Eq. (3) is defined as

s =
|η + ξ| − |ξ|

|ξ|
. (5)

If the bond stretch s exceeds a critical value sc, the bond breaks irreversibly and

k is set to be zero; otherwise, k is always kept to be one. The critical stretch sc

is obtained from

sc =

√
4Gc
hcδ4

, (6)

where Gc is the fracture energy of the material. The accumulation of broken

bonds leads to material damage. The damage of a material point is assessed

with the ratio of the number of broken bonds to all the bonds of the material

point, which equals one when a material point loses all its bonds [39].

The Störmer–Verlet integration with second-order accuracy is employed here

to integrate Eq. (1) as follows,

dn+1
s = 2dns − dn−1

s + δt2d̈ns , (7)

uns = ḋns =
dn+1
s − dn−1

s

2δt
. (8)

2.2. The immersed boundary-cascaded lattice Boltzmann method100

In the IB-CLBM method, the IBM is used to enforce the no-slip boundary

condition on the fluid-solid interface, tracked with a moving Lagrangian grid xl,

and the CLBM solves the fluid flow in the computational domain discretized

with a fixed Eulerian mesh x. The Lagrangian variables are marked with the

subscript “l”, while the Eulerian ones have no subscript.105
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In the CLBM, the fluid is represented by a set of imaginary particles that

follow the collision-streaming procedures on a uniform lattice grid. The distri-

bution of imaginary particles evolves according to the following equation,

fα(x + eαδt, t+ δt) = fα(x, t) + Ωα(x, t) + Sαδt, (9)

where fα is the distribution function of imaginary particles at the position x

with the discrete velocity eα at the time t; Ωα, Sα and δt are the discrete

collision operator, the discrete force term and the time step, respectively. The

D2Q9 discrete velocity set e = |eα〉′ for two-dimensional flows [47] is

e =

 0 1 0 −1 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

 , (10)

where the superscript “′” is the transpose operator, |·〉 represents a column

vector. The relaxation parameters ωα of the collision operator is calculated

from the kinematic shear viscosity ν of the fluid as follows,

ν = c2s(ω
−1
4,5 − 0.5), (11)

ω4 = ω5, (12)

where other relaxation parameters are set to unity, and cs is the sound speed

of the D2Q9 model, i.e. cs = 1/
√

3. To minimize the compressibility effect in

the LBM, the Mach number Ma = u/cs is chosen to be smaller than 0.1, which

means the fluid velocity in lattice unit is always lower than 0.05.

The external force term F is incorporated in the central-moment collision

operator Ω = |Ωα〉, which is also related to the distribution functions f =

|fα〉 [48]. The discrete forcing term S = |Sα〉 is obtained from the external

body force F [48]. The forcing scheme of the CLBM proposed by Premnath and

Banerjee [48] takes the body force term into account through two steps, i.e. the

collision operation and the velocity refinement. The macroscopic density ρ and
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unrefined velocity u∗ are calculated as

ρ(x, t) =
8∑

α=0

fα(x, t), (13)

ρ(x, t)u∗(x, t) =
8∑

α=0

eαfα(x, t). (14)

The velocity u∗ is then refined with the velocity correction δu(x, t) as

u(x, t) = u∗(x, t) + δu(x, t), (15)

where δu(x, t) = Fδt/2ρ.110

If a no-slip boundary is fulfilled, the fluid velocity u at the location of La-

grangian points xl should be the same as the solid velocity ul,

u(xl, t) = ul(xl, t). (16)

The fluid velocity at the Lagrangian points xl is interpolated from the surround-

ing lattices using

u(xl, t) =
∑
x

u(x, t)Φ(x− xl)δx
2, (17)

where δx is the lattice spacing. The 4-point regularised delta function Φ [33] is

Φ(x, y) =
1

δx2
φ(

x

δx
)φ(

y

δx
), (18)

and

φ(r) =


1
8 (3− 2|r|+

√
1 + 4|r| − 4r2), |r| ≤ 1

1
8 (5− 2|r| −

√
−7 + 12|r| − 4r2), 1 < |r| ≤ 2

0, otherwise.

(19)

In order to achieve the no-slip boundary in Eq. (16), according to the implicit

velocity correction scheme of the IBM [49], a velocity correction δul is applied

to each Lagrangian point xl and distributed onto the background Eulerian grid

to obtain the velocity correction δu(x),

δu(x, t) =
∑
xl

δul(xl, t)Φ(x− xl)δsl, (20)
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where δsl is the elemental surface of Lagrangian point l in two-dimensional

simulations. The surface force density on the Lagrangian point Fibl (xl) can be

obtained from

Fibl (xl, t) =
2ρδul(xl, t)

δt
. (21)

When the no-slip boundary condition in Eq. (16) is satisfied, the velocity

ul(xl) should satisfy the following equation [49],

ul(xl, t) =
∑
x

[
u∗(x, t) +

∑
xm

δum(xm, t)Φ(x− xm)δsm

]
Φ(x− xl)δx

2, (22)

where both l and m represent the Lagrangian points. Considering all the La-

grangian points, Eq. (22) can be expressed as a system of linear equations [49],

Ay = b, (23)

Alm =
∑
x

Φ(x− xm)Φ(x− xl)δsmδx
2, (24)

ym = δum(xm), (25)

bl = ul(xl)−
∑
x

u∗(x)Φ(x− xl)δx
2, (26)

where N is the number of Lagrangian points, A is a N × N sparse matrix.

y and b are column vectors of size N , whose elements are of size 1 × 2 for a

two-dimensional simulation. Thus, the unknown velocity correction δul(xl) can

be solved from

|δul(xl)〉 = A−1

∣∣∣∣∣ul(xl)−∑
x

u∗(x)Φ(x− xl)δx
2

〉
. (27)

2.3. Effect of internal mass in the IBM

In the IBM, a solid body interacting with a fluid is represented only by its

surface Γs, and the solid interior Ωs is filled with the same fluid. Therefore, a

moving body in a fluid is actually modelled with the moving fluid inside Ωs.

For the fluid enclosed by Γs, the conservation of momentum shows,

d

dt

∫
Ωs

ρfudV =

∫
Γs

Fibl (xl)dS +

∫
Γs

τ · ndS, (28)
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where n is the unit outward normal vector on the solid surface Γs, τ is the

hydrodynamic stress tensor.

For the structure immersed in a fluid, if the gravity force is neglected, the

only source of external body force Fb(xs) in Eq. (1) is the hydrodynamic force

applied on the structure surface by the surrounding fluid∫
Ωs

Fb(xs)dV =

∫
Γs

τ · ndS. (29)

It is difficult to accurately calculate the velocity gradient at the fluid-solid in-

terface in the IBM. Therefore, in order to avoid using the stress tensor τ in

the motion equation Eq. (1), considering Eq. (28), Eq. (1) can be written in an

integral form,∫
Ωs

[
ρsd̈(xs)− Fpd(xs)

]
dV = ρf

d

dt

∫
Ωs

udV −
∫

Γs

Fibl (xl)dS. (30)

The first term on the right-hand side of Eq. (30) is called the internal mass

effect [50], which presents the momentum change of the fluid inside Ωs.115

When the no-slip boundary is successfully enforced on the fluid-solid inter-

face Γs, the linear momentum of the incompressible flow in Ωs is equal to that

of the imaginary flow that follows the structure movement exactly [50], i.e.∫
Ωs

udV =

∫
Ωs

usdV. (31)

Although the derivation was made for a rigid body [50], it is also applicable

for deformable structures. The variation of the mean velocity of the imaginary

fluid in Γs can be expressed as,

d

dt

∫
Ωs

usdV =

∫
Ωs

dus
dt

dV +

∫
Ωs

us(∇ · us)dV. (32)

Thus, under the condition that the imaginary flow inside Ωs is incompressible,

i.e. ∇ · us = 0, there is the relationship as

d

dt

∫
Ωs

udV =

∫
Ωs

d̈(xs)dV. (33)

However, it must be noted that similar equality cannot be achieved for the an-

gular momentum, which indicates the model may be less accurate if the angular
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motion of the structure is more pronounced, as tested by Lācis et al. [44], Suzuki

and Inamuro [50].

Substituting Eq. (33) into Eq. (30), the following equation is obtained,∫
Ωs

[
(ρs − ρf )d̈(xs)− Fpd(xs) + F

ib

l (xs)
]
dV = 0, (34)

where F
ib

l (xs) is the hydrodynamic force volume density,∫
Ωs

F
ib

l (xs)dV =

∫
Γs

Fibl (xl)dS. (35)

It is assumed in Eq. (35) that the hydrodynamic force on the surface of structure

is only applied on the surface layer of the structure. According to the the method

of Huang et al. [51], Huang and Sung [52], the strong form of Eq. (34) is used

to describe the solid motion,

(ρs − ρf )d̈(xs) = Fpd(xs)− F
ib

l (xs). (36)

Moreover, it should be noted that the current method to alleviate the internal120

mass effect holds only over the solid subdomain Ωs, as the above derivation is

built upon the integration over Ωs. By dropping the integral of Eq. (34), the

internal mass effect is distributed onto the entire solid subdomain Ωs, which

means the detailed local variation of deformable structures may be affected.

Meanwhile, in addition to Huang et al. [51], Huang and Sung [52], we will show125

in Section 3 that the current method is effective and accurate for a wide range

of problems, although the impact on localised deformation needs to be fully

quantified, which will be discussed in the future.

2.4. Derivation of the strong coupling scheme

In this section, the strong coupling condition on the fluid-solid interface will130

be presented. In the current approach, the coupling condition is applied on the

surface layer of the structure, which means that the peridynamic material points

located on the structure surface are tracked by the Lagrangian points of the IBM

to represent the instantaneous fluid-solid interface. Using this strategy, the
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communication between the material and Lagrangian points is straightforward135

as they are moving on the Lagrangian frames.

When the no-slip boundary is successfully enforced, the Lagrangian points

of the IBM conform to these surface material points to assure the kinematic

equilibrium,

xl = xsf + dsf , (37)

ul(xl) = usf , (38)

where the surface material points are marked with the subscript sf .

For the structure immersed in a fluid, it is assumed that the hydrodynamic

force acting on the surface of structure by the surrounding fluid is applied on

the surface material points xsf as indicated in Eq. (35). Therefore, the hydro-

dynamic force volume density in Eq. (36) is

F
ib

l (xsf ) = Fibl (xl)
δsl
Vs
, (39)

where Vs is the volume of material points. In this work, the size of material

points ∆ is the same as the lattice spacing δx of the CLBM, which results in

Vs = δx2. For the internal material points xsi, F
ib

l (xsi) = 0. Thus, the equation

of motion for the material points xsi can be expressed as

(ρs − ρf )d̈nsi = Fnpd. (40)

By substituting Eq. (7) into Eq. (8), the acceleration d̈nsf can be discretised

as

d̈ns ≈
2

δt2
(dn−1
s + δtuns − dns ). (41)

Substituting Eqs. (41), (39), (27) and (21) into Eq. (36), the discretised move-

ment equation of the surface material points xsf can be written as

2(ρs − ρf )

δt2

∣∣∣dn−1
sf + δtunsf − dnsf

〉
=

∣∣Fnpd〉− 2ρf
δtVs

diag(δsl)A
−1

∣∣∣∣∣unl (xl)−
∑
x

u∗n(x)Φ(x− xl)δx
2

〉
,

(42)
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where the function diag(δsl) is to create a diagonal matrix of size N ×N with

δsl on the main diagonal. The Störmer–Verlet integration in Eqs. (7) and (8)

calculates the displacement a time step ahead of the velocity term, which means140

dnsf and un−1
sf are obtained at the time step n− 1 with Eqs. (7) and (8). Thus,

dnsf can be used directly to update A and Fnpd at the time step n. Moreover,

unl (xl) on the right-hand side of Eq. (42) can be replaced with unsf accord-

ing to Eq. (38). Therefore, the only unknown variable unsf , which guarantees

the no-slip boundary condition over the fluid-solid interface, can be calculated145

implicitly by solving Eq. (42).

Moreover, the matrix A in Eq. (24) can be expressed as follows,

A = Ãdiag(δsm), (43)

Ãlm =
∑
x

Φ(x− xm)Φ(x− xl)δx
2, (44)

and the inverse of the matrix A can be calculated as

A−1 = diag(δs−1
m )Ã−1. (45)

Substituting Eq. (45) into Eq. (42), diag(δsl) on the right-hand side of Eq. (42)

can be eliminated to yield,

2(ρs − ρf )

δt2

∣∣∣dn−1
sf + δtunsf − dnsf

〉
=

∣∣Fnpd〉− 2ρf
δtVs

Ã−1

∣∣∣∣∣unsf −∑
x

u∗n(x)Φ(x− xl)δx
2

〉
.

(46)

Then, Eq. (46) can be transformed into the linear equation,

A∗y∗ = b∗, (47)

where

A∗ =
ρs − ρf
ρf

VsÃ + I, (48)

y∗ =
∣∣unsf〉 , (49)

b∗ =
ρs − ρf
ρf

Vx
δt

Ã
∣∣∣dnsf − dn−1

sf

〉
+
δtVs
2ρf

Ã
∣∣Fnpd〉+

∣∣∣∣∣∑
x

u∗(x)Φ(x− xl)δx
2

〉
.

(50)
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The stability condition to obtain convergent results is derived using the

standard von Neumann stability analysis by assuming the displacement dnj of

material point j at the time step n as

dnj = φ̂neik̂j , (51)

where i is an imaginary number. The stability analysis requires that |φ̂| ≤ 1 for

all frequency values of k̂. By replacing the velocity uj with the displacement dj

according to Eqs. (7) and (8), and substituting Fnpd with Eq. (52) below,

Fnpd =
H∑
p

c
dnp − dnj
|ξ|

Vp, (52)

the strong coupling in Eq. (46) can be rewritten in the form below,

Ã

∣∣∣∣∣ρs − ρfδt2
(dn+1
j − 2dnj + dn−1

j )−
H∑
p

c
dnp − dnj
|ξjp|

Vp

〉
=

− 2ρf
δtVs

∣∣∣∣∣d
n+1
j − dn−1

j

2δt
−
∑
x

u∗n(x)Φ(x− xl)δx
2

〉
.

(53)

Due to the matrix Ã is usually a diagonally dominant pentadiagonal matrix,

Eq. (53) is simplified by replacing Ã with ||Ã||∞I, where ||Ã||∞ is the infinity

norm of A and I is the unit matrix. Under the assumption of the velocity of

fluid flow u∗n = 0, and aided by Eq. (51), Eq. (53) becomes,

α(φ̂2 − φ̂+ 1)− βφ̂ = −γ
2

(φ̂2 − 1), (54)

where

α =
ρs − ρf
δt2

||Ã||∞, (55)

β = c
∑
p

1

|ξjp|
(cos(k̂(p− j))− 1)Vp||Ã||∞, (56)

γ =
2ρf
δtVj

. (57)

Enforcing the condition |φ̂| ≤ 1 to the solutions of Eq. (54) for all k̂ values
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results in

δt <

√
2(ρs − ρf )

c
∑
p |ξjp|

−1 , (58)

ρs > ρf . (59)

Since there is always |ξjp| ≥ ∆ in the peridynamic simulations, the critical

time step δtc for a two-dimensional simulation can be estimated by

δtc =

√
2(ρs − ρf )

cπδ2
. (60)

2.5. The relaxed multi-direct-forcing scheme

Eq. (47) needs to be solved to obtain the unknown velocity unsf . It should be

pointed out that a direct solution of Eq. (47) requires to calculate the inverse

of the matrix A∗, which is computationally expensive. In our simulations,150

the Lagrangian points track the moving fluid-solid interface, which means the

matrix A∗ is time-varying and its inverse need to be updated at every time step.

Therefore, the direct solution is not an efficient choice.

Our previous paper [22] demonstrated that the relaxed MDF scheme, which

is based on the relaxed Richardson iteration, not only avoids the calculation of155

matrix inverse, but also improves the efficiency and accuracy of the traditional

MDF scheme. The relaxed MDF scheme is implemented following the two steps:

firstly, the relaxed Richardson iteration equation is obtained from the original

linear system and a relaxation parameter is determined; secondly, the iteration

is performed through the interpolation and distribution operations as described160

by Eqs. (17) and (20).

To ensure the convergence of the Richardson iteration, the matrix A∗ should

be positive-definite and symmetric, which is the case for matrix Ã according

to Eq. (44). Since ρs > ρf in our simulations, A∗ calculated from Eq. (48)

shares the same characteristics as Ã. Therefore, Eq. (47) can be solved with

the relaxed Richardson equation as follows,

y∗k+1 = (I− ωA∗) y∗k + ωb∗, (61)
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where ω is the relaxation parameter and k is the iteration counter. To accelerate

the convergence rate, the relaxation parameter ω can be set as

ω = ||A∗||−1
∞ ,

||A∗||∞ =
ρs − ρf
ρf

Vs||Ã||∞ + 1.
(62)

It is straightforward to solve Eq. (23) with the interpolation and distribution

operations in Eqs. (17) and (20) as matrix A is formed by a combination of

these two operations (see Eq. (24)). However, A∗ and b∗ in Eq. (61) are more

complicated than A and b in Eq. (23). Thus, the strategy of implementing the165

relaxed MDF scheme should be modified accordingly to solve the new strong

coupling equation, i.e Eq. (46) efficiently.

By substituting Eq. (48) into Eq. (61), y∗k+1 can be expressed as

y∗k+1 = (1− ω)y∗k + ω

(
b∗ − ρs − ρf

ρf
VsÃy∗k

)
. (63)

Then, substituting Eq. (50) for b∗ in Eq. (63) yields

y∗k+1 =(1− ω)y∗k + ω

∣∣∣∣∣∑
x

u∗(x)Φ(x− xl)δx
2

〉
+

ωÃ

[
ρs − ρf
ρf

Vs
δt

(∣∣∣dnsf − dn−1
sf

〉
− y∗kδt

)
+
δtVs
2ρf

∣∣Fnpd〉] .
(64)

By substituting Eq. (27) into Eq. (42), the following relationship between δunl (xl)

and unsf is obtained,

diag(δsl) |δunl (xl)〉 =
ρs − ρf
ρf

Vs
δt

∣∣∣dnsf − unsfδt− dn−1
sf

〉
+
δtVs
2ρf

∣∣Fnpd〉 , (65)

which can be rearranged to make it suitable for an iterative scheme as follows,

diag(δsl)
∣∣∣δun,kl (xl)

〉
=
ρs − ρf
ρf

Vs
δt

(∣∣∣dnsf − dn−1
sf

〉
− y∗kδt

)
+
δtVs
2ρf

∣∣Fnpd〉 .
(66)

Finally, by substituting Eq. (66) and Eq. (43) into Eq. (64), there is the rela-

tionship

y∗k+1 = (1− ω)y∗k + ω

[
A
∣∣∣δun,kl (xl)

〉
+

∣∣∣∣∣∑
x

u∗(x)Φ(x− xl)δx
2

〉]
, (67)
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where the interpolation and distribution operations can be expanded from the

matrix A as follows,

un,k+1
sf = (1−ω)un,ksf +ω

∑
x

[
u∗(x) +

∑
xm

δun,kl (xm)Φ(x− xm)δsm

]
Φ(x−xl)δx

2.

(68)

Therefore, Eq. (47) can be solved iteratively using Eqs. (66) and (68).

In Eqs. (66) and (68) the unrefined velocity u∗(x) should always be stored

for the iterations. To reduce memory consumption during the simulation, the

cumulative correction procedure used by Zhang et al. [22] is employed. First,

Eq. (66) is modified as follows,

∆un,kl = −ρs − ρf
ρfδt

Vs
δsl

(un,ksf − un,k−1
sf ), (69)

where

∆un,kl = δun,kl − δun,k−1
l , (70)

∆un,0l =
ρs − ρf
ρfδt

Vs
δsl

(
dnsf − dn−1

sf − un,0sf δt
)

+
δt

2ρf

Vs
δsl

Fnpd. (71)

Then, Eq. (68) is transformed into a cumulative form to eliminate u∗(x),

un,k+1
sf = (1−ω)un,ksf +ω

∑
x

[
un,k(x) +

∑
xm

∆un,kl (xm)Φ(x− xm)δsm

]
Φ(x−xl)δx

2,

(72)

where

un,k(x) = u∗(x) +
∑
xm

δun,k−1
l (xm)Φ(x− xm)δsm, (73)

un,0(x) = u∗(x). (74)

The cumulative iteration in Eqs. (69) and (72) can be conducted following
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the steps below,

Distribution: ∆uk(x) =
∑
xl

∆ukl (xl)Φ(x− xl)δsl, (75)

uk+1(x) = uk(x) + ∆uk(x); (76)

Interpolation: uk+1(xl) =
∑
x

uk+1(x)Φ(x− xl)δx
2, (77)

uk+1
sf = (1− ω)uksf + ωuk+1(xl), (78)

∆uk+1
l = −ρs − ρf

ρf

Vs
δsl

(uk+1
sf − uksf ), (79)

Fk+1
ib,l (xl) = Fkib,l(xl) +

2ρf
δt

∆uk+1
l (xl); (80)

where F0
ib,l(xl) is zero and u0

sf is calculated with Eq. (40). The strong coupling

interface is achieved by adding velocity corrections simultaneously for the fluid

and solid with Eqs. (76) and (78), respectively. After the cumulative iterations

described by Eqs. (75)–(80) are concluded, the last velocity correction ∆ul is

distributed to the nearby fluid domain according to Eqs. (75) and (76). Then the

hydrodynamic force on the IB points Fibl (xl) is distributed to the fluid domain

to finalise the iteration,

Fib(x) =
∑
xl

Fibl (xl)Φ(x− xl)δsl. (81)

2.6. The computational algorithm

The algorithm of the strong coupling partitioned approach is summarised as170

follows:

1. Flow solver: CLBM

(a) Perform the fluid evolution according to Eq. (9);

(b) Calculate the macroscopic fluid variables using Eqs. (13) and (14).

2. Solid solver: Peridynamic model175

(a) Calculate the internal forces Fnpd according to Eq. (2);

(b) Obtain the displacement and velocity of all the material points dn+1
s

and uns using Eqs. (40), (7) and (8).

3. Update the locations of Lagrangian points xnl according to Eq. (37).
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4. The strong coupling interface: the relaxed MDF-IBM180

(a) Calculate the matrix Ã with Eq. (44), then update the relaxation

parameter ω according to Eq. (62);

(b) Set k = 0, u0(x) = u∗(x), F0
ib,l(xl) = 0, and calculate ∆u0

l (xl) using

Eq. (71);

(c) Perform the distribution operation as described by Eqs. (75) and185

(76);

(d) Perform the interpolation operation using Eqs. (77)–(80);

(e) Advance k to k+ 1 and repeat Steps 4c-4d while k < Lm, where Lm

is the total number of iterations;

(f) Distribute the last velocity correction ∆unl to the fluid domain as190

described by Eqs. (75) and (76);

(g) Distribute the surface force Fnib,l(xl) to the fluid domain using Eq. (81).

5. Update the location and velocity of material points dn+1
sf , unsf with the

obtained Fnib,l.

6. Advance the time step to n+ 1, and repeat Steps 1-5.195

As shown above, the fluid and solid solvers are launched only once at Steps 1

and 2 respectively in a single time step, and the strong coupling interface is

solved iteratively with the relaxed MDF-IBM at Step 4.

3. Numerical examples

3.1. Plate with a pre-existing crack under velocity boundary conditions200

In this section, the behaviour of a two-dimensional plate with a pre-existing

crack is simulated to validate the peridynamic model for structural deformation

and crack capture. As shown in Fig. 1, the length and the width of the plate are

respectively L = 50 mm and W = 50 mm, and the origin of coordinates xOy is

at the bottom left corner of the plate. A horizontal crack of length D = 10 mm205

is initialized in the centre of the plate. The plate is discretized with 500× 500

material points. The plate is subjected to velocity boundary conditions along

its upper and bottom edges, Uy = ±20 m/s. The velocity boundary condition
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is applied at two additional boundary layers Rc as shown in Fig. 1. There are

500×3 material points over each boundary layer Rc. The material properties of210

the plate include the Young’s modulus E = 192 GPa, Poisson’s ratio ν = 0.33,

solid density ρs = 8000 kg/m3. The time step is δt = 1.3367× 10−8 s.

Figure 1: The schematic of a plate with a pre-existing crack.

Firstly, the breakage of bonds between material points is not allowed. Under

the stretching of upper and bottom boundaries, the crack opens gradually and

forms an ellipse-like shape. The displacement of material points near the initial215

horizontal crack at the time t = 16.7 µs is plotted in Fig. 2. The results

match well with those from Madenci and Oterkus [11]. Then, crack generation

is allowed by using the critical stretch sc = 0.04472. The initial crack keeps

growing toward the left and right boundaries of the plate as shown in Fig. 3.

The horizontal location of the right tip of the growing crack is recorded in Fig. 4220

which is in good agreement with the results of Madenci and Oterkus [11].
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Figure 2: Vertical displacement Dy of the material points near the initial crack at the time

t = 16.7 µs when failure is not allowed.

Figure 3: Crack growth at three instants, t1 = 10.0 µs, t2 = 13.4 µs, t3 = 16.7 µs, when

failure is allowed.
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Figure 4: Variation of the horizontal location X of the right tip of the growing crack when

failure is allowed. Damage here is quantified as the ratio of the number of broken bonds to

the total number of bonds for each peridynamic material point.

3.2. Sedimentation of an elastic disk under gravity

An elastic circular disk placed in a viscous fluid falls freely under gravity

g of 980 cm/s2 as sketched in Fig 5. The diameter of the disk D is 0.25 cm.

The density of fluid ρf is 1.0 g/cm3. The kinematic viscosity of fluid νf is 1.0225

cm2/s. The width and height of the computational domain are W = 2.0 cm and

H = 5.0 cm, respectively. A no-slip boundary is applied at all the four edges

and a fixed reference pressure p = 0 at the upper boundary. Initially, both the

velocities of fluid and solid are set to be zero, the initial pressure of the fluid is

p = 0, and the distance between the disk centre and the upper boundary L is 1.0230

cm. The number of lattices over the disk diameter is 100, which corresponds to

δx = 2.5×10−3 cm. The Poisson’s ratio for the disk νs is 0.33. The solid density

ρs is larger than the fluid density ρf so that the disk can move downwards under

the gravity and buoyancy forces. In addition, the performance of the current

method as ρs approaches to ρf will be demonstrated in this case.235
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Figure 5: A schematic of the sedimentation of a disk under gravity.

The sedimentation of a circular disk with different densities ρs = (1.05, 1.1,

1.5, 2.0)ρf and the Young’s modulus E = 1 × 104 g/(cm·s2) is simulated to

validate the ability of the present numerical scheme for the cases with a density

ratio close to unity. The variation of the vertical velocity of the disk Vy is

recorded in Fig. 6. Meanwhile, as the scheme of Feng and Michaelides [53] can

compensate the internal mass effect of rigid objects, which has been verified

by multiple publications [21, 50, 53], the vertical velocity variation of a rigid

circular disk is also presented for assessing the current approach to mitigating

the internal mass effect. It can be seen in Fig. 6 that for both rigid and elastic

disks the settling velocity keeps increasing until it reaches the stable terminal

velocity Vt. The specific values of Vt are displayed in Table 2, where the empirical

results are calculated using the following equation [54]:

Vt =
(ρs − ρf )gR2

4ρfνf

[
ln

(
W

D

)
− 0.9157 + 1.7244

(
D

W

)2

− 1.7302

(
D

W

)4
]
.

It is clear that the terminal velocities of both rigid and elastic disks agree well

with the empirical results.

By comparing the movement of the rigid disk with and without compensating

the internal mass effect, i.e. the lines noted by “InM” and “No InM” respec-

tively in Fig. 6, it can be found that the internal mass effect is pronounced in240

the acceleration phase as stated by Suzuki and Inamuro [50]. Throughout both
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the acceleration phase and the steady falling phase, the movement of the elastic

disk simulated by the current method agrees well with that of the rigid disk

(InM), for which the internal mass effect is dealt with appropriately. Specifi-

cally, for the case with ρs = 2.0ρf and a larger Young’s modulus E = 1 × 108
245

g/(cm·s2), which means the elastic particle is more rigid, the variation of the

vertical velocity is almost identical to that of the rigid disk (InM). Thus, for

the case with insignificant particle rotation, the current method for minimizing

the internal mass effect is appropriate. For the elastic disk with a small solid

density ρs and a small Young’s modulus E, a relatively significant oscillation250

during the acceleration phase is observed, which was not reported in any previ-

ous computational or experimental study. This may be caused by the spurious

stress computation in the immersed boundary method, and further study will

be needed to understand and mitigate the unphysical oscillations under small

solid density and Young’s modulus.255
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Figure 6: Variations of the vertical velocity of the disk Vy : (a) ρs = 1.05ρf ; (b) ρs = 1.1ρf ;

(c) ρs = 1.5ρf ; and (d) ρs = 2.0ρf .

Table 2: Terminal vertical velocity Vt of different disks at t = 0.4 s.

ρs/ρf
Rigid Disk Elastic Disk

Empirical Equation [54] InM [53] E = 1× 104

1.05 -0.228 -0.229 -0.233

1.1 -0.456 -0.459 -0.464

1.5 -2.278 -2.285 -2.286

2 -4.556 -4.461 -4.454

The contours of the velocity and vorticity fields near the disk withE = 1×104

g/(cm·s2) and ρs = 2.0ρf are presented in Fig. 7. The influence of the number
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of iterations Lm of the relaxed MDF scheme is investigated by employing Lm =

1, 2, and 5 for the case in Fig. 7. To assess the accuracy of the no-slip boundary

at the fluid-solid interface quantitatively, the dimensionless numerical boundary

error is defined as

Er =
1

N

∑
N ||unsf − un(xl)||

||Vt||
, (82)

where un(xl) is the fluid velocity interpolated using Eq. (17), unsf is the velocity

of the surface material points obtained after Lm iterations. It can be seen from

Table 3 that the difference between Vy values in the cases with Lm = 1 and

Lm = 5 is only 0.6%, and the numerical boundary error Er drops by 78% when

Lm increases from 1 to 5. It is clear that the relaxed MDF scheme works well260

to solve Eq. (47) efficiently.

Figure 7: Contours of the horizontal velocity U , the vertical velocity V , and the vorticity of

the flow field at time t = 0.4 s.

Table 3: The influence of the number of iterations Lm on the convergence of the relaxed MDF

scheme.

Iteration times Lm 1 2 5

Terminal vertical velocity Vy (cm/s) -4.456 -4.454 -4.450

Numerical boundary error Er 3× 10−4 1.35× 10−4 6.55× 10−5
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3.3. Cross-flow over a deformable beam

A deformable beam is fixed at the bottom of the channel filled with a viscous

fluid as illustrated in Fig. 8, where Point A represents the tip of the beam. The

fluid and the beam are at rest initially. Then the beam starts to deform and265

bend toward the outlet boundary when the fluid moves in at the inlet. The

length and height of the computational domain are L = 4 cm and H = 1 cm,

respectively. The thickness and height of the beam are a = 0.04 cm and b = 0.8

cm, respectively. The influence of gravity and buoyancy is ignored here. The

half-way bounce back boundary condition is applied at the bottom edge and the270

symmetrical boundary condition at the top edge. At the inlet boundary, the

velocity profile is prescribed as u = 1.5(−y2 + 2y) cm/s and v = 0, and at the

outlet boundary a constant pressure p = 0 is imposed. The density and dynamic

viscosity of the fluid are ρf = 1.0 g/cm3 and µf = 0.1 g/(cm·s), respectively.

The density, Young’s modulus and Poisson’s ratio of the beam are set to be275

ρs = 7.8 g/cm3, E = 105 g/(cm·s2) and µs = 0.33, respectively.

Figure 8: A schematic of the deformable beam in a cross flow.

In the simulations presented in Fig. 9, the beam is discretised using (5 ×

103, 10×203, 20×403, 40×803) material points to yield different material point

sizes, i.e. δx = (1, 2, 4, 8) × 10−3 cm, respectively. The numbers of Lagrangian

points tracking the fluid-solid interface for different spatial resolutions are 203,280

408, 818, 1638, respectively. The bottom end of the beam with a height of 3δx

is fixed and placed below the bottom boundary of the computation domain to

impose a velocity constraint. With the time step δt = 2×10−6 s and the iterative
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times of the relaxed MDF scheme Lm = 2, the horizontal movement of Point

A against time t is shown in Fig. 9. The horizontal displacement of Point A,285

i.e. Dx in Fig. 9a, indicates the bending magnitude of the beam. It shows that

the tip of the beam firstly bends toward the outlet boundary and then springs

back a little to an equilibrium location. As shown in Fig. 9, the horizontal

displacement and velocity of Point A are in a good agreement with the results

reported by Han et al. [55], where an Eulerian-Lagrangian-Lagrangian method290

designed for FSI problems with thin structures was employed.

(a) The horizontal velocity, Ux.

(b) The horizontal displacement, Dx.

Figure 9: The time history of the horizontal motion of Point A. The results are compared

with the benchmark values presented by Han et al. [55].

The horizontal displacement of Point A at the time t = 3.0 s is also recorded
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in Table 4. Different from Han et al. [55], the current method with a coarse mesh-

ing can result in a more significant bending. As the grid resolution increases, the

influence of δx becomes smaller. In addition, to study the temporal convergence295

of the current method, four different time steps (δt = (2, 4, 8, 16)× 10−6 s), are

also presented in Table 4 with δx = 2 × 10−3 cm. A finer temporal resolution

produces a slightly larger horizontal displacement. These results indicate that

the current method converges with a refined spatial and temporal resolution.

Table 4: Horizontal displacement of Point A at t = 3.0 s for different δt and δx.

δt = 2× 10−6 s

δx (10−3 cm) 8 4 2 1

Dx (cm) 0.5421 0.5225 0.5131 0.5073

δx = 2× 10−3 cm

δt (10−6 s) 16 8 4 2

Dx (cm) 0.5089 0.5112 0.5124 0.5131

With δt = 2 × 10−6 s, δx = 2 × 10−3 cm and Lm = 2, the contours of the300

horizontal velocity and the pressure of the fluid domain at different instants

(t = (0.1, 0.8, 3.0) s) are presented in Figs. 10 and 11. The streamlines of the

flow at t = 3.0 s in Fig. 12 show that the cross-flow is blocked successfully by

the bending beam and a stable recirculation zone appears in the downside of

the beam.305
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Figure 10: Horizontal velocity contour of the flow at three instants, i.e. t = (0.1, 0.8, 3.0) s.

Figure 11: Pressure contour of the flow field at three instants, i.e. t = (0.1, 0.8, 3.0) s.

30



Figure 12: Streamlines of the flow field when the beam deformation and flow reach a steady

state at t = 3 s.

The dynamic deformation and fracture of the beam under the hydrodynamic

force are presented in Fig. 13. For different critical bond stretches, i.e. sc =

0.02, 0.1, the corresponding fracture energies are Gc = (0.173, 4.32)×10−3 J/m
2
,

respectively. A smaller sc means that the material damage happens more quickly

under the same loading, so Fig. 13a shows that the beam with sc = 0.02 ex-310

periences a complete rupture, while Fig. 13b shows only slight damage at the

bottom left corner of the beam with sc = 0.1. According to the vector plot

at the time t = 0.56 s as shown in Fig. 13a, the ruptured beam cannot block

the flow and instead moves with the flow. This demonstrates the advantages of

the current strong coupling approach clearly: firstly, the beam bending and its315

interaction with the fluid are correctly captured; secondly, the coupling with the

peridynamic model also allows us to predict crack formation and propagation

in the beam as well as breakup of the beam.
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(a) sc = 0.02

(b) sc = 0.1

Figure 13: Crack formation and breakup (indicated by the damage of peridynamic material

points) of the bent beam with different critical bond stretches sc = 0.02, 0.1, and the corre-

sponding vector plots of the fluid presented at t = 0.04, 0.32, 0.56s. Damage here is quantified

as the ratio of the number of broken bonds to the total number of bonds for each peridynamic

material points.

3.4. The flow-induced deformation of an elastic beam attached to a cylinder

The flow-induced deformation of an elastic beam attached to a rigid cylinder320

was originally considered by Turek and Hron [56]. The problem is widely used as

a benchmark example to test the numerical schemes for fluid-flexible structure

interaction problems [56–59]. The initial configuration of the problem is shown

in Fig. 14. The elastic beam of size (3.5D, 0.2D) is attached to a fixed rigid

circular cylinder with the diameter D = 0.1 m. The size of the computational325

domain is L ×W = 25D × 4.1D. The structure made up of the cylinder and

beam is placed asymmetrically. The no-slip boundary condition is applied for
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the upper and bottom boundaries, and the zero-gradient boundary condition

for the outlet. At the inlet boundary, the parabolic inflow velocity profile is

prescribed as Uin = 1.5Ūy/W (1− y/W ), where Ū is the mean velocity.330

Figure 14: Initial configuration of the vortex-induced vibration of a deformable beam.

The density and kinematic viscosity of the fluid are ρf = 1.0 × 103 kg/m3

and νf = 0.001 m2/s, respectively. The physical properties of the beam include

the density ρs, the Young’s modulus E, and the Poisson’s ratio ν. For the bond-

based peridynamic model, the Poisson’s ratio ν is always 0.33. The Reynolds

number is defined as Re = ŪD/ν in the simulations. The cases of Turek and335

Hron [56] are considered in this work, (1) FSI1: ρs = 1.1ρf , E = 1.4 × 106

Pa, Re = 20; (2) FSI2: ρs = 10ρf , E = 1.4 × 106 Pa, Re = 100; (3) FSI3:

ρs = 1.1ρf , E = 5.6 × 106 Pa, Re = 200. It should be noted that due to the

density ratio limitation, i.e. ρs/ρf > 1, in the current method, the solid density

ratio ρs/ρf = 1.1 in FSI1 and FSI3 is chosen to be close to 1.0 used by Turek340

and Hron [56]. There are 100 lattices over the diameter of the rigid cylinder.

As the size of peridynamic points is the same as that of lattices of the CLBM

in this work, i.e. ∆ = δx, the number of material points to discretize the beam

is 353× 20. The left end of the beam with the length 3δx is extended into the

cylinder to ensure a fixed left end for the beam. The distribution of Lagrangian345

points on the jointed structure is displayed in Fig. 15. The Lagrangian points

along the cylinder surface are distributed evenly and the spacing δs is close to

δx (δs ≈ 0.997δx). The time steps δt for the cases of FSI1, FSI2, and FSI3 are

(2.5, 1.25, 1.25)×10−6 s, respectively.
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Figure 15: The distribution of Lagrangian points on the structure’s surface. The Lagrangian

points are denoted by the symbol and the peridynamic material points by . Furthermore,

the material points inside the cylinder are marked by .

As the fluid passes through the fixed cylinder, the attached flexible beam350

will deform. For a large Reynolds number, there will be vortexes shedding at

the wake of the cylinder, so the beam is expected to oscillate periodically. The

growth and oscillation of the beam deformation can be witnessed in Fig. 16,

where Dy is the vertical displacement of Point A. Moreover, the influence of the

internal mass is clearly demonstrated by comparing the results with and without355

compensating the internal mass effect, see the results denoted by InM and No

InM in Fig. 16. It can be seen that for FSI1 the beam firstly deflects downward

slightly and then moves upwards until becoming steady at the location Dy =

0.9376 mm. Point A of the case FSI1 reaches a steady terminal location which

is hardly affected by the internal mass effect, apart from a slight discrepancy at360

t ≈ 3.1s. On the other hand, for FS2 and FSI3, the influence of the internal mass

effect is significant and continuous, lasting from the early-stage deformation

growth to the final periodic oscillation.

Table 5 shows the detailed comparison of the displacements Dx and Dy of

Point A in FSI1, FSI2, and FSI3 with the results published by Turek and Hron365

[56] and Kollmannsberger et al. [59]. The displacement is given in the form of

“< Mean > ± < Amplitude >< Frequency (Hz) >”, where the mean value

is (Dmax + Dmin)/2, the amplitude is (Dmax − Dmin)/2, and the frequency

is obtained with a Fourier transformation of Dx and Dy. It seems that when

the internal mass effect is considered (InM) in the current method, an excellent370

agreement is achieved in all the three cases despite the slight difference in ρs.
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When the internal mass effect is not considered (No InM), the results of FSI1

show little difference, while for FSI2 and FSI3, the reductions in the frequency

of Dy are 10.5% and 9.3%, respectively, and the increases in the amplitude of

Dy are 9.7% and 23.0%, respectively. The periodical movement of Point A is375

compared in detail with the results from Turek and Hron [56] in Fig. 17. It is

obvious that the influence of the internal mass is much more significant for FSI3

(Re = 200) than for FSI2 (Re = 100). These results are consistent with the

conclusion drawn by Suzuki and Inamuro [50] for unsteady body motions, i.e.

the internal mass effect becomes more and more pronounced as the Reynolds380

number increases.

Table 5: The displacement of Point A in comparison with the previously reported data.

FSI1 Dx (10−3 m) Dy (10−3 m)

Turek and Hron [56] 0.0227 0.8209

Kollmannsberger et al. [59] 0.0229 0.810

Current method (InM) 0.0159 0.9376

Current method (No InM) 0.0078 0.9350

FSI2 Dx (10−3 m) Dy (10−3 m)

Turek and Hron [56] −14.58± 12.44[3.8] 1.23± 80.6[2.0]

Kollmannsberger et al. [59] −15.1± 12.8[3.8] 1.20± 83.4[1.9]

Current method (InM) −15.6± 12.9[3.5] 1.28± 84.2[1.9]

Current method (No InM) −18.4± 14.9[3.4] 1.33± 92.4[1.7]

FSI3 Dx (10−3 m) Dy (10−3 m)

Turek and Hron [56] −2.69± 2.53[10.9] 1.48± 34.38[5.3]

Kollmannsberger et al. [59] −2.88± 2.71[11.0] 1.48± 35.1[5.5]

Current method (InM) −2.53± 2.33[10.6] 1.48± 33.1[5.4]

Current method (No InM) −3.70± 3.43[10.0] 1.60± 40.7[4.9]

Fig. 18 shows that the vorticity contours of FSI2 when the beam oscillates

periodically at four different instants, i.e. t = 12.12, 12.27, 12.40, 12.54s, which

are marked in Fig. 17. The corresponding velocity magnitude contours of the
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beam and the velocity vectors of the surface material points are displayed in385

Fig. 19. It can be seen that the beam deforms very smoothly.

Figure 16: Time history of the vertical displacement of Point A.
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Figure 17: Variation of the displacements Dx and Dy of Point A, comparing with the results

of Turek and Hron [56].
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Figure 18: Vorticity contours of the flow field in FSI2 at four different instants.

Figure 19: Velocity magnitudes of the beam and velocity vectors of surface material points in

FSI2 at four different instants.

To demonstrate the effectiveness of the present approach to capturing the

crack and breakup of structures in a flow field, a critical bond stretch sc =

0.05 (Gc = 7.56 J/m
2
) is assumed in the peridynamic model to allow material
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damage. The growth of crack and the movement of the broken beam in the390

flow field of FSI2 are shown in Fig. 20. At the time of 6.07s, the up left end

of the beam is slightly damaged. At the time of 6.82s, a complete breakup at

the joint of the beam and the rigid cylinder can be clearly seen. The broken

beam is then detached from the rigid cylinder and moves with the fluid towards

the outlet. At the time of 7.82s, there is a significant change in the vorticity395

contour of the flow field, where the size of the vortex attached on the upside of

the beam becomes much smaller, and new vortices appear in the gap between

the rigid cylinder and the broken beam.

Figure 20: Crack formation and breakup (indicated by the damage of peridynamic material

points) of the oscillating beam in FSI2 at the four different instants, and the corresponding

vorticity contours of the flow field. Damage here is quantified as the ratio of the number of

broken bonds to the total number of bonds for each peridynamic material point.

The current method is implemented with the graphics processing unit (GPU)

parallel computation. All the simulations in this work are carried out on a400

host CPU (Intel(R) Xeon(R) E5-2630 v4 (2.20GHz)) and a single device GPU
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(NVIDIA Tesla V100-SXM2-16GB). It can be seen from Table 6 that for the

case FSI2, the fluid solver LBM consumes the most time of 7.8 s for a total of

1×104 steps, while the computational time for the peridynamic model is almost

negligible due to the small number of material points. It should be noted that405

updating the matrix A and ω is relatively time-consuming, 2.9 s for 1 × 104

steps, while the total computational time consumed is about 15.1 s. The details

of implementing the fluid solver LBM and the relaxed MDF-IBM on a single

GPU can be found in Zhang et al. [21, 22, 60], and the GPU implementation

of the peridynamic model can refer to the work of Liu and Hong [61].410

Table 6: Computational time consumed in FSI2.

Solvers CLBM PD Update A and ω IBM (Lm = 5)

Number of nodes 1, 027, 911 7, 060 1017× 1017 1017

Time for each solver (s/104 steps) 7.8 0.5 2.9 3.1

Time in total (s/104 steps) 15.1
CPU: Xeon(R) E5-2630 v4 (2.20GHz)

GPU: Tesla V100-SXM2-16GB

4. Conclusions

A novel strong coupling partition approach for the peridynamic and IB-

CLBM models is developed to simulate complex fluid-structure interactions ac-

curately and efficiently. In addition to describing structure deformation, our

method can capture crack formation, propagation, breakup of structure. The415

strong coupling is achieved by adding velocity corrections for the fluid and solid

phases simultaneously at each time step, which are calculated by solving a lin-

ear system of equations derived from an implicit velocity-correction IB scheme.

Therefore, this new strong coupling scheme based on the IBM eliminates the

need to iteratively solve the dynamics of the fluid and solid phases at each time420

step. Moreover, instead of using the time-consuming matrix inversion calcula-

tion, the simultaneous velocity corrections are solved with the efficient relaxed

MDF scheme of the IBM. Our method is validated rigorously by a range of
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cases including the plate with a pre-existing crack under velocity boundary con-

ditions, the sedimentation of an elastic disk, the cross-flow over a flexible beam,425

and the flow-induced deformation of an elastic beam attached to a rigid cylin-

der. Moreover, the dynamics of crack formation and breakup of structures in

a flow field are inherently captured. Therefore, this novel FSI model exploiting

strong coupling of the peridynamic and IB-CLBM models has shown its poten-

tial in simulating complex FSI problems involving structural deformation and430

fracture.
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pling strategy between smoothed particle hydrodynamics and finite element

methods, Computer Physics Communications 217 (2017) 66–81.

[20] M. Geier, A. Greiner, J. G. Korvink, Cascaded digital lattice Boltzmann

automata for high Reynolds number flow, Physical Review E - Statistical,

Nonlinear, and Soft Matter Physics 73 (2006) 1–10.500

[21] Y. Zhang, Y. Zhang, G. Pan, S. Haeri, Numerical study of the particle

sedimentation in a viscous fluid using a coupled DEM-IB-CLBM approach,

Journal of Computational Physics 368 (2018) 1–20.

43



[22] Y. Zhang, G. Pan, Y. Zhang, S. Haeri, A relaxed multi-direct-forcing im-

mersed boundary-cascaded lattice Boltzmann method accelerated on GPU,505

Computer Physics Communications (2019) 106980.

[23] E. J. Falagkaris, D. M. Ingram, K. Markakis, I. M. Viola, PROTEUS:

A coupled iterative force-correction immersed-boundary cascaded lattice

Boltzmann solver for moving and deformable boundary applications, Com-

puters and Mathematics with Applications 75 (2018) 1330–1354.510

[24] X. Yu, K. Regenauer-Lieb, F.-B. Tian, A hybrid immersed boundary-

lattice boltzmann/finite difference method for coupled dynamics of fluid

flow, advection, diffusion and adsorption in fractured and porous media,

Computers and Geosciences 128 (2019) 70–78.

[25] J. Ma, Z. Wang, J. Young, J. C. Lai, Y. Sui, F.-B. Tian, An immersed515

boundary-lattice boltzmann method for fluid-structure interaction prob-

lems involving viscoelastic fluids and complex geometries, Journal of Com-

putational Physics 415 (2020) 109487.

[26] D. Lycett-Brown, K. H. Luo, Cascaded lattice Boltzmann method with

improved forcing scheme for large-density-ratio multiphase flow at high520

Reynolds and Weber numbers, Physical Review E 94 (2016) 1–20.

[27] L. Fei, K. H. Luo, C. Lin, Q. Li, Modeling incompressible thermal flows

using a central-moments-based lattice Boltzmann method, International

Journal of Heat and Mass Transfer 120 (2018) 624–634.

[28] C. S. Peskin, Numerical analysis of blood flow in the heart, Journal of525

Computational Physics 25 (1977) 220–252.

[29] F. Sotiropoulos, X. Yang, Immersed boundary methods for simulating

fluid–structure interaction, Progress in Aerospace Sciences 65 (2014) 1–21.

[30] B. E. Griffith, N. A. Patankar, Immersed methods for fluid–structure in-

teraction, Annual Review of Fluid Mechanics 52 (2020).530

44



[31] F.-B. Tian, H. Luo, L. Zhu, J. C. Liao, X.-Y. Lu, An efficient immersed

boundary-lattice boltzmann method for the hydrodynamic interaction of

elastic filaments, Journal of Computational Physics 230 (2011) 7266–7283.

[32] W. Wang, Y. Yan, F. Tian, A simple and efficient implicit direct forc-

ing immersed boundary model for simulations of complex flow, Applied535

Mathematical Modelling 43 (2016) 287–305.

[33] S. Haeri, J. S. Shrimpton, On the application of immersed boundary, fic-

titious domain and body-conformal mesh methods to many particle multi-

phase flows, International Journal of Multiphase Flow 40 (2012) 38–55.

[34] S. Haeri, J. S. Shrimpton, A new implicit fictitious domain method for540

the simulation of flow in complex geometries with heat transfer, Journal of

Computational Physics 237 (2013) 21–45.

[35] S. Haeri, J. S. Shrimpton, Fully resolved simulation of particle deposition

and heat transfer in a differentially heated cavity, International Journal of

Heat and Fluid Flow 50 (2014) 1–15.545

[36] W. X. Huang, F. B. Tian, Recent trends and progress in the immersed

boundary method, ARCHIVE Proceedings of the Institution of Mechanical

Engineers Part C Journal of Mechanical Engineering Science 1989–1996

(vols 203–210) 233 (2019) 095440621984260.

[37] L. Wang, F. B. Tian, J. C. S. Lai, An immersed boundary method for fluid-550

structure-acoustics interactions involving large deformations and complex

geometries, Journal of Fluids and Structures 95 (2020) 102993.

[38] L. Wang, F. B. Tian, Numerical study of flexible flapping wings with an

immersed boundary method: Fluid-structure-acoustics interaction, Journal

of Fluids and Structures 90 (2019) 396–409.555

[39] Y. Zhang, G. Pan, Y. Zhang, S. Haeri, A multi-physics peridynamics-

DEM-IB-CLBM framework for the prediction of erosive impact of solid

45



particles in viscous fluids, Computer Methods in Applied Mechanics and

Engineering 352 (2019) 675–690.

[40] F. Dalla Barba, F. Picano, A novel approach for direct numerical simulation560

of hydraulic fracture problems, Flow, Turbulence and Combustion (2020).

[41] F. Dalla Barba, F. Picano, A new method for fully resolved simulations of

fracturing in fluid-structure interaction problems, in: ERCOFTAC Work-

shop Direct and Large Eddy Simulation, Springer, 2019, pp. 469–475.

[42] Q. Zhang, T. Hisada, Studies of the strong coupling and weak coupling565

methods in FSI analysis, International Journal for Numerical Methods in

Engineering 60 (2004) 2013–2029.

[43] C. Wang, J. D. Eldredge, Strongly coupled dynamics of fluids and rigid-

body systems with the immersed boundary projection method, Journal of

Computational Physics 295 (2015) 87–113.570
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