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Abstract

High dimensional integrals are abundant in many fields of research including quantum
physics. The aim of this paper is to develop efficient recursive strategies to tackle a class
of high dimensional integrals having a special product structure with low order couplings,
motivated by models in lattice gauge theory from quantum field theory. A novel element of
this work is the potential benefit in using lattice cubature rules. The group structure within
lattice rules combined with the special structure in the physics integrands may allow efficient
computations based on Fast Fourier Transforms. Applications to the quantum mechanical
rotor and compact U (1) lattice gauge theory in two and three dimensions are considered.

1 Introduction

High dimensional integrals are abundant in many fields of research including quantum physics.
The aim of this paper is to develop efficient recursive strategies to tackle a class of high di-
mensional integrals having a special product structure with low order couplings, motivated by
models in lattice gauge theory [15] from quantum field theory. A novel element of this work is
the potential benefit in using lattice cubature rules [13, 29]. The group structure within lattice
rules combined with the special structure in the physics integrands may allow efficient compu-
tations based on Fast Fourier Transforms (FFT). Note the two different occurrences of the word
“lattice” here: one as a discretization tool in physics, and one as a method of approximating
integrals in numerical analysis.

The integrals being considered are motivated by problems from simulations of quantum field
theories, e.g., systems in high energy and statistical physics. In the simplest formulation, we
have an L-dimensional integral of the form∫

DL

L−1∏
i=0

fi
(
xi, xi+1

)
dx, with x = (x0, . . . , xL−1) and xL ≡ x0, (1)
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where each variable xi belongs to a bounded domain D ⊂ R and each function fi depends only
on two consecutive variables xi and xi+1. We will refer to the condition xL ≡ x0 as “parametric
periodicity”. This is a defining characteristic of the class of problems that we consider in this
paper. Models in lattice field theory often couple the relevant degrees of freedom on neighboring
lattice sites, and as a result exhibit the structure of (1). As a concrete example we consider
here the topological oscillator or quantum rotor, see [1, 7, 8] and Section 2.1 below, which is
a 1D (i.e., one space-time dimension) quantum mechanical model in Euclidean time with L
lattice points. Often the functions fi are identical (or only one of them is different due to the
presence of the “observable function”), depend only on the difference of the two input variables,
and are periodic in each coordinate direction. For example, fi(u, v) = exp(β cos(v − u)) with
D = [−π, π).

Note that there are two senses of dimensionality here: typically by dimension we are referring
to the number of integration variables, denoted by L in (1) and later more generally denoted
by s; but there is also the space-time dimension of the underlying physical problem which we
will denote by d and describe as 1D, 2D or 3D (i.e., d = 1, 2, 3, . . .).

Often in high energy and statistical physics, integrals of the form (1) appear in both the
numerator and denominator of a ratio that represents the expected value of an observable (see
e.g., (8) below). The end goal is typically to obtain this ratio rather than the separate integrals,
and a popular strategy is to tackle this using Markov chain Monte Carlo (MCMC) simulations.
Here instead we propose to treat the integrals by numerical integration methods.

One possibility is to apply an L-fold tensor product of a one-dimensional quadrature rule
to approximate the integral (1). That is, each integral over D in (1) is approximated by a one-
dimensional quadrature rule with n points t1, . . . , tn ∈ D and corresponding weights w1, . . . , wn ∈
R, so that the approximation to (1) is given by

n−1∑
k0=0

wk0 · · ·
n−1∑

kL−1=0

wkL−1

L−1∏
i=0

fi
(
tki , tki+1

)
, (2)

where for convenience we extend parametric periodicity to the notation of indices so that kL ≡ k0.
We switch now to the general notation with s instead of L denoting the number of integration

variables. The approximation of (1) by (2) can be expressed in the general form∫
Ds
f(x) dx ≈

N∑
k=1

ωkf(tk), (3)

where the N = ns points are denoted by t1, . . . , tN ∈ Ds, with the corresponding weights
ω1, . . . , ωN ∈ R being products of the one-dimensional weights. Product rules are generally not
recommended in high dimensions because the computational cost is generally O(ns) = O(N).
If the one-dimensional rule with a general integrand has error O(n−α) for some α > 0, then the
error for the product rule is also O(n−α). Expressing now the error with respect to the cost, it
would be O(N−α/s), which suffers from the curse of dimensionality for large s.

Some alternatives to product rules in high dimensions include Monte Carlo (MC) methods,
quasi-Monte Carlo (QMC) methods [14, 13, 21, 26, 27, 29], and sparse grid (SG) methods [9].
SG methods use only a strategically chosen sparse subset of the ns grid points, thus reducing
the cost. Both MC and QMC methods take the form of (3) with equal weights ωk = 1/N , but
now N is no longer the sth power of some number n, thus avoiding the exponential cost in s.
MC and QMC methods are fundamentally different: the MC points are generated randomly and
have an error convergence rate of O(N−1/2), while the QMC points are designed and chosen
deterministically to be better than random in the sense of achieving a higher order convergence
rate O(N−α), with α close to 1 or better, where α depends on the smoothness of the integrand
and properties of the QMC points. Modern QMC analysis in weighted function spaces can
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(a) first order coupling in 1D (r = 1)

x0 xi xi+1 xL ≡ x0

(b) third order coupling in 1D (r = 3)

x0 xi

xi+1

xi+2

xi+3

xL ≡ x0

Figure 1: Illustration of variable couplings

give error bounds that are independent of s, see e.g., [13]. Conceptually, this requires that the
integrands have low effective dimension, either in the sense that only the initial variables are
important (low truncation dimension), or that an integrand is dominated by a sum of terms
involving only a few variables at a time (low superposition dimension), see e.g., [10]. QMC
methods have also been considered for physics applications, e.g., in [2, 25] for lattice systems
and in [6, 12] for multiloop calculations in perturbation theory.

However, integrands of the form in (1) most likely will not have low effective dimension in
either of the two senses described above. So it is unclear if a direct application of QMC methods
to (1) would be fruitful. On the other hand, these integrands have a special structure: since
each product factor in (1) depends only on two neighboring variables, it has been shown in [1]
that a recursive integration strategy can be used to evaluate the product rule (2) very efficiently
without an exponential cost in s = L. We refer to (1) as an example in 1D with first order
coupling, and denote this coupling order by r = 1; see Figure 1(a) for an illustration of the
active variables in fi. Recursive integration has been considered in e.g., [11, 16, 19, 20], but not
for integrands with parametric periodicity xL ≡ x0. For parametric periodicity a more careful
analysis is needed.

The first contribution of this paper is to review this recursive strategy from [1, 17] and
identify favorable scenarios when the cost can be further reduced using FFT. Our findings are
summarized in Table 1 in Section 3. As an example of the best scenario (Scenario (A7)), for the
integral (1) with fi(u, v) = exp(β cos(v − u)), the cost for the product rectangle rule is only

O(n log(n)), independently of L,

with an error of O(n−α) (or even converging exponentially fast in n) due to the well-known
Euler–Maclaurin formula for trapezoidal rules applied to periodic functions of smoothness order
α. In other words, it is possible to achieve the error of a full tensor product rule with a cost
that is independent of the number of integration variables L. This is a remarkable outcome!

The second contribution of this paper is to extend the recursive strategy to the situation
where the domain D in (1) is replaced by an s-dimensional domain Ds, giving an L-fold product
of s-dimensional integrals of the form∫

(Ds)L

L−1∏
i=0

fi
(
xi,xi+1

)
dx. (4)

Here x ∈ (Ds)L = DL×s can be interpreted as a matrix of size L×s, with xi = (xi,0, . . . , xi,s−1) ∈
Ds referring to its ith row, and we have parametric periodicity xi,j ≡ xi mod L, j mod s for all
i, j ∈ N. Compared to our strategy for s = 1 we here just need to replace the 1-dimensional
quadrature rules by s-dimensional cubature rules. In particular, we propose to use n-point
lattice cubature rules, see below. We obtain completely analogous results in Table 1. In the best
scenario (Scenario (A7)) where FFT is applicable, the cost is only

O(n log(n)), independently of L and s.

The error is O(n−α) where α depends on the smoothness of the integrand and properties of
the underlying lattice rule. The implied constant in the error bound is again independent of
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L, but can potentially depend exponentially on s, unless the integrand belongs to a suitable
weighted function space, see the brief introduction of lattice cubature rules near the end of the
introduction and the references there.

The third contribution of this paper is to extend the recursive strategy further to higher
order couplings with arbitrary order r, that is, each function fi(xi, xi+1) in (1) is now replaced
by

fi(xi, xi+1, . . . , xi+r),

with parametric periodicity xi ≡ xi mod L in place for all indices i ∈ N; see Figure 1(b) for an
illustration of the active variables in fi with r = 3. Our aim is to control the cost with increas-
ing r. The motivation from physics models is that, instead of approximating a first derivative
(e.g., the angular velocity) by a forward difference formula which depends on two neighboring
variables, we use a central difference formula or other higher order difference formulas which
depend on more neighboring variables. This is motivated by the fact that in this way the discrete
lattice effects are suppressed and one is working closer to the desired continuum model. Here we
propose to use a tensor product of an r-dimensional lattice cubature rule (assuming for simplic-
ity that r divides L). Our findings are summarized in Table 2 in Section 4. We show that under
the right condition (i.e., if the functions fi have certain desirable properties, see Scenario (B7)),
the cost of the recursive strategy based on a (L/r)-fold product of an r-dimensional lattice rule
with n points is only

O(n log(n)), independently of L and r.

The error is again O(n−α) where α depends on the integrand and the lattice rule, and the
implied constant is independent of L but can potentially depend exponentially on r. In case
that the desired condition does not hold, we have an alternative strategy (see Scenario (B4))
with cost of O(log(L/r)n3).

The fourth contribution of this paper is to generalize the recursive strategy to 2D
problems with first order couplings of the generic form∫

D2L2

L−1∏
i=0

L−1∏
j=0

fi,j
(
xai,j − xai,j+1 − xbi,j + xbi+1,j

)
dx, (5)

where x = (xa,xb) has 2L2 components xai,j and xbi,j for i, j = 0, . . . , L − 1, with parametric

periodicity xai,j ≡ xai mod L, j mod L and xbi,j ≡ xbi mod L, j mod L for all indices i, j ∈ N. Generally
speaking, the form of the integrand given in (5) is characteristic of gauge theories which are at
the heart of quantum field theories to describe the mediating fields between matter fields, e.g.,
quarks. Here we consider a pure U (1) gauge theory in two dimensions, so-called “2-dimensional
compact U (1) lattice gauge theory”, see Section 2.2 below. We first show that the problem can
be turned into a nested integration problem where our favorable strategy (see Scenario (A7))
can be applied to both the outer and inner integrals. Then we show that the problem further
simplifies to become essentially a 1D problem, yielding an overall cost of only

O(n log(n)), independently of L.

The error is O(n−α) with α depending on the smoothness of the functions. This is truly re-
markable for an integration problem with 2L2 variables.

The future outlook is to generalize the recursive strategy to 2D problems with higher
order couplings, and also to 3D problems where the number of integration variables is 3L3,
and eventually couple in matter fields. We have made some progress in this direction. The
challenge is that, even with the recursive strategy reducing the dimensionality of the problems,
the remaining integrals to be evaluated are still very high dimensional. We derived some explicit
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representations of the integrals in terms of Fourier coefficients of the functions, and these may
hold the key to tackle these tough problems in future work.

Up to this point we have not yet formally introduced lattice cubature rules; we will do this
now. Rank-1 lattice rules [13, 21, 26, 29] are a family of QMC methods for approximating an
integral over the s-dimensional unit cube [0, 1]s, with s = L or r or else as appropriate. They
take the form

1

N

N∑
k=1

f

(
kz mod N

N

)
, (6)

where z ∈ Zs is known as the generating vector of the lattice rule and determines the quality
of the rule. There is an underlying infinite lattice of points {kzN : k ∈ Z} ⊂ Rs. The sum or
difference of any two lattice points is another lattice point. The cubature points of a lattice
rule are those points from the infinite lattice that lie in the half-open unit cube, together with
the origin. They form a group under addition modulo the integers. If a given integral is
not formulated over the unit cube, then an appropriate change of variables should be used to
reformulate the problem.

Loosely speaking, lattice rules can achieve the error O(N−α) if the integrand f is periodic
with respect to each variable, and if its Fourier coefficients decay in a suitable way, where α is a
smoothness parameter which roughly corresponds to the number of available mixed derivatives
of f , see e.g., [29]. The implied constant in the error bound for lattice rules can depend expo-
nentially on s, but can also be independent of s by working in a weighted function space setting
with sufficiently decaying weight parameters. Good lattice generating vectors can be obtained
by fast component-by-component constructions, see e.g., [13, 28].

The outline of the paper is as follows. In Section 2 we introduce various physics models of
interest, to motivate the special product structure of the integrands that we consider in this
paper. For the next two sections, we move away from the explicit physics models and instead
consider generic classes of integrands with specific product structures, and develop strategies to
approximate the integrals efficiently under various assumptions on the properties of the product
factors. Specifically, in Section 3 we review and extend the recursive strategy from [1] in detail,
including the use of FFT and the extension to an L-fold product of s-dimensional domains; in
Section 4 we extend the recursive strategy to higher order couplings. Then in Section 5 we
return to the application of the recursive strategy to the quantum rotor, and in Section 6 we
consider applications to compact U (1) lattice gauge theory. Section 7 provides a brief summary.
The Appendix includes derivations of explicit expressions for some integrals using Fourier series,
paving ways for future work.

2 Description of physics models

Although in this article we are mainly interested in the mathematical structure of the integrals
to be solved, the motivation for the form of the integrals come from physics models. We therefore
describe here two models from physics which lead to such structures.

The characteristic of a quantum mechanical system is that not only the classical path con-
tributes to a physical observable, but – according to Feynman – that all possible paths have
to be taken into account. This leads to the notion of a path integral. Following Feynman’s
description, a quantum mechanical system is defined by the path integral∫

DL
exp(−S[φ]) dφ, (7)

where D is a domain in R and S[φ] denotes the action of the considered quantum mechanical
model. For a general, mathematically well-defined formulation of the path integral we refer to
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[18, 24]. Here we consider the special case of a time-discretized quantum mechanical system
which also renders the path integral well defined. However, the integral in (7) can still be of
high dimension L, where L can be in the thousands or much larger. Of physical interest is the
expected value 〈O[φ]〉 of an observable O[φ] which can be calculated within the path integral
formalism as

〈O[φ]〉 =

∫
DL O[φ] exp(−S[φ]) dφ∫

DL exp(−S[φ]) dφ
. (8)

2.1 Quantum rotor

As anticipated in the introduction, the first model we are going to consider in this article is the
quantum rotor which describes a particle with mass m0 moving on a circle with radius r0, see
[1, 7, 8]. Thus, the particle has a moment of inertia I = m0r

2
0. We investigate this particular

model because it has already some characteristic features of non-linear σ-models and gauge
theories, see e.g., [15]. An example of such a gauge theory will be discussed in the next subsection.

In the simple quantum rotor model, the free coordinate of the system is the angle φ ∈ D =
[−π, π) describing the position of the particle on the circle. In the continuum, the system is
described by the action

S(φ) =

∫ T

0

I

2

(dφ

dt

)2
dt. (9)

With T and I kept fixed, taking L time discretizations with lattice spacing h = T/L, and

approximating 1
2(dφ

dt )2 ≈ 1
2(φi+1−φi

h )2 ≈ 1−cos(φi+1−φi)
h2

, we obtain the discretized action and
observables

S[φ] =
I

h2

L−1∑
i=0

(
1− cos(φi+1 − φi)

)
and O[φ] = cos(φk+1 − φk) for any k, (10)

where φL ≡ φ0, i.e., we assume periodic boundary conditions. Although unusual at first sight,
the choice of approximation 1

2(dφ
dt )2 ≈ 1−cos(φi+1−φi)

h2
is important, since the cosine introduces

periodicity. Numerically this will allow us to use FFT, and so reduce the computational cost
of the integration problem significantly. From a physics point of view, the cosine form is also
interesting because it resembles actions used for gauge theories and thus provides a proving
ground before tackling gauge theories.

Furthermore, it is important to note that any constant term in the action S, such as the 1 in

1− cos, can be removed because the action enters the ratio
∫
O e−S∫
e−S

only as an exponent in both

numerator and denominator. Any constant contributions to the action will therefore cancel.
Hence, the ratio (8) is given by

〈O[φ]〉 =

∫
DL cos

(
φk+1 − φk) exp(β

∑L−1
i=0 cos(φi+1 − φi)

)
dφ∫

DL exp
(
β
∑L−1

i=0 cos(φi+1 − φi)
)

dφ
, β =

IL2

T 2
. (11)

Note that the arguments leading to the continuum action (9) is referred to as the “naive
continuum limit” since the true, non-perturbative continuum limit is reached by sending h→ 0
and therefore L = T/h → ∞, while keeping T and I fixed. The form of the lattice action in
(11) is not unique. Any action that reproduces the continuum time derivative when h→ 0 and
L→∞ is a valid discretization of the continuum action. For example, we may use a higher order
finite difference formula instead of forward difference, leading to higher order couplings in the
variables. More complicated forms of the lattice action can have the advantage that unwanted
lattice spacing effects are canceled out. Whether such possible, more complicated forms of an
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action reproduce the correct continuum physics can, however, only be answered when the above
sketched non-perturbative procedure of the continuum limit is carried through.

Conversely, this non-uniqueness of the action can also be used to our advantage. Above,
we have introduced 1

2(dφ
dt )2 ≈ 1−cos(φi+1−φi)

h2
instead of the canonical 1

2(dφ
dt )2 ≈ 1

2(φi+1−φi
h )2.

Both choices reproduce the correct continuum action [1], yet the cosine choice has significant
numerical advantages. In this sense, it is not only important to develop numerical methods that
are well-adjusted to meet the needs of computational physics, but modeling in computational
physics is an important step which allows for lattice actions to be designed such that they can
be addressed efficiently with existing numerical methods. A prime example is the discretization
of fermionic actions which come in a number of different incarnations with different advantages
and disadvantages [15, 23].

Observe that both S[φ] and O[φ] are 2π-periodic with respect to each of the integration
variables φi. So the integrals remain unchanged if we shift the integration domain from [−π, π)
to [0, 2π). We can then apply the linear mapping φ = 2πx in each coordinate to convert the
integrals into the unit cube [0, 1)L.

We can also consider a slightly more complicated observable called the topological suscepti-
bility. The topological susceptibility χt is related to the topological charge Q of the system

Q[φ] =
1

2π

L−1∑
i=0

(
(φi+1 − φi) mod [−π, π)

)
, (12)

where

ψ mod [−π, π) :=

{
ψ mod 2π if ψ mod 2π ∈ [0, π),

ψ mod 2π − 2π otherwise.

The topological susceptibility is then given by the expectation (with h set to 1)

χt =
1

L

〈
(Q[φ])2

〉
. (13)

In lay terms, the topological charge captures the winding number of the path the particle takes
over its lifetime in this circular universe of the quantum rotor. It is therefore an observable that
holds global information even though only local terms contribute. For example, the topological
susceptibility (13) can be used to extract the energy gap of the quantum rotor. Further discussion
on this observable is deferred to Section 5.3.

2.2 Quantum compact abelian gauge theory

The essential building blocks of models in high energy physics are so-called gauge theories. They
describe the physics of the force mediating particles between matter fields. The lattice action
of a gauge theory is constructed from gauge fields and assumes a particular form based on the
plaquette discussed below. The gauge fields themselves are represented by group valued variables
which are taken from the abelian group U (1), or the non-abelian ones, U (N) or SU (N) with
N ≥ 2.

Models of high energy physics live in three space and one time dimensions and take the
group U (1) to describe the electromagnetic, SU (2) to describe the weak and SU (3) to describe
the strong interactions, the latter being the interaction between quarks and gluons. While
investigating these models in 3 + 1 dimensions would, of course, be physically most interesting,
they are, unfortunately, presently too demanding for our approach. However, lower dimensional
systems capture already a number of the essential characteristics of these realistic models and
being able to solve gauge theories in lower dimensions would open a most promising path to
address eventually interesting and important questions in high energy and condensed matter
physics.
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As a very first target theory we will consider here 2-dimensional compact U (1) lattice gauge
theory [15]. The ratio of interest (8) for this model has in this case the denominator∫

D2L2
exp

(
β

L−1∑
i=0

L−1∑
j=0

cos
(
φai,j + φbi+1,j − φai,j+1 − φbi,j

))
dφ, (14)

and e.g., (using translational invariance) the numerator∫
D2L2

cos
(
φa0,0 + φb1,0 − φa0,1 − φb0,0

)
exp

(
β
L−1∑
i=0

L−1∑
j=0

cos
(
φai,j + φbi+1,j − φai,j+1 − φbi,j

))
dφ.

Here and below D = [−π, π], and we have parametric periodicity where all indices should be
taken modulo L.

The above model involves only first order couplings. We can have higher order couplings by
considering the Wilson loop with parameters ra and rb. The ratio of interest (8) in this case has
the denominator∫

D2L2
exp

(
β

L−1∑
i=0

L−1∑
j=0

cos
(
φai,j + φai+1,j + · · ·+ φai+ra,j + φbi+ra,j + φbi+ra,j+1 + · · ·+ φbi+ra,j+rb

− φai+ra,j+rb − φ
a
i+ra−1,j+rb

− · · · − φai,j+rb

− φbi,j+rb − φ
b
i,j+rb−1 − · · · − φbi,j

))
dφ, (15)

while the numerator should include an extra factor as observable, which could be the sum

O[φ] =
L−1∑
i=0

L−1∑
j=0

cos
(
φai,j + φai+1,j + · · ·+ φai+ra,j + φbi+ra,j + φbi+ra,j+1 + · · ·+ φbi+ra,j+rb

− φai+ra,j+rb − φ
a
i+ra−1,j+rb

− · · · − φai,j+rb − φ
b
i,j+rb

− φbi,j+rb−1 − · · · − φbi,j
)
,

or just one of the terms in the sum.
The 3-dimensional compact U (1) lattice gauge theory is more complicated, involving more

than one cosine term in the action. In the case of first order coupling, the ratio of interest (8)
has the denominator∫

D3L3
exp

(
β
L−1∑
i=0

L−1∑
j=0

L−1∑
k=0

[
cos
(
φai,j,k − φai,j+1,k − φbi,j,k + φbi+1,j,k

)
+ cos

(
φci,j,k − φci+1,j,k − φai,j,k + φai,j,k+1

)
+ cos

(
φbi,j,k − φbi,j,k+1 − φci,j,k + φci,j+1,k

)])
dφ, (16)

while the numerator should have an extra factor as observable, e.g.,

O[φ] = cos
(
φa0,0,0 − φa0,1,0 − φb0,0,0 + φb1,0,0

)
.

Although using these cosine terms is a very common way of expressing a U (1) gauge theory
like QED (quantum electrodynamics), they are not particularly insightful with respect to the
U (1) structure and its generalizations. The angles φαi,j,... are the angles of U (1) elements Φα

i,j,... =

eiφαi,j,... which itself describe the transformation that moves the field from one lattice point to a
neighboring point. The superscript a then denotes movement increasing the first index i by one,

8



(a) 2D plaquette P a,bi,j

φai,j

−φai,j+1

−φbi,j φbi+1,j

(i, j)

(i + 1, j + 1)

(b) 3D plaquettes P a,bi,j,k, P
a,c
i,j,k, and P b,ci,j,k,

(i, j, k)

(i + 1, j + 1, k + 1)

Figure 2: Construction of the plaquette in two (left) and three (right) dimensions. In two

dimensions, the plaquette P a,bi,j at lattice point (i, j) is constructed by transporting the field
along the path (i, j)→ (i+ 1, j)→ (i+ 1, j + 1)→ (i, j + 1)→ (i, j). The field transformation
along this path is given by (17). The angles φ contribute with a positive sign if moving right
or up, and with a negative sign if moving left or down. Left/right movement is labeled with
a superscript a and up/down movement with superscript b. In three dimensions an additional
foward/backward movement is denoted by the superscript c. Furthermore, there are three
independent smallest loops that can be taken; namely in the (a, b)-plane (black solid line),
(a, c)-plane (red dotted line), and (b, c)-plane (blue dashed line). Each of these planes equally
contribute a “2-dimensional” plaquette. We note that all links are straight lines which we have
bent simply for better visualization.

i.e., Φa
i,j describes the transformation of the field moving from the lattice point (i, j) to (i+1, j),

while (Φa
i,j)
−1 = e−iφai,j describes its inverse. Similarly Φb

i,j describes movement from (i, j) to
(i, j + 1). In three dimensions we also have a c direction describing movement from (i, j, k) to
(i, j, k + 1). Following this procedure, U (1) gauge theories in arbitrarily many dimensions can
be constructed.

The cosine terms above now follow from the self-interaction of the quantum field. The
(non-trivial) first order discretization of this self-interaction is therefore given by the smallest
non-trivial path through the physical lattice. In 2-dimensions starting from the lattice point
(i, j) that is

(i, j)
Φai,j−−→ (i+ 1, j)

Φbi+1,j−−−−→ (i+ 1, j + 1)
(Φai,j+1)−1

−−−−−−−→ (i, j + 1)
(Φbi,j)

−1

−−−−−→ (i, j). (17)

The self-interaction at the point (i, j) is thus given by the plaquette

P a,bi,j = Φa
i,jΦ

b
i+1,j(Φ

a
i,j+1)−1(Φb

i,j)
−1 = ei(φai,j+φbi+1,j−φai,j+1−φbi,j) (18)

and the cosines in the 2-dimensional action are precisely given by the real parts of the plaquettes
P a,bi,j . Real parts of larger loops are the Wilson loops. Furthermore, in three or more dimensions,
plaquettes can be built in the (a, b)-plane, (a, c)-plane, (b, c)-plane, etc. The 3-dimensional
action is thus given by summing over all three plaquettes at each lattice point. The construction
of the plaquettes in two and three dimensions is visualized in Figure 2.

In a similar way, taking Φα
i,j,... from U (N) or SU (N) and taking the trace of (18) would

allow for the construction of other gauge theories such as the weak interaction, using SU (2), or
QCD (quantum chromodynamics or strong nuclear force), using SU (3).

In addition to the self-interaction of the quantum field, the complete QED action also contains
an interaction term with fermions and a topological term. The fermions are not included in the

9



description shown above because they are modeled using Grassmann variables which can be
integrated analytically. The analytic expression for these integrals can then be treated as part
of an observable.

The topological term, on the other hand, is very interesting and notorious. While the
self-interaction term is given by the sum over all plaquette real parts, summing all plaquette
imaginary parts yields 2πQ[Φ] where Q[Φ] is by definition the topological charge. Note that
this is the field theoretical analogue of (12). The topological charge contributes to the action as
an additional summand iθ Q[Φ]. The coefficient θ is called the vacuum angle and is set to θ = 0
in the action we will discuss here. Physically the value of θ distinguishes between superselection
sectors. It is therefore physically important to have numerical methods that can handle non-zero
values of θ.

Non-zero values of θ are very prohibitive for many state-of-the-art methods in computational
physics because they render the action complex. Hence, techniques like Markov chain Monte
Carlo would require sampling from complex “probability” distributions. Alternatively, the term
could be treated as a complex-valued observable which leads into the notorious sign-problem
[3, 4, 17, 30]. Although we are not explicitly treating this term here, it is important to note that
this topological term is nothing but a sine of angle differences and thus shares all periodicity
and differentiability properties of the class of numerical problems we are studying in this work.
Hence, the methods developed here have the potential to address long-standing open problems
in high energy physics, going beyond the capabilities of state-of-the-art methods.

3 Recursive strategy for first order couplings

In this section we review and extend the approach from [1].
The integral of interest takes the generic form (1) (not restricted to the physics integrals)

and can be written equivalently as follows: with x = (x0, . . . , xL−1) and xL ≡ x0,

I =

∫
D
· · ·
∫
D
f0

(
x0, x1

)
f1

(
x1, x2

)
f2

(
x2, x3

)
· · · fL−1

(
xL−1, x0

)
dx0 · · · dxL−1

=

∫
D

[ ∫
D
· · ·
(∫

D

(∫
D
f0

(
x0, x1

)
f1

(
x1, x2

)
dx1

)
f2

(
x2, x3

)
dx2

)
· · · fL−1

(
xL−1, x0

)
dxL−1

]
dx0. (19)

We say that this problem has first order couplings because each function fi depends on a variable
xi and its next neighbor xi+1, with the assumed parametric periodicity that xL ≡ x0. The way
we have grouped the integrals in (19) would imply conceptually that we first integrate over x1,
and then x2 and so on until xL−1, and finish with x0. But the underlying parametric periodicity
means that there is no absolute ordering of variables. We could start from any variable and
go either forward or backward through the sequence. Our choice to begin from x1 is just for
notational convenience. The reason to leave x0 for the last is because it appears in both f0 and
fL−1, far apart in our expression, and so a bit clumsy if we were to tackle it first.

For physics integrals involving an observable function which has up to first order couplings, we
will end up with an extra factor for the product function. This extra factor can be grouped with
an existing factor involving the same variables. Due to the parametric periodicity, without loss
of generality, we can assume that this observable function has been grouped with the factor f0.

Following the recursive integration strategy described in [1], each one-dimensional integral in
(19) is approximated by the same one-dimensional quadrature rule with points t0, . . . , tn−1 ∈ D

10



and weights w0, . . . , wn−1 ∈ R, to arrive at the approximation

Q =

n−1∑
k0=0

wk0

[ n−1∑
kL−1=0

wkL−1
· · ·
( n−1∑
k2=0

wk2

( n−1∑
k1=0

wk1f0

(
tk0 , tk1

)
f1

(
tk1 , tk2

))
f2

(
tk2 , tk3

))

· · · fL−1

(
tkL−1

, tk0
)]
. (20)

An important fact which was perhaps not sufficiently emphasized in [1] is that this approximation
(20) is precisely the tensor product rule (2). Therefore, the error of this approximation is O(n−α)
if the one-dimensional rule has error O(n−α). Furthermore, if each fi is smooth and periodic,
then the rectangle rule (i.e., equally spaced points tk on D and equal weights wk = 1/n) becomes
the trapezoidal rule, and its error converges in O(n−α) by the Euler–Maclauren formula, where
α is the smoothness order of the function (or even exponentially fast in n for analytic functions).

The expression (20) is equivalent to a time integrator in the quantum rotor model (and other
linear Schrödinger operators). This is mainly due to the relatively simple connection between the
Lagrangian and Hamiltonian formulations of classical quantum mechanics after discretization.
These similarities disappear for non-trivial quantum field theories, to the point at which the
Hamiltonian becomes so complex, e.g. in lattice QCD, that it cannot serve as guiding principle
any more.

Assuming that the cost of one evaluation of fi is O(1), a naive implementation of this
method by direct calculation of (20) would have cost O(nL) and so suffers from the curse of
dimensionality. This is summarized under Scenario (A0) in Table 1. In the following, we first
describe the efficient strategy from [1] which improves the cost to Scenarios (A1)–(A4) in Table 1.
We then extend our discussion to even more favorable Scenarios (A5)–(A7) to complete the table.
Finally we explain that Table 1 also holds when the one-dimensional domain D is replaced by
an s-dimensional domain.

In Table 1 (and also later in Table 2) we assume that the chosen eig procedure returns
eigenvalues and eigenvectors to the desired working precision and its cost can be expressed only
in terms of n. In a similar simplification, we assume also that the quadrature weights in the
matrix W can be obtained up to working precision with negligible cost. These assumptions will
hold then also for the rest of this paper.

3.1 Recursive numerical integration

Let Mi denote the n× n matrix with entries

(Mi)p,q = fi(tp, tq) for p, q = 0, . . . , n− 1, (21)

and let W denote the n × n diagonal matrix with the weights w0, . . . , wn−1 on the diagonal.
Then we can express the innermost sum in (20) as

n−1∑
k1=0

wk1f0

(
tk0 , tk1

)
f1

(
tk1 , tk2

)
=

n−1∑
k1=0

(M0)k0,k1w
1/2
k1

w
1/2
k1

(M1)k1,k2

=

n−1∑
k1=0

(M0W
1/2)k0,k1 (W 1/2M1)k1,k2 = (M0WM1)k0,k2 ,

where we used the properties that pre-multiplying by a diagonal matrix scales the rows while
post-multiplying by a diagonal matrix scales the columns. In turn, we have

n−1∑
k2=0

wk2

( n−1∑
k1=0

wk1f0

(
tk0 , tk1

)
f1

(
tk1 , tk2

))
f2

(
tk2 , tk3

)
=

n−1∑
k2=0

wk2(M0WM1)k0,k2(M2)k2,k3

= (M0WM1WM2)k0,k3 .

11



Table 1: Cost of recursive strategy for first order couplings. Mi is the n×n matrix of fi
at quadrature points. W is an n× n diagonal matrix with quadrature weights on the diagonal.
eig returns a diagonal matrix of eigenvalues. fft takes the first column of a circulant matrix
and returns a diagonal matrix of eigenvalues. In all cases the quadrature error is O(n−α), with α
determined by the quadrature rule. The strategy extends to an L-fold product of s-dimensional
integrals with the quadrature rule replaced by an s-dimensional cubature rule. The cost is
independent of s, while the error is O(n−α), with α determined by the cubature rule and with
implied constant dependent on s.

Scenario Strategy Cost

(A0) naive implementation Q = direct product calculation nL

(A1) recursive integration
B = W 1/2M0WM1W · · ·ML−1W

1/2

Q =
∑n−1

k=0 Bk,k
Ln3

(A2) Mi = M

A = W 1/2MW 1/2

B = AL

Q =
∑n−1

k=0 Bk,k

log(L)n3

(A3) Mi = M diagonalizable

A = W 1/2MW 1/2

Λ = eig(A)

Q =
∑n−1

k=0 ΛLk,k

n3

(A4) Mi = M except M0

A = W 1/2MW 1/2

B = W 1/2M0W
1/2AL−1

Q =
∑n−1

k=0 Bk,k

log(L)n3

(A5) Mi circulant
Λi = fft(Mi/n) for each i

Q =
∑n−1

k=0

∏L−1
i=0 (Λi)k,k

Ln log(n)

(A6) Mi = M circulant
Λ = fft(M/n)

Q =
∑n−1

k=0 ΛLk,k
n log(n)

(A7) Mi = M except M0

all circulant

Λ0 = fft(M0/n)

Λ = fft(M/n)

Q =
∑n−1

k=0(Λ0)k,k ΛL−1
k,k

n log(n)

This eventually leads to

Q =

n−1∑
k0=0

wk0(M0WM1WM2W · · ·ML−1)k0,k0

=
n−1∑
k0=0

(W 1/2M0WM1WM2W · · ·ML−1W
1/2)k0,k0

= trace(B), with B = W 1/2M0WM1WM2W · · ·ML−1W
1/2. (22)

Hence, it suffices to compute the matrix B by successive matrix multiplications, and then
summing up the diagonal entries of B. Assuming that the cost for multiplying two n× n dense
matrices is O(nµ) with µ ≤ 3, the cost of the recursive strategy is O(Lnµ). This is summarized
as Scenario (A1) in Table 1.

For physics integrals involving an observable function which has up to first order couplings,
as we explained before this can be grouped with the factor f0. So this situation is also covered
by Scenario (A1).
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For numerical stability, it may be necessary to scale the intermediate matrix multiplications
when implementing this method. We recommend scaling the matrix so that a prescribed norm
is 1.

3.2 Identical matrices

In the special case where all the functions fi are equal so that all matrices are identical, Mi = M ,
we have

B = AL, with A = W 1/2MW 1/2.

It suffices to compute the Lth power of A (using e.g., the method of “exponentiation by squar-
ing”) and then sum up the diagonal entries of the resulting matrix. The cost is thenO(log(L)nµ).
This is summarized as Scenario (A2) in Table 1.

If A is diagonalizable, that is,
A = P ΛP>,

with P an orthogonal matrix and with the eigenvalues of A on the diagonal of Λ, then since
B = AL = P ΛL P> we conclude that

Q = trace(AL) = trace(ΛL) =

n−1∑
k=0

ΛLk,k.

Thus we just need to find the eigenvalues of A, raise each of them to the Lth power, and
then sum them up. The cost is then O(nξ), which is dominated by the cost for the eigenvalue
decomposition, generally with ξ ≤ 3. This is summarized as Scenario (A3) in Table 1. Such
a scenario can occur when the functions fi are symmetric, i.e., fi(u, v) = fi(v, u). It is then
interesting to see whether strategy (A2) or (A3) is more efficient in practice.

For an integral with an observable function that has been grouped with f0, if all other
functions fi are equal, then we arrive at Scenario (A4) in Table 1, which effectively has the same
cost as Scenario (A2).

3.3 Cost saving by FFT

We now extend the strategy beyond [1]. If

1. each function fi depends only on the difference of the two arguments, i.e., fi(u, v) =
κi(v − u) for some function κi, and

2. each function κi is periodic, and

3. we have equally spaced points with equal weights 1/n (i.e., we have the rectangle rule),

then the matrix Mi is circulant so that FFT can be used to find the eigenvalues.
While the restriction fi(u, v) = κi(v − u) may seem very restrictive at first glance, it should

be noted that σ-models and gauge theories satisfy this structure.
If the functions fi are different, then analogously to (22) we write (leaving aside the weights

to be taken into account at the end)

B = M0M1 · · ·ML−1, with Mi = FΛi F
†,

where F is the unitary Fourier matrix and † is the Hermitian adjoint. Since the Fourier matrix
is unitary, we have

B = FΛ0 Λ1 · · ·ΛL−1 F
†,
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and thus

Q = n−L trace(B) = n−L
n−1∑
k=0

(Λ0)k,k(Λ1)k,k · · · (ΛL−1)k,k.

So we carry out FFT on the first column of each of the matrices M0,M1, . . . ,ML−1 to find their
eigenvalues, multiply the resulting diagonal matrices elementwise, and then sum up the resulting
diagonal and divide by nL. The cost is therefore O(Ln log(n)). This is summarized as Scenario
(A5) in Table 1.

If all the functions fi are equal, then we carry out FFT only once to find the eigenvalues of
the common matrix M , raise each eigenvalue to the power L, and then sum up the results. The
cost is then reduced to O(n log(n)). This is summarized as Scenario (A6) in Table 1.

If an observable function is present as explained, then f0 is different while the rest of the fi
are equal. In this case, with M0 = FΛ0 F

† and M = FΛF†, we have

B = FΛ0 ΛL−1 F†,

and thus

Q = n−L trace(B) = n−L
n−1∑
k=0

(Λ0)k,k ΛL−1
k,k .

The cost is again O(n log(n)), and this is summarized as Scenario (A7) in Table 1. In all cases it
is numerically better to perform the scaling by weights in each step, see Table 1. Additionally,
we recommend scaling the columns of the circulant matrices to have a prescribed vector norm
of 1, see the constant c in the Julia code in Section 5.1.

3.4 Extension to the L-fold product of s-dimensional integrals

We conclude this section by noting that the recursive strategy extends easily to the situation
where the domain D in (19) is replaced by an s-dimensional domain Ds as in (4), or equivalently,

I =

∫
Ds
· · ·
∫
Ds

L−1∏
i=0

fi
(
xi,xi+1

)
dx0 · · · dxL−1, (23)

where xi = (xi,0, . . . , xi,s−1) ∈ Ds, with

xi,j ≡ xi mod L, j mod s for all i, j ∈ N.

In this case the one-dimensional quadrature rule in (20) becomes an s-dimensional cubature
rule with points t0, . . . , tn−1 ∈ Ds and weights w0, . . . , wn−1 ∈ R, and the matrices Mi in (21)
become

(Mi)p,q = fi(tp, tq) for p, q = 0, . . . , n− 1.

Thus we have again Scenarios (A0)–(A4) as in Table 1.
Sufficient conditions to arrive at circulant matrices for the more favorable Scenarios (A5)–

(A7) are as follows:

1. each function fi depends only on the difference of the two arguments, i.e., fi(u,v) =
κi(v − u) for some function κi : Ds → R, and

2. each function κi is periodic with respect to each of the s components, and

3. we have a lattice cubature rule tk = (kz mod n)/n for each k = 0, . . . , n− 1, see (6).
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The group structure of lattice cubature rule means that the difference of two lattice points is
another lattice point. Combining this with equal weights 1/n gives us circulant matrices Mi.
This is the main motivation here for favoring lattice cubature rules above all other cubature
rules!

We stress that the cost in all scenarios is independent of s. However, the error is O(n−α),
where α is determined by the cubature rule and the implied constant may depend on s.

4 Recursive strategy for higher order couplings

Consider now an integrand which is a product of factors involving higher order couplings of
order r, with 1 ≤ r ≤ L − 1, with the underlying parametric periodicity that xi ≡ xi mod L for
all i ∈ N,

I =

∫
DL

L−1∏
i=0

fi
(
xi, xi+1, . . . , xi+r

)
dx (24)

=

∫
D
· · ·
∫
D
f0

(
x0, x1, . . . , xr

)
f1

(
x1, x2, . . . , xr+1

)
· · · fr

(
xr, xr+1, . . . , x2r

)
· · · fL−1

(
xL−1, x0, x1, . . . , xr−1

)
dx0 · · · dxL−1.

In this section we generalize the recursive strategies from Section 3 using a tensor product of
r-dimensional cubature rules. Our approach is essentially to turn the given integral into an
(L/r)-fold product of r-dimensional integrals, a formulation that we discussed in Section 3.4
(replacing L by L/r and s by r). To avoid confusion, we summarize our findings in Table 2 for
easy comparison.

For simplicity of presentation we will explain this by considering the special case L = 14 and
r = 3:

I =

∫
D
· · ·
∫
D
f0

(
x0, x1, x2, x3

)
f1

(
x1, x2, x3, x4

)
f2

(
x2, x3, x4, x5

)
f3

(
x3, x4, x5, x6

)
f4

(
x4, x5, x6, x7

)
f5

(
x5, x6, x7, x8

)
f6

(
x6, x7, x8, x9

)
f7

(
x7, x8, x9, x10

)
f8

(
x8, x9, x10, x11

)
f9

(
x9, x10, x11, x12

)
f10

(
x10, x11, x12, x13

)
f11

(
x11, x12, x13, x0

)
f12

(
x12, x13, x0, x1

)
f13

(
x13, x0, x1, x2

)
dx0 · · · dx13. (25)

We have deliberately chosen a value of L that is not a multiple of r.
We group every three (= r) consecutive variables together as follows:

I =

∫
D3

∫
D3

∫
D3

∫
D3

θ0

(
(x0, x1, x2), (x3, x4, x5)

)
θ1

(
(x3, x4, x5), (x6, x7, x8)

)
θ2

(
(x6, x7, x8), (x9, x10, x11)

)
θ3

(
(x9, x10, x11), (x0, x1, x2)

)
d(x0, x1, x2) d(x3, x4, x5) d(x6, x7, x8) d(x9, x10, x11),

where we defined

θ0

(
(x0, x1, x2), (x3, x4, x5)

)
:= f0

(
x0, x1, x2, x3

)
f1

(
x1, x2, x3, x4

)
f2

(
x2, x3, x4, x5

)
θ1

(
(x3, x4, x5), (x6, x7, x8)

)
:= f3

(
x3, x4, x5, x6

)
f4

(
x4, x5, x6, x7

)
f5

(
x5, x6, x7, x8

)
θ2

(
(x6, x7, x8), (x9, x10, x11)

)
:= f6

(
x6, x7, x8, x9

)
f7

(
x7, x8, x9, x10

)
f8

(
x8, x9, x10, x11

)
,
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Table 2: Cost of recursive strategy for order r couplings. L is a multiple of r. Mi is the
n × n matrix of θi at cubature points. W is an n × n diagonal matrix with cubature weights
on the diagonal. eig returns a diagonal matrix of eigenvalues. fft takes the first column of a
circulant matrix and returns a diagonal matrix of eigenvalues. In all cases the error is O(n−α),
with α determined by the cubature rule and the implied constant dependent on r.

Scenario Strategy Cost

(B1) recursive integration
B = W 1/2M0WM1WM2 · · ·ML/r−1W

1/2

Q =
∑n−1

k=0 Bk,k
Ln3

(B2) Mi = M

A = W 1/2MW 1/2

B = AL/r

Q =
∑n−1

k=0 Bk,k

log(L/r)n3

(B3) Mi = M diagonalizable

A = W 1/2MW 1/2

Λ = eig(A)

Q =
∑n−1

k=0 Λ
L/r
k,k

n3

(B4) Mi = M except M0

A = W 1/2MW 1/2

B = W 1/2M0W
1/2AL/r−1

Q =
∑n−1

k=0 Bk,k

log(L/r)n3

(B5) Mi circulant
Λi = fft(Mi/n) for each i

Q =
∑n−1

k=0

∏L/r−1
i=0 (Λi)k,k

(L/r)n log(n)

(B6) Mi = M circulant
Λ = fft(M/n)

Q =
∑n−1

k=0 Λ
L/r
k,k

n log(n)

(B7) Mi = M except M0

all circulant

Λ0 = fft(M0/n)

Λ = fft(M)

Q =
∑n−1

k=0(Λ0)k,k Λ
L/r−1
k,k

n log(n)

with the exceptional last one

θ3((x9, x10, x11), (x0, x1, x2)) :=

∫
D

∫
D
f9

(
x9, x10, x11, x12

)
f10

(
x10, x11, x12, x13

)
f11

(
x11, x12, x13, x0

)
f12

(
x12, x13, x0, x1

)
f13

(
x13, x0, x1, x2

)
dx12 dx13,

which took care of the remaining factors that arise because L = 14 is not a multiple of r = 3.
Next we apply a 3-dimensional cubature rule with n points t0, . . . , tn−1 and weights ω0, . . .,

ωn−1 to each integral over D3, to obtain

Q =

n−1∑
k0=0

ωk0

n−1∑
k3=0

ωk3

n−1∑
k6=0

ωk6

n−1∑
k9=0

ωk9 θ0

(
tk0 , tk3

)
θ1

(
tk3 , tk6

)
θ2

(
tk6 , tk9

)
θ̃3

(
tk9 , tk0

)
, (26)

with θ3 approximated by θ̃3, obtained by the same cubature rule (projected to two dimensions)

θ̃3

(
(x9, x10, x11), (x0, x1, x2)

)
:=

n−1∑
k=0

ωk f9

(
x9, x10, x11, tk,1

)
f10

(
x10, x11, tk,1, tk,2

)
f11

(
x11, tk,1, x13, x0

)
f12

(
tk,1, tk,2, x0, x1

)
f13

(
tk,2, x0, x1, x2

)
.

Observe that the expression (26) takes the same form as (20).

16



In general, if L is a multiple of r, then we rewrite the integral (24) in the form

I =

∫
Dr
· · ·
∫
Dr

L/r−1∏
k=0

θi
(
yi,yi+1

)
dy0 · · · dyL/r,

where yi = (xri, xri+1, · · · , xri+r−1), with yi ≡ yi mod L/r, and

θi(u) := θi(u0:r−1,ur:2r−1) :=

r−1∏
k=0

fri+k(uk, uk+1, . . . , uk+r).

Thus, with a general r-dimensional cubature rule, the matrices of interest are now

(Mi)p,q = θi(tp, tq), p, q = 0, . . . , n− 1,

and as before W denotes the n×n diagonal matrix with the weights w0, . . . , wn−1 on the diagonal.
Then similarly to (22) we obtain

Q = trace(B), B = W 1/2M0WM1WM2 · · ·ML/r−1W
1/2,

which leads to the scenarios in Table 2, completely analogous to Table 1. When L is not a
multiple of r, one of the matrices will need to be adjusted as we have demonstrated in θ̃3.
Without loss of generality, for notational convenience we can make M0 the adjusted one.

A noteworthy difference between Scenarios (B5)–(B7) in Table 2 and Scenarios (A5)–(A7) in
Table 1 is that the matrices Mi are now determined by the functions θi which in turn are formed
by products of the functions fi. Currently we are not aware of sufficient conditions on fi that
will lead to circulant matrices Mi. So it is possible that Scenarios (B5)–(B7) are unreachable.

5 Application to the quantum rotor

5.1 1D first order couplings

We now apply the recursive strategy to the quantum rotor problem. Both integrals for the
numerator and denominator of our ratio of interest (11) are of the form∫

DL

L−1∏
i=0

fi(xi+1 − xi) dx,

with (after a change of variables) D = [0, 1] and

fi(x) = f(x) = exp(β cos(2πx)) for all i = 0, . . . , L− 1,

except that for the numerator we will replace f0 by

f0(x) = cos(2πx) exp(β cos(2πx)).

Note our abuse of notation here: comparing with (19) we have the special case that fi(u, v) =
κi(v − u) ≡ fi(v − u), i.e., it can be treated as a function of a single variable (of the difference
of the two arguments). Each function κi ≡ fi is periodic so we know from Section 3.3 that with
the rectangle rule we have Scenario (A7) in Table 1.

Executable Julia code for this calculation is given below.
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f(beta, x) = exp(beta * cospi(2*x))

f0(beta, x) = cospi(2*x) * f(beta, x)

function calc_U1_1d(beta::T, L::Int=10, n::Int=2^5) where {T <: AbstractFloat}

t = (T(0):n-1)/n # discretize on these points (type T)

c = sum( f.(beta, t)/n ) # scaling

F = fft( f.(beta, t)/n/c ) |> real # Fourier coefficients of f

F0 = fft( f0.(beta, t)/n/c ) |> real # Fourier coefficients of f0

Qnum = sum( F.^(L-1) .* F0 )

Qden = sum( F.^L )

ratio = Qnum / Qden

end

Similar to Matlab, Julia allows “broadcasting” operations over all elements of an array by
using the “dot syntax”. In Julia this syntax is extended to any function by appending a dot to
the function name, e.g., f.(beta, t) for a vector t. We will use this syntax in Section 6 to do
a calculation for a selection of arguments β, L and n. The type T of the parameter β defines
the floating point type used throughout the calculation, allowing for arbitrary precision.

5.2 1D higher order couplings

The action in (11) arose from approximating a first derivative by a forward difference formula
(xi+1 − xi)/h of order h. If we use now the central difference formula (xi+1 − xi−1)/(2h) of
order h2, then we would end up with the denominator (now with β = IL2/(4T 2))∫

DL

L−1∏
i=0

f
(
xi+1 − xi−1

)
dx.

At first glance this appears to be a problem with order 2 couplings, but it can be simplified. If
L is even, then the variables completely decouple into even and odd indices, and the integral
can be written as the product(∫

DL/2

L−1∏
i=0
even

f(xi+1 − xi−1) dxeven

)(∫
DL/2

L−1∏
i=0
odd

f(xi+1 − xi−1) dxodd

)
.

So after reparametrization this becomes(∫
DL/2

L/2−1∏
j=0

f
(
yj+1 − yj

)
dy

)2

,

with yj ≡ yj mod (L/2) for all j ∈ Z, which is essentially a first order problem. If L is odd, then
the variables can be relabelled in the order of x0, x2, x4, . . . , xL−1, x1, . . . , xL, and we get∫

D

L−1∏
j=0

f(yj+1 − yj) dy,

which is exactly the first order problem. For the numerator we just need to adjust for the
different function f0 but the general principle is the same.

We can consider other higher order finite difference approximations to the first derivative to
get higher order couplings. For example, the central difference formula (−xi+2 +8xi+1−8xi−1 +
xi−2)/(12h) of order h4 leads to (now with β = IL2/(144T 2))∫

DL

L−1∏
i=0

f
(
− xi+2 + 8xi+1 − 8xi−1 + xi−2

)
dx,
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which has order r = 4 couplings and we can follow the strategy in Section 4. We will need to
form the functions θi by taking products of the functions fi. We can apply Scenario (B4) of
Table 2 using a 4-dimensional lattice cubature rule.

5.3 Extension to topological susceptibility and beyond

Unfortunately, the numerical treatment of observables such as the topological susceptibility (12)
is a little bit more involved than our results in Table 1 will indicate. The culprit is the square
in (13) outside the sum in (12). This formally breaks the assumed low-order coupling structure.
However, the square can be expanded into a double sum and leads to the results of Table 1
needing to be applied to each of the L2 summands separately. In other words, the non-triviality
of locally defined observables capturing global properties translates into splitting one global
observable into many local observables which can then be treated according to Table 1. The
topological susceptibility (13), in particular, can be solved naively using L2 integration problems
as in Scenario (A1) in Table 1. Using translational invariance of the indices, that is, the model
is not changed if each φi is replaced with φi+1, we can furthermore reduce the computational
cost to L integration problems similar to Scenario (A4). The difference to Scenario (A4) is
that now both M0 and one additional Mi are different from M . In summary, while such global
observables may not be as efficiently solvable as purely local observables, we only incur an
overhead cost polynomial in the lattice size L. The same methodology can be applied to other
kinds of susceptibilities, e.g., the magnetic susceptibility or the specific heat.

6 Application to compact U (1) lattice gauge theory

6.1 2D first order couplings

The 2D compact U (1) lattice gauge theory model (14) takes the generic form (5). We begin by
separating out the variables in the a-direction and the b-direction

I =

∫
DL2

∫
DL2

L−1∏
i=0

L−1∏
j=0

fi,j

(
xai,j − xai,j+1 − xbi,j + xbi+1,j

)
dxa dxb

=

∫
DL2

L−1∏
i=0

(∫
DL

L−1∏
j=0

fi,j

(
xai,j − xai,j+1 − xbi,j + xbi+1,j

)
dxai︸ ︷︷ ︸

=: gi
(
xbi+1 − xbi

)
)

dxb,

where we used the crucial fact that each factor over the index i depends only on xai , so that the

integral over xa ∈ DL2
becomes a product of the integrals over xai = (xai,0, . . . , x

a
i,L−1) ∈ DL.

We can therefore reduce the problem to

I =

∫
DL
· · ·
∫
DL

L−1∏
i=0

gi
(
yi+1 − yi

)
dy0 · · · dyL−1, (27)

where

gi(y) :=

∫
DL

L−1∏
j=0

fi,j (xj − xj+1 + yj) dx. (28)

Observe that the outer integral (27) involves first order couplings of the form (23) with s
replaced by L, while the inner integral (28) involves first order couplings of the form (19) for
each input i and y. Thus Table 1 applies for both integrals. If all the functions fi,j are periodic

19



then so are the functions gi. In this case we have Scenarios (A5)–(A7) by using an n-point
rectangle rule for the inner integral and an N -point lattice cubature rule for the outer integral.
The cost when all functions are the same is then of the order

N log(N) +N n log(n) ,

which is independent of L. The error is of order N−α + n−α, where α depends on the smooth-
ness of the functions and the underlying lattice rule, and the implied constant may depend
exponentially on L.

But more savings are possible as we explain below.

Lemma 1 If the functions fi,j are periodic, then the inner integral (28) simplifies to

gi(y) = gi

(∑L−1
j=0 yj , 0, . . . , 0

)
= gi

(∑L−1
j=0 yj ,0

)
, (29)

that is, gi(y) depends only on the sum of the components of y.

Proof. With ∆ ∈ RL to be specified later, we introduce a change of variables uj = xj + ∆j in
(28) to obtain (with all indexing to be interpreted modulo L)

gi(y) =

∫ 1

xL−1=0
· · ·
∫ 1

x0=0

L−1∏
j=0

fi,j (xj − xj+1 + yj) dx0 · · · dxL−1

=

∫ 1+∆L−1

uL−1=∆L−1

· · ·
∫ 1+∆0

u0=∆0

L−1∏
j=0

fi,j (uj − uj+1 + yj −∆j + ∆j+1) du0 · · · duL−1

=

∫ 1

0
· · ·
∫ 1

0

L−1∏
j=0

fi,j (uj − uj+1 + yj −∆j + ∆j+1) du0 · · · duL−1,

which follows from the periodicity of fi,j . Now with the choice ∆0 = 0, we choose ∆2, . . . ,∆L−1

such that

yL−1 −∆L−1 = 0, yL−2 −∆L−2 + ∆L−1 = 0, . . . , y2 −∆2 + ∆3 = 0, y1 −∆1 + ∆2 = 0.

Adding these expressions together gives ∆1 =
∑L−1

j=1 yj . This choice of ∆ yields

gi(y) =

∫ 1

0
· · ·
∫ 1

0
fi,0

(
u0 − u1 +

∑L−1
j=0 yj

)∏L−1
j=1 fi,j (uj − uj+1) du0 · · · duL−1

= gi

(∑L−1
j=0 yj , 0, . . . , 0

)
= gi

(∑L−1
j=0 yj ,0

)
.

This completes the proof. �

Lemma 2 If the functions fi,j are periodic, then the outer integral (27) simplifies to

I =

∫
DL

L−1∏
i=0

gi
(
yi+1 − yi,0

)
dy. (30)

Proof. Substituting (29) into (27) we have

I =

∫
DL
· · ·
∫
DL

L−1∏
i=0

gi

(∑L−1
j=0 (yi+1,j − yi,j),0

)
dy0 · · · dyL−1.
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We carry out a change of variables from yi,0 to ui for each i = 0, . . . , L− 1 by the substitution

ui = yi,0 +
∑L−1

j=1 yi,j =
∑L−1

j=0 yi,j with Jacobian dui = dyi,0, to obtain

I =

∫
DL
· · ·
∫
DL

L−1∏
i=0

gi
(
ui+1 − ui,0

)
(du0 dy0,1 · · · dy0,L−1) · · · (duL−1 dyL−1,1 · · · dy0,L−1)

=

∫
D
· · ·
∫
D

L−1∏
i=0

gi
(
ui+1 − ui,0

)
du0 · · · duL−1,

where the remaining variables yi,j drop out conveniently and give us the lower-dimensional
integral in (30). �

The outer integral (30) is now of the form (19). So we can apply just a rectangle rule and
there is no need for a lattice rule. The cost using the same number of points for both the inner
and outer integrals is now

n log(n) + n2 log(n) ,

which is again independent of L. The error is O(n−α), where α depends on the smoothness of
the functions.

In the context of gauge theories, Lemmas 1 and 2 can be interpreted as a type of “gauge
fixing”. For the 2D compact U (1) lattice gauge theory model (14) we have D = [0, 1] and

fi,j(x) = f(x) = exp(β cos(2πx)) for all i, j = 0, . . . , L− 1,

and for the numerator we will replace f0,0 by

f0,0(x) = cos(2πx) exp(β cos(2πx)).

To evaluate the outer integral (30) we need the n× n matrix Mi with entries

(Mi)k,k′ = gi

((k′ − k) mod n

n
,0
)
, k, k′ = 0, . . . , n− 1.

This is a circulant matrix because of the periodicity that gi inherited from fi,j . For the inner
integrals (29) we need to evaluate

g
(k
n
,0
)

=

∫
[0,1]L

f
(
x0 − x1 +

k

n

) L−1∏
j=1

f (xj − xj+1) dx, k = 0, . . . , n− 1.

If f0,0 is different then we also need

g0

(k
n
,0
)

=

∫
[0,1]L

f0,0

(
x0 − x1 +

k

n

) L−1∏
j=1

f (xj − xj+1) dx, k = 0, . . . , n− 1.

We can approximate these 2n values altogether using a rectangle rule with n points. All matrices
will be circulant so we are in Scenario (A7): indeed we have the situation of B = M0M

L−1,
where the n × n matrix M0 changes depending on the value of k/n, while M stays the same.
This means 2n + 1 calls to FFT. The combined cost for computing the inner integrals is then
O(n2 log(n)). These values should be pre-computed and stored. For the outer integral we are
again in Scenario (A7) so this can be computed with cost O(n log(n)). The overall cost is then
of the order n log(n) + n2 log(n) as claimed.

Executable Julia code for the 2D compact U (1) lattice gauge theory model is given below.
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f(beta, x) = exp(beta * cospi(2*x))

f0(beta, x) = cospi(2*x) * f(beta, x)

function calc_U1_2d_a(beta::T, L::Int=10, n::Int=2^5, N::Int=n)

where {T <: AbstractFloat}

## inner integral

t = reshape((T(0):n-1)/n, n, 1) # n-by-1: column vector of type T

k = reshape(T(0):N-1, 1, N) # 1-by-N: row vector of type T

c = sum( f.(beta, t)/n ) # scaling

# g

F = fft( f.(beta, t)/n/c , 1 ) |> real # n-by-1 eigenvalues of circulant

K = fft( f.(beta, t .+ k/N)/n/c , 1 ) |> real # n-by-N eigenvalues of circulant

g = sum( K .* F.^(L-1) , dims=1 ) # 1-by-N (value for every k-value)

# g0

K0 = fft( f0.(beta, t .+ k/N)/n/c , 1 ) |> real # n-by-N eigenvalues of circulant

g0 = sum( K0 .* F.^(L-1) , dims=1 ) # 1-by-N (value for every k-value)

## outer integral

G = fft( g/N , 2 ) |> real

G0 = fft( g0/N , 2 ) |> real

Qnum = sum( G0 .* G.^(L-1) )

Qden = sum( G.^L )

## result

ratio = Qnum / Qden # the scaling in both numerator and denominator cancel

end

It turns out that we can use an alternative approach based on Fourier series to simplify the
expression so that there is actually no need for nested integral calculations.

Theorem 1 Suppose that the functions fi,j are periodic and have absolutely convergent Fourier
series. Define µi+jL := fi,j for i, j = 0, . . . , L − 1. Then the integral (27), with inner integral
(28), simplifies to

I =

∫
DL2

L2−1∏
k=0

µ`
(
xk+1 − x`

)
dx, (31)

where now the parametric periodicity is to be taken modulo L2, i.e., xk ≡ xk mod L2.

Proof. From Lemma 4 in Appendix A we know that the integral for the 2D problem can be
written in terms of the Fourier coefficients of fi,j as

I =
∑
`∈Z

L−1∏
i=0

L−1∏
j=0

f̂i,j(`).

With the relabeling of the functions µi+jL := fi,j , we can rewrite the above sum as

I =
∑
`∈Z

L2−1∏
k=0

µ̂k(`).

Comparing with the 1D problem in Lemma 3 in Appendix A, we conclude that this sum can be
rewritten as an integral over DL2

as shown in (31), with parametric periodicity modulo L2. �

Theorem 1 means that we do not have nested integrals any more, but instead we have a new
integral with dimensionality L2. We have just one integral of the form (19), with L replaced by
L2, so we are again in Scenario (A7). The cost is only of order

n log(n),
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Figure 3: Illustration of numerical results for the 2D compact U(1) lattice gauge theory. Left:
Comparison of our FFT based algorithm (solid lines) with two known asymptotical formulae for
β � 1 and β � 1 (dashed lines); the top curve is for L = 2 and the bottom curve is for L = 200.
Right: Estimated accuracy showing exponential convergence for increasing n compared to our
final calculated value with n = 1024 for all combinations of L ∈ {2, 20, 200} and β ∈ {1, 4, 8}
(see text).

and the error is O(n−α).
Hence we can use the 1D rotor code to calculate the 2D compact U (1) lattice gauge theory

simply by

calc_U1_2d_b(beta, L=10, n=2^5) = calc_U1_1d(beta, L^2, n)

We illustrate the code by a small numerical experiment which calculates some values for the
2D compact U (1) lattice gauge theory:

# calculate for each beta, L and n in the following three lists by using broadcasting

step = BigFloat("0.1") # use of arbitrary precision type BigFloat (optional)

# step = 0.1 # alternative: if wanting IEEE double just uncomment this line

betas = 0:step:10 # size 101 (for the given step)

Ls = [2, 20, 200]’ # size 1-by-3

ns = reshape([2^4, 2^6, 2^8, 2^10], 1, 1, 4) # size 1-by-1-by-4

# do all calculations:

X2 = calc_U1_2d_b.(betas, Ls, ns) # 101-by-3-by-4 result array by broadcasting

# print the values for L = 200 and n = 2^10 for some values of beta:

for i=2:10:length(betas)

println(Float64(betas[i]), " ", X2[i,end,end])

end

which prints to approximately 79 decimal digits the following values

0.1 0.04993760398793891942505492702790735280024819495932643969025083229259197970124841

1.1 0.4807027720204957075397353534961410739293237985698753220914923708183899597383392

2.1 0.7135313929252366606474906234333206952579818112136755308698717366991034508513433

3.1 0.8171145492914306407729604696551455026259470380147213328440139033655041292524231

4.1 0.8672601961768063107300630399509515633441383106454204305046785090286863340013323

5.1 0.895651587990760146226062237096125294781978743841561112098097135505392751620628

6.1 0.9138858516725660997721369731593268002734144795505884713207423774281830098389897

7.1 0.9266326601661551618966214804622090172117923146860230737466143933956830061458322

8.1 0.9360676059396539968069515062581218179367309351114611124563259272640695892107535

9.1 0.9433416321068225957542493497236464198235930555179598879914504004185617655236025
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In the left hand side of Figure 3 we compare our calculated values to a known asymptotic
formula for β � 1 from [5] and β � 1 from [22] for the 2D compact U(1) lattice gauge integral
for L = 2 and L = 200. We can see that for small values of β and for large values of β the
asymptotic formulae are close to our calculated values, while in the neighbourhood of β = 1 the
asymptotic formulae deviate more, as expected.

In the right hand side of Figure 3 we illustrate the accuracy of our method in terms of n. To
calculate a reference value for different values of L and β we have run our code with n = 1024
and increased the precision of Julia’s BigFloat type to approximately 200 decimal digits. We
plot the base 10 logarithm of the estimated relative error (using the reference value for n = 1024)
in terms of n on the horizontal axis in linear scale. We plot the error for all combinations of
L ∈ {2, 20, 200} and β ∈ {1, 4, 8}. The missing data points are when the error was zero. Since
200 decimal digits is our maximum precision the lines will flat line at −200. We observed that
the lines for the different values of L are always close together and hence we conclude that the
value of L does not really matter for the performance of the algorithm. For the different choices
of β we observed that larger values of β make the problem slightly harder. E.g., the lines for
β = 8 are the ones on top with the slowest decay, while the lines for β = 1 are the ones at
the bottom with the fastest decay. This is not a surprise, and obviously, the limiting case of
β = 0 is the trivial problem. All cases show exponential convergence, this is why we resorted to
arbitrary precision to make the graph. If one is only interested in double precision results, i.e.,
a relative error of about 10−16, then we see from the graph that n = 32 is sufficient to give 16
decimal digits for the large β = 8, while n = 16 would suffice for β = 1. From the graph we also
see that with n somewhere between 128 and 256 we can expect to have more than 200 digits
decimal precision for any of the β’s and L’s that we plotted.

Calculating all the results for the 101 β values and 3 L values from the Julia code snippet
above in double precision with n = 32 takes less than 10 milliseconds on a MacBook Pro from
2013 (2.6 Ghz Dual-Core Intel Core i5).

6.2 2D higher order couplings

The denominator in the Wilson loop (15) can be expressed as∫
DL2

∫
DL2

L−1∏
i=0

L−1∏
j=0

fi,j

(∑ra
k=0

(
xai+k,j − xai+k,j+rb

)
+
∑rb

k=0

(
xbi+ra,j+k − x

b
i,j+k

))
︸ ︷︷ ︸

=: gi

(
(xai ,x

a
i+1,...,x

a
i+ra

);xb
)

dxa dxb

=

∫
DL2

(∫
DL2

L−1∏
i=0

gi

(
(xai ,x

a
i+1, . . . ,x

a
i+ra);xb

)
dxa

)
dxb.

Assuming that L is a multiple of ra, the inner integral has order ra coupling and can be turned
into an L/ra-fold product of raL-dimensional integrals following Section 4. We can use an N -
point lattice rule in raL dimensions as in Scenario (B4) at the cost of order (L/ra)N

3 times
the number of different samples of xb. The outer integral over xb cannot be simplified so it
is of dimensionality L2. This problem is truly high dimensional, except for the special case
ra = rb = 1 which can be simplified as we show in Corollary 2 in Appendix A using Fourier
series.

6.3 3D first order couplings

The 3D compact U (1) lattice gauge theory problem (16) is very tough. We show in Lemma 5
in Appendix A that there is an explicit expression in terms of Fourier coefficients. Further work
is needed to see how this expression can be used to simplify the integral calculations.
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7 Summary

In this paper we developed efficient recursive strategies to tackle a class of high dimensional
integrals having a special product structure with low order couplings, motivated by physics
models such as the quantum rotor and the 2D compact U(1) lattice gauge theory (Section 2).
We reviewed and extended the recursive strategy from [1, 17] for generic integrals with first order
couplings (not necessarily from physics) to identify scenarios that enable the use of FFT for
efficient computation as well as the use of lattice cubature rules when we have an L-fold product
of s-dimensional integrals (Section 3). Furthermore, we extended the recursive strategy to higher
order couplings, noting that the problems can become truly high dimensional (Section 4). Then
we considered particular physics applications (Sections 5 and 6) and provided Julia codes for the
special cases of quantum rotor and 2D compact U(1) lattice gauge theory. Finally we provided
an alternative formulation of the integrals in terms of Fourier series to pave the way for future
work for tough 2D and 3D physics problems (Appendix).
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A Alternative approach via Fourier series

A.1 1D problems

Lemma 3 Let fi : D → R be periodic and have an absolutely convergent Fourier series, and
assume parametric periodicity xi = xi mod L. Then∫

DL

L−1∏
i=0

fi
(
xi+1 − xi

)
dx =

∑
`∈Z

L−1∏
i=0

f̂i(`).

Proof. Define a periodic function

I(y) :=

∫
DL

L−1∏
i=0

fi
(
ξi(x) + yi

)
dx, y ∈ DL,

for generic functions ξi, and consider its Fourier series

I(y) =
∑
h∈ZL

Î(h) e2πih·y, Î(h) :=

∫
DL
I(y) e−2πih·y dy.

The desired integral is recovered by evaluating the Fourier series at y = 0: I(0) =
∑

h∈ZL Î(h).

We proceed to compute the Fourier coefficients Î(h). Due to the product structure, all
integrals in Î(h) are one-dimensional∫

D
fi
(
ξi(x) + yi

)
e−2πihi yi dyi =

∫
D

∑
`∈Z

f̂i(`) e
2πi ` (ξi(x)+yi) e−2πihi yi dyi

=
∑
`∈Z

f̂i(`) e
2πi ` ξi(x)

∫
D
e2πi (`−hi) yi dyi = f̂i(hi) e

2πihi ξi(x), (32)

where we used
∫
D e

2πi(`−h)y dy = 1 if ` = h and is 0 otherwise. Thus

Î(h) =

∫
DL

L−1∏
i=0

f̂i(hi) e
2πihi ξi(x) dx =

( L−1∏
i=0

f̂i(hi)

)∫
DL

e2πi
∑L−1
i=0 hi ξi(x) dx.
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Specializing now to ξi(x) := xi+1 − xi, we have for the exponent

L−1∑
i=0

hi ξi(x) =
L−1∑
i=0

hi xi+1 −
L−1∑
i=0

hi xi =
L−1∑
i=0

hi−1 xi −
L−1∑
i=0

hi xi =
L−1∑
i=0

(hi−1 − hi)xi,

where in the second equality we re-indexed the first sum using the property that all indices are

taken modulo L. Thus
∫
DL e

2πi
∑L−1
i=0 hi ξi(x) dx = 1 if and only if

hi−1 = hi for all i (taken modulo L), (33)

and the integral is zero otherwise. We conclude that all components of h must be the same for
the corresponding Fourier coefficient to be nonzero. Hence

I(y) =
∑
`∈Z

( L−1∏
i=0

f̂i(`)

)
e2πi (`,...,`)·y.

Our desired integral is recovered by evaluating the Fourier series at y = 0. �

The result can be extended to higher order couplings by changing the definition of the
functions ξi in the proof.

Corollary 1 Let fi : D → R be periodic and have an absolutely convergent Fourier series, and
assume parametric periodicity xi = xi mod L. Then

∫
DL

L−1∏
i=0

fi
(
xi+1 − xi−1

)
dx =



∑
`∈Z

L−1∏
i=0

f̂i(`) if L is odd,(∑
`∈Z

L−1∏
i=0
even

f̂i(`)

)(∑
`∈Z

L−1∏
i=0
odd

f̂i(`)

)
if L is even.

Proof. We replace the functions ξi in the proof of Lemma 3 by ξi(x) := xi+1 − xi−1. Then the
condition (33) becomes

hi−1 = hi+1 for all i (taken modulo L).

We conclude that if L is odd then all components of h must be equal, and if L is even then
there are two possible values for the components of h depending on whether the index is even
or odd. This leads to the corollary. �

A.2 2D problems

The same strategy can be used to tackle 2D problems.

Lemma 4 Let fi,j : D → R be periodic and have an absolutely convergent Fourier series, and
assume parametric periodicity modulo L. Then∫

DL2

∫
DL2

L−1∏
i=0

L−1∏
j=0

fi,j
(
xai,j − xai,j+1 − xbi,j + xbi+1,j

)
dxa dxb =

∑
`∈Z

L−1∏
i=0

L−1∏
j=0

f̂i,j(`).

Proof. As in the 1D problem we define

I(y) :=

∫
DL2

∫
DL2

L−1∏
i=0

L−1∏
j=0

fi,j
(
ξi,j(x

a,xb) + yi,j
)

dxa dxb, y ∈ DL2
,
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for generic functions ξi,j , and consider the Fourier series

I(y) =
∑

h∈ZL2

Î(h) e2πih·y, Î(h) :=

∫
DL2
I(y) e−2πih·y dy,

where for the dot product we interpret an element in DL2
as a vector of length L2 rather than

as a matrix of L×L. Our desired integral is recovered by evaluating the Fourier series at y = 0.
Analogously to (32), all integrals in Î(h) are one-dimensional∫

D
fi,j
(
ξi,j(x

a,xb) + yi,j
)
e−2πihi,j yi,j dyi,j = f̂i,j(hi,j) e

2πihi,j ξi,j(x
a,xb),

and thus

Î(h) =

( L−1∏
i=0

L−1∏
j=0

f̂i,j(hi,j)

)∫
DL2

∫
DL2

e2πi
∑L−1
i=0

∑L−1
j=0 hi,j ξi,j(x

a,xb) dxa dxb. (34)

Specializing now to ξi,j(x
a,xb) := xai,j − xai,j+1 − xbi,j + xbi+1,j , we have the exponent

L−1∑
i=0

L−1∑
j=0

hi,j ξi,j(x
a,xb) =

L−1∑
i=0

L−1∑
j=0

[(
hi,j − hi,j−1

)
xai,j −

(
hi,j − hi−1,j

)
xbi,j

]
,

where we re-indexed some terms since all indices should be taken modulo L. We conclude that∫
DL2

∫
DL2

e2πi
∑L−1
i=0

∑L−1
j=0 hi,j ξi,j(x

a,xb) dxa dxb

=
L−1∏
i=0

L−1∏
j=0

[(∫
D
e2πi(hi,j−hi,j−1)xai,j dxai,j

)(∫
D
e−2πi(hi,j−hi−1,j)x

b
i,j dxbi,j

)]
,

which is equal to 1 if and only if

hi,j = hi,j−1 = hi−1,j for all i, j (taken modulo L),

and the integral is equal to 0 otherwise. This means that all components of h are equal, and we
have reduced L2 parameters down to 1. This yields the desired formula. �

The result extends trivially to the Wilson loop with ra = rb = 1.

Corollary 2 Let fi,j : D → R be periodic and have an absolutely convergent Fourier series, and
assume parametric periodicity modulo L. The Wilson loop with parameters ra and rb requires

Ira,rb :=

∫
DL2

∫
DL2

L−1∏
i=0

L−1∏
j=0

fi,j
(
ξi,j(x

a,xb)
)

dxa dxb,

ξi,j(x
a,xb) := xai,j + xai+1,j + · · ·+ xai+ra,j + xbi+ra,j + xbi+ra,j+1 + · · ·+ xbi+ra,j+rb

− xai+ra,j+rb − x
a
i+ra−1,j+rb

− · · · − xai,j+rb − x
b
i,j+rb

− xbi,j+rb−1 − · · · − xbi,j .

We have

I1,1 =



∑
`∈Z

L−1∏
i=0

L−1∏
j=0

f̂i,j(`) if L is odd,(∑
`∈Z

∏L−1
i=0

∏L−1
j=0︸ ︷︷ ︸

i+j odd

f̂i,j(`)

)(∑
`∈Z

∏L−1
i=0

∏L−1
j=0︸ ︷︷ ︸

i+j even

f̂i,j(`)

)
if L is even.
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Proof. Following the proof of Lemma 4, the exponent
∑L−1

i=0

∑L−1
j=0 hi,j ξi,j(x

a,xb) is now

L−1∑
i=0

L−1∑
j=0

[ ra∑
k=0

(
hi,j x

a
i+k,j − hi,j xai+k,j+rb

)
+

rb∑
k=0

(
hi,j x

b
i+ra,j+k − hi,j x

b
i,j+k

)]

=
L−1∑
i=0

L−1∑
j=0

[ ra∑
k=0

(
hi−k,j − hi−k,j−rb

)
xai,j +

rb∑
k=0

(
hi−ra,j−k − hi,j−k

)
xbi,j+k

]
,

where we again re-indexed some terms. We conclude that the integral in (34) is equal to 1 if
and only if for all i, j (taken modulo L)

ra∑
k=0

hi−k,j =

ra∑
k=0

hi−k,j−rb and

rb∑
k=0

hi,j−k =

rb∑
k=0

hi−ra,j−k, (35)

and is 0 otherwise. For the special case ra = rb = 1, the conditions in (35) are{
hi,j + hi−1,j = hi,j−1 + hi−1,j−1,

hi,j + hi,j−1 = hi−1,j + hi−1,j−1.

Adding and subtracting these two expressions lead to, respectively,

hi,j = hi−1,j−1 and hi−1,j = hi,j−1.

If L is a multiple of 2, then we conclude that the components of h can take only two possible
values depending on the value of (i + j) mod 2, following a chessboard pattern. On the other
hand, if L is not a multiple of 2 then all components of h have the same value. These lead to
the formulas in the corollary. �

A.3 3D problems

Lemma 5 Let fi,j,k : D → R be periodic and have an absolutely convergent Fourier series, and
assume parametric periodicity modulo L. Then∫

D3L3

L−1∏
i=0

L−1∏
j=0

L−1∏
k=0

[
fi,j,k

(
xai,j,k − xai,j+1,k − xbi,j,k + xbi+1,j,k

)
· fi,j,k

(
xci,j,k − xci+1,j,k − xai,j,k + xai,j,k+1

)
· fi,j,k

(
xbi,j,k − xbi,j,k+1 − xci,j,k + xci,j+1,k

)]
dx

=
∑
h∈H

L−1∏
i=0

L−1∏
j=0

L−1∏
k=0

(
f̂i,j,k(h

a
i,j,k) f̂i,j,k(h

b
i,j,k) f̂i,j,k(h

c
i,j,k)

)
,

where h = (ha,hb,hc) ∈ H ⊂ Z3L3
satisfies for all i, j, k modulo L,

hci,j,k − hci,j−1,k − hbi,j,k + hbi,j,k−1 = 0,

hai,j,k − hai,j,k−1 − hci,j,k + hci−1,j,k = 0,

hbi,j,k − hbi−1,j,k − hai,j,k + hai,j−1,k = 0.

(36)

Proof. Generalizing the 1D and 2D arguments, we define for y = (ya,yb,yc) ∈ D3L3
,

I(y) :=

∫
D3L3

L−1∏
i=0

L−1∏
j=0

L−1∏
k=0

[
fi,j,k

(
xai,j,k − xai,j+1,k − xbi,j,k + xbi+1,j,k + yci,j,k

)
· fi,j,k

(
xci,j,k − xci+1,j,k − xai,j,k + xai,j,k+1 + ybi,j,k

)
· fi,j,k

(
xbi,j,k − xbi,j,k+1 − xci,j,k + xci,j+1,k + yai,j,k

)]
dx.
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For each h = (ha,hb,hc) ∈ Z3L3
, we compute the Fourier coefficient of I(y) to arrive at

Î(h) =

[ L−1∏
i=0

L−1∏
j=0

L−1∏
k=0

(
f̂i,j,k(h

a
i,j,k) f̂i,j,k(h

b
i,j,k) f̂i,j,k(h

c
i,j,k)

)]∫
D3L3

e2πi p(h,x) dx,

p(h,x) =
L−1∑
i=0

L−1∑
j=0

L−1∑
k=0

[(
hci,j,k − hci,j−1,k − hbi,j,k + hbi,j,k−1

)
xai,j,k

+
(
hai,j,k − hai,j,k−1 − hci,j,k + hci−1,j,k

)
xbi,j,k +

(
hbi,j,k − hbi−1,j,k − hai,j,k + hai,j−1,k

)
xci,j,k

]
.

We conclude that
∫
D3L3 e2πi p(h,x) dx is equal to 1 if and only if h belongs to a restricted index set

H ⊂ Z3L3
, satisfying (36) for all indices i, j, k modulo L, and the integral is equal to 0 otherwise.

We obtain the required formula by taking I(0) =
∑

h∈Z3L3 Î(h). �
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[17] T. Hartung, K. Jansen, H. Leövey and J. Volmer, Avoiding the sign-problem in lattice field
theory, in Monte Carlo and Quasi-Monte Carlo Methods 2018 (B. Tuffin and P. L’Ecuyer,
eds), Springer Proceedings in Mathematics & Statistics, vol 324, 2020, pp. 231–249.

[18] T. Hartung and K. Jansen, Zeta-regularized vacuum expectation values, J. Math. Phys. 60
(2019), no. 9, 093504.

[19] A. J. Hayter, Recursive integration methodologies with statistical applications, J. Statist.
Plann. Inference 136 (2006), 2284–2296.

[20] A. J. Hayter, Recursive integration methodologies with applications to the evaluation of
multivariate normal probabilities, J. Stat. Theory Pract. 5 (2011), 563–589.

[21] F. J. Hickernell, Lattice rules: How well do they measure up?, in: Random and Quasi-
Random Point Sets (P. Hellekalek and G. Larcher, eds.), Springer, Berlin, 1998, pp. 109–
166.

[22] R. Horsley and U. Wolff, Weak Coupling Expansion of Wilson Loops in Compact QED,
Phys. Lett. 105B (1981), 290.

[23] K. Jansen, Lattice QCD: A Critical status report, PoS LATTICE 2008 (2008), 010.

[24] K. Jansen and T. Hartung, Zeta-regularized vacuum expectation values from quantum com-
puting simulations, PoS LATTICE 2019 (2020), 363.

[25] K. Jansen, H. Leovey, A. Ammon, A. Griewank, M. Müller-Preussker, Quasi-Monte Carlo
methods for lattice systems: a first look, Comput. Phys. Commun. 185 (2014), 948–959.

[26] C. Lemieux, Monte Carlo and Quasi-Monte Carlo Sampling, Springer, New York, 2009.

[27] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, 1992.

[28] D. Nuyens, The construction of good lattice rules and polynomial lattice rules, in: Uniform
Distribution and Quasi-Monte Carlo Methods (P. Kritzer, H. Niederreiter, F. Pillichsham-
mer, A. Winterhof, eds.), Radon Series on Computational and Applied Mathematics Vol. 15,
De Gruyter, 2014, pp. 223–256.

[29] I. H. Sloan, S. Joe, Lattice Methods for Multiple Integration, Oxford University Press,
Oxford, 1994.

[30] M. Troyer, U.-J. Wiese, Computational complexity and fundamental limitations to fermionic
quantum Monte Carlo simulations, Phys. Rev. Lett. 94 (2005), 170201.

30


	1 Introduction
	2 Description of physics models
	2.1 Quantum rotor
	2.2 Quantum compact abelian gauge theory

	3 Recursive strategy for first order couplings
	3.1 Recursive numerical integration
	3.2 Identical matrices
	3.3 Cost saving by FFT
	3.4 Extension to the L-fold product of s-dimensional integrals

	4 Recursive strategy for higher order couplings
	5 Application to the quantum rotor
	5.1 1D first order couplings
	5.2 1D higher order couplings
	5.3 Extension to topological susceptibility and beyond

	6 Application to compact U(1) lattice gauge theory
	6.1 2D first order couplings
	6.2 2D higher order couplings
	6.3 3D first order couplings

	7 Summary
	A Alternative approach via Fourier series
	A.1 1D problems
	A.2 2D problems
	A.3 3D problems


