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A B S T R A C T

An important class of multi-scale flow scenarios deals with an
interplay between kinetic and continuum phenomena. While
hybrid solvers provide a natural way to cope with these set-
tings, two issues restrict their performance. Foremost, the
inverse problem implied by estimating distributions has to
be addressed, to provide boundary conditions for the kinetic
solver. The next issue comes from defining a robust yet accu-
rate switching criterion between the two solvers. This study
introduces a data-driven kinetic-continuum coupling, where
the Maximum-Entropy-Distribution (MED) is employed to
parametrize distributions arising from continuum field vari-
ables. Two regression methodologies of Gaussian-Processes
(GPs) and Artificial-Neural-Networks (ANNs) are utilized to
predict MEDs e�ciently. Hence the MED estimates are em-
ployed to carry out the coupling, besides providing a switch-
ing criterion. To achieve the latter, a continuum breakdown
parameter is defined by means of the Fisher information dis-
tance computed from the MED estimates. We test the perfor-
mance of our devised MED estimators by recovering bi-modal
densities. Next, MED estimates are integrated into a hybrid
kinetic-continuum solution algorithm. Here Direct Simula-
tion Monte-Carlo (DSMC) and Smoothed-Particle Hydrody-
namics (SPH) are chosen as kinetic and continuum solvers,
respectively. The problem of monatomic gas inside Sod’s

*Manuscript
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shock tube is investigated, where DSMC-SPH coupling is re-
alized by applying the devised MED estimates. Very good
agreements with respect to benchmark solutions along with
a promising speed-up are observed in our reported test cases.

c� 2020 Elsevier Inc. All rights reserved.

1. Introduction

It is often the case that in real-world flow phenomena, the underlying thermo-fluid processes

cover a wide range of scales. In particular, gas dynamic problems may encounter a huge vari-

ation of the Knudsen number, resulting in a failure of common numerical approaches. While

the Navier-Stokes-Fourier (NSF) system of equations provides an accurate description of the

flow at the hydrodynamic limit, they fail when significant departures from the equilibrium

are encountered. On the other hand, the kinetic framework becomes more relevant once

the breakdown of the continuum is observed. In particular, the Boltzmann equation o↵ers

a high fidelity governing equation for the evolution of the molecular distribution function.

Even though the statistical description provided by the Boltzmann equation holds accurate

in the whole range of the Knudsen number, numerical deficiencies have to be dealt with

near the continuum. Either using Direct Simulation Monte-Carlo (DSMC) [1, 2, 3], discrete

velocity methods [4, 5, 6] or spectral discretizations [7, 8, 9], the e�ciency of resulting sim-

ulations significantly drops as the collision integral becomes dense. While simplified kinetic

models such as Fokker-Planck type approximations [10, 11, 12, 13] have been proposed to

improve the e�ciency in the near continuum and early transitional regimes, still the result-

ing models are not computationally competitive with respect to the more mature continuum

solvers. These all motivate coupling of the continuum and kinetic solvers in order to tackle

a larger set of flow problems, where both continuum and kinetic scales are present. Ex-

amples include but are not limited to, unconventional gas reservoirs [14], re-entry problem

[15], Stratospheric aerosols [16], high -pressure shock tubes [17], Sonoluminescence [18], and

⇤Corresponding author:
e-mail: sadr@mathcces.rwth-aachen.de (Mohsen Sadr)

Preprint submitted to Journal of Computational Physics February 14, 2020
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liquid-vapor interface [19]. An extensive set of hybrid algorithms to address the kinetic-

continuum coupling has been devised in past decades. Hybrid numerical schemes have been

proposed which operate on particles [20, 21, 22, 23], Partial Di↵erential Equations (PDEs)

[24, 25, 26] or distributions [27]. While each approach aims at providing universal accuracy

and e�ciency, two fundamental issues are common themes in the majority of the algorithms.

The first issue comes from the fact that kinetic and continuum equations deal with di↵erent

types of variables. The variable of interest is the distribution in the former, whereas the

latter relies on its moments. Clearly, extracting moments from a given distribution is a

straightforward task. Yet the inverse, known as the moment problem, is not well-posed in

general. Common recipes to address the moment problem in hybrid approaches, include

Chapman-Enskog (CE) [28, 29] or Grad-Hermite distributions [30, 31]. The second issue

arises due to the demand for a relevant switching criterion which preserves the e�ciency

and accuracy of the underlying schemes. Typically, some norm of non-equilibrium moments

or their gradients are employed to provide an optimal criterion for the breakdown of the

continuum [32, 33].

Adopting CE [20] or Grad-Hermite distributions [34], comes with a risk of running to distri-

butions with negative parts, which leads to the breakdown of the notion of entropy. On the

other hand, the Maximum-Entropy-Distribution (MED) can provide a well-defined proba-

bility density while honoring a given set of moments. Furthermore, it can be shown that

MED leads to the least-biased estimation of the distribution subject to the given moments.

It is important to note that having a well-defined distribution in hand, one can also compute

relevant distances of the distribution from the equilibrium to obtain a switching criterion.

By virtue of the method of Lagrange multipliers, it is straightforward to show that MED

takes a closed form of the exponential function [35]. Therefore, the moment problem reduces

to finding the Lagrange multipliers for a given set of moments. Although the resulting opti-

mization problem is well-posed in bounded domains subject to realizable moments [36, 37],

the iterative gradient descent-type algorithms have to be employed. This comes with a sig-

nificant cost since the Hessian matrix of the objective function can become ill-conditioned.

Hence, alternatives such as adaptive basis methods have been pursued [38, 39].
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A di↵erent perspective is realized by resetting the MED problem into the regression frame-

work. More precisely, the idea becomes to compute the Lagrange multipliers as a map from

input moments using regression schemes. Recently, a data-driven approach was introduced

by the authors [40], where Gaussian-Processes (GPs) have been adopted to provide a regres-

sion map for estimating MEDs. Either using GP regressions or Artificial Neural Networks

(ANN), first, the model is trained over a data-set that fills relevant subsets of the moment

space. Then, e�cient estimations of MDEs are obtained for a given input of moments.

In this study, after training GP and ANN for a MED data-set, a hybrid kinetic-continuum

solution algorithm based on e�cient MED estimators is devised. Using e�cient estimates of

MEDs and by choosing a threshold, then a criterion for the breakdown of the continuum can

be found, arising as a distance between the estimated MED and the equilibrium. Therefore

based on the computed distance, either continuum or kinetic solver is adopted for a given

computational cell and time step.

To narrow down our context, we address a hybrid particle-particle solution algorithm, where

the NSF system is solved using Smoothed-Particle Hydrodynamics (SPH) [41], and DSMC

is employed for the Boltzmann equation. However, note that the methodologies presented

here, are quite general and can be applied to a wider class of multi-scale solvers. Once

computational cells are switched from SPH to DSMC, the DSMC particles need to be sam-

pled from the estimated MED. Although more advanced sampling techniques such as slice

sampling [42] and adaptive rejection sampling [43] could be utilized, for simplicity we rely

on the Metropolis-Hastings algorithm [44] for generating DSMC particles. On the other

hand, when DSMC cells convert to the SPH ones, the SPH particles are generated based on

moments obtained from the DSMC particles.

The content of this manuscript is distributed among the following sections. First, the

NSF system of equations, along with the Boltzmann equation, is reviewed in § 2, to the

extent needed in our study. Then in § 3, SPH and DSMC solution algorithms required for

solving the adopted governing equations are considered. Next in § 4, the basic framework
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of the hybrid DSMC-SPH algorithm is discussed. Afterward, in § 5, the Maximum-Entropy

method and the regression approaches based on GP and ANN are devised. A hybrid so-

lution algorithm is then proposed in § 6, where a data-driven coupling based on our MED

estimator equipped with the switching criterion colormsis adopted. In order to evaluate the

regression machinery, the trained MED estimators based on GP and ANN are first exam-

ined by estimating a bi-modal distribution. Then the devised hybrid solution algorithm is

deployed to solve the well-known Sod’s shock tube problem in § 7. In the end, a conclusion

along with a projection for next studies is presented in § 8.

2. Governing equations

Before proceed to the solution algorithms and data-driven coupling, let us recall the gov-

erning equations relevant for our continuum and kinetic settings.

2.1. Navier-Stokes-Fourier system of equations

The NSF equations provide a system of conservation laws for evolution of the density ⇢, the

momentum ⇢U , and the total energy E := 1

2
⇢U ·U + ⇢cvT . Here cv := 3kb/(2m) indicates

the heat capacity of a monatomic gas at constant volume, kb is the Boltzmann constant, T

is the temperature, and m is the molecular mass. A general form of the conservation laws

can be cast to

@⇢

@t
+

@

@xi

(⇢Ui) = 0, (1)

@(⇢Ui)

@t
+

@

@xj

(⇢UiUj + pij) = 0 (2)

and
@E

@t
+

@

@xi

(EUi + qi + pikUk) = 0 , (3)

where p stands for the pressure tensor and q denotes the heat flux vector. Note that

Einstein’s summation notation is used throughout this study, and �ij denotes the Kronecker

delta. By assuming the ideal gas law besides the Stokes closure, we get pij = ⇡ij + p�ij,

where

p = nkbT (4)

and ⇡ij = �2µSij (5)
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with n the number density, µ the viscosity and

Sij =
1

2

✓
@Ui

@xj

+
@Uj

@xi

◆
� 1

3

@Uk

@xk

�ij. (6)

Moreover, the heat flux follows the Fourier law

qi = �
@T

@xi

, (7)

where  denotes the heat conductivity. For further details on the NSF equations along with

the corresponding derivations, see e.g. [45].

As the fluid experiences strong departures from the equilibrium, it is well established that

the NSF system fails to provide an accurate physical description. This is due to the fact that

closure assumptions applied to the pressure tensor and heat fluxes may not hold precise once

the Knudsen number becomes large. This failure is pronounced in many non-equilibrium

settings including cold-to-hot heat fluxes in the lid-driven cavity [46], slip velocity [47], shock

profile [48], and inverted temperature gradients [49].

To cope with these shortcomings, a higher level of closure is necessary. The kinetic the-

ory provides a mesoscale closure by considering the dynamics of the molecular velocity

distribution, which is discussed in the following.

2.2. The Boltzmann equation

The statistical account of an ideal monatomic gas can be fully described by the probability

density f(V |x, t), which gives the probability f(V |x, t)d3V for finding a particle with a

velocity in the vicinity of V , at a given position x and instant in time t. For convenience,

let us consider the mass density function F(V ,x, t) := ⇢(x, t)f(V |x, t) (MDF). Assuming

that the gas is dilute and the molecular chaos holds [28], the evolution of MDF follows the

Boltzmann equation

@F
@t

+
@(FVj)

@xj

= S
Boltz.(F) (8)

with the Boltzmann collision operator

S
Boltz.(F) =

Z

R3

Z
2⇡

0

Z
+1

0

h
F(V ⇤

,x)F(V ⇤
1
,x)� F(V ,x)F(V1,x)

i
gb̂db̂d✏̂d

3V1. (9)



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Mohsen Sadr etal / Journal of Computational Physics (2020) 7

The collision operator acts as a source term in the evolution of F(V ,x, t), when a particle

with velocity V is produced as the outcome of colliding particles with velocities (V ⇤
,V ⇤

1
),

and as a sink term once one of the colliding pair has the pre-collision velocity of V . Note

that the magnitude of the relative velocity is indicated by g = |V � V1|. Furthermore, the

collision plane is determined with the impact parameter b̂ and the scattering angle ✏̂.

Once the Boltzmann equation is solved, the macroscopic properties such as ⇢, U , p, T

and q can be easily obtained by taking the moments of MDF. Since, in contrast to the

NSF system, here no assumption on the distance of F from the equilibrium is adopted, the

Boltzmann equation can also be employed for flow scenarios far from the equilibrium.

3. Particle solution algorithms

There exists a broad set of numerical schemes to tackle flow phenomena governed by the NSF

system as well as the Boltzmann equation. However, here we focus on particle approaches,

mainly because the coupling of two particle systems is technically more convenient. There-

fore first, a particle method based on SPH as the solution algorithm for the continuum scale

is reviewed. Then, DSMC is explained as our method of choice for the Boltzmann equation.

At the end of each subsection, the algorithms used in this study are summarized explicitly.

3.1. Smoothed-Particle Hydrodynamics

As a particle algorithm for solving the NSF system, the main idea behind SPH relies on

notions of the weight mSPH and the kernel W (r, h) carried by each particle [50, 41]. Here r is

the distance and h the smoothing parameter. Let the superscript (.)(↵) denote the quantity

evaluated at the location of the particle ↵, and (̃.)
(↵)

the corresponding approximation

introduced by the scheme. Furthermore W
(↵�)

h
= W (r(↵�), h) is the value of the kernel

evaluated at r(↵�) := |x(↵) � x
(�)| which is the distance between particles with index ↵ and

�. The density thus can be estimated by

⇢̃
(↵) =

X

�

m
(�)

SPH
W

(↵�)
. (10)

Next, a quantity of interest A at x(↵) is estimated by

Ã
(↵) =

X

�

m
(�)

SPH

⇢̃(�)
Ã

(�)
W

(↵�)
. (11)
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The accuracy and e�ciency of SPH method depend on the choice of the kernel function

and many such interpolation kernels are introduced in the literature (see e.g. [51, 52]).

For simplicity here, we adopt the Gaussian kernel which takes the following form in the

one-dimensional space

W (r(↵�), h) =
1p
2⇡h

exp

✓
�r

(↵�)

2h2

◆
. (12)

Typically a fixed small h and a large cut-o↵ rcut are used. Here they are set based on the

grid size �x via

rcut = 2�x (13)

and h =
1

30
rcut . (14)

One of the main advantages of the SPH framework is the smooth estimation of the derivatives

which are required in the governing equations. It is easy to see that the derivative of A at

the position of a particle with index ↵ becomes

rÃ
(↵) =

X

�

m
(�)

SPH

⇢̃(�)
Ã

(�)rW
(↵�)

. (15)

Therefore, by considering the Lagrangian framework for the NSF system of equations, the

forces and heat transfer experienced by each particle can be computed by a time-integration

scheme. We adopt the following discretization of momentum and energy equations

D

Dt
Ũ

(↵)

i
= �

X

�

m
(�)

SPH

⇢̃(↵)⇢̃(�)

⇣
p̃
(↵)

ij
+ p̃

(�)

ij

⌘
@W

(↵�)

@x
(�)

j

, (16)

and
D

Dt
ẽ
(↵) = �1

2

X

�

m
(�)

SPH

⇢̃(↵)⇢̃(�)

n�
p̃
(↵) + p̃

(�)
�
Ũ

(↵�)

i
+ ((↵) + 

(�))T̃ (↵�)

o
@W

(↵�)

@x
(�)

i

+
2µ(↵)

⇢̃(↵)
S̃
(↵)

ij
S̃
(↵)

ij
, (17)

where e = cvT is the internal energy, U (↵�)

i
= U

(↵)

i
� U

(�)

i
and T

(↵�) = T
(↵) � T

(�). For

details of derivations see [41, 51]. Adopting a first-order explicit time integration, the parti-

cles evolve in the solution domain accordingly. After initializing particles at every cell, the

particles evolve according to Algorithm 1.
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while t < Tfinal do

-Compute density of each particle from (10);
-Estimate S and p for every particle;
-Evolve velocity and internal energy of each particle (16)-(17);
-Stream particles with their velocities;
-Increment t;

end

Algorithm 1: SPH solution algorithm for the NSF system

3.2. Direct Simulation Monte-Carlo

Due to the high-dimensionality of the solution space associate with MDF, particle Monte-

Carlo schemes become attractive for numerical solutions of the Boltzmann equation. Con-

sider an ensemble of particles with velocities M (i), positions X(i) and weights w
(i). The

MDF F(V ,x, t) is related to particles states through

F(V ,x, t) =
X

i

�(X(i) � x)�(M (i) � V )w(i)
, (18)

where �(.) is the Dirac delta [53, 54, 55]. For simplicity, we consider the same weight for all

DSMC particles. Using the particle description, the idea behind DSMC is that instead of

updating F according to the Boltzmann equation Eq. (8), the underlying jump process is

simulated. Hence, the evolution of positions X(i) and velocities M (i) are derived consistent

with the Boltzmann equation in a two-step manner: streaming and collision. While the

streaming phase is simply the free flight of particles, the collision follows the No-Time-

Counter (NTC) method of Bird [2]. The collision probability is found via

Pcoll. =
�T cr

(�T cr)max

, (19)

where �T indicates the collision cross-section, cr is the magnitude of the relative velocity for

a colliding pair, and the subscript (.)
max

indicates the maximum value. In case of the Hard-

Sphere molecular potential, the collision cross-section is �T = ⇡�
2 where � is the diameter

of the molecules. Collisions occur for the colliding pair (i, j) in a manner that guarantees

the conservation of mass, momentum, and energy. Let cc = (M (i) +M (j))/2 be the center

of mass velocity and cr = (M (i)�M (j)) the relative velocity. According to the Hard-Sphere

scattering law, the post-collision relative velocity is isotropic. Hence the angles

✓ = arccos(2↵1 � 1) (20)

and � = 2⇡↵2 (21)
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with uniformly distributed random numbers ↵1,2 2 [0, 1], result in the orientation of the

post-collision relative velocity

c⇤
r
= cr

✓
cos(✓), sin(✓) cos(�), sin(✓) sin(�)

◆T

. (22)

The post-collision particles velocities are fully determined by relative and center of mass

velocities, following

M (i) = cc +
c⇤
r

2
(23)

and M (j) = cc �
c⇤
r

2
. (24)

A short description of DSMC algorithm for Hard-Spheres, after initializing the particles is

summarized in Algorithm 2.

while t < Tfinal do

-Sample the moments;
for i = 1, ..., Ncells do

-NCand = 1

2
N

2

p/cell
FN(�T cr)max�t/Vcell;

for j = 1, ..., NCand do

-Pick two samples from the cell;
-Draw a random number r with a uniform distribution in [0, 1];
if �T cr/(�T cr)max < r then

-Perform the collision (22)-(21);
end

end

end

-Stream position of particles X with their velocities M ;
-Increment t;

end

Algorithm 2: DSMC algorithm for Hard-Spheres. FN := w/m indicates the statistical
weight, Vcell is the volume of the computational cell, Np/cell is the number of particles
per cell, and NCand is number of candidates to be considered for collisions at each time
step.

4. Upscaling and refinement

We focus on a domain decomposition coupling approach, where each of the DSMC/SPH

solvers will be employed in the designated sub-domains. Therefore two types of communica-

tions between continuum and kinetic solvers have to be addressed. First, we discuss moment
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recovery which is upscaling of the kinetic information to the continuum scale. Next, we ad-

dress the moment problem arising from the refinement of the continuum information into

the kinetic scale. The former gives us the information passage from kinetic to continuum

sub-domains, whereas the latter accounts for the opposite.

4.1. Moment estimations

The evolution of moments can be easily obtained from the Boltzmann equation by taking the

velocity moments of Eq. (8). By comparing the flux terms with respect to the conservation

laws i.e. Eqs. (1)-(3), the corresponding macroscopic quantities are readily obtained

Ui =
1

⇢

Z

R3

ViFd
3V (25)

pij =

Z

R3

⇠i⇠jFd
3V (26)

and qi =
1

2

Z

R3

⇠i⇠j⇠jFd
3V , (27)

where ⇠ := V �U denotes the fluctuating velocity. By applying the identity (18), the above-

mentioned moments can be computed from DSMC particles. Yet since a finite number of

particles and finite size of computational cells are applied in DSMC, the corresponding

equalities turn to estimates; assigned here by the superscript (̃.). The field variables at

position x and time t are found according to

⇢̃ =
1

��

X

k2S�

w
k
, (28)

Ũi =
1

⇢̃

X

k2S�

M
k

i
w

k
, (29)

p̃ij =
X

k2S�

M
0
i

k
M

0
j

k
w

k (30)

and q̃i =
1

2

X

k2S�

M
0
i

k
M

0
j

k
M

0
j

k
w

k
, (31)

where S� is the set of particles residing in the computational cell � around position x at

time t, and �� denotes the volume of that cell. Furthermore M 0 := M�Ũ is the fluctuating

particle velocity. The above estimates commit two types of errors. First, the statistical noise

arising from using a limited number of particles and second, the spatial homogenization due

to the spatial averaging over the computational cell. Note that the former error can be

significantly reduced once the time averaging can be utilized relevant for the stationary

flows.
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4.2. Moment problem

The more challenging part of the coupling is when the information provided by the contin-

uum solver should be transferred to the kinetic sub-domain. In other words, a distribution

should be assigned to the moments given by the continuum model. Note that in general

this moment problem is ill-posed and needs a regularization for tractability. There exist

many approaches addressing the moment problem, including the quadrature method [56],

Grad-Hermite distributions [57, 58] and Maximum-Entropy methods [37, 36]. Assuming re-

alizable moments, the quadrature method gives a well-defined probability density, yet su↵ers

from non-uniqueness of the distribution. On the other hand, the Grad-Hermite ansatz gives

a unique solution which can be computed cheaply, while it can not guarantee positivity

of the probability density [58]. Finally MED gives rise to a unique and positive proba-

bility density, providing a bounded domain and realizable set of moments [59]. From the

information-theory stand-point, MED provides the least-biased distribution subject to the

moment constraints. In the following section, we first review some basics of the Maximum-

Entropy approach. Furthermore, we explain and elaborate the recently devised data-driven

method as an e�cient way to compute MED probability densities [40].

5. Maximum-Entropy Distribution

For simplicity but without loss of generality, in the following we focus on the one-dimensional

velocity space. Let us consider finding a probability density that fulfils the moments

Z

⌦

f�dV = p, (32)

where p = (⇢, ⇢U, p, ...)T is the vector of given moments and � = (1, V, ⇠2, ...)T the cor-

responding vector of velocity polynomials. The Maximum-Entropy approach provides a

regularization of the moment problem by minimizing the entropy functional

S[f ] =

Z

⌦

f ln(f)dV , (33)

subject to the moment contraints (32). As shown in [59], the resulting optimization problem

is well-posed on a bounded domain ⌦ and for realizable moments p. Yet note that in case

of an unbounded domain, such distribution still uniquely exists once further restrictions on
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higher order moments are imposed [60, 61]. Following the method of Lagrange multipliers,

the objective functional becomes

C
�

N
[f ] :=

Z

⌦

f ln(f)dV � �k

✓Z

⌦

f�kdV � pk

◆
(34)

where � is vector of Lagrange multipliers owing to the moment constraints. By taking the

variational derivative of C�

N
, it is easy to see that the extremum of the functional becomes

f
�

N
= Z

�1

�
exp (��k�k) , (35)

where the denominator Z� :=
R
⌦
exp (��k�k)dV normalizes the MED f

�

N
[35]. Note that

at this stage the moment problem is reduced to finding the vector �. Next, considering the

dual problem, we arrive at the following unconstrained minimization problem

�(p) = argmin
�⇤2RN

�
Z�⇤ � �

⇤
j
pj

 
, (36)

which can be directly employed in order to find the Lagrange multipliers �.

5.1. Direct method

The common approach for solving the minimization problem given in Eq. (36), follows

Newton’s method. The resulting iterative solution algorithm updates the estimate �n by

�n+1, according to

Hij(�
n)��

n

j
= gi(�

n) (37)

and �
n+1

i
= �

n

i
+ �

n��
n

i
. (38)

Here �
n is a damping factor at nth iteration, and H(�) and g(�) are the Hessian and the

gradient of the objective function, respectively. Since the Hessian matrix is a function of the

previous Lagrange multipliers estimate, there is no guarantee that H is well-conditioned,

hence high computational cost can be expected [62]. Alternatively, an adaptive basis pro-

vides a mechanism to avoid the ill-conditioning issue. While the change of the basis, e.g.,

using Hermit polynomials to enforce a close to diagonal Hessian [62], or devising a Hessian

for the intermediate probability density at each iteration [38, 39], can tackle the problem

with regards to ill-conditioned Hessian, the overhead computational cost still constraints

the use of direct methods.
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5.2. Gaussian-Process Regression

Following [40], instead of directly solving for the Lagrange multipliers as explained in § 5.1,

numerical advantages can be obtained by considering a regression approach. The idea is to

approximate the unique map  i : p ! �i, i = 1, ..., N by GP via

 ̃i ⇠ GP(0,Ki) (39)

given a positive semi-definite kernel function K(p,p0). Note that here and henceforth,

A ⇠ B reads A is a sample drawn from B. For details of Gaussian-Process regressions see

e.g. [63, 64]. The kernel introduces a set of hyper-parameters ⇥i to be fitted to the data,

which can be optimized by maximizing the log-likelihood

ln
h
f̃

⇣
 ̃i(p) | (p,�i) 2 Di

⌘i
(40)

over the input/output data-set Di = {(p,�i)k}Ndata
k=1

, where f̃

⇣
 ̃i(p) | (p,�i) 2 Di

⌘
denotes

the probability density of  ̃i conditional on the training data.

Once the hyper-parameters of the chosen kernel are found, the Lagrange multipliers can

be predicted based on the values of input moments p⇤ according to
✓
 ̃i(p

⇤)

���� ̃i(p) =  i(p)

◆
⇠ N (m̄i, ⌃̄i), (41)

where

m̄i = K⇥(i)
(p⇤

,p0)K⇥(i)
(p,p0)�1 (i)(p) and (42)

⌃̄i = K⇥i(p
⇤
,p⇤0)�K⇥(i)

(p⇤
,p)K⇥(i)

(p,p0)�1K⇥(i)
(p⇤

,p) . (43)

Note that N (A,B) denotes the normal distribution with mean A and variance B. Also note

that the Einstein summation over repeated indices is abandoned if the brackets (.) are used

over the index. Similar to [40], a kernel based on the Gaussian radial basis function

K⇥i(p,p
0) = �(i) exp

�
�r

2

(i)
/2
�
+ ✏�(p� p0) (44)

is used in this work, where ✏�(p�p0) with ✏ = 10�6 guarantees that the outcome covariance

matrix is diagonally dominant and invertible. Moreover ri indicates an Euclidean scaled
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distance from the other input point. The Broyden-Fletcher-Goldfarb-Shanno algorithm

(BFGS) is employed to optimize the hyperparameters as the training step of our GP model

[65]. Since here only a prototype study is considered, a simple GP regression using GPflow

[66] is employed for estimating the Lagrange multipliers. Yet since the cost of Cholesky’s

factorization needed for the covariance matrix is cubic with respect to the number of training

data points, more elaborate GP schemes are needed for larger data-sets. In this study,

Ndata = 1000 data points were used for training GP. Motivated by limitations of GP and in

order to get a better insight into pros and cons of data-driven approaches, we also consider

regression based on ANN as discussed in the following.

5.3. Artificial-Neural-Network

As an alternative data-driven approach and universal function approximator, ANN is em-

ployed here to address the regression problem of Lagrange multipliers. The objective is to

make a comparison between ANN and GP regressions in terms of both accuracy and com-

putational e�ciency in the context of our MED problem. Therefore here we are concerned

with learning the map  i : p ! �i, i = 1, ..., N using an ANN approximator. For further

details on ANNs and their design principles see e.g. [67, 68].

We start with a small network, including only three hidden layers, and increase numbers of

neurons in hidden layers (H1, H2, H3) until a reasonable accuracy in predicting the testing

data points (p,�) is achieved. A schematic of ANN is presented in Fig. 1. The forward

propagation of the network with hyperbolic tangent activation function reads

h
(1)

i
= tanh(W (1)

ij
pj + b

(1)

i
), (45)

h
(2)

i
= tanh(W (2)

ij
h
(1)

j
+ b

(2)

i
), (46)

h
(3)

i
= tanh(W (3)

ij
h
(2)

j
+ b

(3)

i
) (47)

and �̂i = W
(o)

ij
h
(3)

j
+ b

(o)

i
, (48)

where W (1) 2 RH1⇥dim(p), b(1) 2 RH1 , W (2) 2 RH2⇥H1 , b(2) 2 RH2 , W (3) 2 RH3⇥H2 ,

b(3) 2 RH3 , W (o) 2 Rdim(�)⇥H3 and b(o) 2 Rdim(�). Note that �̂ 2 Rdim(�) indicates the ANN

prediction of the Lagrange multipliers. Coe�cients of the network are found by minimizing
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the loss function Ĉ defined as a modified mean squared error (MSE) on the Ntr training data

points, i.e.,

Ĉ:= 1

Ntr

NtrX

i=1

||�̂(i) � �(i)||2
2,Rdim(�) +

3X

i=1

R(W (i)) +R(W (o)), (49)

where || . ||2,RN indicates the L2-norm of N -dimensional vector, and R regulates the weights

of the network to avoid over-fitting during the training step [68]. In this paper, the L
2

regularizer is used, corresponding to

R(W ) = �||W ||2
F,Rdim(W ) , (50)

where subscript F indicates Frobenius norm and the hyper-parameter � is used to control

the regularization e↵ect. The training of the network is implemented in Keras [69], with

TensorFlow [70] as the backend. The optimal weights and biases of the network are obtained

using the Adam stochastic optimizer [71], which uses mini-batches of size Nbatch < Ntr of

the training data to take a single optimization step by minimizing the loss function. More

precisely, the full training data set with Ntr data-points is shu✏ed, and Ntr/Nbatch mini-

batches are extracted to takeNtr/Nbatch optimization steps. Once the entire training data set

is exhausted, the training is said to complete one training epoch. The training is performed

for a su�cient number of epochs to obtain a converged network. The convergence speed of

the training is controlled by the learning rate of ⌘. A feature scaling technique in which

all the components of the input are scaled to the same range is applied to the data-sets to

accelerate the training process [72]. An input scalar x is scaled by the mean normalization

x
⇤ =

x� µ

�
, (51)

where µ is the mean and � is the standard deviation of x. At the beginning of the training,

the weights and biases of the network are randomly initialized using normal distributions

[73]. Therefore, the training needs to be performed several times, following a multiple

restarts approach [74], to prevent the training results from depending on the initialization

of the weights. In this paper, ten restarts are performed for the training of the network,

and the trained model with the best validation accuracy is selected as the final model.

The validation accuracy metric is the mean squared error (MSE). The optimal network in

this paper is obtained with the hyper-parameters: (H1, H2, H3) = (10, 20, 40), � = 10�8,

Nbatch = 1000, and ⌘ = 0.005.
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Fig. 1: A schematic representation of the devised ANN for the case dim(�) = 3

5.4. Generating training data-set

Either applying GP regression or ANN approximator, we need to first produce a relevant

data-set containing the areas of interest for the pair (p,�). In the context of this study we

only consider regressions on MEDs with one-dimensional normalized velocity domain. The

corresponding R-domain hence is truncated to ⌦ = [�10, 10]�, where �
2 is the input vari-

ance. Since in practice mean and variance of any distribution can be modified by scaling and

shifting, the data-set is generated on the distributions with mean zero and unity variance.

Although data generation is more e�cient by randomly generating Lagrange multipliers and

then taking the integrals [40], here we would like to have more control over the domain of

the moments. Therefore in this study, the training data-set is generated by sampling from

the space of moments and then directly solving for the Lagrange multipliers of MED, as ex-

plained in § 5.1. Let Li be the subspace from which the moment pi is sampled. We only focus

on MEDs with maximum number of eight moments. These moments are uniformly sampled

according to L3 = [�2, 2], L4 = [�5, 5], L6 = L5 = [�10, 10] and L8 = L7 = [�20, 20].

6. Hybrid DSMC-SPH solution algorithm

In this section, the explained data-driven MED machinery is integrated into a DSMC-SPH

hybrid algorithm. First, a switching criterion based on MED estimates is proposed to
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dynamically assign DSMC/SPH simulator to each computational cell. Having trained an

e�cient MED estimator, one can approximate the distance from the equilibrium. Further-

more, MED estimates provide a reasonable closure needed at the DSMC-SPH interface;

giving the information fed into DSMC from SPH cells.

Before proceed to further details, note that since we are concerned with DSMC/SPH solvers,

only the MED with three moments will be relevant. Furthermore, we employ a normalized

vector of central moments

p̂ =

✓
0, 1,

2q

⇢(kbT/m)3/2

◆T

(52)

as the input to MED estimators. Notice that since we have only presented the case with

a one-dimensional velocity for our MED estimators, only one-dimensional non-equilibrium

flow will be considered. Let V1 be the coordinate along the non-equilibrium dimension,

therefore the main assumption here is that the MDF can be decomposed as

F(V ,x, t) = ⇢(x, t)f(V1|x, t)f eq.(V2|x, t)f eq.(V3|x, t), (53)

where f
eq. is a Maxwellian with the local mean velocity U (x, t) and the local temperature

T (x, t).

6.1. Switching

A relevant metric to obtain the distance between two densities f1(V ) and f2(V ) is given by

the Fisher information distance

I(f1|f2) :=
Z

⌦

f1 [r ln(f1/f2)]
2
dV. (54)

For a detailed survey on physical importance of the Fisher information see [75].

In this study, we adopt the Fisher information distance as a measure to see how far the

distribution stands from the equilibrium. First p̂ is estimated in every cell leading to an

approximate f
�

3
based on GP and ANN regressions. Then, the switching criterion is found

from I(f eq.|f�

3
) which has an analytical form. By setting a tolerance ✏, the SPH cells are

switched to DSMC if I(f eq.|f�

3
) � ✏, and vice-versa if I(f eq.|f�

3
) < ✏.
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To switch a continuum cell to the kinetic one, all SPH particles are removed, and new

DSMC particles are sampled from f
�

3
and positioned in the cell randomly with a uniform

distribution. Conversely, DSMC particles are removed and SPH particles with values based

on the moments of DSMC particles are placed equidistantly in the cell.

6.2. Treatment of interface

Let us decompose the domain into two parts; the union of continuum cells with SPH particles

in them, and the union of kinetic cells occupied by DSMC particles. At the interface between

DSMC and SPH cells, a proper boundary condition for each method needs to be derived.

In this section, two candidate numerical approaches for interface treatment, with di↵erent

e�ciency/simplicity trade-o↵ will be presented.

6.2.1. Flux method

One way to treat the interface boundary problem is based on the incoming flux. In partic-

ular, we consider the flux of incoming particles, as if the neighbouring cells outside of the

considered sub-domain were operating with a solver similar to the one employed inside of

the sub-domain. This leads to an accurate boundary condition for each scale, although the

implementation in higher dimensions can become cumbersome.

For each kinetic cell lying at the boundary, the incoming flux of the neighbour distribution

can be determined from the MED estimation of the distribution at the interface. Hence,

first f
�

3
and accordingly the MDF F�

3
are estimated from moments of the neighbouring

continuum cell. Then new particles are generated based on the MDF

Fin = H(Vln
i

l
) Vjn

i

j
F�

3
(55)

of incoming particles [2]. Note that here H( . ) denotes the Heaviside function and ni

the normal of the interface inward to the kinetic cell. The particles are sampled using

Metropolis-Hasting sampling method [44]. The new DSMC particles are streamed in the

kinetic domain starting from the interface position with a uniformly distributed fraction of

time step, i.e., �t = r�t where r is a random number in (0, 1).

For the continuum cells at the border with the kinetic ones, the flux is approximated using
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the moments of the neighbouring kinetic cell. Consider the mean velocity, the temperature

and the density estimated at the neighbouring DSMC cell to be U (b), T (b) and ⇢
(b). The

incoming flux to the SPH domain is non-zero only if U (b)

j
ñ
i

j
> 0 where ñi is the normal

of the interface inward to the continuum cell. Once this condition is met, we consider the

volume U (b)�t at the neighbouring DSMC cell. Let us call the resulting domain containing

that volume, ⌦in. The idea is to populate ⌦in with SPH particles as described in the follow-

ing. Based on the weights of SPH particles w and ⇢
(b), new SPH particles with equidistant

spacing, the velocityU (b) and the temperature T (b) are introduced inside the ⌦in sub-domain.

Although describing inflow fluxes leads to accurate and e�cient treatment of sub-domain

boundaries, it requires special care when it is implemented in higher dimensions. Hence an

equivalent but simpler approach is suggested next, where the idea of using ghost cells for

each sub-domain is explored.

6.2.2. Ghost cells method

From the implementation point of view, a simpler alternative can be obtained by extending

each sub-domain with ghost cells.

In the case of DSMC, at every time step and every interface, a ghost DSMC cell on top of

the adjacent SPH cell is considered. Next, new DSMC particles are generated based on the

MED estimate F�

3
given the set of central moments coming from the SPH solution. Using

the Metropolis-Hasting approach new velocities are assigned and particles are located in the

ghost cell with a uniform distribution. Once the particles in the ghost cells are streamed,

the remaining DSMC particles in the ghost cells are removed.

A similar approach can be deployed for treatment of SPH cells at the interface. On top

of each neighbouring DSMC cell, a ghost cell is introduced and equidistant SPH particles

are generated according to the moments of the local DSMC particles. Once SPH particles

are streamed with the velocities obtained from the moments of the beneath DSMC cell,

consistent fluxes are obtained. At the end of each time step, the SPH particles remaining

in ghost cells are removed.
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SPH DSMC

SPH DSMC

For	SPH:

For	DSMC:

(a) Flux method

SPH DSMC

SPH	particles

SPH DSMC

DSMC	particles

For	SPH:

For	DSMC:

(b) Ghost cell method

Fig. 2: Schematics of interface treatment

The above-mentioned approaches to cope with the boundary conditions for DSMC/SPH

sub-domains are depicted schematically in Fig. 2.

6.3. Algorithm

By assembling all the introduced pieces into a hybrid DSMC-SPH particle method, the solu-

tion algorithm is summarized in Algorithm 6.3. Note that while only one-dimensional case is

considered here, all methodologies are extendable to higher dimensions in a straightforward

manner.
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Initialization with SPH particles in every cell;
while t < Tfinal do

-Evolve particles states according to SPH or DSMC rules;
-Apply DSMC-SPH interface treatments;
-Remove particles in wrong cells;
for cell= 1, ..., Ncells do

-Estimate f
�

3
from moments using GP or ANN;

if I(f eq.|f�

3
) > ✏ and cellflag==SPH then

-Replace SPH particles with samples of f�

3
;

end

if I(f eq.|f�

3
) < ✏ and cellflag==DSMC then

-Remove DSMC particles;
-Generate SPH particles with local moments;

end

end

-Increment t;
end

Algorithm 3: Hybrid DSMC-SPH solution algorithm

7. Results

The hybrid solution algorithm based on the data-driven MED estimate devised in previous

sections § 4-6 is examined here against the benchmark results. First, the accuracy of GP and

ANN regressions to estimate MEDs is studied in § 7.1. Then, in § 7.2, the Sod’s shock tube

as a test case with evident non-equilibrium e↵ects is simulated using DSMC, SPH and the

introduced hybrid algorithm. Before proceed, note that in all MED related computations

we truncate the sample space to the domain ⌦ = [�10, 10]�, where �
2 is the variance.

7.1. Estimating a bi-modal distribution

Before testing the devised hybrid multi-scale solution algorithm, first, the accuracy of the

trained GP and ANN for N = 3, 4, 6 and 8 number of moments is evaluated. The reference

is the bi-modal probability density which is an archetype of non-equilibrium flows (see e.g.

[76]). Consider a bi-modal density obtained by adding two Gaussian ones each of the form

f
N (x|µ, �) with mean µ and standard deviation �

f
bi(x|µ1, �1, µ2, �2) =

1

2

⇥
f
N (x|µ1, �1) + f

N (x|µ2, �2)
⇤

(56)
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where µ2 = �µ1 and �2 =
p
2� (�2

1
+ 2µ2

1
) to make sure that mean and variance of

f
bi(x|µ1, �1, µ2, �2) is equal to zero and one, respectively. The moments of fbi(x|µ1, �1, µ2, �2)

can be easily obtained by taking the integral in a large enough bounded domain, numeri-

cally. Now there are two questions to be addressed here. First, given the set of moments p,

how well MED can approximate fbi? Next, how well GP or ANN can recover the underlying

MED estimate?

In order to answer the first question, the direct approach to recover MED is applied, where

the converged solution with the error in moments up to the machine accuracy ✏ = 10�16

is considered as the exact solution. Since the direct approach can be expensive if the ini-

tial guess is too far from the solution, the output from the trained GP estimate is used

as the initial guess here. As shown in Fig. 3, by increasing the number of moments and,

consequently, the number of Lagrange multipliers, the exact MED solution converges to the

bi-modal distribution. Here, the Kullback-Leibler (KL) divergence

DKL(f
bi||f�

N
) =

Z

R
f
biln

�
f
bi
/f

�

N

�
dx (57)

is employed as an indicator of the distance between the two densities. As it is shown in

Fig. 3, the KL divergence between the target and the exact MED decreases as more mo-

ments are engaged.

Having investigated the accuracy of the exact MED in recovering the bi-modal density,

let us turn to the second question and evaluate the MED estimates using GP and ANN

regressions. As depicted in Fig. 3, both GP and ANN provide reasonable accuracy in pre-

dicting the exact MED in terms of the KL-divergence point of view. Yet one can observe

that the GP regression seems to produce a better estimation overall considering the errors in

Lagrange multipliers and the outcome moments. Unlike ANN, GP regressions provide the

uncertainty of predictions in terms of the variance. In the considered test cases, the variance

of prediction was in the order of 10�6, which also indicates that the prediction point is not

far from the training data-set.

In terms of the computational e�ciency, the cost of predictions using GP or ANN are

fixed. For the former, the cost depends on the number of training data points, whereas
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Fig. 3: Estimating fbi(x|µ1,�1, µ2,�2) = 1
2

⇥
fN (x|µ1,�1) + fN (x|µ2,�2)

⇤
with µ2 = �µ1 and �2 =p

2� (�2
1 + 2µ2

1) using exact, GP and ANN estimates of MED f�
N . Here, µ1 = 0.9 and �1 = 0.3. For

the errors, the solid and dashed lines indicate the relative error in estimating Lagrange multipliers and the
error in the outcome moments of the estimated MED, respectively.

the latter is a function of the network dimension. In this test case, the direct approach for

finding MED is at least one order of magnitude more expensive than data-driven estimates.

However note that in this comparison, we did not consider neither the o✏ine costs associated

with producing the data-sets, nor tuning/training GP/ANN.

7.2. Sod’s shock tube

In this section, the continuum-kinetic hybrid solution algorithm devised in § 6.3 is applied

to study of the classical Sod’s shock tube [77]. Note that similar settings were used by [20],

to evaluate their hybrid algorithm. Consider a domain where the relevant fluid direction

is in x2 2 (0, L) with L = 1 m. The other dimensions in the physical space are assumed

to be large enough, and consequently the kinetics of the gas along these dimensions can

be considered to be at the equilibrium and thus condition (53) is met. For the continuum

model, consider the initial values
8
<

:

⇢L = ⇢0

U2,L = u0

TL = T0

and

8
<

:

⇢R = ⇢0/8
U2,R = u0

TR = T0

(58)
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where ⇢0 2 {10�4
, 10�5

, 10�6} kg.m�3, the initial temperature T0 = 273 K, the initial ve-

locity of u0 = 0 m.s�1, and the subscripts L and R indicate the left and right sides of the

initial discontinuity, respectively.

In the case of DSMC, while particle number follows the initial densities, the initial velocity

in each direction i 2 {1, 2, 3} follows

Mi,L/R ⇠ N (U0, kTL/R/m), (59)

where the subscript (.)L/R denotes left or right side of the initial discontinuity.

The Neumann boundary conditions are applied at two ends of the physical domain. In

the case of DSMC, particles leaving the domain are removed while new particles entering

the domain are sampled from the flux of the Maxwell distribution with moments taken from

the adjacent DSMC cell. In the SPH case, as particles leave the domain, they are removed

while for the inflow duplicates of the adjacent SPH cell are streamed.

After an initial convergence study, a descritization using 200 cells leading to the mesh size

of �x = 0.005 m is used. The time step is picked based on �t = 0.01⇥min
⇣
tMFT,�x/Ũ

⌘
,

where Ũ = max (U, µ/⇢), the mean-free-time is indicated by tMFT = �(kbT/m)�1/2, and

� denotes the mean-free-path based on the number density of the left side of the initial

discontinuity

� =
1p

2nL⇡�
2
. (60)

Properties of Argon with molecular mass m = 6.633521⇥ 10�26 kg and Hard-Sphere diam-

eter of � = 3.405 ⇥ 10�10 m as an ideal monatomic gas are assumed. The viscosity follows

µ = 5
p

mkbT/⇡/(16�2) and the heat conductivity  = 15kbµ/(4m). In all test cases, the

time step size is fixed to the value of �t = 2.01⇥ 10�9 s. The SPH particles adopt identical

weight. Moreover, SPH and hybrid solution algorithms are initialized with 40, 000 particles

in the left side of the domain and corresponding number to the right side. DSMC simu-

lations are performed using the statistical weights FN 2 {1013, 1012, 1011} ⇥ 9.42184 which

coresponds to ⇢0 2 {10�4
, 10�5

, 10�6} kg.m�3.
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Fig. 4: Sod’s shock tube with initial values of (⇢L, U2,L, TL) = (10�4 kg.m�3, 0 m.s�1, 273 K) and
(⇢R, U2,R, TR) = (0.125 ⇥ 10�4 kg.m�3, 0 m.s�1, 273 K) at t = 2.01 ⇥ 10�4 s. The profiles of the den-
sity ⇢, the mean velocity U2, and the temperature T are obtained from SPH, DSMC, and the devised hybrid
DSMC-SPH equipped with GP estimator of MED.

Three cases of the initial densities with the same termination time, provides di↵erent levels

of non-equilibrium. First, the solution for the case with ⇢L = 10�4 kg.m�3 is obtained from

full DSMC, full SPH, and hybrid DSMC-SPH based on GP/ANN MED estimates are pre-

sented in Fig. 4-5. For comparisons, the evolution of the Fisher information distance from

equilibrium, along with the cell flags at four time intervals are shown in Fig. 6. Although

DSMC solution is subject to noise, overall good agreement between the hybrid solution algo-

rithm and full DSMC results is observed; considering both GP and ANN estimates of MED.

To gain a better insight into the accuracy of data-driven GP/ANN estimators of MED,

we extract moments from four probe positions xA = 0.45 m, xB = 0.5 m, xC = 0.55 m, and

xD = 0.6 m at the terminal time. Instead of computing the exact MED solution, we have

computed the moments of the estimated MEDs and compared them with respect to the in-

put moment. As it can bee seen in Fig. 7, the predictions based on the GP regression shows

a better accuracy in comparison to the one from ANN. Consequently, for the remaining test

cases, only the trained GP method is employed in the hybrid solution algorithm.
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Fig. 5: Sod’s shock tube with initial values of (⇢L, U2,L, TL) = (10�4 kg.m�3, 0 m.s�1, 273 K) and
(⇢R, U2,R, TR) = (0.125 ⇥ 10�4 kg.m�3, 0 m.s�1, 273 K) at t = 2.01 ⇥ 10�4 s. The profiles of the den-
sity ⇢, the mean velocity U2, and the temperature T are obtained from SPH, DSMC, and the devised hybrid
DSMC-SPH equipped with ANN estimator of MED.
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Fig. 6: Evolution of the Fisher information distance I(f eq.|f�
3 ) at t 2 {0, 0.5025, 1.5075, 2.01}⇥10�4 s and the

assigned DSMC/SPH solver in the hybrid method for the Sod’s shock tube test case with ⇢0 = 10�4 kg.m�3,
shown at left and right, respectively. Solid and dashed lines indicate that MED is estimated using GP and
ANN, respectively
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Fig. 7: Absolute value error of moments of the estimated f�
3 using GP and ANN at four locations xA =

0.45 m, xB = 0.5 m, xC = 0.55 m, and xD = 0.6 m for the Sod’s shock tube hybrid simulation at
t = 2.01⇥ 10�4 s.

Next, more rarefied scenarios are considered for the Sod’s shock tube with ⇢0 = 10�5 kg.m�3

and ⇢0 = 10�6 kg.m�3, as the results are shown in Figs. 8 and 9, respectively. For lower

density while keeping ratio ⇢L/⇢R constant, the solution of SPH departs further from DSMC

results. However, the hybrid solution shows a good accuracy in comparison with the bench-

mark DSMC result.

7.3. Performance of hybrid solution algorithm

As more cells remain in the continuum limit and assigned to the SPH solver in the hybrid

approach, much less noise compared to the full DSMC simulation is expected. Moreover,

even though the hybrid solution algorithm introduces an overhead mainly due to particle

samplings from MED estimates, still good computational e�ciency can be obtained since

typically only a small fraction of cells switch to DSMC at a given time step. Computational

speedups along with noise reductions associated with the hybrid results are reported in

Fig. 10.

8. Conclusion and outlook

This study explores some potential of data-driven methodologies to accelerate multi-scale

computations, relevant to hybrid kinetic-continuum settings. Two main challenges of inter-

face treatment and switching criterion, associated with coupling of continuum and kinetic
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Fig. 8: Sod’s shock tube with initial values of (⇢L, U2,L, TL) = (10�5 kg.m�3, 0 m.s�1, 273 K) and
(⇢R, U2,R, TR) = (0.125 ⇥ 10�5 kg.m�3, 0 m.s�1, 273 K) at t = 2.01 ⇥ 10�4 s. The profiles of the den-
sity ⇢, the mean velocity U2, and the temperature T are obtained from SPH, DSMC, and the devised hybrid
DSMC-SPH equipped with ANN estimator of MED.
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Fig. 9: Sod’s shock tube with initial values of (⇢L, U2,L, TL) = (10�6 kg.m�3, 0 m.s�1, 273 K) and
(⇢R, U2,R, TR) = (0.125 ⇥ 10�6 kg.m�3, 0 m.s�1, 273 K) at t = 2.01 ⇥ 10�4 s. The profiles of the den-
sity ⇢, the mean velocity U2, and the temperature T are obtained from SPH, DSMC, and the devised hybrid
DSMC-SPH equipped with ANN estimator of MED.
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Fig. 10: Noise and cost study of DSMC, SPH and DSMC-SPH solution algorithms for the Sod’s shock tube
test case

solvers are addressed. It is shown that a practical and accurate probability density estimator

can circumvent these challenges and thus make e�cient hybrid algorithms more accessible.

By leveraging GP and ANN regression schemes, e�cient density estimations based on the

Maximum-Entropy condition are derived. Accordingly, a hybrid solution algorithm based on

fast and accurate MED estimators is devised and tested in one-dimensional shock tube sce-

narios. Based on detailed comparisons, the GP regression model was picked as the method

of choice for the studied scenario. Very good agreement with respect to the DSMC bench-

mark along with significant a speed-up are observed. While the setting considered here

was one-dimensional, more dimensions can be included in a straightforward manner, given

that all presented derivations are independent of the number of dimensions. Furthermore,

even though only DSMC-SPH coupling was addressed throughout this work, the proposed

approach motivates the use of data-driven MED for coupling higher-order moment systems

coupled with kinetic solution algorithms.
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