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Abstract. A second order accurate numerical scheme is proposed and imple-
mented for the Landau-Lifshitz-Gilbert equation, which models magnetization

dynamics in ferromagnetic materials, with large damping parameters. The

main advantages of this method are associated with the following features:
(1) It only solves linear systems of equations with constant coefficients where

fast solvers are available, so that the numerical efficiency has been greatly im-

proved, in comparison with the existing Gauss-Seidel project method. (2) The
second-order accuracy in time is achieved, and it is unconditionally stable for

large damping parameters. Moreover, both the second-order accuracy and the

great efficiency improvement will be verified by several numerical examples
in the 1D and 3D simulations. In the presence of large damping parameters,

it is observed that this method is unconditionally stable and finds physically
reasonable structures while many existing methods have failed. For the do-

main wall dynamics, the linear dependence of wall velocity with respect to the

damping parameter and the external magnetic field will be obtained through
the reported simulations.

1. Introduction

Ferromagnetic materials are widely used for data storage due to the bi-stable
states of the intrinsic magnetic order or magnetization. The dynamics of magneti-
zation has been modeled by the Landau-Lifshitz-Gilbert (LLG) equation [9,13]. In
particular, two terms are involved in the dynamics of the LLG equation: the gyro-
magnetic term, which is energetically conservative, and the damping term, which
is energetically dissipative.

The damping term is important since it strongly affects the energy required and
the speed at which a magnetic device operates. A recent experiment on a magnetic-
semiconductor heterostructure [25] has indicated that the Gilbert damping constant
can be adjusted. At the microscopic level, the electron scattering, the itinerant
electron relaxation [11], and the phonon-magnon coupling [16, 17] are responsible
to the damping, which can be obtained from electronic structure calculations [19].
For the application purpose, tuning the damping parameter allows one to optimize
the magneto-dynamic properties in the material, such as lowering the switching
current and increasing the writing speed of magnetic memory devices [23].

While most experiments have been devoted to small damping parameters [4,14,
22], large damping effects are observed in [10,18]. The magnetization switching time
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tends to be shorter in the presence of the large damping constant [18]. Extremely
large damping parameters (∼ 9) are presented in [10].

The LLG equation is a vectorial and nonlinear system with the fixed length of
magnetization in a point-wise sense. Significant efforts have been devoted to design
efficient and stable numerical methods for micromagnetics simulations; see [6, 12]
for reviews and references therein. Among the existing numerical works, semi-
implicit schemes have been very popular since they avoid a complicated nonlinear
solver while preserving the numerical stability; see [2, 7, 24], etc. In particular,
the second-order accurate backward differentiation formula (BDF) scheme is con-
structed in [24], with a one-sided interpolation. In turn, a three-dimensional lin-
ear system needs to be solved at each time step, with non-constant coefficients.
Moreover, a theoretical analysis of the second order convergence estimate has been
established in [5] for such a BDF2 method. As another approach, a linearly implicit
method in [2] introduces the tangent space to deal with the length constraint of
magnetization, with the first-order temporal accuracy. As a further extension, high-
order BDF schemes have been constructed and analyzed in a more recent work [1].
An unconditionally unique solvability of the semi-implicit schemes has been proved
in [1,5], while the convergence analysis has required a condition that the temporal
step-size is proportional to the spatial grid-size. However, an obvious disadvantage
has been observed for these semi-implicit schemes: the vectorial structure of the
LLG equation leads to a non-symmetric linear system at each time step, which
cannot be implemented by an FFT-based fast solver. In fact, the GMRES is often
used, while its efficiency depends heavily on the temporal step-size and the spatial
grid-size, and extensive numerical experiments have indicated much more expensive
computational costs than standard Poisson solvers [24].

The Gauss-Seidel projection method (GSPM) is another popular set of numerical
algorithms since only linear systems with constant coefficients need to be solved at
each time step [8,15,21]. This method is based on a combination of a Gauss-Seidel
update of an implicit solver for the gyromagnetic term, the heat flow of the harmonic
map, and a projection step to overcome the stiffness and the nonlinearity associated
to the LLG equation. In this numerical approach, the implicit discretization is only
applied to the scalar heat equation implicitly several times; therefore, the FFT-
based fast solvers become available, due to the symmetric, positive definite (SPD)
structures of the linear system. The original GSPM method [20] turns out to be
unstable for small damping parameters, while this issue has been resolved in [8] with
more updates of the stray field. Its numerical efficiency has been further improved
by reducing the number of linear systems per time step [15]. One little deficiency
of GSPM is its first-order accuracy in time.

Meanwhile, in spite of these improvements, the GSPM method is computation-
ally more expensive than the standard Poisson solver, because of the Gauss-Seidel
iteration involved in the algorithm. An additional deficiency of the GSPM is its
first-order accuracy in time. Moreover, most of the above-mentioned methods have
been mainly focused on small damping parameters with the only exception in a
theoretical work [1]. In other words, there has been no numerical method designed
specifically for real micromagnetics simulations with large damping parameters. In
this paper, we propose a second-order accurate numerical method to solve the LLG
equation with large damping parameters, whose complexity is also comparable to
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solving the scalar heat equation. To achieve this goal, the LLG system is refor-
mulated, in which the damping term is rewritten as a harmonic mapping flow. In
turn, the constant-coefficient Laplacian part is treated by a standard BDF2 tem-
poral discretization, and the associated dissipation will form the foundation of the
numerical stability. Meanwhile, all the nonlinear parts, including both the gyro-
magnetic term and the remaining nonlinear expansions in the damping term, are
computed by a fully explicit approximation, which is accomplished by a second
order extrapolation formula. Because of this fully explicit treatment for the nonlin-
ear parts, the resulting numerical scheme only requires a standard Poisson solver at
each time step. This fact will greatly facilitate the computational efforts, since the
FFT-based fast solver could be efficiently applied, due to the SPD structure of the
linear system involved at each time step. In addition, the numerical stability has
been demonstrated by extensive computational experiments, and these experiments
has verified the idea that the dissipation property of the heat equation part would
be able to ensure the numerical stability of the nonlinear parts, with large damping
parameters.

The rest of this paper is organized as follows. In section 2, the micromagnetics
model is reviewed, and the numerical method is proposed, as well as its comparison
with the GSPM and the semi-implicit projection method (SIPM). Subsequently,
the numerical results are presented in section 3, including the temporal and spa-
tial accuracy check in both the 1D and 3D computations, the numerical efficiency
investigation (in comparison with the GSPM and SIPM algorithms), the stability
study with respect to the damping parameter, and the dependence of domain wall
velocity on the damping parameter and the external magnetic field. Finally, some
concluding remarks are made in section 4.

2. The physical model and the numerical method

2.1. Landau-Lifshitz-Gilbert equation. The LLG equation describes the dy-
namics of magnetization which consists of the gyromagnetic term and the damping
term [3,13]. In the nondimensionalized form, this equation reads as

mt = −m× heff − αm× (m× heff)(2.1)

with the homogeneous Neumann boundary condition

(2.2)
∂m

∂ν

∣∣∣
∂Ω

= 0,

where Ω is a bounded domain occupied by the ferromagnetic material and ν is unit
outward normal vector along ∂Ω.

In more details, the magnetization m : Ω ⊂ Rd → R3, d = 1, 2, 3 is a three-
dimensional vector field with a pointwise constraint |m| = 1. The first term on the
right-hand side in (2.1) is the gyromagnetic term and the second term stands for
the damping term, with α > 0 being the dimensionless damping coefficient.

The effective field heff is obtained by taking the variation of the Gibbs free energy
of the magnetic body with respect to m. The free energy includes the exchange
energy, the anisotropy energy, the magnetostatic energy, and the Zeeman energy:

(2.3) F [m] =
µ0M

2
s

2

{∫
Ω

(
ε|∇m|2 + q

(
m2

2 +m2
3

)
− 2he ·m− hs ·m

)
dx

}
.



4 Y. CAI, J. CHEN, C. WANG, AND C. XIE

Therefore, the effective field includes the exchange field, the anisotropy field, the
stray field hs, and the external field he. For a uniaxial material, it is clear that

heff = ε∆m− q(m2e2 +m3e3) + hs + he,(2.4)

where the dimensionless parameters become ε = Cex/(µ0M
2
sL

2) and q = Ku/(µ0M
2
s )

with L the diameter of the ferromagnetic body and µ0 the permeability of vacuum.
The unit vectors are given by e2 = (0, 1, 0), e3 = (0, 0, 1), and ∆ denotes the
standard Laplacian operator. For the Permalloy, an alloy of Nickel (80%) and
Iron (20%), typical values of the physical parameters are given by: the exchange
constant Cex = 1.3× 10−11 J/m, the anisotropy constant Ku = 100 J/m3, the sat-
uration magnetization constant Ms = 8.0 × 105 A/m. The stray field takes the
form

hs =
1

4π
∇
∫

Ω

∇
(

1

|x− y|

)
·m(y) dy.(2.5)

If Ω is a rectangular domain, the evaluation of (2.5) can be efficiently done by the
Fast Fourier Transform (FFT) [20].

For brevity, the following source term is defined

f = −Q(m2e2 +m3e3) + hs + he.(2.6)

and the original PDE system (2.1) could be rewritten as

mt = −m× (ε∆m+ f)− αm×m× (ε∆m+ f).(2.7)

Thanks to point-wise identity |m| = 1, we obtain an equivalent form:

(2.8) mt = α(ε∆m+ f) + α
(
ε|∇m|2 −m · f

)
m−m× (ε∆m+ f).

In particular, it is noticed that the damping term is rewritten as a harmonic map-
ping flow, which contains a constant-coefficient Laplacian diffusion term. This fact
will greatly improve the numerical stability of the proposed scheme.

For the numerical description, we first introduce some notations for discretization
and numerical approximation. Denote the temporal step-size by k, and tn = nk,
n ≤

⌊
T
k

⌋
with T the final time. The spatial mesh-size is given by hx = hy = hz =

h = 1/N , and mn
i,j,` stands for the magnetization at time step tn, evaluated at the

spatial location (xi− 1
2
, yj− 1

2
, z`− 1

2
) with xi− 1

2
=
(
i− 1

2

)
hx, yj− 1

2
=
(
j − 1

2

)
hy and

z`− 1
2

=
(
`− 1

2

)
hz (0 ≤ i, j, ` ≤ N + 1). In addition, a third order extrapolation

formula is used to approximate the homogeneous Neumann boundary condition.
For example, such a formula near the boundary along the z direction is given by

mi,j,1 = mi,j,0, mi,j,N+1 = mi,j,N .

The boundary extrapolation along other boundary sections can be similarly made.
The standard second-order centered difference applied to ∆m results in

∆hmi,j,k =
mi+1,j,k − 2mi,j,k +mi−1,j,k

h2
x

+
mi,j+1,k − 2mi,j,k +mi,j−1,k

h2
y

+
mi,j,k+1 − 2mi,j,k +mi,j,k−1

h2
z

,
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and the discrete gradient operator ∇hm with m = (u, v, w)T reads as

∇hmi,j,k =


ui+1,j,k−ui−1,j,k

hx

vi+1,j,k−vi−1,j,k

hx

wi+1,j,k−wi−1,j,k

hx
ui,j+1,k−ui,j−1,k

hy

vi,j+1,k−vi,j−1,k

hy

wi,j+1,k−wi,j−1,k

hy
ui,j,k+1−ui,j,k−1

hz

vi,j,k+1−vi,j,k−1

hz

wi,j,k+1−wi,j,k−1

hz

 .
Subsequently, the GSPM and the SIPM numerical methods need to be reviewed,

which could be used for the later comparison.

2.2. The Gauss-Seidel projection method. The GSPM is based on a combi-
nation of a Gauss-Seidel update of an implicit solver for the gyromagnetic term,
the heat flow of the harmonic map, and a projection step. It only requires a series
of heat equation solvers with constant coefficients; as a result, the FFT-based fast
solvers could be easily applied. This method is first-order in time and second-order
in space. Below is the detailed outline of the GSPM method in [8].

Step 1. Implicit Gauss-Seidel:

gni = (I − ε∆t∆h)−1(mn
i + ∆tfni ), i = 2, 3,

g∗i = (I − ε∆t∆h)−1(m∗i + ∆tf∗i ), i = 1, 2,(2.9)

(2.10)

m∗1m∗2
m∗3

 =

mn
1 + (gn2m

n
3 − gn3mn

2 )
mn

2 + (gn3m
∗
1 − g∗1mn

3 )
mn

3 + (g∗1m
∗
2 − g∗2m∗1)

 .

Step 2. Heat flow without constraints:

(2.11) f∗ = −Q(m∗2e2 +m∗3e3) + h∗s + he,

(2.12)

m∗∗1m∗∗2
m∗∗3

 =

m∗1 + α∆t(ε∆hm
∗∗
1 + f∗1 )

m∗2 + α∆t(ε∆hm
∗∗
2 + f∗2 )

m∗3 + α∆t(ε∆hm
∗∗
3 + f∗3 )

 .

Step 3. Projection onto S2:

(2.13)

mn+1
1

mn+1
2

mn+1
3

 =
1

|m∗∗|

m∗∗1m∗∗2
m∗∗3

 .

Here m∗ denotes the intermediate values of m, and stray fields hn
s and h∗s are

evaluated at mn and m∗, respectively.

Remark 2.1. Two improved versions of the GSPM have been studied in [15], which
turn out to be more efficient than the original GSPM. Meanwhile, it is found that
both improved versions become unstable when α > 1, while the original GSPM
(outlined above) is stable even when α ≤ 10. Therefore, we shall use the original
GSPM in [8] for the numerical comparison in this work.
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2.3. Semi-implicit projection method. The SIPM has been outlined in [5,24].
This method is based on the second-order BDF temporal discretization, combined
with an explicit extrapolation. It is found that SIPM is unconditionally stable and
is second-order accurate in both space and time. The algorithmic details are given
as follows.

(2.14)



3
2m̃

n+2
h − 2mn+1

h + 1
2m

n
h

k
= −m̂n+2

h ×
(
ε∆hm̃

n+2
h + f̂

n+2

h

)
− αm̂n+2

h ×
(
m̂n+2

h × (ε∆hm̃
n+2
h + f̂

n+2

h )
)
,

mn+2
h =

m̃n+2
h

|m̃n+2
h |

,

where m̃n+2
h is an intermediate magnetization, and m̂n+2

h , f̂
n+2

h are given by the
following extrapolation formula:

m̂n+2
h = 2mn+1

h −mn
h,

f̂
n+2

h = 2fn+1
h − fn

h,

with fn
h = −Q(mn

2e2 + mn
3e3) + hn

s + hn
e . The presence of cross product in the

SIPM yields a linear system of equations with non-symmetric structure and vari-
able coefficients. In turn, the GMRES solver has to be applied to implement this
numerical system. The numerical evidence has revealed that, the convergence of
GMRES solver becomes slower for larger temporal step-size k or smaller spatial
grid-size h, which makes the computation more challenging.

2.4. The proposed numerical method. The SIPM in (2.14) treats both the
gyromagentic and the damping terms in a semi-implicit way, i.e., ∆m is computed
implicitly, while the coefficient functions are updated by a second order accurate,
explicit extrapolation formula. The strength of the gyromagnetic term is controlled
by ∆m + f since the length of m is always 1. Meanwhile, the strength of the
damping term is controlled by the product of ∆m+f and the damping parameter
α. For small α, say α ≤ 1, it is reasonable to treat both the gyromagentic and
the damping terms semi-implicitly. However, for large α, an alternate approach
would be more reasonable, in which the whole gyromagentic term is computed by
an explicit extrapolation, while the nonlinear parts in the damping term is also
updated by an explicit formula, and only the constant-coefficient ∆m part in the
damping term is implicitly updated. This idea leads to the proposed numerical
method. To further simplify the presentation, we start with (2.8), and the numerical
algorithm is proposed as follows.

(2.15)



3
2m̃

n+2
h − 2mn+1

h + 1
2m

n
h

k
= −m̂n+2

h ×
(
ε∆hm̂

n+2
h + f̂

n+2

h

)
+ α

(
ε∆hm̃

n+2
h + f̂

n+2

h

)
+ α

(
ε|∇hm̂

n+2
h |2 − m̂n+2

h · f̂
n+2

h

)
m̂n+2

h ,

mn+2
h =

m̃n+2
h

|m̃n+2
h |

,
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where

m̂n+2
h = 2mn+1

h −mn
h,

f̂
n+2

h = 2fn+1
h − fn

h.

Table 1 compares the proposed method, the GSPM and the SIPM in terms
of number of unknowns, dimensional size, symmetry pattern, and availability of
FFT-based fast solver of linear systems of equations, and the number of stray field
updates. At the formal level, the proposed method is clearly superior to both the
GSPM and the SIPM algorithms. In more details, this scheme will greatly improve
the computational efficiency, since only three Poisson solvers are needed at each
time step. Moreover, this numerical method preserves a second-order accuracy in
both space and time. The numerical results in section 3 will demonstrate that the
proposed scheme provides a reliable and robust approach for micromagnetics simu-
lations with high accuracy and efficiency in the regime of large damping parameters.

Table 1. Comparison of the proposed method, the Gauss-Seidel
projection method, and the semi-implicit projection method.

Property or number Proposed method GSPM SIPM
Linear systems 3 7 1

Size N3 N3 3N3

Symmetry Yes Yes No
Fast Solver Yes Yes No
Accuracy O(k2 + h2) O(k + h2) O(k2 + h2)

Stray field updates 1 4 1

Remark 2.2. To kick start the proposed method, one can apply a first-order al-
gorithm, such as the first-order BDF method, in the first time step. An overall
second-order accuracy is preserved in this approach.

3. Numerical experiments

In this section, we present a few numerical experiments with a sequence of damp-
ing parameters for the proposed method, the GSPM [8] and the SIPM [24], with
the accuracy, efficiency, and stability examined in details. Domain wall dynamics
is studied and its velocity is recorded in terms of the damping parameter and the
external magnetic field.

3.1. Accuracy and efficiency tests. We set ε = 1 and f = 0 in (2.8) for conve-
nience. The 1D exact solution is given by

me = (cos(X) sin t, sin(X) sin t, cos t)
T
,

and the corresponding exact solution in 3D becomes

me = (cos(XY Z) sin t, sin(XY Z) sin t, cos t)
T
,

where X = x2(1 − x)2, Y = y2(1 − y)2, Z = z2(1 − z)2. In fact, the above exact
solutions satisfy (2.8) with the forcing term g = ∂tme−α∆me−α|∇me|2 +me×
∆me, as well as the homogeneous Neumann boundary condition.
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For the temporal accuracy test in the 1D case, we fix the spatial resolution
as h = 5D − 4, so that the spatial approximation error becomes negligible. The
damping parameter is taken as α = 10, and the final time is set as T = 1. In the 3D
test for the temporal accuracy, due to the limitation of spatial resolution, we take
a sequence of spatial and temporal mesh sizes: k = h2

x = h2
y = h2

z = h2 = 1/N0

for the first-order method and k = hx = hy = hz = h = 1/N0 for the second-
order method, with the variation of N0 indicated below. Similarly, the damping
parameter is given by α = 10, while the final time T is indicated below. In turn,
the numerical errors are recorded in term of the temporal step-size k in Table 2. It
is clear that the temporal accuracy orders of the proposed numerical method, the
GSPM, and the SIPM are given by 2, 1, and 2, respectively, in both the 1D and
3D computations.

The spatial accuracy order is tested by fixing k = 1D − 5, α = 10, T = 1 in 1D
and k = 1D − 3, α = 10, T = 1 in 3D. The numerical error is recorded in term of
the spatial grid-size h in Table 3. Similarly, the presented results have indicated
the second order spatial accuracy of all the numerical algorithms, including the
proposed method, the GSPM, and the SIPM, respectively, in both the 1D and 3D
computations.

To make a comparison in terms of the numerical efficiency, we plot the CPU time
(in seconds) vs. the error norm ‖mh−me‖∞. In details, the CPU time is recorded
as a function of the approximation error in Figure 1a in 1D and in Figure 1b in
3D, with a variation of k and a fixed value of h. Similar plots are also displayed in
Figure 1c in 1D and Figure 1d in 3D, with a variation of h and a fixed value of k. In
the case of a fixed spatial resolution h, the proposed method is significantly more
efficient than the GSPM and the SIPM in both the 1D and 3D computations. The
SIPM is slightly more efficient than the GSPM, while such an advantage depends
on the performance of GMRES, which may vary for different values of k and h. In
the case of a fixed time step size k, the proposed method is slightly more efficient
than the GSPM, in both the 1D and 3D computations, and the GSPM is more
efficient than the SIPM.

3.2. Stability test with large damping parameters. To check the numerical
stability of these three methods in the practical simulations of micromagnetics with
large damping parameters, we consider a thin film of size 480× 480× 20 nm3 with
grid points 100× 100× 4. The temporal step-size is taken as k = 1 ps. A uniform
state along the x direction is set to be the initial magnetization and the external
magnetic field is set to be 0. Three different damping parameters, α = 0.01, 10, 40,
are tested with stable magnetization profiles shown in Figure 2. In particular, the
following observations are made.

• The proposed method is the only one that is stable for very large damping
parameters;

• All three methods are stable for moderately large α;
• The proposed method is the only one that is unstable for small α.

In fact, a preliminary theoretical analysis reveals that, an optimal rate convergence
estimate of the proposed method could be theoretically justified for α > 3. Mean-
while, extensive numerical experiments have implied that α > 1 is sufficient to
ensure the numerical stability in the practical computations.
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Table 2. The numerical errors for the proposed method, the
GSPM and the SIPM with α = 10 and T = 1. Left: 1D with
h = 5D − 4; Right: 3D with k = h2

x = h2
y = h2

z = h2 = 1/N0

for GSPM and k = hx = hy = hz = h = 1/N0 for the proposed
method and SIPM, with N0 specified in the table.

1D 3D
k ‖ · ‖∞ ‖ · ‖2 ‖ · ‖H1 k = h ‖ · ‖∞ ‖ · ‖2 ‖ · ‖H1

4.0D-2 4.459D-4 5.226D-4 5.588D-4 1/20 6.171D-4 4.240D-4 4.246D-4
2.0D-2 1.147D-4 1.345D-4 1.436D-4 1/24 4.381D-4 3.010D-4 3.014D-4
1.0D-2 2.899D-5 3.402D-5 3.631D-5 1/28 3.268D-4 2.245D-4 2.248D-4
5.0D-3 7.192D-6 8.529D-6 9.119D-6 1/32 2.531D-4 1.739D-4 1.741D-4
2.5D-3 1.699D-6 2.321D-6 2.518D-6 1/36 2.017D-4 1.386D-4 1.387D-4
order 2.007 1.961 1.957 – 1.902 1.903 1.903

(a) Proposed method

1D 3D
k ‖ · ‖∞ ‖ · ‖2 ‖ · ‖H1 k = h2 ‖ · ‖∞ ‖ · ‖2 ‖ · ‖H1

2.5D-3 2.796D-4 2.264D-4 1.445D-3 1/36 4.194D-4 2.683D-4 2.815D-4
1.25D-3 1.425D-4 1.174D-4 7.720D-4 1/64 2.388D-4 1.399D-4 1.500D-4
6.25D-4 7.170D-5 5.940D-5 4.026D-4 1/144 1.069D-4 6.106D-5 6.736D-5
3.125D-4 3.591D-5 2.971D-5 2.069D-4 1/256 6.021D-5 3.442D-5 3.860D-5
1.5625D-4 1.799D-5 1.488D-5 1.054D-4 1/400 3.855D-5 2.208D-5 2.501D-5

order 0.991 0.984 0.945 – 0.992 1.032 1.000

(b) GSPM

1D 3D
k ‖ · ‖∞ ‖ · ‖2 ‖ · ‖H1 k = h ‖ · ‖∞ ‖ · ‖2 ‖ · ‖H1

4.0D-2 4.315D-4 5.111D-4 8.774D-4 1/20 6.170D-4 4.240D-4 4.249D-4
2.0D-2 1.128D-4 1.334D-4 2.255D-4 1/24 4.380D-4 3.010D-4 3.016D-4
1.0D-2 2.872D-5 3.399D-5 5.706D-5 1/28 3.268D-4 2.245D-4 2.251D-4
5.0D-3 7.174D-6 8.552D-6 1.433D-5 1/32 2.531D-4 1.739D-4 1.743D-4
2.5D-3 1.721D-6 2.333D-6 3.784D-6 1/36 2.017D-4 1.386D-4 1.389D-4
order 1.991 1.951 1.969 – 1.902 1.903 1.902

(c) SIPM

Under the same setup outlined above, we investigate the energy dissipation of
the proposed method, the GSPM, and the SIPM. The stable state is attainable at
t = 2 ns, while the total energy is computed by (2.3). The energy evolution curves
of different numerical methods with different damping parameters, α = 2, 5, 8, 10,
are displayed in Figure 3. One common feature is that the energy dissipation rate
turns out to be faster for larger α, in all three schemes. Meanwhile, a theoretical
derivation also reveals that the energy dissipation rate in the LLG equation (2.1)
depends on α, and a larger α leads to a faster energy dissipation rate. Therefore,
the numerical results generated by all these three numerical methods have made a
nice agreement with the theoretical derivation.
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Table 3. The numerical errors of the proposed method, the
GSPM and the SIPM with α = 10 and T = 1. Left: 1D with
k = 1D − 5; Right: 3D with k = 1D − 3.

1D 3D
h ‖ · ‖∞ ‖ · ‖2 ‖ · ‖H1 h ‖ · ‖∞ ‖ · ‖2 ‖ · ‖H1

4.0D-2 7.388D-3 7.392D-3 8.243D-3 1/2 4.261D-3 2.472D-3 2.472D-3
2.0D-2 1.848D-3 1.848D-3 2.061D-3 1/4 9.822D-4 5.595D-4 5.753D-4
1.0D-2 4.621D-4 4.621D-4 5.153D-4 1/8 2.453D-4 1.390D-4 1.424D-4
5.0D-3 1.155D-4 1.155D-4 1.288D-4 1/16 6.137D-5 3.471D-5 3.554D-5
order 2.000 2.000 2.000 – 2.035 2.047 2.037

(a) Proposed method

1D 3D
h ‖ · ‖∞ ‖ · ‖2 ‖ · ‖H1 h ‖ · ‖∞ ‖ · ‖2 ‖ · ‖H1

4.0D-2 7.388D-3 7.392D-3 8.244D-3 1/2 4.256D-3 2.470D-3 2.470D-3
2.0D-2 1.848D-3 1.848D-3 2.061D-3 1/4 9.810D-4 5.589D-4 5.744D-4
1.0D-2 4.619D-4 4.622D-4 5.158D-4 1/8 2.447D-4 1.388D-4 1.423D-4
5.0D-3 1.153D-4 1.156D-4 1.302D-4 1/16 6.103D-5 3.468D-5 3.613D-5
order 2.000 2.000 1.995 – 2.037 2.047 2.030

(b) GSPM

1D 3D
h ‖ · ‖∞ ‖ · ‖2 ‖ · ‖H1 h ‖ · ‖∞ ‖ · ‖2 ‖ · ‖H1

4.0D-2 7.388D-3 7.392D-3 8.243D-3 1/2 4.261D-3 2.472D-3 2.472D-3
2.0D-2 1.848D-3 1.848D-3 2.061D-3 1/4 9.822D-4 5.595D-4 5.753D-4
1.0D-2 4.621D-4 4.621D-4 5.153D-4 1/8 2.453D-4 1.390D-4 1.424D-4
5.0D-3 1.155D-4 1.155D-4 1.288D-4 1/16 6.137D-5 3.471D-5 3.554D-5
order 2.000 2.000 2.000 – 2.035 2.047 2.037

(c) SIPM

Meanwhile, we choose the same sequence of values for α, and display the energy
evolution curves in terms of time up to T = 2 ns in Figure 4. It is found that the
proposed method have almost the same energy dissipation pattern with the other
two methods for moderately large damping parameters α = 2, 5, 8. In the case of
α = 10, the SIPM has a slightly different energy dissipation pattern from the other
two numerical methods.

3.3. Domain wall motion. A Neél wall is initialized in a nanostrip of size 800×
100×4 nm3 with grid points 128×64×4. An external magnetic field of he = 5 mT
is then applied along the positive x direction and the domain wall dynamics is
simulated up to 2 ns with α = 2, 5, 8. The corresponding magnetization profiles are
visualized in Figure 5. Qualitatively, the domain wall moves faster as the value of
α increases. Quantitatively, the corresponding dependence is found to be linear;
see Figure 6. The slopes fitted by the least-squares method in terms of α and he

are recorded in Table 4.
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Figure 1. CPU time needed to achieve the desired numerical ac-
curacy, for the proposed method, the GSPM and the SIPM, in
both the 1D and 3D computations. The CPU time is recorded as
a function of the approximation error by varying k or h indepen-
dently. CPU time with varying k: proposed method < SIPM <
GSPM; CPU time with varying h: proposed method / GSPM <
SIPM.

4. Conclusions

In this paper, we have proposed a second-order accurate numerical method to
solve the Landau-Lifshitz-Gilbert equation with large damping parameters. For the
numerical convenience, the LLG system is reformulated so that in which the damp-
ing term is rewritten as a harmonic mapping flow .This numerical scheme is based on
the second-order backward-differentiation formula approximation for the temporal
derivative, combined with an implicit treatment of the constant-coefficient diffusion
term, and the fully explicit extrapolation approximation of the nonlinear terms, in-
cluding the gyromagnetic term and the nonlinear part of the harmonic mapping
flow. Thanks to the large damping parameter, the proposed method is verified
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Figure 2. Stable structures in the absence of magnetic field at
2 ns when α = 0.01, 10, 40. The color denotes the angle between the
first two components of the magnetization vector. Top: Proposed
method; Middle: GSPM; Bottom: SIPM. Left: α = 40; Middle:
α = 10; Right: α = 0.01.

(a) Proposed (b) GSPM (c) SIPM

Figure 3. Energy evolution curves of three numerical methods,
with different damping constants, α = 2, 5, 8, 10, up to t = 2 ns in
the absence of external magnetic field. Left: Proposed numerical
method; Middle: GSPM; Right: SIPM. One common feature is
that the energy dissipation rate is faster for larger α, which is
physically reasonable.
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(a) α = 2 (b) α = 5

(c) α = 8 (d) α = 10

Figure 4. Energy evolution curves in terms of time, for the nu-
merical results created by three numerical methods up to t = 2 ns
in the absence of external magnetic field for (a) α = 2, (b) α = 5,
(c) α = 8, and (d) α = 10. The energy dissipation pattern of the
proposed method is consistent with the other two methods for (a),
(b), and (c), and the SIPM has a slightly different energy dissipa-
tion pattern from the other two methods for (d).

to be unconditionally stable. The proposed method is much more efficient than
other semi-implicit schemes since only symmetric, positive definite linear systems
of equations with constant coefficients need to be solved. Meanwhile, the proposed
method is more accurate than the standard Gauss-Seidel projection method, due
to its second-order accuracy in time. Numerical results in 1D and 3D are pro-
vided to demonstrate the accuracy and the efficiency of the proposed numerical
method. In addition, micromagnetics simulations using the proposed method have
provided physically reasonable structures and captured the linear dependence of
the domain wall velocity with respect to the damping parameter. Therefore, the
proposed method could be efficiently used for challenging practical simulations of
micromagnetics with large damping parameters.
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(a) Magnetization for initial state (b) Magnetization with α = 2 at
2 ns

(c) Magnetization with α = 5 at
2 ns

(d) Magnetization with α = 8 at
2 ns

Figure 5. Magnetization profiles of Neél wall motion in the pres-
ence of a magnetic field he = 5 mT, with α = 2, 5, 8 at 2 ns for
the proposed numerical method. The in-plane arrow denotes the
first two components of the magnetization vector. The wall moves
faster for larger values of α and its velocity depends linearly on α.

Figure 6. Linear dependence of the wall velocity with respect to
the damping parameter α (left) and the external magnetic field he

(right).
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Table 4. Linear dependence of the domain wall velocity V in
terms of the external magnetic field he and the damping parameter
α.

α

V (m/s) he(mT)
5 6 7 8 9 10 Slope

3 76 91 109 123 139 154 1.024
4 105 118 139 157 179 196 0.928
5 129 145 169 192 217 244 0.932
6 153 169 200 227 256 286 0.927
7 177 196 232 263 294 333 0.927
8 200 222 263 303 333 385 0.954
9 230 250 294 345 385 435 0.954
10 253 270 323 370 417 476 0.943

Slope 0.984 0.910 0.910 0.933 0.917 0.950 –
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