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Abstract

In recent years, a significant amount of attention has been paid to solve
partial differential equations (PDEs) by deep learning. For example, deep
Galerkin method (DGM) uses the PDE residual in the least-squares sense as
the loss function and a deep neural network (DNN) to approximate the PDE
solution. In this work, we propose a deep mixed residual method (MIM) to
solve PDEs with high-order derivatives. Notable examples include Poisson
equation, Monge-Ampére equation, biharmonic equation, and Korteweg-de
Vries equation. In MIM, we first rewrite a high-order PDE into a first-order
system, very much in the same spirit as local discontinuous Galerkin method
and mixed finite element method in classical numerical methods for PDEs.
We then use the residual of first-order system in the least-squares sense as
the loss function, which is in close connection with least-squares finite ele-
ment method. For aforementioned classical numerical methods, the choice
of trail and test functions is important for stability and accuracy issues in
many cases. MIM shares this property when DNNs are employed to ap-
proximate unknowns functions in the first-order system. In one case, we
use nearly the same DNN to approximate all unknown functions and in the
other case, we use totally different DNNs for different unknown functions.
Numerous results of MIM with different loss functions and different choice
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of DNNs are given for four types of PDEs. In most cases, MIM provides
better approximations (not only for high-derivatives of the PDE solution but
also for the PDE solution itself) than DGM with nearly the same DNN and
the same execution time, sometimes by more than one order of magnitude.
When different DNNs are used, in many cases, MIM provides even better
approximations than MIM with only one DNN, sometimes by more than
one order of magnitude. Numerical observations also imply a successive im-
provement of approximation accuracy when the problem dimension increases
and interesting connections between MIM and classical numerical methods.
Therefore, we expect MIM to open up a possibly systematic way to under-
stand and improve deep learning for solving PDEs from the perspective of
classical numerical analysis.

1. Introduction

Solving partial differential equations (PDEs) has been the most ubiqui-
tous tool to simulate complicated phenomena in applied sciences and en-
gineering problems. Classical numerical methods include finite difference
method [27], finite element method (FEM) [15], discontinuous Galerkin method
[10], and spectral method [34], which are typically designed for low dimen-
sional PDEs and are well understood in terms of stability and accuracy.
However, there are high dimensional PDEs such as Schrödinger equation in
the quantum many-body problem [11], Hamilton-Jacobi-Bellman equation
in stochastic optimal control [1], and nonlinear Black-Scholes equation for
pricing financial derivatives [23]. Solving these equations is far out of the
capability of classical numerical methods due to the curse of dimensional-
ity, i.e., the number of unknowns grows exponentially fast as the dimension
increases.

Until very recently, deep-learning based methods have been developed to
solving these high-dimensional PDEs; see [13, 17, 14, 18, 32, 35, 24, 33, 2, 7,
16, 25, 3, 36, 38, 12] for examples. Typically, there are three main ingredi-
ents (stages) of a deep-learning method for solving PDEs: (1) modeling: the
loss (objective) function to be optimized; (2) architecture: the deep neural
network (DNN) for function approximation; (3) optimization: the optimal
set of parameters in the DNN which minimizes the loss function. By design,
the number of parameters in DNNs grows at most polynomially in terms of
dimension. Meanwhile, possibly high-dimensional integrals in the loss func-
tion are approximated by Monte-Carlo method. Therefore, by design, deep

2



learning overcomes the curse of dimensionality. In practice, deep learning
performs well for Schrödinger equation [17, 19], Hamilton-Jacobi-Bellman
equation [18, 13], and nonlinear Black-Scholes equation [2, 7].

Typically, deep learning solves a PDE in the following way. For the given
PDE, the loss function is modeled as the equation residual in the least-
squares sense [35] or the variational form if exists [14]. ResNet is often used
as the network architecture [21], which was tested to overcome the notorious
problem of vanishing/exploding gradient. Afterwards, stochastic gradient
descent method is used to find the optimal set of parameters in ResNet which
minimizes the loss function. ResNet with the optimal set of parameters gives
an approximation of the PDE solution.

In this work, we propose a deep mixed residual method (MIM) for solving
high-order PDEs. In the modeling stage, by rewriting a given PDE into a
first-order system, we obtain a larger problem in the sense that both the
PDE solution and its high-order derivatives are unknown functions to be
approximated. This has analogs in classical numerical methods, such as
local discontinuous Galerkin method [10] and mixed finite element method
[6]. Compared to DGM, there are two more degrees of freedom in MIM:

• In the loss function stage, one can choose different high-order deriva-
tives into the set of unknown functions. Take biharmonic equation as
an example. The set of unknown functions can include the PDE so-
lution and its derivatives up to the third order, or only contain the
PDE solution and its second-order derivatives, and both choices have
analogs in discontinuous Galerkin method [37, 9]. We then write the
loss function as the sum of equation residuals in the least-squares sense,
very much in the same spirit as the least-squares finite element method
[5].

• In the architecture stage, one can choose the number of networks to
approximate the set of unknown functions. In one case, one DNN
is used to approximate the PDE solution and other DNNs are used
to approximate its high-order derivatives; in the other case, the PDE
solution and its derivatives share nearly the same DNN.

These two degrees of freedom allow MIM to produce better approximations
over DGM in all examples, including Poisson equation, Monge-Ampére equa-
tion, biharmonic equation, and Korteweg-de Vries (KdV) equation. In par-
ticular, MIM provides better approximations not only for the high-order
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derivatives but also for the PDE solution itself. It is worth mentioning that
the usage of mixed residual in deep learning was first introduced for surrogate
modeling and uncertainty quantification of a second-order elliptic equation
[39] and was later adopted in a deep domain decomposition method [28].

The paper is organized as follows. In Section 2, we introduce MIM and
DGM (for comparison purpose). In Section 3, numerical results for four types
of high-order PDEs are provided. Conclusions and discussions are drawn in
Section 4.

2. Deep mixed residual method

In this section, we introduce MIM and discuss its difference with DGM
in terms of loss function and neural network structure.

2.1. Loss function

Consider a potentially time-dependent nonlinear PDE over a bounded
domain Ω ⊂ Rd 

∂tu+ Lu = 0 (t, x) ∈ (0, T ]× Ω,

u(0, x) = u0(x) x ∈ Ω,

u(t, x) = g(x) (t, x) ∈ [0, T ]× ∂Ω,

(1)

where ∂Ω denotes the boundary of Ω. In DGM, the loss function is defined
as the PDE residual in the least-squares sense

L(u) = ‖∂tu+ Lu‖2
2,[0,T ]×Ω + λ1‖u(0, x)− u0‖2

2,Ω + λ2‖u− g‖2
2,[0,T ]×∂Ω, (2)

where λ1 and λ2 are penalty parameters given a priori. These three terms in
(2) measure how well the approximate solution satisfies the PDE, the initial
condition and the boundary condition, respectively.

In the absence of temporal derivatives, (1) reduces to{
Lu = 0 x ∈ Ω,

u(x) = g(x) x ∈ ∂Ω,

and the corresponding loss function in DGM becomes

L(u) = ‖Lu‖2
2,Ω + λ‖u− g‖2

2,∂Ω. (3)
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Equation Explicit form Loss function L(u)
Poisson −∆u = f(x) ‖∆u+ f(x)‖2

2,Ω

Monge-Ampére det(∇2u) = f(x) ‖ det(∇2u)− f(x)‖2
2,Ω

Biharmonic −∆2u = f(u, x) ‖∆2u+ f(u, x)‖2
2,Ω

KdV ut +
∑d

i=1 uxixixi = f(x) ‖ut +
∑d

i=1 uxixixi − f(x)‖2
2,Ω

Table 1: Loss functions for four types of PDEs in the deep Galerkin method.

Condition Explicit form Contribution to the loss function
Dirichlet u(x) = g ‖u− g‖2

2,[0,T ]×∂Ω

Neumann ∂u
∂n

= g ‖∂u
∂n
− g‖2

2,[0,T ]×∂Ω or ‖p− g‖2
2,[0,T ]×∂Ω

Initial u(0, x) = u0(x) ‖u− u0‖2
2,Ω

Table 2: Contributions to the loss function for the initial condition and different types
of boundary conditions used in the deep Galerkin method and the deep mixed residual
method.

Table 1 lists four PDEs with their corresponding loss functions in DGM
and Table 2 lists different boundary conditions, the initial condition and their
contributions to loss functions in DGM and MIM. More boundary conditions
can be treated in this way. Interested readers may refer to [8] for details.

In MIM, we first rewrite high-order derivatives into low-order ones using
auxiliary variables. For notational convenience, auxiliary variables p, q, w
represent

p = ∇u,
q = ∇ · p = ∆u,

w = ∇q = ∇(∆u).

(4)

For KdV equation, we have q = diag(∇p) instead of the second formula in (4).
With these auxiliary variables, we define loss functions for four types of PDEs
in Table 3. Since one can choose a subset of high-order derivatives into the
set of unknown functions, there are more than one loss function in MIM. For
biharmonic equation, there are two commonly used sets of auxiliary variables
in local discontinuous Galerkin method and weak Galerkin finite element
method: one with all high-order derivatives [37] and the other with part of
high-order derivatives [9, 30]. Correspondingly, if all high-order derivatives
are used, we denote MIM by MIMa, and if only part of high-order derivatives
are used, we denote MIM by MIMp. In Section 2.2, we will discuss how to
equip different loss functions with different DNNs. In short, if only one DNN
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is used to approximate the PDE solution and its derivatives, we denote MIM
by MIM1, and if multiple DNNs are used, we denote MIM by MIM2. In
Section 3, different loss functions listed in Table 1, Table 2 and Table 3 will
be tested and discussed. By default, all the penalty parameters are set to be
1.

Equation Explicit form Loss function L(u, p, q, w)
Poisson −∆u = f(u, x) ‖p−∇u‖2

2,Ω + ‖∇ · p+ f(u, x)‖2
2,Ω

Monge-Ampére det(∇2u) = f ‖p−∇u‖2
2,Ω + ‖ det(∇p)− f‖2

2,Ω

Biharmonic −∆2u = f(u, x)
‖p−∇u‖2

2,Ω + ‖q −∇ · p‖2
2,Ω

+‖w −∇q‖2
2,Ω + ‖∇ · w + f‖2

2,Ω

‖q −∆u‖2
2,Ω + ‖∆q + f‖2

2,Ω

KdV ut +
∑d

i=1 uxixixi = f(x)
‖p−∇u‖2

2,[0,T ]×Ω + ‖q − diag(∇p)‖2
2,[0,T ]×Ω

+‖ut +∇ · q − f(x)‖2
2,[0,T ]×Ω

Table 3: Loss functions in the deep mixed residual method for four types of equations.
Two different loss functions for biharmonic equation are denoted by MIMa and MIMp, in
which all high-order derivatives or part of high-order derivatives are included, respectively.

2.2. Neural network architecture

ResNet [21] is used to approximate the PDE solution and its high-order
derivatives. It consists of m blocks in the following form

sk = σ(W2,kσ(W1,ksk−1 + b1,k) + b2,k) + sk−1, k = 1, 2, · · · ,m. (5)

Here sk, b1,k, b2,k ∈ Rn, W1,k,W2,k ∈ Rn×n. m is the depth of network, n is the
width of network, and σ is the (scalar) activation function. Explicit formulas
of activation functions used in this work are given in Table 4. The last term
on the right-hand side of (5) is called the shortcut connection or residual
connection. Each block has two linear transforms, two activation functions,
and one shortcut; see Figure 1 for demonstration. Such a structure can
automatically solve the notorious problem of vanishing/exploding gradient
[22].

Since x is in Rd rather than Rn, we can pad x by a zero vector to get
the network input s0. A linear transform can be used as well without much
difference. Meanwhile, sm has n outputs which cannot be directly used for the
PDE solution and its derivatives employed in the loss function. Therefore, a
linear transform T is applied to sm to transform it into a suitable dimension.
Let {θ} be the whole set of parameters which include parameters in ResNet
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Activation function Formula
Square x2

ReLU max{x, 0}
ReQU (max{x, 0})2

ReCU (max{x, 0})3

Table 4: Activation functions used in numerical tests.
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Figure 1: One block of ResNet. A deep neural network contains a sequence of blocks, each
of which consists of two fully-connected layers and one shortcut connection.

({W1,k, b1,k,W2,k, b2,k}mk=1) and parameters in the linear transform T . Note
that the output dimension in MIM depends on both the PDE problem and
the mixed residual loss. We illustrate network structures for biharmonic
equation as an example in Figure 2. From Figure 2, we see that DGM has
only 1 output, MIM1

a has 2d+2 outputs, and MIM1
p has 2 outputs. In Figure

3, we illustrate networks structures of MIM1 and MIM2 for Poisson equation.
In MIM2, two DNNs are used: one to approximate the solution and the other
one to approximate its derivatives. It is clear from Figure 2 that network
structures in DGM and MIM1 only differ in the output layer and thus they
have comparable numbers of parameters to be optimized. To be precise, we
calculate their numbers of parameters in Table 5, from which one can see the
number of parameters in DGM and MIM1 is close. The number of parameters
in MIM2 is nearly double for Poisson equation, Monge-Ampére equation and
biharmonic equation (MIM2

p), tripled for KdV equation, and quadrupled for
biharmonic equation (MIM2

a), respectively. In Section 3, from numerical
results, we observe a better performance of MIM1 for all four equations, not
only for derivatives of the PDE solution, but also for the solution itself.
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Figure 2: Network structures for biharmonic equation with deep Galerkin method and
deep mixed residual method. DGM only approximates solution u. MIM1

p approximate
solution u and ∆u. MIM1

a approximates solution u and all of its derivatives used in the
equation ∇u,∆u,∇(∆u). MIM2

a uses four networks to approximate u,∇u,∆u,∇(∆u) and
MIM2

p uses two networks to approximate u,∆u. Each network has a similar structure with
different output dimensions.

Method Equation Size of the parameter set
DGM Four equations (2m− 1)n2 + (2m+ d+ 1)n+ 1

MIM1

Poisson
(2m− 1)n2 + (2m+ 2d+ 1)n+ d+ 1

Monge-Ampére
Biharmonic (MIM1

a) (2m− 1)n2 + (2m+ 3d+ 2)n+ 2d+ 2
Biharmonic (MIM1

p) (2m− 1)n2 + (2m+ d+ 2)n+ 2
KdV (2m− 1)n2 + (2m+ 3d+ 1)n+ 2d+ 1

MIM2

Poisson
(4m− 2)n2 + (4m+ 3d+ 1)n+ d+ 1

Monge-Ampére
Biharmonic (MIM2

a) (8m− 4)n2 + (8m+ 6d+ 2)n+ 2d+ 2
Biharmonic (MIM2

p) (4m− 2)n2 + (4m+ 2d+ 2)n+ 2
KdV (6m− 3)n2 + (6m+ 5d+ 1)n+ 2d+ 1

Table 5: Number of parameters for different network structures used for different equations
and different loss functions. n, m, and d are the network width, the network depth, and
the problem dimension, respectively. It is observed that the number of parameters in
DGM and MIM1 is close, and the number of parameters in MIM2 is nearly double for
Poisson equation, Monge-Ampére equation and biharmonic equation (MIM2

p), tripled for
KdV equation, and quadrupled for biharmonic equation (MIM2

a), respectively.
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Quantity DGM MIM

u
∫
Ω(uθ−u)2dx∫

Ω u
2dx

∫
Ω(uθ−u)2dx∫

Ω u
2dx

∇u
∫
Ω(∇uθ−∇u)2dx∫

Ω(∇u)2dx

∫
Ω(pθ−∇u)2dx∫

Ω(∇u)2dx

∆u
∫
Ω(∆uθ−∆u)2dx∫

Ω(∆u)2dx

∫
Ω(qθ−∆u)2dx∫

Ω(∆u)2dx

∇∆u
∫
Ω(∇(∆uθ)−∇(∆u))2dx∫

Ω(∇(∆u))2dx

∫
Ω(wθ−∇(∆u))2dx∫

Ω(∇(∆u))2dx

diag(∇2u)
∫
Ω(diag(∇2uθ)−diag(∇2u))2dx∫

Ω(diag(∇2u))2dx

∫
Ω(qθ−diag(∇2u))2dx∫

Ω(diag(∇2u))2dx

Table 6: Relative L2 errors used in deep Galerkin method and deep mixed residual method.

2.3. Stochastic Gradient Descent

For completeness, we also briefly introduce stochastic gradient descent
method. For the loss function defined in (3), we generate two sets of points
uniformly distributed over Ω and ∂Ω: {xi}Ni=1 in Ω and {x̂j}Mj=1 on ∂Ω.

θk+1 = θk − α∇θ
|Ω|
N

N∑
i=1

[Luθ(xi; θk)]2 + λα∇θ
|∂Ω|
M

M∑
j=1

[uθ(x̂j; θ
k)− g(x̂j)]

2,

(6)
where α is the learning rate chosen to be 1e − 3 here. |Ω| and |∂Ω| are
measures of Ω and ∂Ω, respectively. uθ is the DNN approximation of PDE
solution parameterized by {θ}. Sampling points {xi}Ni=1 and {x̂j}Mj=1 are
updated at each iteration. In implementation, we use ADAM optimizer [26]
and automatic differentiation [31] for derivatives in PyTorch.

3. Numerical Result

In this section, we show numerical results of MIM for four types of equa-
tions. We use relative L2 errors of u, ∇u, ∆u, and ∇(∆u) defined in Table
6 for comparison. In all figures, relative L2 errors are in log10 scale.

3.1. Poisson Equation

Consider the following Neumann problem
−∆u+ π2u = 2π2

d∑
k=1

cos(πxk) x ∈ Ω = [0, 1]d

∂u

∂n
= 0 x ∈ ∂Ω

(7)
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with the exact solution u(x) =
∑d

k=1 cos(πxk). The neural network structure
in DGM is the same as that for biharmonic equation shown in Figure 2.
Following Table 1 and Table 2, we use the loss function for (7)

L(u) =‖ −∆u+ π2u− 2π2

d∑
k=1

cos(πxk)‖2
2,Ω + λ‖∂u

∂n
‖2

2,∂Ω. (8)

Since both u and p are explicitly used, one more advantage of MIM is the
enforcement of boundary conditions. For (7), we multiply pi, i = 1, · · · , d
by xi(1− xi) to satisfy the Neumann boundary condition automatically; see
Figure 3. DGM only has u as its unknown function, and thus it is unclear
that how the exact Neumann boundary condition can be imposed. Therefore,
for DNNs in Figure 3, the loss function in MIM can be simplified as

L(u, p) = ‖p−∇u‖2
2,Ω + ‖ − ∇ · p+ π2u− 2π2

d∑
k=1

cos(πxk)‖2
2,Ω. (9)

We emphasize that Dirichlet boundary condition can be exactly imposed in
DGM [4] and no penalty term is needed. For Neumann boundary condition,
mixed boundary condition, and Robin boundary condition, however, it is
difficult to build up a DNN representation which satisfies the exact bound-
ary condition. Building up a DNN approximation which satisfies the exact
boundary condition can have a couple of advantages [8]: 1) make ease of the
training process by avoiding unnecessary divergence; 2) improve the approx-
imation accuracy; 3) save the execution time. In MIM, however, we have the
direct access to both u and p. Therefore, all these boundary conditions can
be imposed exactly in principle. This will be presented in a subsequent work
[29].

For (7), average errors of u and ∇u over the last 100 iterations are
recorded in Table 7. The network depth m = 2 and the activation func-
tion x2 is used. Network widths are 5, 10, 15, 20 for 2, 4, 8, 16 dimensional
problems, respectively. Time is recorded as the average CPU time per itera-
tion. It is not surprising that MIM1 costs less time than DGM since the DNN
approximation in MIM satisfies the Neumann boundary condition automati-
cally and both methods have similar network structures. It is surprising that
MIM2 costs less time than DGM since the number of parameters in MIM2 is
about twice of that in DGM. In terms of execution time, MIM1 < MIM2 <
DGM. Figure 4 and Figure 5 plot training processes of DGM and MIM in
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(b) MIM2: multiple networks to appriximate the PDE solution and its derivatives.

Figure 3: Detailed network structures of MIM1 and MIM2 to solve Poisson equation. DNN
part is the same as that in Figure 2. xi(1 − xi) are multipliers which make MIM1 and
MIM2 satisfy the exact Neumann boundary condition.
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d Method
Relative L2 error (×10−2)

Time (s)
u ∇u

2
DGM 0.3676 0.3714 0.04374
MIM1 0.2941 0.1639 0.02925
MIM2 0.0565 0.0236 0.03514

4
DGM 1.0022 1.3272 0.07455
MIM1 0.3751 0.3290 0.03603
MIM2 0.2294 0.0690 0.04141

8
DGM 2.0022 2.6551 0.13081
MIM1 0.9049 0.6423 0.06642
MIM2 0.7261 0.1499 0.08716

16
DGM 3.9796 5.0803 0.25621
MIM1 1.7631 1.0041 0.11082
MIM2 0.0787 0.0236 0.15125

Table 7: Relative errors for u and ∇u in DGM and MIM for Poisson equation defined in
(7).

terms of relative L2 errors for u and ∇u. Generally speaking, in terms of
approximation error, MIM2 < MIM1 < DGM as expected. Therefore, MIM
provides a better strategy over DGM. MIM provides better approximations
in terms of relative L2 errors for both u and ∇u. For ∇u, the improvement
of MIM1 over DGM is about several times and that of MIM2 over MIM1

is about one order of magnitude. For u, the improvement is about several
times. Moreover, a dimensional dependence is observed for both u and ∇u.
The higher the dimension is, the better the approximation is.

Table 8 records approximation errors of MIM and DGM in terms of ac-
tivation function and network depth when d = 4. MIM provides better
approximations for both ∇u and u. It is not surprising that ReLU is not a
suitable function for DGM due to high-order derivatives, but is suitable in
MIM since only first-order derivatives are present in MIM.

3.2. Monge-Ampére equation

Consider the nonlinear Monge-Ampére equation{
det(∇2u) = f(x) x ∈ Ω = [−1, 1]d

u(x) = g(x) x ∈ ∂Ω
(10)

12
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Figure 4: Relative L2 error of u in terms of iteration number for Poisson equation defined
in (7).
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Figure 5: Relative L2 error of ∇u in terms of iteration number for Poisson equation defined
in (7).

with the exact solution defined as u(x) = e1/d(
∑d
i=1 x

2
i ). Following Table 1, 3

and 2, we have the loss function in DGM

L(u) = ‖ det(∇2u)− f‖2
2,Ω + λ‖u− g‖2

2,∂Ω,

and the loss function in MIM

L(u, p) = ‖p−∇u‖2
2,Ω + ‖ det(∇p)− f‖2

2,Ω + λ‖u− g‖2
2,∂Ω,

respectively. For (10), the Dirichlet boundary condition can be enforced for
both DGM and MIM. For comparison purpose, instead, we have the penalty
term in both DGM and MIM. However, imposing exact boundary conditions
is always encouraged in practice.
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σ m
Relative L2 error (×1)

DGM MIM1 MIM2

u ∇u u ∇u u ∇u

ReLU
1 0.9197 0.9259 0.0890 0.0444 0.0264 0.0080
2 0.9210 0.9230 0.0245 0.0104 0.0265 0.0068
3 0.9208 0.9216 0.0258 0.0113 0.0258 0.0084

ReQU
1 0.0684 0.1003 0.0182 0.0127 0.0107 0.0042
2 0.0057 0.0118 0.0113 0.0047 0.0049 0.0017
3 0.0124 0.0140 0.0040 0.0029 0.0042 0.0031

ReCU
1 0.4642 0.4644 0.0288 0.0159 0.0100 0.0033
2 0.0281 0.0170 0.0071 0.0055 0.0048 0.0013
3 0.0028 0.0031 0.0049 0.0036 0.0049 0.0013

Table 8: Performance of MIM and DGM with respect to network depth and activation
function for Poisson equation when d = 4 . Network width is fixed to be 10.

In this example, we fix the network depth m = 2 and the activation func-
tion as σ(x) = ReQU(x). Relative L2 errors in the last 1000 iterations with
respect to the network width in different dimensions are recorded in Table
9. Figure 6 plots errors in terms of network width for different dimensions.
The advantage of MIM is obvious from these results.

3.3. Biharmonic equation

Consider the biharmonic equation

∆2u =
π4

16

d∑
k=1

sin(
π

2
x) x ∈ Ω

u(x) =
d∑

k=1

sin(
πx

2
) x ∈ ∂Ω

∂u

∂n
= 0 x ∈ ∂Ω

(11)

with the exact solution u(x) =
∑d

k=1 sin(πx
2

) over Ω = [−1, 1]d. The loss
function in DGM is

L(u) = ‖∆2u− π4

16

d∑
k=1

sin(
π

2
x)‖2

2,Ω + λ1‖u−
d∑

k=1

sin(
πx

2
)‖2

2,∂Ω + λ2‖
∂u

∂n
‖2

2,∂Ω.
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d n
Relative L2 error (×10−2)

DGM MIM1 MIM2

u ∇u u ∇u u ∇u

2
10 0.1236 0.7430 0.1023 0.3433 0.1251 0.5218
20 1.1100 3.1940 0.0922 0.3804 0.0784 0.0221
30 0.0913 0.5656 0.0522 0.1740 0.1075 0.0219

4
20 0.0981 0.7764 0.1095 0.6359 0.1230 0.3977
30 0.0921 0.7731 0.0903 0.4399 0.1063 0.2802
40 0.0943 0.6174 0.0636 0.3127 0.1287 0.2480

8
30 0.3584 3.3902 0.1435 1.6318 0.1155 0.5170
40 0.1179 1.4663 0.1344 1.0721 0.1330 0.4873
50 0.0997 1.2483 0.0977 0.8289 0.0917 0.4174

Table 9: Relative L2 errors in the last 1000 iterations with respect to the network width
for Monge-Ampére equation defined in (10) for different dimensions. The network depth
is fixed to be m = 2 and the activation function is fixed to be σ(x) = ReQU(x).

The loss function in MIMa is

L(u, p, q, w) = ‖p−∇u‖2
2,Ω + ‖q −∇ · p‖2

2,Ω + ‖w −∇q‖2
2,Ω

+ ‖∇ · w − π4

16

d∑
k=1

sin(
π

2
x)‖2

2,Ω + λ1‖u−
d∑

k=1

sin(
πx

2
)‖2

2,∂Ω + λ2‖p‖2
2,∂Ω,

(12)

and the loss function in MIMp is

L(u, q) = ‖q −∆u‖2
2,Ω + ‖∆q − π4

16

d∑
k=1

sin(
π

2
x)‖2

2,Ω

+ λ1‖u−
d∑

k=1

sin(
πx

2
)‖2

2,∂Ω + λ2‖
∂u

∂n
‖2

2,∂Ω. (13)

Again, we can enforce the exact boundary condition in MIM but cannot
enforce it in DGM. For comparison purpose, we use penalty terms in both
methods.

Set m = 2 and n = 8, 10, 20 when d = 2, 4, 8, respectively. Table 10
records averaged errors in the last 1000 iterations. Relative L2 errors for u ,
∇u, ∆u and∇(∆u) in terms of iteration number are plotted in Figure 7 when
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Figure 6: Relative L2 errors of u and ∇u for Monge-Ampére equation defined in (7).

d = 2. Generally speaking, MIM provides better approximations for u, ∇u,
∆u, and∇(∆u) than DGM. For MIMa and MIMp, MIMp has a slightly better
approximation accuracy comparable to that of MIMa, although MIMa has
2d+ 2 more outputs. These results are of interests since they are connected
with results of local discontinuous Galerkin method that the formulation with
a subset of derivatives has a better numerical performance [37, 9]. We point
out that MIMa has the advantage that the exact boundary condition can be
enforced, although we use penalty terms for this example.
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Figure 7: Relative L2 errors of u, ∇u, ∆u, ∇(∆u) in terms of iteration number for
biharmonic equation. Both the solution and its derivatives are approximated by the same
network in MIM1, while different networks are used for the solution and its derivatives in
MIM2. MIMa means all derivatives are approximated and MIMp means only a subsect of
derivatives (∆u here) are approximated.
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d Method
Relative L2 error (×10−2 )

Time (s)
u ∇u ∆u ∇(∆u)

2

DGM 0.1656 0.6454 1.2333 8.8001 0.1034
MIM1

a 0.1501 0.1929 0.1564 0.3067 0.1219
MIM1

p 0.0769 0.1155 0.1504 0.4984 0.1636
MIM2

a 0.0526 0.2066 0.2937 1.6821 0.1393
MIM2

p 0.0424 0.1417 0.3625 2.2231 0.2164

4

DGM 0.1330 0.6454 1.2333 8.8008 0.3292
MIM1

a 0.4117 0.1929 0.1563 0.3066 0.2784
MIM1

p 0.0845 0.1155 0.1504 0.4984 0.4692
MIM2

a 0.1039 0.2066 0.2937 1.6821 0.2883
MIM2

p 0.1111 0.1417 0.3625 2.2301 0.5919

8

DGM 0.2488 1.0514 1.4594 13.4003 0.3292
MIM1

a 0.3719 2.3855 0.6797 3.1015 0.2784
MIM1

p 0.1856 0.6909 0.7840 4.7209 0.4692
MIM2

a 0.1475 1.6657 1.2922 6.9594 0.8051
MIM2

p 0.2881 0.9223 0.9981 6.4658 6.5148

Table 10: Relative errors for biharmonic equation defined in (11). MIMa and MIMb

represent MIM with loss functions defined in (12) and (13), respectively.

3.4. KdV equation

Consider a time-dependent linear KdV-type equation

ut +
d∑

k=1

uxkxkxk = 0 (t, x) ∈ [0, T ]× Ω

u(0, x) = u0(x) = sin(
d∑

k=1

xk) (t, x) ∈ [0]× Ω

u(t, x) is periodic in x

(14)

defined over Ω = [0, 2π]d, where the exact solution u(t, x) = sin(
∑d

k=1 xk+dt).
We first rewrite it into the first-order system

p = ∇u,
q = diag(∇p),
ut +∇ · q = 0.
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The loss function in DGM is

L(u) = ‖ut +
d∑

k=1

uxkxkxk‖2
2,[0,1]×Ω + λ1‖u− sin(

d∑
k=1

xk + dt)‖2
2,[0,1]×∂Ω

+ λ2

(
d∑

k=1

‖u(x, t)− u(x± 2πek, t)‖2
2,Ω

)

+ λ3

(
d∑

k=1

‖∇u(x, t)−∇u(x± 2πek, t)‖2
2,Ω

)
.

Here {ek}dk=1 is the standard basis set of Rd. The loss function in MIM is

L(u, p, q) = ‖p−∇u‖2
2,[0,1]×Ω + ‖q − diag(∇p)‖2

2,[0,1]×Ω

+ ‖ut +∇ · q‖2
2,[0,1]×Ω + λ1‖u− sin(

d∑
k=1

xk + dt)‖2
2,[0,1]×∂Ω

+ λ2

(
d∑

k=1

‖u(x, t)− u(x± 2πek, t)‖2
2,Ω

)

+ λ3

(
d∑

k=1

‖p(x, t)− p(x± 2πek, t)‖2
2,Ω

)
.

Relative L2 errors of u, ∇u, and diag(∇2u) are recorded in Table 11. Again,
as shown in previous examples, MIM provides better results compared to
DGM, especially for ReQU activation function. No obvious improvement of
MIM2 over MIM1 is observed.

4. Conclusion and Discussion

Motivated by classical numerical methods such as local discontinuous
Galerkin method, mixed finite element method, and least-squares finite ele-
ment method, we develop a deep mixed residual method to solve high-order
PDEs in this paper. The deep mixed residual method inherits several advan-
tages of classical numerical methods:

• Flexibility for the choice of loss function;

• Larger solution space with flexible choice of deep neural networks;
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d σ Method
Relative L2 error (×10−2)
u ∇u diag(∇2u)

1

ReQU
DGM 34.9171 20.6788 34.3661
MIM1 0.5705 5.3709 0.5369
MIM2 1.2920 0.8129 1.9244

ReCU
DGM 0.7603 0.4785 0.5977
MIM1 0.0991 0.7313 0.0128
MIM2 0.5035 0.5804 0.1229

2

ReQU
DGM 84.8708 85.8114 85.8954
MIM1 2.9393 1.9996 2.9443
MIM2 2.1820 2.5591 2.1383

ReCU
DGM 2.5483 2.1856 2.4431
MIM1 1.5410 2.3865 1.5645
MIM2 5.5900 5.7440 5.8957

3

ReQU
DGM 168.1755 168.1697 169.3528
MIM1 4.0421 4.0987 3.8496
MIM2 7.7027 8.8787 9.1058

ReCU
DGM 1.9132 1.4846 1.7970
MIM1 1.5410 2.3865 1.5645
MIM2 5.5900 5.7440 5.8957

Table 11: Relative L2 errors for KdV equation defined in (14).

• Enforcement of exact boundary conditions;

• Better approximations of high-order derivations with almost the same
cost.

Meanwhile, the deep mixed residual method also provides a better approxi-
mation for the PDE solution itself. These features make deep mixed residual
method suitable for solving high-order PDEs in high dimensions.

Boundary condition is another issue which is important for solving PDEs
by DNNs. Enforcement of exact boundary conditions not only makes the
training process easier, but also improves the approximation accuracy; see
[4, 8] for examples. The deep mixed residual method has the potential for
imposing exact boundary conditions such as Neumann boundary condition,
mixed boundary condition, and Robin boundary condition. All these con-
ditions cannot be enforced exactly in deep Galerkin method. This shall be
investigated in a subsequent work [29].
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So far, in the deep mixed residual method, only experiences from classical
numerical methods at the basic level are transferred into deep learning. We
have seen its obvious advantages. To further improve the deep mixed residual
method, we need to transfer our experiences from classical numerical analysis
at a deeper level. For example, the choice of solution space relies heavily on
the choice of residual in order to maximize the performance of least-squares
finite element method [5]. Many other connections exist in discontinuous
Galerkin method [10] and mixed finite element method [6]. For examples,
since only first-order derivatives appear in the deep mixed residual method,
ReLU works well for all time-independent equations we have tested but does
not work well for KdV equation. Therefore, it deserves a theoretical un-
derstanding of the proposed method in the language of linear finite element
method [20]. Another possible connection is to use the weak formulation of
the mixed residual instead of least-squares loss, as done in deep learning by
[38] and in discontinuous Galerkin method by [10]. Realizing these connec-
tions in the deep mixed residual method will allow for a systematic way to
understand and improve deep learning for solving PDEs.
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scale neural network based on hierarchical matrices, Multiscale Modeling
& Simulation 17 (2019), no. 4, 1189–1213.

[17] Carleo Giuseppe and Troyer Matthias, Solving the quantum many-body
problem with artificial neural networks, Science 355 (2017), no. 6325,
602–606.

[18] Jiequn Han, Arnulf Jentzen, and Weinan E, Solving high-dimensional
partial differential equations using deep learning, Proceedings of the Na-
tional Academy of Sciences of the United States of America 115 (2018),
no. 34, 8505–8510.

[19] Jiequn Han, Linfeng Zhang, and Weinan E, Solving many-electron
schrödinger equation using deep neural networks, Journal of Compu-
tational Physics 399 (2019), 108929.

[20] Juncai He, Lin Li, Jinchao Xu, and Chunyue Zheng, Relu deep neural
networks and linear finite elements, arXiv preprint arXiv:1807.03973
(2018).

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Deep residual
learning for image recognition, CoRR 1512.03385 (2015).

[22] , Deep residual learning for image recognition, 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR) 2 (2016),
770–778.

[23] C. John Hull, Options, futures and other derivatives, Upper Saddle
River, NJ: Prentice Hall,, 2009.

[24] Martin Hutzenthaler, Arnulf Jentzen, Thomas Kruse, and Tuan Anh
Nguyen, A proof that rectified deep neural networks overcome the curse of
dimensionality in the numerical approximation of semilinear heat equa-
tions, arXiv preprint arXiv:1901.10854 (2019).

23



[25] Yuehaw Khoo, Jianfeng Lu, and Lexing Ying, Solving for high-
dimensional committor functions using artificial neural networks, Re-
search in the Mathematical Sciences 6 (2019), 1.

[26] Diederik P Kingma and Jimmy Ba, Adam: A method for stochastic
optimization, arXiv preprint arXiv:1412.6980 (2014).

[27] Randall J. LeVeque, Finite Difference Methods for Ordinary and Par-
tial Differential Equations: Steady-State and Time-Dependent Problems,
Society for Industrial and Applied Mathematics, 2007.

[28] Ke Li, Kejun Tang, Tianfan Wu, and Qifeng Liao, D3M: A Deep Domain
Decomposition Method for Partial Differential Equations, IEEE Access
8 (2019), 5283–5294.

[29] Liyao Lyu, Keke Wu, Rui Du, and Jingrun Chen, Enforcing exact bound-
ary and initial condtions in the deep mixed residual method, in prepara-
tion (2020).

[30] Lin Mu, Junping Wang, and Xiu Ye, A weak Galerkin finite element
method with polynomial reduction, Journal of Computational and Ap-
plied Mathematics 285 (2015), 45–58.

[31] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and
Adam Lerer, Automatic differentiation in PyTorch, Oct 2017, [Online;
accessed 13. May 2020].

[32] Maziar Raissi, Deep hidden physics models: deep learning of nonlinear
partial differential equations, Journal of Machine Learning Research 19
(2018), no. 1, 932–955.

[33] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis, Physics-
informed neural networks: A deep learning framework for solving for-
ward and inverse problems involving nonlinear partial differential equa-
tions, Journal of Computational Physics 378 (2019), 686–707.

[34] Jie Shen, Tao Tang, and Li-Lian Wang, Spectral methods: algorithms,
analysis and applications, vol. 41, Springer Science & Business Media,
2011.

24



[35] Justin A Sirignano and Konstantinos Spiliopoulos, DGM: A deep learn-
ing algorithm for solving partial differential equations, Journal of Com-
putational Physics 375 (2018), 1339–1364.

[36] Yating Wang, Siu Wun Cheung, Eric T Chung, Yalchin Efendiev, and
Min Wang, Deep multiscale model learning, Journal of Computational
Physics 406 (2020), 109071–109071.

[37] Jue Yan and Chi-Wang Shu, Local Discontinuous Galerkin Methods for
Partial Differential Equations with Higher Order Derivatives, Journal of
Scientific Computing 17 (2002), no. 1, 27–47.

[38] Yaohua Zang, Gang Bao, Xiaojing Ye, and Haomin Zhou, Weak adver-
sarial networks for high-dimensional partial differential equations, Jour-
nal of Computational Physics 411 (2020), 109409.

[39] Yinhao Zhu, Nicholas Zabaras, Phaedon-Stelios Koutsourelakis, and
Paris Perdikaris, Physics-constrained deep learning for high-dimensional
surrogate modeling and uncertainty quantification without labeled data,
Journal of Computational Physics 394 (2019), 56–81.

25


	1 Introduction
	2 Deep mixed residual method
	2.1 Loss function
	2.2 Neural network architecture
	2.3 Stochastic Gradient Descent

	3 Numerical Result
	3.1 Poisson Equation
	3.2 Monge-Ampére equation
	3.3 Biharmonic equation
	3.4 KdV equation

	4 Conclusion and Discussion
	5 Acknowledgments

