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A B S T R A C T

A four-way coupling scheme for the direct numerical simulation of particle-
laden flows is developed and analyzed. It employs a novel adaptive multi-
relaxation time lattice Boltzmann method to simulate the fluid phase effi-
ciently. The momentum exchange method is used to couple the fluid and the
particulate phase. The particle interactions in normal and tangential direction
are accounted for by a discrete element method using linear contact forces.
All parameters of the scheme are studied and evaluated in detail and precise
guidelines for their choice are developed. The development is based on sev-
eral carefully selected calibration and validation tests of increasing physical
complexity. It is found that a well-calibrated lubrication model is crucial to
obtain the correct trajectories of a sphere colliding with a plane wall in a vis-
cous fluid. For adequately resolving the collision dynamics it is found that
the collision time must be stretched appropriately. The complete set of tests
establishes a validation pipeline that can be universally applied to other fluid-
particle coupling schemes providing a systematic methodology that can guide
future developments.

c© 2020 Elsevier Inc. All rights reserved.

1. Introduction

With the increasing performance of today’s computer hardware and supercomputers, simulations of particulate

flows are becoming an increasingly popular tool for engineers to investigate and predict the rich dynamics of such

systems. Depending on the usage of a macroscopic or microscopic description of the system [1, 2], the available

simulation approaches differ substantially in terms of accuracy and computational cost. Among them, the class
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of Direct Numerical Simulations (DNS) provides unique access to detailed force information of single grains or

flow measurements inside small pores [2]. This is achieved by fully resolving all flow features and particle shapes.

Such four-way coupled simulation approaches explicitly account for fluid-particle, particle-fluid, and particle-particle

interactions. As such, they promote a more in-depth insight into the complex interactions of the fluid and particle phase

than laboratory experiments, which makes them a valuable tool to develop a better understanding of the underlying

processes.

Recent application examples of this methodology can be found in the study of the effect of particles on turbulent

flows [3, 4], dynamics of fluidization phenomena [5, 6], or sediment erosion [7, 8]. Most commonly, a discretization

of the Navier-Stokes equations for the fluid flow is coupled via the immersed boundary method (IBM) to a soft-contact

collision model, which accounts for particle interactions [3, 4, 7, 8]. We will refer to methods that directly discretize

the Navier-Stokes equations, collectively as classical DNS approaches.

Especially for dense particulate systems, where a large number of particle collision can be expected, a careful and

accurate treatment of these particle interactions is necessary to obtain the correct system dynamics [9]. Therefore,

detailed studies have been conducted to calibrate and validate the classical DNS approaches [10, 11, 12, 13, 14]. For

that purpose, they commonly make use of experimental data featuring the collision dynamics of a single sphere with

a wall [15]. To match these experimental findings, different adaptions to the original coupling scheme have been

proposed. One example is the stretching of the collision event in time such that the contact time is much larger than

predicted by contact theory to accurately resolve the collision event in time [10, 11, 12]. Other changes are temporal

substepping for the particle simulation [13], lubrication correction models that account for unresolved hydrodynamic

interactions [10], and disabling the hydrodynamic interaction force [11, 12, 13] and adapting the IBM interpolation

kernel [12, 13] during the collision.

As a promising alternative to the classical DNS approaches, the lattice Boltzmann method (LBM) can be employed

to simulate the fluid flow [16, 17]. Besides an LBM adaptation of the immersed boundary method [18], other LBM-

specific coupling approaches are available, like the momentum exchange method [19, 20] or the partially saturated

cells method [21]. Due to the LBM’s benefits regarding parallelization and in combination with appropriate particle

interaction models, such approaches are successfully applied to study complex and large-scale particulate systems [22,

23, 24, 6, 25]. In remarkable contrast to the aforementioned classical DNS approaches, however, we are not aware of

numerical studies that rigorously assess the collision treatment of particles in viscous fluids using the LBM. Setups

without particle collision, like the case of a single settling sphere inside a fluid-filled box [26], are typically considered

as validation scenarios [23, 24].

To close this apparent gap and study whether algorithmic adaptations similar to the ones for the classical DNS

approaches are required also for LBM coupling schemes, the present work presents an in-depth calibration and valida-

tion study of such a four-way coupled simulation approach. We employ the momentum exchange method to establish

the fluid-particle coupling whose benefits in terms of accuracy have already been shown previously [27]. We develop

an adaptive multi-relaxation time LBM to reduce the spurious density fluctuations that are inherently present in this

coupling scheme [28]. The particle collisions are treated as soft-contacts with the discrete element method (DEM)
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Figure 1: Structure of the present work. Each section adds and focuses on a specific interaction of the final four-way coupling by presenting the
numerical methods, and corresponding calibration and validation tests.

due to its modularity and extensibility. Those parts are carefully selected to construct a combined scheme that of-

fers accurate predictions of various tests. At the same time, we keep the number of parameters that all have to be

calibrated, as low as possible.

Accordingly, the present work is an encompassing and detailed description of this approach and an exploration

of its limitations. Furthermore, we identify all parameters of the scheme and establish guidelines for their choice via

calibration studies. This requires that the corresponding test setups are chosen in such a way that the effect of a single

parameter can be extracted to avoid ambiguity. Consequently, we naturally establish a pipeline of well-documented

acceptance tests with increasing complexity in the underlying physics and the required numerical models. Most of

these tests are not specific to LBM DNS approaches and can thus be readily applied to develop, calibrate, and validate

other existing coupling schemes in a structured way. This goes hand in hand with the observation and our experience

that identifying appropriate tests and simulation setups is often time-consuming. Note that we restrict ourselves to

three-dimensional setups to avoid artificial effects originating from two-dimensional simplifications that have to be

counteracted by e.g. introducing a hydraulic radius [29].

All parts of the coupled algorithm are carefully selected to adhere to the parallelization and performance principles

that have been developed and investigated in previous works [30, 31, 22]. This is crucial to exploit the compute power

of modern supercomputers fully and to carry out massively parallel simulations for large problem sizes efficiently.

The ordering of the tests within this calibration and validation pipeline also motivates the structure of this work,

as depicted in Fig. 1. In the first part, Sec. 2, we present our LBM for the fluid flow and the momentum exchange

method together with tests involving particles that are either stationary or moving with a prescribed velocity. In

Sec. 3, we present and evaluate our lubrication correction model that is crucial to represent hydrodynamic interactions

between almost touching particles adequately. We finalize our four-way coupling scheme in Sec. 4 by accounting for

particle collisions and permitting free particle motion. This also contains extensive tests of normally and tangentially

colliding spheres with a plane wall. We summarize the main findings and conclude the work in Sec. 5. All particle

specific definitions can be found in Appendix B. All presented features and tests are implemented in the open-source

waLBerla framework [32, 33] and can be downloaded from the official repository1.

1www.walberla.net

www.walberla.net
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2. Fluid-particle interaction

2.1. Fluid flow simulation with the lattice Boltzmann method

Having its origin in statistical mechanics, the lattice Boltzmann method describes the evolution of particle distri-

bution functions (PDFs) on a uniform grid. A general overview of the various aspects of the LBM can be found in

the book of Krüger et al. [17]. In the present article, we make use of the D3Q19 lattice model [34], i.e., each cell of

a three-dimensional grid contains 19 PDFs, fq, where each is associated with a specific discrete lattice velocity cq.

One time step of the lattice Boltzmann method is then split into two steps, the collision and the streaming step. In the

collision step, the PDFs are updated locally in each cell according to

f̃q(x, t) = fq(x, t) + Cq ( f1(x, t), ..., f19(x, t)) , (1)

where Cq is a general collision operator that will be specified in Seq. 2.1.1. This is then followed by the streaming

step, given as

fq(x + cq ∆t, t + ∆t) = f̃q(x, t), (2)

which distributes the post-collision PDFs to neighboring cells.

The fluid density ρ f and velocity u f are cell local quantities and obtained via moments of the PDFs:

ρ f (x, t) =
∑

q

fq(x, t), u(x, t) =
1
ρ0

∑
q

fq(x, t)cq, (3)

where the mean density ρ0 is introduced to reduce compressibility effects that are inherently present in the LBM [35].

The pressure p f is directly connected to the density via

p f = ρ f c2
s , (4)

where cs is the lattice speed of sound.

It can be shown that this numerical algorithm results in an approximation of the Navier-Stokes equations [17]. In

the context of LBM, it is common to express quantities in so-called lattice units which results in the cell size ∆x = 1,

the time step size ∆t = 1, ρ0 = 1, and cs = 1/
√

3. Those will be used in the remainder of this work.

2.1.1. Multiple-relaxation-time collision model

A crucial part of LBM is the specific choice of the collision operator, which greatly influences the stability and

accuracy of the fluid flow simulation. The main principle is that during the collision step, the PDFs are relaxed

towards an equilibrium state. Most collision models can be generalized by considering the collision taking place in

the moment space, in contrast to the velocity space containing the PDFs [36]. There, the collision operator can be

written as

C = M−1S (meq −M f ) , (5)

with the moment transformation matrix M, the relaxation rate matrix S and the vector meq, containing the equilibrium

moments. This approach allows for relaxing different moments with different relaxation rates, and hence is called

multiple-relaxation-time (MRT) model.
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In particular, we here employ the MRT model of Ref. 37 for which the moment transformation matrix and the

equilibrium moments are given in Appendix A. The diagonal matrix S contains the relaxation rates and can be written

as

S = diag (0, 0, 0, 0, s1, s2, s3, s3, s3, s4, s4, s4, s4, s4, s5, s5, s6, s6, s6) , (6)

where the leading zeros originate from the conserved moments for mass and momentum, remaining unchanged during

collision. It can be shown that the fluid kinematic viscosity ν f is determined by the relaxation rate of the shear

moments, denoted as sν, via

ν f = 1
3

(
1
sν
− 1

2

)
. (7)

Similarly, the bulk viscosity νb is given by the relaxation rate of the bulk moment, sb, as

νb = 2
9

(
1
sb
− 1

2

)
. (8)

For the MRT model, as applied here, we have s4 = sν and s1 = sb [37]. The remaining relaxation rates in S

are not related to any macroscopic transport coefficients but can be used to increase numerical stability or accuracy

without affecting the underlying physics. The optimal choice, however, often depends on the specific problem at hand

which then requires a time-consuming calibration procedure [17]. It is thus desirable to decrease the number of free

parameters in this model to the necessary minimum.

2.1.2. MRT specializations

The general formulation of the collision operator in Eq. (5) allows us to describe common LBM variants conve-

niently as special cases.

The single-relaxation-time (SRT) or BGK model [38], is recovered by setting all relaxation rates to the single

relaxation rate from Eq. (7), resulting in

SSRT = diag (0, 0, 0, 0, sν, sν, sν, sν, sν, sν, sν, sν, sν, sν, sν, sν, sν, sν, sν) . (9)

Though conceptually simple and thus the most popular collision model, the SRT model has well-known drawbacks

regarding stability and accuracy [17]. In particular, it features an undesired dependency of the boundary location on

its relaxation rate and thus on the fluid viscosity [39]. This issue will be briefly revisited in Sec. 2.4

The two-relaxation-time (TRT) model, developed by Ginzburg et al. [40], aims to overcome this drawback by

introducing a second relaxation rate s−ν . This relaxation rate is used in Eq. (9) for all odd-order moments instead of sν

and leads to

STRT = diag
(
0, 0, 0, 0, sν, sν, s−ν , s−ν , s−ν , sν, sν, sν, sν, sν, sν, sν, s−ν , s−ν , s−ν

)
. (10)

To obtain viscosity-independent boundary locations, the two relaxation rates have to satisfy the relation

Λ =

(
1
sν
−

1
2

) (
1
s−ν
−

1
2

)
, (11)

where Λ is the so-called "magic" number, a constant, for which we use Λ = 3/16 [41].
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f̃q(x, t) f̃q̄(x, t) f̃q(x − cq∆t, t)

fq̄(x, t + ∆t)

x x − cq∆txb

cq

δq

ub

solid cell fluid cell surface of particle i

Figure 2: Sketch of the explicit particle mapping for the momentum-exchange method and all fluid-solid directions, shown as black arrows. The
magnified area visualizes the CLI boundary condition, Eq. (14). The stated PDF values fq are just given for illustration purposes and their position
does not reflect the actual physical position.

2.1.3. TRT+B collision model

In this work, we propose an extension to the TRT model, called TRT+B model, that allows us to control the bulk

viscosity, Eq. (8), independently while retaining the advantages of the TRT model. This is achieved by explicitly

introducing sb as the relaxation rate of the kinetic energy and kinetic energy square moments [41] and yields

STRT+B = diag
(
0, 0, 0, 0, sb, sb, s−ν , s−ν , s−ν , sν, sν, sν, sν, sν, sν, sν, s−ν , s−ν , s−ν

)
. (12)

Even though it would suffice to only set s1 = sb to control the bulk viscosity, we follow the suggestion of Ref. 41 to

avoid largely different values for s1 and s2 for stability reasons. Instead of choosing sb completely independent of the

other relaxation rates, we use the relation of Ref. 41:

Λb =

(
1
sb
− 1

2

)(
1
sν
− 1

2

) . (13)

For Λb = 1, the TRT+B model reduces to the standard TRT model, while Λb > 1 leads to an increase in the bulk

viscosity. This relation ensures viscosity-independent boundary locations, as will be seen in Sec. 2.4.

2.2. Fluid-particle coupling with the momentum-exchange method

The two-way coupling of the fluid flow simulation with particles is here established via the LBM-specific momen-

tum exchange method, originating from Ladd [19] and extended by Aidun et al. [20]. It applies boundary conditions

for the fluid along the particle’s surface and computes a hydrodynamic interaction force F f p
p,i and torque T f p

p,i that act

on particle i.

A key aspect of this approach is the explicit mapping of the particles into the fluid domain. Consequently, all

cells with a cell center that is contained inside a particle are considered solid cells, carrying no fluid information, as

opposed to fluid cells that make up the domain where the fluid flow is solved for via the LBM [20]. A sketch of this

can be seen in the left part of Fig. 2.

The interaction with the fluid is then established by no-slip boundary conditions along the mapped surfaces of the

particles. Here, we use a higher order boundary condition called central linear interpolation (CLI) scheme [40]. It

uses subgrid information to obtain a better representation of the actual smooth particle surface which improves the
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accuracy of the coupling [27]. This boundary condition is given by

fq̄(x, t + ∆t) = f̃q(x, t) +
1 − 2δq

1 + 2δq

(
f̃q(x − cq∆t, t) − f̃q̄(x, t)

)
−

4
1 + 2δq

wqρ0

c2
s

ub · cq , (14)

where q̄ denotes the opposite lattice direction of q, such that −cq = cq̄, wq are the lattice weights [34] and ub = Ui(xb)

is the boundary velocity according to Eq. (B.1). The variable δq denotes the normalized distance of the cell center

to the exact surface position such that xb = x + δqcq∆t. An illustration of this boundary treatment and the accessed

data is given in the right part of Fig. 2. If not enough fluid information is available, i.e., the cell x − cq∆t is solid,

we employ the bounce back condition that is obtained by setting δq = 1/2 in Eq. (14) and does not require neighbor

information.

The resolved hydrodynamic force and torque acting on the particle are then evaluated with the momentum-

exchange method [19]. The local interaction force at a boundary location xb and for a fluid-solid link q, i.e. a

direction that has been treated by the boundary condition Eq. (14), is given as [42]

Fq(xb, t) =
(
cq − ub

)
f̃q(x, t) −

(
cq̄ − ub

)
fq̄(x, t + ∆t). (15)

By summing up all fluid-solid directions q and combining all contributions that originate from boundary locations

of a specific particle i, i.e. all black arrows shown in Fig. 2, the currently acting hydrodynamic force and torque is

obtained via [19]

F f p
p,i(t) =

∑
xb of i

∑
q

Fq(xb, t) , (16)

T f p
p,i(t) =

∑
xb of i

∑
q

(xb − xp,i) × Fq(xb, t) . (17)

As noted in Ref. 43, some of these fluid-solid links might be missing when two surfaces are close to each other.

Consequently, the momentum-balance of the fluid is incomplete which would result in an artificial attractive force

between the two particles. Here, we account for these missing force contributions by setting Fq(xb, t) = 2wqcq in

those cases which corresponds to the pressure force in stationary conditions.

Due to the explicit mapping of the particle into the domain, cells will eventually transition from solid to fluid. In

this case, valid fluid information has to be restored in the transition cell xt before the simulation can continue, i.e., all

PDF values have to be re-initialized in that cell. Here, we employ the ideas presented in Refs. 44 and 45 that include

local pressure tensor information to increase the accuracy, resulting in

fq(xt) = wq

(
ρ̄ +

ρ̄ut,αcqα

c2
s

+
1

2c4
s

(
ρ̄ut,αut,β −

ρ̄c2
s

sν

(
∂ut,α

∂xβ
+
∂ut,β

∂xα

))
(cqαcqβ − c2

sδαβ)
)
, (18)

where δαβ denotes the Kronecker delta. We use a spatially averaged density of all neighboring fluid cells ρ̄, and the

formerly present particle’s velocity evaluated at xt, i.e. ut = Ui(xt). The velocity derivatives are approximated by

second-order finite differences which are replaced by first-order backward or forward finite differences if not enough

neighboring fluid cells are available.
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(a) TRT (Λb = 1). (b) TRT+B (Λb = 10). (c) TRT+B (Λb = 100). (d) TRT+aB (Λb = 100).

Figure 3: Effect of changing the bulk viscosity via the parameter Λb on the density fluctuations originating from a spherical particle settling from
top to bottom with a prescribed velocity.

2.3. Effect of bulk viscosity on the flow field near a moving particle

2.3.1. Background

It is a well-known drawback of the momentum-exchange method that the hydrodynamic force that is acting on a

moving particle and evaluated via Eqs. (16) and (17) exhibits oscillations [46, 28]. The main sources are the applied

reconstruction algorithm in the wake of the particle, the varying number of cells that are used to represent the particle

on the grid but also the general bounce-back-like formulation of LBM boundary conditions. The latter one can be

mitigated by averaging the force over two succeeding time-steps [19], as will be explained in more detail in Sec. 4.2.

A careful choice of the reconstruction algorithm can also decrease these force oscillations [28], whereas the varying

number of cells will always lead to visible grid effects on the force.

It is less known, however, that also the flow field can exhibit visible disturbances originating from the moving

particle. This can be seen in Fig. 3(a) for a settling sphere, where the density fluctuations that clearly originate from

the moving spherical particle and travel through the whole domain are visualized. It can also be understood that such

fluctuations will induce oscillations in the interaction force on the particle. In Refs. 28 and 47, these fluctuations have

also been noted and have again been attributed to the reconstruction algorithm. This is certainly one source but does

not explain why these oscillations are most prominent in front of (in the figure: below) the particle and not in the

wake, where one would expect the effect of the reconstruction. Instead, we suspect that the update of the particle

mapping, that will eventually but instantly convert fluid to solid cells, leads to a disturbance of the flow from the

leading to the rear part of the particle and causes these observable fluctuations. Since this mapping is an essential part

of the momentum-exchange method, it cannot be changed easily and other ways to damp the oscillations have to be

developed and evaluated.
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δaB

fluid cell with Λb = 1

fluid cell with Λb > 1

solid cell

particle surface

bulk viscosity adaption shell

Figure 4: Sketch of the TRT+aB LBM collision model which increases the bulk viscosity via the parameter Λb in all fluid cells that have their
center inside a spherical shell of thickness δaB around each obstacle.

2.3.2. Adaptive TRT+B collision model

These spurious density oscillations can also be regarded as undesired compressibility effects of LBM that are not

present in the incompressible flows under consideration in this work and which we must therefore strive to reduce.

This is our main motivation behind the introduction of the TRT+B collision model with the parameter Λb, Eq. (13).

The thereby provided explicit control over the bulk viscosity of the fluid renders it a promising candidate to damp

these density oscillations.

Since the fluctuations originate from the moving particle, we also propose and investigate a variant of the TRT+B

model that only features an increased bulk viscosity in a spherical shell around particles, i.e., the source of the

fluctuations, while at the same time maintaining Λb = 1 elsewhere. An illustration of this adaptive TRT+B model,

which will be denoted as TRT+aB model, can be seen in Fig. 4. The thickness of the shell in which the bulk viscosity

is adapted is chosen as δaB = 2∆x. This ensures that there is always at least one layer of cells around the particle

with increased bulk viscosity. At the same time, this keeps the particle information as local as possible, which is an

essential feature for algorithms to be used in massively parallel environments like supercomputers.

2.3.3. Description

To investigate and evaluate the effect of the bulk viscosity on the density fluctuations, we construct the following

settling test. As such, it can be regarded as an LBM-specific test case as the bulk viscosity does not appear in the

incompressible Navier-Stokes equations. Consequently, such density, or pressure as stated in Eq. (4), oscillations

have not been reported for classical DNS approaches.

The test setup is chosen such that the flow and particle properties are very similar to the one that will be used

later on in the test case of Sec. 4.4. It features a domain of size [4 × 4 × 8]Dp, bounded by stationary walls in x- and

y-direction and periodic in settling direction. A sphere of diameter Dp = 20 is initialized in the center of the domain,

i.e. xp(0) = Dp(2, 2, 4)>. To mimic an accelerating sphere, its z-velocity is prescribed in each time step according to

up(t) = −us
(
1 − exp(−cacc t/tSt)

)
, with tSt =

ρp

ρ f

D2
p

18ν f
(19)

and with an acceleration constant cacc. Here, we use cacc = 10 and ρp/ρ f = 8.34. By prescribing the velocity,



10 C. Rettinger et al. / Journal of Computational Physics (2020)

0 50 100 150 200 250
frequency

0.000000

0.000002

0.000004

0.000006

0.000008
am

pl
itu

de
TRT (Λb = 1)

TRT+B (Λb = 10)

TRT+B (Λb = 100)

TRT+aB (Λb = 100)

Figure 5: Spectrum of the density fluctuations at the probe location for the cases shown in Fig. 3.

we can exclude other possible sources for oscillations, e.g., the feedback mechanism of having slightly oscillating

hydrodynamic forces that are then transferred to the motion of the particle. The flow conditions are fully specified

by the Reynolds number Re = usDp/ν f = 164, with us = 0.02 in lattice units. To monitor the density fluctuations, a

virtual probe is installed at location xp(t)+(Dp, 0, 0)>, i.e., it is moving with the particle and uses trilinear interpolation

to retrieve the density value at the current probe location. The simulation is run for T = 24tre f with tre f = Dp/us,

resulting in slightly more than two passes through the whole domain.

2.3.4. Results and Discussion

The density field at the end of the simulation is shown in Fig. 3 where the case Λb = 1, resembling a standard

TRT method, is compared to cases for Λb = 10 and Λb = 100 throughout the whole domain. It is clearly visible that

the oscillations get damped when increasing Λb and even vanish almost completely for Λb = 100. This is especially

true for the density spikes right along the surface of the sphere. At last, the adaptive approach TRT+aB is taken where

Λb = 100 is only set inside a spherical shell with a width of two fluid cells around the sphere. The observable damping

effect is comparable to TRT+B(Λb = 10), but additionally, the near-surface density spikes are smoothed out more and

thus similar to TRT+B(Λb = 100).

A more detailed analysis of the damping properties can be gained from the spectrum of the density signal at the

probe location, shown in Fig. 5. The low-frequency parts remain almost unchanged in all cases, whereas the damping

properties can be observed in the middle to higher frequency regions. There, the case TRT+B(Λb = 100) exhibits

almost no contributions. The direct comparison of TRT+B(Λb = 10) with TRT+aB(Λb = 100) shows a generally

very similar behavior, with a better high-frequency damping for the former and a better mid-frequency damping for

the latter one.

Concluding, this test shows that our proposed modifications of the LBM collision operator are a viable tool to



C. Rettinger et al. / Journal of Computational Physics (2020) 11

reduce the density fluctuations introduced by the mapping update. It also shows that increasing the bulk viscosity

only in the vicinity of the fluctuation source can be sufficient to reduce the oscillations globally. Finally, we note that

overall density fluctuations in this test case are very small and below 0.01% of the average density. Depending on

the parameterization, however, they could be larger and then also have a clear influence on the trajectories of other

particles and on the overall stability of the simulation.

2.4. Force on infinite array of fixed spheres in Stokes flow

2.4.1. Background

As a first test to establish the physical correctness of the approach, specifically the fluid solver and the compu-

tation of the fluid-particle interaction force, we simulate Stokes flow around an infinite and steady array of spheres.

Once converged, we can evaluate the force acting on the sphere and compare it against existing quasi-analytical so-

lutions [48]. Due to its simplicity and the existence of a quasi-analytical solution, it is a well-studied setup, both for

classical DNS approaches [49] as well as for the LBM [39, 41, 27, 50]. For LBM simulations, this is a particularly

important test as some collision operators suffer from an undesired dependence of the drag force on the relaxation

rate sν, which affects the simulated boundary location [39]. As mentioned in Sec. 2.1, the TRT collision operator

has been designed specifically to overcome this issue. We will thus use this test case to ensure the correctness of our

implementation and, furthermore, to show that the introduction of the third relaxation time via Λb in the TRT+B and

TRT+aB collision model does not change this important property.

2.4.2. Description

We use the setup from Ref. 27, i.e., a fully periodic domain of size L× L× L = [2× 2× 2]Dp, with a single sphere

of diameter Dp = 20 located in the center of the domain. The flow is driven by an external force a = (a, 0, 0)> with

a = 10−8 to ensure Stokes flow conditions for all viscosities. A visualization of the setup and the resulting flow is

shown in Fig. 6a. The fluid-particle interaction force, Eq. (16), together with the buoyancy force, Fbuoy
p = π

6 D3
pa, then

yields the total normalized force in forcing direction

C =

1
|a|a · (F

f p
p + Fbuoy

p )

3πµ f Dpū
, (20)

with the average fluid velocity

ū = 1
|a|L3 a ·

∑
x

u f (x). (21)

For that case, the reference value is given as Cre f = 2.842 [48].

2.4.3. Results and Discussion

To study the effect of the viscosity value onto the total normalized force, we use different values for sν ∈{
1

0.55 ,
1

0.6 ,
1

0.7 ,
1

0.8 ,
1

0.9 , 1,
2
3

}
and check the simulated force against the reference value for different LBM collision mod-

els. The outcome is shown in Fig. 6b as the relative error of the force. As expected, the SRT collision model yields

a force that depends on the choice of the relaxation rate. For low viscosities, this error stays below 2% whereas it

grows steadily for larger viscosity values. This is thus particularly problematic for low Reynolds number flows in
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(a) Visualization of the flow field.
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(b) Relative error of the total force.

Figure 6: Setup and result of force evaluation on infinite array of fixed spheres in Stokes flow.

porous media where the observed permeability can be influenced significantly by this effect [39]. All other here tested

collision models, however, show no dependence on the viscosity and can accurately recover the reference solution.

This demonstrates that adding the control over the bulk viscosity via the parameter Λb, either globally or only in the

region around the sphere, maintains the desired TRT property and its accuracy.

2.5. Drag and lift forces on spherical particle in shear flow

2.5.1. Background

In the next step, we consider a steady sphere that is placed close to the resting plane in a uniform shear flow setup.

This way, we validate the capability of our approach to predict drag and lift forces on this sphere for different Reynolds

numbers, thus extending the flow regime of the previous test. For such a setup, empirical drag and lift correlations

have been obtained by accurate spectral element simulations [51], which will act as a reference. Besides the shear

rate, the forces depend on the sphere’s distance from the bottom wall and we can thus investigate the behavior of

our approach for cases where the distance between two objects is smaller than a fluid cell. Many sediment transport

processes feature shear flows where the interplay of drag and lift forces is crucial for the onset of particle motion and

the transport mode [52]. Thus, this test case validates the applicability of a numerical simulation for such setups.

2.5.2. Description

The setup features a domain of size [48× 16× 8]Dp, which is periodic in x− and y−direction. A stationary sphere

with diameter Dp = 20 is placed at position (24, 8, L)Dp, i.e., horizontally centered and with a given dimensionless

distance L from the bottom wall. The top wall is moving with a constant velocity uw = (uw, 0, 0)> while the bottom

wall is at rest. A similar setup has also been used in Ref. 53 to validate a classical DNS approach. Here, we use

uw = 0.1. The flow is characterized by the shear Reynolds number Res = GD2
p/ν f , where the shear rate of the
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Figure 7: Visualization of the flow field around the stationary sphere for Res = 25 and L = 0.505.

undisturbed flow is given as G = uw/H and the domain height H = 8Dp. The resulting shear flow induces drag and

lift forces onto the sphere, which depend on Res and the sphere’s distance to the bottom wall [51]. Those are evaluated

as the hydrodynamic forces acting on the sphere in x− and z− direction, respectively, and then normalized to obtain

the drag and lift coefficients:

Cd =
F f p

p,x
π
8ρ f G2L2D4

p
, CL =

F f p
p,z

π
8ρ f G2L2D4

p
(22)

We initialize the domain with the linear shear profile and run the simulation until convergence of drag and lift is

observed. A magnified visualization of the flow field around the sphere for the case Res = 25 and L = 0.505 is shown

in Fig. 7.

2.5.3. Results and Discussion

We evaluate drag and lift coefficients for two different distances, L = 0.505 and 1, and two flow configurations,

Res = 1 and 25. The results are reported in Tabs. 1 and 2. For Res = 1, an excellent agreement of the simulated

drag and lift values to the proposed correlations from [51] can be seen. This is especially true for L = 0.505, where

it has to be noted that with the chosen Dp = 20, the resolution is too coarse to resolve the flow in the gap between

the sphere’s surface and the plane. Also, there is no noticeable difference between the three different LBM collision

model variants, demonstrating once more the applicability of our suggested improvements.

In principle, a similar conclusion can be drawn from the results for Res = 25. The errors there, especially of the

lift coefficient for L = 1, are slightly larger than for the low Res case. This, however, can be attributed to the fact

that the used reference values originate from fits to simulated data [51]. Those correlations capture the underlying

data with deviations of around 5% for CD and up to 16% for CL [51]. For the collision model TRT+B (Λb = 100),

no results could be obtained since the simulations became unstable. This is unexpected as the modifications were

originally made to stabilize the simulation. Further studies of an empty sheared channel, where the same issues

could be observed, led to the conclusion that this variant might be prone to inaccuracies introduced when initializing

the PDF values using only density and velocity information, neglecting higher-order components. Additionally, the

particular choice of Λ, from Eq. (11), can stabilize the simulation but at the same time reduces the overall accuracy,
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Table 1: Drag and lift coefficients for a sphere close to a wall and Res = 1.

TRT (Λb = 1) TRT+B (Λb = 100) TRT+aB (Λb = 100)
Ref [51] Sim rel. Err (%) Sim rel. Err (%) Sim rel. Err (%)

L = 0.505 CD 44.88 43.98 2.00 44.04 1.87 44.00 1.97
CL 3.54 3.43 2.95 3.44 2.78 3.43 2.91

L = 1 CD 35.77 34.43 3.74 34.45 3.69 34.44 3.72
CL 2.32 2.30 0.87 2.30 0.79 2.30 0.83

Table 2: Drag and lift coefficients for a sphere close to a wall and Res = 25.

TRT (Λb = 1) TRT+B (Λb = 100) TRT+aB (Λb = 100)
Ref [51] Sim rel. Err (%) Sim rel. Err (%) Sim rel. Err (%)

L = 0.505 CD 3.53 3.70 4.62 - - 3.70 4.67
CL 0.88 0.91 3.46 - - 0.92 3.90

L = 1 CD 2.81 2.78 1.09 - - 2.78 1.06
CL 0.45 0.41 8.05 - - 0.41 8.04

as also noted by Ref. 41. A detailed study would, however, be out of scope of this paper and we, therefore, use the

variant TRT+aB (Λb = 100) for the remainder of this work.

3. Particle interaction based on lubrication

3.1. Model for unresolved lubrication interactions

When two particles approach each other and are getting close, the fluid inside the forming gap between the

two surfaces is squeezed out. Depending on the flow conditions, this effect can lead to large resistances, given as

lubrication forces and torques opposing the relative motion. These effects influence the particle interaction behavior

significantly. In order to accurately capture them with a fluid-particle coupling algorithm, like the one from Sec. 2.2,

a very fine resolution of the gap would be required, which is computationally not feasible [54]. For that reason, it is

common to introduce lubrication correction models that aim to compensate the unresolved lubrication interactions [54,

55, 10, 12, 13]. As a result, the total hydrodynamic force Fhyd
p,i and torque Thyd

p,i acting on a particle i consist of a part

that is fully resolved by the fluid-particle coupling method from Sec. 2.2, and the lubrication correction, resulting in

Fhyd
p,i = F f p

p,i + Flub,cor
p,i , (23)

Thyd
p,i = T f p

p,i + Tlub,cor
p,i . (24)

These corrections are typically the leading order terms of the analytical lubrication forces, derived for Stokes flow

and thus split into normal and tangential contributions [56, 57]

Flub,cor
p,i =

∑
j,i

(
Flub,cor

i j,n + Flub,cor
i j,tt + Flub,cor

i j,tr

)
, (25)

Tlub,cor
p, j =

∑
j,i

(
Tlub,cor

i j,tt + Tlub,cor
i j,tr

)
. (26)
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Assuming two particles i and j with different radii, Rp,i and Rp, j, we define the radius ratio κr = Rp, j/Rp,i. Then,

the lubrication correction in normal direction that is applied on particle i can be written as [57, 54, 55]

Flub,cor
i j,n = −6πµ f R2

p,iλ(δlub
n , δlub

n,cut)
κ2

r

(1 + κr)2

 1
δlub

n
−

1
δlub

n,cut

 ui j,n, (27)

with the dynamic fluid viscosity µ f , the normal relative particle velocity according to the definitions in Appendix B,

and the gap size

δlub
n = max(δi j,n, δ

lub
n,min). (28)

The parameter δlub
n,min effectively saturates the lubrication force for very small gaps by avoiding a division by zero and

its value is often related physically to surface asperities [58]. We will study the effect of this parameter in Sec. 4.4 in

more detail. The step function

λ(δn, δ
lub
cut) =

1, 0 < δn < δ
lub
cut ,

0, otherwise,
(29)

is applied to switch off the correction during collisions and when the normal surface distance δn is larger than a

cut-off value δlub
cut . This introduces another parameter δlub

n,cut, i.e., the cut-off distance for the lubrication correction in

normal direction. This parameter is the distance until which the fluid-particle coupling algorithm can yield accurate

hydrodynamic interaction information and will be determined in Sec. 3.2.

In tangential direction, the lubrication correction due to a tangential translational velocity difference can be for-

mulated as [57, 59]

Flub,cor
i j,tt = 6πµ f Rp,iλ(δlub

n , δlub
tt,cut)

4κr(2 + κr + 2κ2
r )

15(1 + κr)3 ln
 δlub

n

δlub
tt,cut

 ui j,t (30)

Tlub,cor
i j,tt = 8πµ f R2

p,iλ(δlub
n , δlub

tt,cut)
κr(4 + κr)

10(1 + κr)2 ln
 δlub

n

δlub
tt,cut

 (ui j × ni j) (31)

and for a relative angular velocity ωi j = ωi + ω j around an axis perpendicular to ni j

Flub,cor
i j,tr = −6πµ f R2

p,iλ(δlub
n , δlub

tr,cut)
2κ2

r

15(1 + κr)2 ln
 δlub

n

δlub
tr,cut

 (ωi j +
4
κr
ωi + 4κrω j

)
× ni j (32)

Tlub,cor
i j,tr = 8πµ f R3

p,iλ(δlub
n , δlub

tr,cut)
2κr

5(1 + κr)
ln

 δlub
n

δlub
tr,cut

 (ωi +
κr

4
ω j −

((
ωi +

κr

4
ω j

)
· ni j

)
ni j

)
(33)

As for the normal direction, cut-off distances δlub
tt,cut and δlub

tr,cut are introduced as parameters [55, 60] and have to be

determined adequately. Following Ref. 59, we are excluding the torque due to a relative rotation about the line of

centers which becomes negligibly small for small gap sizes. The corresponding lubrication corrections for sphere-

wall interactions are obtained by assuming κr → ∞ [55, 59].

3.2. Determination of the lubrication correction cut-off distances
3.2.1. Background

The hydrodynamic interactions of two spheres with relative translational or angular velocities have been studied

in detail for low Reynolds number flows and analytical approximations exist [57]. It has been noted in coupled fluid-

particle simulations with classical DNS approaches [10, 12] or LBM [54, 55, 60, 61] that the simulation predictions
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Figure 8: Test setups for the determination of the cut-off distance of the lubrication correction model.

of the hydrodynamic interaction for this case break down when the gap is smaller than a certain gap width. In those

cases, the lubrication correction models from the previous section have to be applied to compensate for these otherwise

missing interactions. For that purpose, it is crucial to determine these gap widths for the applied coupling method

as those values are taken as the cut-off distances δlub
n,cut, δ

lub
tt,cut, and δlub

tr,cut in Eq. (29). This procedure effectively avoids

that the corrections are applied in cases where the coupling method still yields the correct interactions, which would

otherwise result in their overestimation. Those cut-off distances generally have to be found by appropriate simulation

tests, like the following one.

3.2.2. Description

Two spheres are placed next to each other with a given surface distance δi j,n submerged in a fluid. By imposing a

certain relative velocity, we can observe the resulting hydrodynamic interaction force and torque, and compare it to

the analytical predictions [57]. We are then investigating up to which gap size our fluid-particle coupling approach

yields reliable force information and when lubrication corrections become necessary, which then determines the cut-

off distance for the lubrication correction. Since we account for normal and tangential lubrication forces, whereas the

latter can originate from relative translating or rotating motion, we have to determine three different cut-off distances,

namely δlub
n,cut from Eq. (27), δlub

tt,cut from Eqs. (30) and (31), and δlub
tr,cut from Eqs. (32) and (33). As these contributions

can be treated independently of each other, we consider three different setups that can be seen in Fig. 8.

The domain is of size [12 × 12 × 12]Dp and fully periodic. The first sphere (1) is placed inside the center of

the domain, whereas the second one (2) is offset by (Dp + δi j,n, 0, 0). Depending on the case, we set a translational

velocity u or a rotational velocity ω = 2u/Dp onto the spatially fixed spheres, see Fig. 8, similar to the setup used

in Ref. 10. We use ν f = 1/6 and Re = Dpu/ν f = 0.01, and run the simulation until convergence of the forces and

torques. We carry out the simulation for two different diameters, Dp = 10 and 20, to investigate whether the cut-off

distance should be regarded as a function of the diameter.

Since the source of the inaccurate prediction is due to insufficient grid resolution inside the gap between the

surfaces, it can be assumed that the specific placement of the particles on the grid might additionally influence the

force values. Due to the explicit particle mapping, there might be cases where there is still a fluid cell inside the gap,

whereas there might be none if the spheres were located differently on the grid. To determine the cut-off distances in a

general way, we follow the approach from Ref. 60 and carry out each single simulation setup 15 times with each time

a different random offset applied to both, sphere 1’s and sphere 2’s, positions. Afterwards, we average the resulting

force and torque over these realizations.
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Figure 10: Hydrodynamic force (left) and (torque) on sphere 1 for the case of two tangentially translating spheres. Colors and style as in Fig. 9

3.2.3. Results and Discussion

The normalized force acting on sphere 1 for the case of the normally translating spheres is shown in Fig. 9 over the

gap size. Additionally, the analytical prediction from Ref. 57 allows for continuous evaluation and is given in black.

We note that by applying a physical scaling to the x-axis with Dp, the analytical curves would collapse into a single

one, as expected. We can observe that the simulation without lubrication correction accurately predicts the interaction

force for larger gap sizes. For gap sizes smaller than around 2/3 of the cell size, indicated by the red vertical line,

the simulations can not follow the predicted strong increase and instead remain almost constant. The hydrodynamic

force would thus be considerably underestimated. This behavior is the same for Dp = 10 and 20. When adding the

lubrication correction in the normal direction with the determined value of δlub
n,cut = 2/3∆x, this deficit can be cured

and the simulation results match the predictions very well.

The results for tangentially translating and rotating spheres can be seen in Fig. 10 and Fig. 11, respectively. In all
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Figure 11: Hydrodynamic force (left) and (torque) on sphere 1 for the case of two rotating spheres. Colors and style as in Fig. 9

cases, it can be seen that the simulated force and torque follow the predictions accurately until a certain gap size is

reached from whereon the corresponding lubrication corrections are necessary. For these cases, this limiting gap size

is given as 1
2 of the cell size, independent of force or torque.

Summarizing, this test allows to determine the cut-off distances for the lubrication correction concisely. We will

use

δlub
n,cut = 2

3 ∆x, δlub
tt,cut = 1

2 ∆x, δlub
tr,cut = 1

2 ∆x (34)

for the remainder of this work. This is similar to the values found by others using LBM, but with different LBM

collision models and boundary conditions [55, 60]. We thus do not follow Refs. 10, 12, who suggest a dependence

of the cut off distance on the diameter since, as we have shown, these cut-off distances are a numerical parameter

without a physical counterpart.

As can be seen when comparing the force and torque magnitudes of the normal and tangential components in

Figs. 9,10 and 11, the tangential interactions are much weaker than the normal one and, consequently, less critical.

This is the reason why the tangential contributions are often not considered in the literature [11, 12, 13]. This might be

justified in some cases but could lead to an underestimation of tangential interaction e.g., in dense particulate systems

at low Reynolds numbers, and thus should be decided on a case by case basis.

4. Particle interaction based on collisions

4.1. Particle dynamics with the discrete element method

In this work, we employ a discrete element method (DEM) to describe the collision behavior of particles with

other particles or walls. After all forces and torques acting on the particles are known, their position and velocity

are updated by a Velocity-Verlet integrator. As the simulations in this work only feature spherical particles, we will

restrict the explanations to spheres, noting that the underlying ideas can readily be applied to non-spherical particles.

The used notation is given in Appendix B.
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4.1.1. Equations of particle motion

The motion of each individual particle is generally described by

mp,i
dup,i

dt
= Fp,i = Fcol

p,i + Fhyd
p,i + Fext

p,i , (35)

Ip,i
dωp,i

dt
= Tp,i = Tcol

p,i + Thyd
p,i . (36)

Here, mp,i = ρp,iVp,i is the mass of the particle with density ρp,i and volume Vp,i, and Ip,i = 2
5 mp,iR2

p,i is the moment

of inertia for a sphere of radius Rp,i. The temporal evolution of the particle’s translational and angular velocity is thus

given by the total force Fp,i and torque Tp,i, respectively. These contain contributions from inter-particle collisions,

Fcol
p,i and Tcol

p,i , and from hydrodynamic interactions, Fhyd
p,i and Thyd

p,i , see Eqs. (23) and (24). Additionally, external

forces Fext
p,i might be present like gravity and buoyancy, given as Vp,i(ρp,i − ρ f )g, with the gravitational acceleration g.

The time integration of these equations with a time step size ∆tp is here accomplished with a Velocity Verlet

scheme, which yields the explicit update formulas for the particle’s position and velocity as [2]

xp,i(t + ∆tp) = xp,i(t) + ∆tpup,i(t) +
∆t2

p

2mp,i
Fp,i(t), (37)

up,i(t + ∆tp) = up,i(t) +
∆tp

2mp,i

(
Fp,i(t) + Fp,i(t + ∆tp)

)
, (38)

where Fp,i(t + ∆tp) is computed with the already updated position. Analogously, the angular velocity and, if needed,

the rotation are updated.

4.1.2. Contact model for inter-particle collisions

The discrete element method (DEM) is a soft-contact model that splits the inter-particle collisions into a normal

and tangential part for each pairwise interaction:

Fcol
p,i =

∑
j, j,i

(
Fcol

i j,n + Fcol
i j,t

)
(39)

Tcol
p,i =

∑
j, j,i

(xcp
i j − xp,i) × Fcol

i j,t (40)

Here, the normal part of the collision force acting on particle i is given by a linear spring-dashpot model [62] as

Fcol
i j,n = −knδi j,nni j − dnucp

i j,n, (41)

where kn and dn are the normal stiffness and damping coefficients, respectively. Instead of attempting to specify those

directly, it is more convenient to introduce the collision time Tc and the coefficient of restitution edry [63]. The latter

is defined as

edry = −
(ui j,n · ni j)|post

(ui j,n · ni j)|pre
(42)

and is thus the ratio of the normal velocity after and before a single collision. The collision time Tc denotes the

duration of a single collision event in dry conditions, i.e. in the absence of a fluid. Since we are using a linear spring-

dashpot model, the motion of the linear harmonic oscillator can be computed analytically by requiring that there is no
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overlap at the end of the collision. This yields the following relations [63]:

kn =
mi j,eff(π2 + ln2 edry)

T 2
c

, dn = −
2mi j,eff ln edry

Tc
, (43)

with the effective mass given as

mi j,eff =


mp,imp, j

mp,i+mp, j
, sphere-sphere,

mp,i, sphere-wall.
(44)

As we will see in Sec. 4.4, the collision time can significantly influence the collision behavior for immersed

particles and has to be chosen with care. In real collisions, the duration of a collision is several orders of magnitudes

smaller than the typical time scales of the fluid. The collision time in our model has to be seen as a numerical

parameter, used to stretch the collision in time to allow for a proper treatment of the collision and the flow field

without requiring extremely small time step sizes. A longer collision time allows the surrounding fluid to better adapt

to the sudden change in the particle’s velocity but, at the same time, increases the surface overlap, which, however,

should be kept small [12, 13].

Similarly, the tangential collision force is given by a linear spring-dashpot model [64] as

Fcol,S D
i j,t = −ktδi j,t − dtu

cp
i j,t, (45)

where kt and dt are the tangential stiffness and damping coefficients, respectively. The tangential spring displacement

δi j,t denotes the relative tangential motion between two particles that is accumulated starting from the time step of the

impact ti:

δi j,t =

∫ t

ti
ucp

i j,t(t
′)dt′ (46)

The actual tangential collision force is limited by the Coulomb friction model and thus given as

Fcol
i j,t = min(‖Fcol,S D

i j,t ‖, ‖µpFcol
i j,n‖)ti j, (47)

where µp is the (dynamic) coefficient of friction and

ti j = Fcol,S D
i j,t /‖Fcol,S D

i j,t ‖ (48)

is the tangential unit vector.

In each time step of the discretized time integration of Eq. (46), the former tangential displacement has to be

projected into the current collision plane via

δ̃i j,t = δi j,t(t) −
(
δi j,t(t) · ni j

)
ni j (49)

and then rescaled to maintain the length. Additionally, the displacement should not increase once the two surfaces are

slipping and thus has to be reset to be conform with the Coulomb friction force [65, 13]. This results in the update

procedure

δi j,t(t + ∆tp) =


‖δi j,t(t)‖
‖δ̃i j,t‖

δ̃i j,t + ∆tpucp
i j,t, if ‖Fcol,S D

i j,t ‖ < ‖µpFcol
i j,n‖

− 1
kt

(
‖µpFcol

i j,n‖ti j + dtu
cp
i j,t

)
, else.

(50)
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Algorithm 1 Simulation approach for fluid-particle systems.
for each time step t do

Apply fluid boundary conditions, Eq. (14).
Compute fluid-particle interactions, Eqs. (16) and (17), and average over two time steps.
Perform LBM step, Eqs. (1) and (2) with MRT collision operator Eq. (5).
for each DEM subcycle do

Update particle position and rotation, Eq. (37).
Evaluate lubrication corrections, Eqs. (25) and (26).
Evaluate collision forces, Eqs. (39) and (40).
Set external forces, like gravity and buoyancy.
Update particle translational and rotational velocity, Eq. (38).

end for
Update the particle mapping into the fluid domain and reconstruct PDF information if necessary, Eq. (18).

end for

For a new collision pair, the tangential displacement is initialized to zero [65].

The tangential stiffness and damping coefficients are related to the normal ones via [64]

kt = κpkn, dt =
√
κpdn, (51)

which introduces the parameter

κp =
2(1 − νp)

2 − νp
, (52)

with νp being the Poisson’s ratio, a material property.

The advantage of this parameterization of the tangential collision model is that it does not require additional model

parameters like a tangential coefficient of restitution [12] or a critical impact angle [11] that have to be determined

via specific laboratory experiments beforehand. Instead, only the well-studied material property Poisson’s ratio has to

be specified. Also, our parameterization is different from [63, 12], who made the assumption of a tangential collision

time and equated this to the normal collision time, necessitating the definition of an effective tangential mass.

If required by the physical system, a straightforward extension of this contact model to also account for static

friction is possible as shown in Ref. 13. Also, adhesive interactions could be added in a modular fashion [25].

4.2. Complete four-way coupled fluid-particle interaction algorithm

The complete algorithm that combines the previously presented building blocks, see Secs. 2.1, 2.2, 3.1, and 4.1,

is shown in Alg. 1. It features a subcycling loop which allows having a finer temporal resolution of the particle

simulation, including the evaluation of collision and lubrication correction forces, without decreasing the overall time

step size. Due to this subcycling, the time step size for the particle integration is ∆tp = ∆t/nsub where nsub is the

number of subcycles. This accounts for the fact that the usual time scales of particle interaction are smaller than

of the fluid and is a common approach for coupled simulations [12, 13, 7]. During the subcycles, the fluid-particle

interactions F f p
p,i and T f p

p,i remain constant.

Furthermore, we apply an averaging of these two quantities over the current and previous time step to even out

fluctuations that are inherent to LBM due to its bounce-back nature of the boundary conditions [66].
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Table 3: Fluid parameters in physical units and the resulting Re for the single sphere settling test, used in the experiments by Ref. 26.

Case ρ f / (kg/m3) µ f / (Ns/m2) us / (m/s) Re
TC1 970 0.373 0.036 1.4
TC2 965 0.212 0.057 3.9
TC3 962 0.113 0.087 11.1
TC4 960 0.058 0.122 30.3

4.3. Sphere freely settling under gravity

4.3.1. Background

This test is based on the experiments and simulations performed by Ten Cate et al. [26] and features a single

sphere settling freely inside a box filled with different silicon oils. Due to its simplicity, it has been adopted by others

[24, 13] and has thus become one of the standard tests for moving particle simulations. It is well suited to validate the

fluid-particle interaction and the time integrator for the particle motion as it features the acceleration and deceleration

phases of the sphere at the beginning and when close to the bottom wall, respectively. The temporal evolution of the

distance from the bottom wall, as well as the settling velocity, is evaluated and compared against the experimental

results [26].

4.3.2. Description

The simulation features a box of size 0.1 m×0.1 m×0.16 m with a sphere of diameter Dp = 0.015 m and density

ρp = 1120 kg/m3 and a gravitational acceleration of g = 9.81 m/s2. The properties of the four different fluids are

given in Tab. 3, together with the experimentally measured maximum settling velocity us and the Reynolds number.

In the simulation, a domain size of 135× 135× 216 cells is chosen, resulting in Dp/∆x = 20.25. Additionally, we use

us = 0.02 in lattice units and apply the density ratio from the experiments, which then determines all other simulation

quantities accordingly. The initial distance of the sphere surface from the bottom wall is 8.2Dp and the simulation is

stopped right before the sphere hits the bottom wall.

4.3.3. Results and Discussion

A comparison between the simulation and the experimental results is given in Fig. 12, showing the gap width and

the particle velocity in settling direction, and an excellent agreement can be seen for all four cases. In particular, the

initial acceleration and final deceleration in the proximity of the wall are well captured. From this, we can conclude

that our coupling approach is able to predict the settling behavior at moderate Reynolds numbers accurately.

The test case of Ref. 67 could be used for validating settling at higher Reynolds numbers. For a very similar

coupling approach to the one applied here, this has already been used and demonstrated in Ref. 27, and is thus not

repeated here. However, we explicitly note here that these settling tests do not contain particle-particle or particle-

wall collisions. Consequently, they cannot be taken as the sole validation scenario if collisions might occur during the

simulation and influence the dynamics of the physical system. For that purpose, the setup in the following section has

to be applied.
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Figure 12: Comparison of the settling behavior at four different Reynolds numbers of a sphere between the experimental data from [26] to our
simulations, given by the colored lines. The dimensionless gap width (left) and the settling velocity (right) are shown over time.

4.4. Collision dynamics of a sphere impacting normally onto a wall

4.4.1. Background

The models to account for particle-particle and particle-wall interactions typically come with several parameters

for which suitable values have to be determined. For simulations of submerged particles, those interactions are not

only described by the collision resolution model, as here the DEM, for direct contact but also by the fluid-particle

coupling algorithm and the lubrication correction model. At best, those parameters are physical material parameters

like the coefficient of restitution edry that can be obtained from corresponding experimental measurements or material

tables. This is unfortunately usually not possible for all parameters and these have thus to be calibrated and validated.

For this purpose, the collision of a single sphere with a wall inside a fluid-filled domain is the simplest test case,

resulting in a wet collision. In contrast to the case without fluid, called dry collision, the apparent coefficient of

restitution changes depending on the fluid and the sphere properties as well as the impact velocity us [15]. This

dependence is captured concisely by the Stokes number, given as

St =
1
9
ρp

ρ f

usDp

ν f
. (53)

Several experimental studies exist that report the wet coefficient of restitution ewet as a function of the Stokes number

[68, 15, 69] and it might thus be tempting to use those as reference. However, determining the coefficient of restitution

requires the evaluation of the pre- and post-collision velocity of the sphere. Those values depend significantly on

the exact time when the evaluation is done as the sphere’s velocity will be affected and altered significantly by the

always acting hydrodynamic interaction forces, in contrast to measurements for the dry case [58]. This leads to a

somewhat diffuse point cloud when combining the findings of all these experiments. Additionally, the same issue

arises for simulations which has also been noted in e.g. Ref. 7 who also demonstrated the considerable influence of

the evaluation timing on the measured ewet. Such a procedure would thus introduce an undesired additional parameter,

or degree of arbitrariness, which does not permit a rigorous calibration of our model parameters.
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Table 4: Parameters for the sphere-wall collision setup, used in the experiments by Ref. 15.

St Re ρ f / (kg/m3) µ f / (Ns/m2) Dp / m ρp / (kg/m3) domain size / Dp edry

27 30 965 0.1 0.006 7800 12 × 12 × 48 0.97
100 110 953 0.02 0.004 7800 12 × 12 × 48 0.97
152 164 935 0.01 0.003 7800 12 × 12 × 64 0.97

Instead, for the case of a wet sphere-wall collision in the normal direction, Gondret et al. [15] also provide some

experimentally measured rebound trajectories after the collision. These form a well-suited reference for numerical

tests that aim to reproduce those experiments. Such comparative studies have already been carried out for classical

DNS approaches with the immersed boundary method [11, 12, 13, 14] but we are not aware of any attempts using

LBM. We will thus use this test case to study the effect of the collision time Tc used in the parameterization of the

DEM, Eq. (43), in detail and to establish a guideline for choosing it for our approach. Furthermore, the minimal

admissible gap size for the lubrication force, δlub
n,min from Eq. (28), and the effect of subcycles nsub, see Sec. 4.2, will

be determined. This will finalize the calibration of the interaction model in the normal direction which is then also

validated at last.

4.4.2. Description

In this test case, the sphere is settling inside a box and ultimately hits the wall at the bottom of the domain.

This results in a rebound of which the trajectory can be compared against experimental data from Ref. 15. As

mentioned before, the setup is characterized by the Stokes number St, which thus has to match with the corresponding

experiments. Initially, we place the sphere horizontally centered and at a distance of 3
2 Dp from the top boundary.

Since not all spheres reached their terminal velocity and an exact reproduction of the experimental setup would be

computationally permissive, we decided to follow an approach similar to Ref. 13. Thus, we artificially accelerate the

sphere to the desired velocity by imposing the velocity via Eq. (19), using cacc = 10 as in Sec. 2.3. When the sphere

is close to the bottom wall, i.e., when the gap size is smaller than Dp, we turn off the artificial acceleration and let it

settle freely under the action of gravity and buoyancy, with a gravitational acceleration of g = 9.81m/s2. This is done

to not perturb the hydrodynamic interaction of the sphere with the wall before the collision. The physical parameters

and the domain sizes for the different setups are stated in Tab. 4.

4.4.3. Results

In the following parts, the effect of various parameters onto the collision behavior are studied. For a better

overview of the applied parameterization, the parameter sets are summarized in Tab. 5.

Effect and choice of collision time. As discussed in Sec. 4.1, the collision time Tc determines the duration of the

contact-based collision. To study the general effect of this parameter, we use St = 152 and vary Tc for the parameter set

SW1 from Tab. 5. The resulting trajectories, given as gap sizes between the lower sphere surface and the bottom plane,

are shown in Fig. 13a. There, the time is shifted by tc, i.e., the moment when there is no contact any more between

sphere and wall after the first collision, and additionally normalized. It can be seen that the collision behavior exhibits

a strong dependence on the collision time with larger values for Tc resulting in higher rebounds. The difference
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Table 5: Numerical parameter sets for simulations of the sphere-wall collision test.

Case Tc Dp us nsub δlub
n,min

SW1 [1, ..., 200] 20 0.02 50 0.001 Rp

SW2 [1, ..., 200] 30 0.02 50 0.001 Rp

SW3 [1, ..., 200] 40 0.02 50 0.001 Rp

SW4 [1, ..., 200] 20 0.01 50 0.001 Rp

SW5 Eq. (55) 20 0.02 50 [0.001, ..., 0.0024]Rp

SW6 Eq. (55) 10 0.02 50 [0.001, ..., 0.0024]Rp

SW7 Eq. (55) 30 0.02 50 [0.001, ..., 0.0024]Rp

SW8 Eq. (55) 40 0.02 50 [0.001, ..., 0.0024]Rp

SW9 Eq. (55) 20 0.02 [1, ..., 50] Eq. (56)
SW10 Eq. (55) 20 0.02 10 Eq. (56)
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Figure 13: Effect of the collision time Tc on the sphere-wall collision with St = 152.

between the trajectories for the large collision times get smaller to the point where the curves for the highest tested

collision times collapse to a single one. For a more detailed evaluation, we extract the rebound height Hr which is the

largest value for the gap size after the first collision, i.e.

Hr = max
t
δi j,n(t)/Dp, for t > tc, (54)

and show the results in Fig. 13b. For the parameter set SW1, we observe that Hr reaches its highest and final value

from around Tc = 80 onward. Following the general guidelines regarding Tc, stated in Sec. 4.1, it can be concluded

that for this case the fluid requires at least 80 time steps to accommodate the sudden change in the particle velocity and

to avoid an otherwise strong damping of the collision via hydrodynamic interaction. To also avoid a too long artificial

stretching of the collision in time, which would then also increase the penetration depth of the surfaces during the

collision, larger values of Tc are undesired and we thus propose to use Tc = 80 for this case.

To investigate whether this value is affected by the choice of the overall spatial or temporal resolution, we repeat

this study with parameter sets SW2, SW3 and SW4 where the diameter and the settling velocity in lattice units are

changed, respectively. Consequently, the spatial resolution is increased for SW2 and SW3, whereas the temporal
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Figure 14: Normalized gap size over normalized time of the sphere-wall collision with St = 27 for varying minimal admissible gap sizes δlub
n,min.

The parameter sets are SW5 (left) and SW7 (right). The reference experimental data is taken from Ref. 15.

resolution is increased for SW4. The outcome is also included in Fig. 13b. For SW2 and SW3, we observe a

qualitatively similar behavior as for SW1, but a higher value of Tc is required to reach a saturated value of Hr. In

particular, approximately Tc = 120 is needed for SW2 and Tc = 160 for SW3. This suggests that for finer resolutions,

the collision time should be adapted as well to higher values, i.e., Tc = f (Dp) with a function f that is linear in

Dp. We note that the slight variations of the saturated values of Hr in these cases originate from the influence of the

lubrication gap size parameter, as explained in the next part.

On the other hand, the case SW4, with the smaller physical time step size determined by a smaller us in lattice

units, exhibits almost identical trajectories in comparison to SW1 while at the same time reducing the maximum

penetration depth. This shows that the choice of the collision time should be independent of us. The collision time is

thus decoupled from the physical time scale and should be seen as a numerical parameter. Instead, we here suggest to

make use of the lattice speed of sound cs = 1/
√

3, which is another characteristic quantity in LBM simulations, see

Sec. 2.1. This quantity is related to the speed at which information is transported inside the fluid. It, therefore, fits

the observation that a certain number of time steps are required such that the flow field around the colliding sphere is

aware of the sudden change in the velocity and can adapt to it.

From these observations, we obtain the following guideline for choosing the collision time:

Tc = 2.31
Dp

cs
. (55)

Minimal lubrication gap size. As a next step, we will determine the parameter for the minimal lubrication gap size,

δlub
n,min from Eq. (28), which is part of the lubrication correction. For that, we use St = 27 since for that case lubrication

forces play a more dominant role in the collision behavior. The influence of this parameter on the trajectory can be

seen in Fig. 14 on the left. If smaller gap sizes are allowed before they are capped, the lubrication forces become larger.

As they are opposing the motion, the collision behavior is damped and the rebound is lower. Larger values then result

in higher rebound trajectories. By comparison with the experimental reference data, we find that δlub
n,min = 0.0017 Rp

provides the best agreement here.
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Table 6: Best fit value for minimal lubrication gap size for different diameters. Additionally, the values from the proposed relation are given.

case Dp best fit δlub
n,min Eq. (56)

SW6 10 0.007 0.007
SW5 20 0.017 0.017
SW7 30 0.030 0.031
SW8 40 0.048 0.048

To investigate the behavior for varying diameters, we also carried out simulations with Dp = 10, 30, and 40, for

which Dp = 30 is shown in Fig. 14 on the right. The same overall behavior can be seen and, in comparison to Dp = 20,

the trajectories are shifted downwards. Consequently, larger values for δlub
n,min are required to achieve the match with

the experiments, here given by δlub
n,min = 0.002 Rp .

The same results can be drawn from Dp = 10 and 40 as well and we summarized the corresponding values that

lead to the best agreement in Tab. 6 for all four cases. Based on this table, we refine the scaling with the radius and

propose to use the relation

δlub
n,min = (0.001 + 0.00007Rp) Rp (56)

that recovers the found values for the best fit very well, see Tab. 6.

Sensitivity to number of subcycles. In this last calibration test, we investigate the sensitivity of the rebound trajectory

with respect to the number of subcycles taken by the rigid body simulation, i.e., nsub. For this study, we use St = 27

with the parameter set SW9 in Tab. 5. We randomly perturb the initial sphere position by one cell size in z-direction

and carry out ten different runs. For each realization, we then evaluate the rebound height Hr from Eq. (54). We

note that in all cases, the same Stokes number is used and thus the same collision with the same rebound trajectories

should be observed. Possible differences in the results thus primarily originate from the sampling rate for lubrication

correction as well as for collision detection and resolution. The result of this study is given in Tab. 7. It can be seen

that simulations without substepping, i.e. nsub = 1, suffer from a relatively large variance in the rebound height and

thus in the overall rebound behavior. This variance can be decreased effectively with subcycling, where only around

5 sub steps are needed to obtain differences below 1%. Furthermore, subcycling increases the overall accuracy of the

collision treatment which can be observed in the average rebound height that is essentially the same once 10 or more

sub steps are applied. We thus propose to use at least nsub = 10 for this setup.

Validation. With the fully calibrated simulation at hand, we can finally conduct a validation test of our approach with

the parameter set SW10 from Tab. 5, which makes use of all found relations. For that, we take the experimental results

of St = 100 and St = 152 as a reference since those have not yet been used for the calibration. The results, where we

have also added the case St = 27 for completeness, are shown in Fig. 15. From that, we see that the experimental and

simulation trajectories agree well in those cases, with a small deviation for St = 152.

4.4.4. Discussion

We have seen that the collision time Tc should be chosen large enough to avoid numerical damping effects by the

fluid but as small as possible to avoid stretching the collision duration unnecessarily, which results in large penetration
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Table 7: Sensitivity of the rebound height to the number of subcycles nsub. Minimum, maximum and average rebound heights of 10 distinct runs are
given where the initial sphere position is randomly perturbed. The relative difference is calculated as the difference of the maximum and minimum
rebound height, divided by the average one.

nsub min Hr max Hr average Hr rel. diff. in %
1 0.3135 0.3483 0.3218 10.8
2 0.3177 0.3350 0.3263 5.3
5 0.3264 0.3270 0.3267 0.2
10 0.3269 0.3276 0.3274 0.2
20 0.3274 0.3280 0.3277 0.2
30 0.3265 0.3281 0.3276 0.5
40 0.3274 0.3279 0.3277 0.2
50 0.3270 0.3281 0.3277 0.3

0 5 10 15 20 25 30
(t − tc) us/Dp

0.0

0.5

1.0

1.5

2.0

2.5

3.0

δ i
j,n
/D

p

experiment St = 27
simulation St = 27
experiment St = 100
simulation St = 100
experiment St = 152
simulation St = 152

Figure 15: Validation study for different cases from Tab. 4. The simulations use the parameter set SW10. The reference experimental data is taken
from Ref. 15.

depths. Based on the observable convergence-like behavior of the trajectories, we proposed to choose Tc according

to Eq. (55), i.e., the smallest value for which the saturated rebound heights can be observed. It should be noted that

this argument is different from the one made in Ref. 11, where also the influence of Tc on the collision behavior for

this test setup has been observed. There, however, Tc = 10∆t has been proposed as the value that best reproduces

the trajectories of two test cases, i.e., as a fitting parameter. The same choice is made in Ref. 13, whereas Tc = 8∆t

is applied in Ref. 12. Generally, these values are considerably smaller than the ones used in the present work. This

can be explained by the fact that in LBM, the physical time step sizes are usually smaller than the ones applied in

classical DNS approaches. Consequently, the physical collision time is actually similar in both approaches, as well as

the observed penetration depths.

The parameter for the minimal admissible gap size, δlub
n,min, is here considered a fitting parameter, as in Ref. 13,

and is a quadratic function of the sphere radius. The dependence on the radius is often motivated by interpreting

this parameter as a model for the presence of surface asperities [58, 12]. Then a linear dependence on the radius is

used. Having determined the minimum gap size and the cut-off distance for the lubrication correction in the normal

direction, we can give a rough estimate of the numerical resolution that would be required to resolve the lubrication

forces fully and without a model. This is done by equating Eq. (56) and Eq. (34), yielding Rp ≈ 90. For most practical
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cases, such a fine resolution is computationally prohibitive, and thus, the lubrication correction model is a reasonable

and efficient substitute. We also note that without such a correction model and by using resolutions similar to the ones

applied in our studies, the trajectories for low Stokes number collisions can not be captured correctly [12, 13], which

underlines their importance.

The here applied number of subcycles, nsub = 10, is below usually reported ones of 50 in Ref. 12 and 15 in

Ref. 13, which again can be addressed to the smaller fluid time step sizes in LBM. We note that the only argument

against using an unnecessarily large amount of subcycles is the overall computational performance of the algorithm.

Each sub step comes with additional costs for the lubrication force evaluation and collision detection, as well as for

synchronization when executed in a parallel environment. It is thus desired to choose nsub as small as possible to

decreases the computing time.

Finally, we want to highlight a crucial difference between our collision model in the normal direction in compar-

ison to existing ones. It is a common approach to disregard the hydrodynamic interaction force during the collision

[11, 12, 13] to reduce the drag experienced by the sphere. This is motivated by the observation that with this ap-

proach, the resulting rebound trajectory is higher and thus the simulation can better capture the large Stokes number

cases. This can be seen in our validation study, Fig. 15, with St = 152 where we slightly underpredict the experi-

mental trajectory. At the same time, however, the trajectory for St = 100 would become higher as well, reducing the

agreement between experiments and simulation. Furthermore, special treatment of enduring contacts is required to

avoid artifacts during the simulation of erosion processes with initially resting particles, which ultimately renders the

resulting collision algorithm rather complex [8, 13]. Consequently, we decided not to introduce this procedure in our

model.

4.5. Oblique collision of sphere with wall

4.5.1. Background

In this last test, the tangential part of the collision model will be validated for both, dry and wet, scenarios of

oblique sphere-wall collisions. Since, unfortunately, no experimental studies with such detailed trajectory information

as for the normal collision from Sec. 4.4 are available, the standard approach is to compare the rebound angle as a

function of the impact angle.

At first, the dry case, i.e., in the absence of a surrounding fluid, is used to generally establish the validity of the

tangential collision model, Eq. (47), and the corresponding parameterization. As mentioned in Sec. 4.1, the here used

tangential collision model has the advantage that it requires a minimal set of material parameters, in contrast to others

that, e.g., require a tangential coefficient of restitution [12] or a critical impact angle [11]. The experimental data from

Ref. 70 is used as a reference with the parameters given in Tab. 8 corresponding to a glass sphere impacting on an

aluminum plate.

In a second step, the fluid is included and the experimental findings from Ref. 71 act as a reference. It features a

glass (TW1) and a steel (TW2) sphere dropped in different water-glycerol mixtures.
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Table 8: Physical parameter settings for the dry [70] and wet [71] oblique collision tests.

Case Dp / m ρp / (kg/m3) edry νp µp ρ f / (kg/m3) µ f / (Ns/m2)
TD 0.00318 2500 0.83 0.22 0.12 - -

TW1 0.00127 2540 0.97 0.23 0.15 1081 0.0025
TW2 0.00127 7780 0.97 0.27 0.02 1091 0.003
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Figure 16: Sketch for the oblique sphere-wall collision. The states in and out are taken right before and after the collision.

4.5.2. Description

This test features a sphere that hits a plane at different angles ζin and the post-collision state is evaluated. Before

the collision, the sphere solely has a translational velocity uin
p . Consequently, the tangential surface velocity of the

point closest to the plane, i.e., the contact point, is uin
t = uin

p,t. After the collision, a rotational velocity is present and

the tangential surface velocity is given as uout
t = uout

p,t − Rpω
out
p,y. We then define the following velocity ratios [70]

Ψin = −
uin

t

uin
n
, Ψout = −

uout
t

uin
n
, (57)

which results in Ψin = tan(ζin). These value pairs can be compared to experimental results [70, 71]. This setup and

the relevant quantities are shown in Fig. 16.

For the dry case (TD), the simulation setup is straightforward and mimics the one given in Fig. 16. Since no

gravity is considered, the velocities before and after the collision remain constant and can be evaluated at any time.

In the wet cases (TW1 and TW2), it has to be noted that the experimental data in Ref. 71 lack detailed information

about the exact collision properties, e.g., given as a Stokes number. Additionally, the experimental apparatus features

a pendulum, which is challenging to reproduce in the simulations. This also explains the different setups used in the

literature [11, 13, 14] to reproduce this case adequately in simulations. However, the common property of all these

simulations is a high Stokes number, which is obtained by an artificially high gravitational acceleration.

To obtain more control over the simulation, we employ a different approach here. We use a horizontally periodic

box of size [12× 12× 24]Dp and place the sphere at position [6× 6× 22.5]Dp. We then define and prescribe a Stokes

number in the normal direction,

Stn =
1
9
ρp

ρ f

|uin
n |Dp

ν f
. (58)
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Figure 17: Oblique collision of sphere with wall. Physical parameters as in Tab. 8.

For that purpose and similar to before, we artificially accelerate the sphere by setting its velocity to

up(t) =
(
1 − exp(−cacc t/tSt)

)
(uin

t , 0, u
in
n )>, (59)

ωp(t) = (0, 0, 0)>, (60)

with cacc = 25. When the smallest distance between the bottom plane and the sphere’s surface is below Dp, we let the

sphere settle freely, no longer prescribing the velocities. Assuming that this settling velocity is the final one, the acting

hydrodynamic forces would naturally be compensated by gravitational and buoyancy forces. To avoid an otherwise

rapid deceleration before the collision, we model these missing forces by setting an external force onto the particle

that corresponds to the negative hydrodynamic force, averaged over the last ∆x/uin
n time steps.

Based on stability and physical considerations, we choose Stn = 100 for TW1 and Stn = 300 for TW2. We use

Dp = 30 to account for the high Stokes numbers and set uin
n = −0.02 in lattice units.

The velocities required to compute Ψin and Ψout are evaluated at tin = tc − 0.05Dp/uin
n and tout = tc + 0.05Dp/uin

n ,

where tc is here defined as the instance in time of maximum penetration depth, i.e., minimum gap size.

4.5.3. Results and discussion

The dry oblique collision results are shown in Fig. 17a, where a very good agreement with the experimental data

from Ref. 70 can be seen. This indicates that our tangential collision model is capable of correctly detecting sticking

and slipping regimes, which is a crucial aspect for accurate results, as noted in Ref. 13.

The outcome of the wet oblique collision simulations can be seen in Fig. 17b, for both cases, TW1 and TW2.

Both cases show a rather distinct collision behavior in the experiments of Ref. 71, mainly originating from the dif-

ferent friction coefficients. Again, the simulations are able to reproduce both cases and yield results that match the

experimental measurements very well.

We also carried out these simulations without the tangential lubrication correction model from Eqs. (30)–(33), and
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could observe no influence on the collision behavior. We assume that this is a direct result of the high Stokes numbers

applied in this setup, where lubrication forces generally play a minor role in comparison to other hydrodynamic and

collision forces.

As a result of this test case, we have shown that our tangential collision model can accurately capture oblique

collision events without introducing further parameters that would need to be calibrated. For the here considered case,

the often-made assumption of negligible tangential lubrication interactions [11, 12, 13] has been verified. However,

such an assumption should be reevaluated on a case by case basis, depending on the characteristic collision dynamics

given by the Stokes number.

5. Conclusion

In this work, we developed an efficient four-way coupling scheme for the accurate simulation of particulate flows.

Our approach relies on a geometrically fully resolved representation of the particle shape. The fluid phase is simulated

with a novel variant of the lattice Boltzmann method. A special parameter permits the explicit control of the bulk

viscosity of the fluid. For moving particles, we demonstrate that a suitably increased bulk viscosity helps to damp

nonphysical oscillations. An adaptive variant of this idea leads to an improved lattice Boltzmann scheme where the

bulk viscosity is only raised in a narrow layer around each particle. The hydrodynamic interaction between the fluid

and the particles is established based on the momentum exchange method. For validation, we compared the drag and

lift forces acting on stationary spheres in low and high Reynolds number flows to reference data.

Particle-particle collisions were treated by a discrete element method, thus following a modular approach that

can be easily extended and adapted. The parameters of the discrete element method were calibrated and validated

by a meticulous analysis of the scenario when a sphere impacts on a plane. The test cases include both normal and

oblique impact for different fluids. One critical parameter of the method is the duration of the collision event, which

has significant effect on the collision dynamics. The evaluation revealed that the collision time should be chosen large

enough to allow an adaption of the fluid to the sudden change in the particle velocity. Furthermore, we could show that

the unresolved lubrication interactions must be corrected to obtain an accurate collision response. These corrections

are essential in the normal direction, confirming the findings from other simulation approaches [11, 12, 13]. In the

tangential direction, however, the lubrication forces played only a minor role, so that it is possible to neglect the

corresponding corrections.

Summarizing, the effect of all model parameters was investigated in detail and elaborated guidelines for the

parameter choice were presented. Rigorous validations have shown that our coupling scheme can reliably predict

fluid-particle and particle-particle interactions for low and high Stokes number cases. This renders our new method

generally applicable for a wide variety of flow simulation scenarios. We point out that all algorithmic components

are designed such that they are well-suited for massively parallel execution on supercomputers. This is achieved by

avoiding non-local operations and global synchronizations [22, 33]. Future work will present efficiency results for

simulations involving a large number of interacting particles.
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All relevant details about the simulation setup and reference solutions for all tests have been presented and dis-

cussed. Consequently, this article presents also a pipeline of systematic tests for the calibration and validation as it

can be applied to all fluid-particle coupling methods. This validation procedure can be used to determine appropriate

parameter sets and to assess the accuracy of simulation and coupling approaches. We explicitly note that the sug-

gested validation experiments are neither limited to lattice Boltzmann methods nor to discrete element methods. The

increasing complexity of the tests helps to expose possible deficits. With the tests, any deficiency of a scheme can

be discovered in the early stages of method development or when a method is implemented in a step-by-step process.

Here, simulation software is developed driven by systematic tests, thus extending the general principle of test-driven

software development to the field of scientific and engineering software.

Appendix A. Moments of the LBM multi-relaxation time model

The moment transformation matrix appearing in Eq. (5) for the here applied multi-relaxation time model [37] is

given as

M =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 −1 1 0 0 −1 1 −1 1 0 0 −1 1 0 0 −1 1
0 1 −1 0 0 0 0 1 1 −1 −1 1 −1 0 0 1 −1 0 0
0 0 0 0 0 1 −1 0 0 0 0 1 1 1 1 −1 −1 −1 −1
−1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
1 −2 −2 −2 −2 −2 −2 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 2 −2 0 0 −1 1 −1 1 0 0 −1 1 0 0 −1 1
0 −2 2 0 0 0 0 1 1 −1 −1 1 −1 0 0 1 −1 0 0
0 0 0 0 0 −2 2 0 0 0 0 1 1 1 1 −1 −1 −1 −1
0 −1 −1 2 2 −1 −1 1 1 1 1 −2 −2 1 1 −2 −2 1 1
0 1 1 0 0 −1 −1 1 1 1 1 0 0 −1 −1 0 0 −1 −1
0 0 0 0 0 0 0 −1 1 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 −1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 1 −1
0 1 1 −2 −2 1 1 1 1 1 1 −2 −2 1 1 −2 −2 1 1
0 −1 −1 0 0 1 1 1 1 1 1 0 0 −1 −1 0 0 −1 −1
0 0 0 0 0 0 0 −1 1 −1 1 0 0 1 −1 0 0 1 −1
0 0 0 0 0 0 0 −1 −1 1 1 1 −1 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 −1 1 1 1 1 −1 −1



(A.1)

Note, that the second, third and fourth row of M uniquely define the ordering of the lattice velocities cq. The corre-

sponding equilibrium moments are

meq =
(
ρ, ux, uy, uz, u2

x + u2
y + u2

z , 0, 0, 0, 0, 2u2
x − u2

y − u2
z , u2

y − u2
z , uxuy, uyuz, uxuz, 0, 0, 0, 0, 0

)>
. (A.2)

Appendix B. Definitions of particle and interaction quantities

Fig. B.18 illustrates two colliding spheres together with their center position xp, translational velocity up, angular

velocity ωp, and radius Rp. An additional subscript i and j is used to distinguish the quantities of the two spheres.

The velocity of a particle i evaluated at a position x is then

Ui(x) = up,i + (x − xp,i) × ωp,i. (B.1)
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xp,i

xp, jxcp
i j

Rp,i

Rp, j

ni j

ti j

up,i

up, j

δi j,nωp,i

ωp, j

Figure B.18: Schematic representation of two colliding spheres, i and j, together with reference quantities required by the collision model.

During collision, the surfaces of two spheres intersect each other allowing us to define a contact point xcp
i j that is

located midway between the spheres’ centers. The unit vector in normal direction from particle j or a wall to particle

i in that contact point is

ni j =


xp,i−xp, j

‖xp,i−xp, j‖
, sphere-sphere,

nw, sphere-wall.
(B.2)

where nw is the wall normal, pointing into the open domain. The signed surface distance in this normal direction is

δi j,n =

‖xp,i − xp, j‖ − (Rp,i + Rp, j), sphere-sphere,
(xp,i − xw) · nw − Rp,i, sphere-wall.

(B.3)

where xw is a point at the surface of the plane wall.

Additionally, we define the relative velocity of the particle centers as

ui j = up,i − up, j, (B.4)

which can be split into the normal relative velocity

ui j,n = (ui j · ni j)ni j (B.5)

and the tangential relative velocity

ui j,t = ui j − ui j,n. (B.6)

With Eq. (B.1), the relative velocity of the particles’ surfaces at the contact point is

ucp
i j = Ui(xcp

i j ) − U j(xcp
i j ), (B.7)

again with the normal and tangential components

ucp
i j,n = ui j,n, ucp

i j,t = ucp
i j − ucp

i j,n. (B.8)
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