
STABILITY AND CONVERGENCE OF STRANG SPLITTING. PART I:

SCALAR ALLEN-CAHN EQUATION

DONG LI, CHAOYU QUAN, AND JIAO XU

Abstract. We consider a class of second-order Strang splitting methods for Allen-Cahn equa-
tions with polynomial or logarithmic nonlinearities. For the polynomial case both the linear and
the nonlinear propagators are computed explicitly. We show that this type of Strang splitting
scheme is unconditionally stable regardless of the time step. Moreover we establish strict en-
ergy dissipation for a judiciously modified energy which coincides with the classical energy up
to O(τ) where τ is the time step. For the logarithmic potential case, since the continuous-time
nonlinear propagator no longer enjoys explicit analytic treatments, we employ a second order
in time two-stage implicit Runge–Kutta (RK) nonlinear propagator together with an efficient
Newton iterative solver. We prove a maximum principle which ensures phase separation and
establish energy dissipation law under mild restrictions on the time step. These appear to be the
first rigorous results on the energy dissipation of Strang-type splitting methods for Allen-Cahn
equations.

1. Introduction

In this work we consider the Allen-Cahn equation [1] of the form{
∂tu = ε2∆u− f(u), (t, x) ∈ (0,∞)× Ω;

u
∣∣∣
t=0

= u0,
(1.1)

where u is a real-valued function corresponding to the concentration of a phase in a multi-
component alloy, and u0 is the initial condition. For simplicity we take the spatial domain Ω to
be the 2π-periodic torus Td = [−π, π]d in physical dimensions d ≤ 3. With some minor work
our analysis can be extended to many other situations. The parameter ε2 > 0 is the mobility
coefficient which is fixed as a constant. In its present non-dimensionalized form the magnitude
of ε governs the typical length scale of an interface in the dynamical evolution. The nonlinear
term f(u) is taken as the derivative of a given potential function, namely f(u) = F ′(u). We
will be primarily concerned with two typical potential functions. One is the standard double-well
potential

Fst(u) =
1

4
(u2 − 1)2 (1.2)

whose extrema u = ±1 correspond to two different phases. The other is the logarithmic Flory–
Huggins free energy [2, 3]

Ffh(u) =
θ

2
[(1 + u) ln(1 + u) + (1− u) ln(1− u)]− θc

2
u2, (1.3)

where 0 < θ < θc denote the absolute temperature and the critical temperature respectively. The
condition 0 < θ < θc is very physical since it ensures that Ffh has a double-well form with two
equal minima situated at u+ and −u+, where u+ > 0 is the positive root of the equation

0 = F ′fh(u) =
θ

2
ln

1 + u

1− u
− θcu. (1.4)
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When the quenching is shallow (i.e. θ is close to θc), one can Taylor-expand near u = 0 and
obtain the standard polynomial approximation of the free energy. For smooth solutions of (2.34),
we have the energy dissipation

d

dt
E(u) ≤ 0, (1.5)

where

E(u) =

∫
Ω

(ε2

2
|∇u|2 + F (u)

)
dx, (1.6)

and F (u) = Fst(u) or Ffh(u). In practical numerical simulations, the energy dissipation law is
often used as a fidelity check of the algorithm.

In this work we shall analyze the stability of second-order in time splitting methods applied
to the Allen-Cahn equation. Due to its simplicity the operator splitting methods have found its
ubiquitous presence in the numerical simulation of many physical problems, including phase-field
equations [4, 5, 15, 16, 17, 18], Schrödinger equations [6, 7, 20], and the reaction-diffusion systems
[8, 9]. A prototypical second order in time method is the Strang splitting approximation [10, 11].
Specifically for the Allen–Cahn equation under study, we adopt the following Strang splitting
discretization

un+1 = SL (τ/2)SN (τ)SL (τ/2)un, (1.7)

where τ > 0 denotes the time step, and SL(1
2τ) = exp(ε2 1

2τ∆) is the linear propagator. The
nonlinear propagator SN (τ) : a 7→ u(τ) is the nonlinear solution operator of the system{

∂tu = −f(u),

u
∣∣∣
t=0

= a.
(1.8)

Denote by Sex(τ) the exact nonlinear solution operator to (2.34). The propagator (1.7) is a second
order in time approximation in the sense that it admits

O(τ3) one-step approximation error : Sex(τ)un = un+1 +O(τ3); (1.9)

O(τ2) in-O(1)-time approximation error : sup
nτ≤T

‖un − Sex(nτ)u0‖ = O(τ2). (1.10)

Here [0, T ] is a given compact time interval, ‖ · ‖ is some Sobolev norm and the implied constants
in O(τ2) can depend on T . As it turns out the numerical performance of the scheme (1.7) is quite
good for solving the Allen-Cahn equation [5]. On the other hand, it should be noted that the
somewhat heuristic estimates (1.9)–(1.10) rest on various subtle regularity assumptions on the
exact solution and the numerical iterates. A fundamental open issue is to establish the stability
and regularity of the Strang splitting solutions in various Sobolev classes. The very purpose of
this paper is to settle this problem for the Allen-Cahn equation (2.34) with the polynomial or
the logarithmic potential nonlinearities. Our first result is concerned with the polynomial case.
Note that in this case the nonlinear propagator SN (τ) can be expressed explicitly.

Theorem 1.1 (Stability of Strang-splitting for AC, polynomial case). Let ε > 0, d ≤ 3 and
consider (2.34) on the periodic torus Td = [−π, π]d with f(u) = u3 − u. Let τ > 0 and denote
SL(τ) = exp(ε2τ∆). Denote SN (τ) according to (1.8). Consider the Strang splitting discretization

un+1 = SL (τ/2)SN (τ)SL (τ/2)un, n ≥ 0. (1.11)

The following hold.

(1) The maximum principle. For any τ > 0 and any n ≥ 0, it holds that

‖un+1‖∞ ≤ max{1, ‖un‖∞}. (1.12)
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It follows that

sup
n≥1
‖un‖∞ ≤ max{1, ‖u0‖∞}. (1.13)

In particular if ‖u0‖∞ ≤ 1, then

sup
n≥1
‖un‖∞ ≤ 1. (1.14)

(2) Modified energy dissipation. Let u0 ∈ H1(Td). For any τ > 0 and any n ≥ 0, we have

Ẽn+1 ≤ Ẽn. (1.15)

Here (below 〈, 〉 denotes the usual L2 inner product)

Ẽn =
1

2τ
〈(1− eε2τ∆)un, un〉+

∫
Td
F̃ (ũn)dx (1.16)

=
1

2τ
〈(e−ε2τ∆ − 1)ũn, ũn〉+

∫
Td
F̃ (ũn)dx; (1.17)

ũn = SL(τ/2)un; (1.18)

F̃ (ũn) =
1

4
+

1

2τ
(ũn)2 − eτ

τ(e2τ − 1)

(√
1 + (e2τ − 1)(ũn)2 − 1

)
. (1.19)

(3) Uniform Sobolev bounds. Let u0 ∈ Hk0(Td) for some k0 ≥ 1. It holds that

sup
n≥1
‖un‖Hk0 (Td) ≤ C1, (1.20)

where C1 > 0 depends only on (ε, k0, d, ‖u0‖Hk0 ). Moreover for any k ≥ k0, we have

sup
n≥ 1

τ

‖un‖Hk(Td) ≤ C2, (1.21)

where C2 > 0 depends only on (ε, k, k0, d, ‖u0‖Hk0 ).
(4) Connection with the standard energy. Let u0 be smooth (for example u0 ∈ H20(Td)). For

0 < τ ≤ 1, we have

sup
n≥0
|Ẽn − E(un)| ≤ C3τ, (1.22)

where C3 > 0 depends only on (ε, d, u0).
(5) Uniform second order approximation. Assume the initial data u0 is sufficiently smooth

(for example u0 ∈ H40(Td)). Let u be the exact PDE solution to (2.34) corresponding to
initial data u0. Let 0 < τ ≤ 1. Then for any T > 0, we have

sup
n≥1,nτ≤T

‖un − u(nτ, ·)‖L2(Td) ≤ C · τ2, (1.23)

where C > 0 depends on (ε, u0, T ).

Remark 1.1. Consider the function

h(x) =
1

4
+

1

2τ
x− eτ

τ(e2τ − 1)

(√
1 + (e2τ − 1)x− 1

)
, x ∈ [0,∞). (1.24)

Clearly, h(0) = 1
4 , h(x)→∞ as x→∞, and

h′(x) = 0⇔ x = 1. (1.25)
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Figure 1. h(x) w.r.t. x for τ = 1.

We have

h(1) =
1

4
+

1

2τ
− eτ

τ(eτ + 1)
(1.26)

=
1

4
− 1

2τ

eτ − 1

eτ + 1
≥ 0, ∀ 0 ≤ τ <∞. (1.27)

Thus F̃ defined in (1.19) is always nonnegative. On the other hand, by using Fourier transform,
we have

〈(e−ε2τ∆ − 1)w, w〉 = cd
∑

06=k∈Zd
(eε

2τ |k|2 − 1)|ŵ(k)|2 ≥ 0, (1.28)

where cd > 0 depends only on the dimension d. Therefore Ẽ always stays nonnegative.

Remark 1.2. The regularity assumptions in (1.22) and (1.23) can be lowered. However for
simplicity of presentation we do not dwell on this issue in this work.

Our second result focuses on the AC equation with the logarithmic potential (1.3), i.e.{
∂tu = ε2∆u− fLOG(u), fLOG(u) = −θcu+ θ

2 ln 1+u
1−u ;

u
∣∣∣
t=0

= u0,
(1.29)

where 0 < θ < θc. It is not difficult to check that (cf. the analysis after (3.7)) fLOG(u) admits a
unique root in the interval (0, 1) which we denote as u∗. For smooth solutions to (1.29), we have
the maximum principle: ‖u(t, ·)‖∞ ≤ u∗ for all t > 0 if ‖u0‖∞ ≤ u∗. On the other hand, it is
a nontrivial task to design suitable numerical discretization preserving this important maximum
principle.

By direct analogy with the polynomial potential case, one can consider the exact Strang-type
second order in time splitting scheme:

un+1 = SL(τ/2)S(LOG)
N (τ)SL(τ/2)un, (1.30)
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where SL(τ) = exp(ε2τ∆) and S(LOG)
N (τ) is the solution operator w0 → w(τ) of the equation{

∂tw = θcw − θ
2 ln 1+w

1−w , 0 < t ≤ τ ;

w
∣∣∣
t=0

= w0.
(1.31)

However a pronounced difficulty with the implementation of the above scheme is the lack of an ex-

plicit solution formula for the solver S(LOG)
N (τ). To solve this problem we approximate S(LOG)

N (τ)
by a further judiciously chosen numerical discretization. The choice of the numerical solver turns
out to be rather subtle and technically involved, since one has to control the truncation error to
be within O(τ3) and preserve the maximum principle at the same time (see the recent deep work
of Li, Yang, and Zhou [14] where an ingenious cut-off procedure is developed).

To approximate S(LOG)
N (τ)v for given v, we adopt the Pareschi and Russo’s two-stage diagonally

implicit Runge Kutta (PR-RK) method [13]:

u1 = v + aτf(u1),

u2 = v + (1− 2a)τf(u1) + aτf(u2),

S(LOG)
N (τ)v ≈ S̃N (τ)v := v +

1

2
τf(u1) +

1

2
τf(u2).

(1.32)

In the above a is a tunable real-valued parameter.
We employ the following RK-based Strang-type splitting for (1.29):

un+1 = SL(τ/2)S̃N (τ)SL(τ/2)un. (1.33)

In terms of ũn = SL(τ/2)un, we have:

ũn+1 = SL(τ)S̃N (τ)ũn. (1.34)

We have the following stability result concerning the logarithmic case.

Theorem 1.2 (Stability of RK-based Strang-splitting for AC, logarithmic case). Let ε > 0, d ≤ 3,
0 < θ < θc and consider (1.29) on the periodic torus Td = [−π, π]d. Recall u∗ is the unique root
of fLOG(u) in the interval (0, 1). Let τ > 0 and consider the RK-based Strang-splitting scheme
defined in (1.33) and equivalently expressed in terms of ũn in (1.34). Assume u0 ∈ H1(Td) and

‖u0‖∞ ≤ u∗. Assume a ≥ 1 +
√

2
2 and 0 < τ ≤ 1

3a(θc−θ) . The following hold.

(1) The maximum principle. It holds that

sup
n≥1

max{‖un‖∞, ‖ũn‖∞} ≤ u∗ < 1. (1.35)

(2) Modified energy dissipation. We have

sup
n≥1

max{‖un‖∞, ‖ũn‖∞} ≤ u∗; (1.36)

E
n+1 ≤ En, ∀ n ≥ 1; (1.37)

E
n

:=
1

2

〈
1

τ
(e−ε

2τ∆ − 1)ũn, ũn
〉

+

∫
Td
F (ũn)dx, (1.38)

where F is defined by (3.37).
(3) Uniform Sobolev bounds. Let u0 ∈ Hk0(Td) for some k0 ≥ 1. It holds that

sup
n≥1
‖un‖Hk0 (Td) ≤ B1, (1.39)



6 D. LI, C.Y. QUAN, AND J. XU

where B1 > 0 depends only on (ε, k0, d, ‖u0‖Hk0 , θ, θc). Moreover for any k ≥ k0, we
have

sup
n≥ 1

τ

‖un‖Hk(Td) ≤ B2, (1.40)

where B2 > 0 depends only on (ε, k, k0, d, ‖u0‖Hk0 , θ, θc ).
(4) Connection with the standard energy. Let u0 be smooth (for example u0 ∈ H20(Td)). For

0 < τ ≤ 1, we have

sup
n≥0
|En − E(un)| ≤ B3τ, (1.41)

where B3 > 0 depends only on (ε, d, u0, θ, θc).
(5) Uniform second order approximation. Assume the initial data u0 is sufficiently smooth

(for example u0 ∈ H40(Td)). Let u be the exact PDE solution to (1.29) corresponding to
initial data u0. Let 0 < τ ≤ 1. For any T > 0, we have

sup
n≥1,nτ≤T

‖un − u(nτ, ·)‖L2(Td) ≤ C̃ · τ2, (1.42)

where C̃ > 0 depends on (ε, u0, T , θ, θc).

Remark 1.3. More generally, one can also show that if ‖u0‖∞ ≤ β < 1 for some β ∈ [u∗, 1),
then ‖un‖∞ ≤ β for all n ≥ 1. This slightly more maximum principle covers most common cases
in practical simulations. In many cases u∗ is already close to the limit value 1. For example if
θ = 1

4 , θc = 1 and ε = 0.01, then u∗ ≈ 0.99933 which already serves as a good upper bound from
a practical point of view.

The statement (3)–(5) in Theorem 1.2 can be proved in a similar way as in the polynomial case
and we omit the repetitive details. The rest of this paper is organized as follows. In Section 2, we
give the proof of Theorem 1.1. Section 3 is devoted to the proof of Theorem 1.2. As mentioned
above we focus on proving statement (1)–(2) in Theorem 1.2. We give detailed exposition and
motivation for these results therein. In Section 4, we carry out extensive numerical simulations to
showcase the stability and convergence of the Strang-splitting methods for both the polynomial
and the logarithmic cases. The last section contains some concluding remarks.

2. Proof of Theorem 1.1

In this section we carry out the proof of Theorem 1.1. We divide the proof into several steps.

2.1. The maximum principle. Recall that un+1 = SL (τ/2)SN (τ)SL (τ/2)un. Since
‖SL(τ)a‖∞ ≤ ‖a‖∞ for any τ > 0, we only need to examine SN (τ). By definition, the non-
linear solver is {

∂tu = u− u3, 0 < t ≤ τ ;

u
∣∣∣
t=0

= a.
(2.1)

Thanks to the explicit polynomial nonlinearity, one can solve the above equation explicitly and
obtain

u(t) =
eta√

1 + (e2t − 1)a2
. (2.2)

This renders the solution operator SN (τ) as

SN (τ)a =
eτa√

1 + (e2τ − 1)a2
. (2.3)
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By (2.3), we have

‖SN (τ)a‖∞ ≤ max{‖a‖∞, 1}. (2.4)

This yields the desired maximum principle. Note that one can also work directly with (2.1) to
derive (2.4).

2.2. Modified energy dissipation. Since un+1 = SL (τ/2)SN (τ)SL (τ/2)un and ũn =
SL (τ/2)un, we have

ũn+1 = SL (τ)SN (τ) ũn. (2.5)

This yields

e−ε
2τ∆ũn+1 =

eτ ũn√
1 + (e2τ − 1)(ũn)2

. (2.6)

We rewrite the above as

1

τ

(
e−ε

2τ∆ − 1
)
ũn+1 +

1

τ
(ũn+1 − ũn) =

1

τ

(
eτ ũn√

1 + (e2τ − 1)(ũn)2
− ũn

)
= −F̃ ′(ũn), (2.7)

where

F̃ (z) =
1

4
+

1

2τ
z2 − eτ

τ(e2τ − 1)

(√
1 + (e2τ − 1)z2 − 1

)
. (2.8)

The harmless constant 1/4 is inserted here so that F̃ coincides with the standard energy when
τ → 0. Observe that

F̃ (ũn+1) = F̃ (ũn) + F̃ ′(ũn)(ũn+1 − ũn) +
1

2
F̃ ′′(ξn)(ũn+1 − ũn)2, (2.9)

where ξn is some function between ũn and ũn+1. Also

1

τ
〈(e−ε2τ∆ − 1)ũn+1, ũn+1 − ũn〉

=
1

τ
〈(1− eε2τ∆)un+1, un+1 − un〉

=
1

2τ

(
〈(1− eε2τ∆)un+1, un+1〉 − 〈(1− eε2τ∆)un, un〉+ 〈(1− eε2τ∆)(un+1 − un), un+1 − un〉

)
.

(2.10)

Multiplying (2.7) by (ũn+1 − ũn), integrating over Td and using (2.9)–(2.10), we obtain

Ẽn+1 − Ẽn

= − 1

2τ

〈(
1− eε2τ∆

)
(un+1 − un), (un+1 − un)

〉
−
〈(

1

τ
− 1

2
F̃ ′′(ξn)

)
(ũn+1 − ũn)2, 1

〉
.

(2.11)

It is not difficult to check that

F̃ ′′(ξ) =
1

τ
− eτ

τ (1 + (e2τ − 1)ξ2)
3
2

. (2.12)

Clearly

1

τ
− 1

2
F ′′(ξ) ≥ 0, ∀ ξ ∈ R. (2.13)

Thus we have Ẽn+1 ≤ Ẽn for all n ≥ 0.
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2.3. Uniform Sobolev bounds. To establish uniform Sobolev bounds on un, we first show that
it suffices to prove

sup
n≥1
‖ũn‖Hk0 ≤ D1, (2.14)

where D1 > 0 depends only on (ε, k0, ‖u0‖Hk0 , d).
Indeed assume (2.14) holds, we now check the uniform bound on un+1. For simplicity we

conduct the argument for k0 = 1, i.e. we check the H1 bound. The general k0 ≥ 2 case is
similar and omitted (see e.g. the bootstrap argument developed in [19, Section 2.7.2]). Since
un+1 = SL (τ/2)SN (τ)SL (τ/2)un and ũn = SL (τ/2)un, we have

un+1 = SL (τ/2)SN (τ)ũn. (2.15)

By examining the structure of the equation ∂tu = u− u3, it is not difficult to check that

‖∇(SN (τ)a)‖2 ≤ eτ‖∇a‖2, (2.16)

‖SN (τ)a‖2 ≤ max{‖a‖2, Cd}, (2.17)

where Cd > 0 is a constant depending only on the dimension d. We then discuss two cases. If
0 < τ ≤ 1, we use (2.16)–(2.17) and obtain

‖un+1‖H1 ≤ ‖SN (τ)ũn‖H1 ≤ D2, (2.18)

where D2 > 0 depends only on (ε, ‖u0‖H1 , d). If τ > 1, we use (2.17) and obtain

‖un+1‖H1 . ‖SN (τ)ũn‖2 ≤ D3, (2.19)

where D3 > 0 depends only on (ε, ‖u0‖H1 , d). Thus in both cases we obtain the uniform bound
on un+1.

We now focus on (2.14). For simplicity we assume k0 = 1. The general case k0 ≥ 2 follows
along similar lines using smoothing estimates and we omit the details.

Consider first the case 0 < τ ≤ 1. We rewrite

F̃ (z) =
1

4
+

1

2τ
z2 − eτ

τ
· z2

1 +
√

1 + (e2τ − 1)z2

=
1

4
+

1

2τ
z2 − 1

τ
· z2

1 +
√

1 + (e2τ − 1)z2
− eτ − 1

τ
· z2

1 +
√

1 + (e2τ − 1)z2

=
1

4
+
e2τ − 1

2τ
· z4(

1 +
√

1 + (e2τ − 1)z2
)2 − eτ − 1

τ
· z2

1 +
√

1 + (e2τ − 1)z2

=
e2τ − 1

2τ

((
A− 1

1 + eτ
)2 − 1

(1 + eτ )2

)
+

1

4
, (2.20)

where A = z2/
(
1 +

√
1 + (e2τ − 1)z2

)
.

Since d ≤ 3, by using the above expression together with Sobolev embedding, we have∫
Td
F̃ (u0)dx ≤ D4, (2.21)

where D4 > 0 depends only on (‖u0‖H1(Td), d). It follows that uniformly in n,

1

2
ε2‖∇ũn‖22 ≤

1

2τ
〈(e−ε2τ∆ − 1)ũn, ũn〉 ≤ D5, (2.22)

where D5 > 0 depends only on (‖u0‖H1(Td), d, ε). By (2.17), it is not difficult to obtain uniform

control of ‖ũn‖2. The desired uniform H1 bound on ũn follows easily.

Next we consider the case τ > 1. By (2.8),
∫
Td F̃ (ũn)dx is clearly controlled by L2-norm of ũn.

Since we have uniform control of ‖ũn‖2, the desired uniform H1 bound on ũn follows easily.
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2.4. Connection with the standard energy. Next, we show that the modified energy coin-
cides with the standard energy as the time step τ tends to 0, i.e.

sup
n≥0
|Ẽn − E(un)| . τ, (2.23)

where the implied constant depends on (ε, d, u0). Note here the working assumption is u0 ∈
H20(Td) and 0 < τ ≤ 1. By the uniform Sobolev regularity result derived earlier, we have uniform
control of H20-norm of un for all n ≥ 0. Furthermore thanks to the uniform Sobolev bound on
un, we only need examine the regime 0 < τ � 1.

Firstly observe that ∣∣∣∣ 1

2τ
〈(1− eε2τ∆)un, un〉 − 1

2
〈ε2(−∆)un, un〉

∣∣∣∣ . τ. (2.24)

Next for 0 < τ � 1, we have

F̃ (ũn) =
1

4
+

1

2τ
(ũn)2 − eτ

τ(e2τ − 1)

(√
1 + (e2τ − 1)(ũn)2 − 1

)
=

1

4
+

1

2τ
(ũn)2 − eτ

τ(e2τ − 1)

(
1

2
(e2τ − 1)(ũn)2 − 1

8
(e2τ − 1)2(ũn)4 +O((e2τ − 1)3)

)
=

1

4
− eτ − 1

2τ
(ũn)2 +

1

8τ
eτ (e2τ − 1)(ũn)4 +O(τ−1(e2τ − 1)2)

=
1

4
− 1

2
(ũn)2 +

1

4
(ũn)4 +O(τ).

(2.25)
Since un and ũn differ by O(τ), we obtain∣∣∣∣F̃ (ũn)− 1

4
((un)2 − 1)2

∣∣∣∣ . τ ; (2.26)∣∣∣∣∫
Td
F̃ (ũn)dx−

∫
Td

1

4
((un)2 − 1)2dx

∣∣∣∣ . τ. (2.27)

Thus (2.23) is shown.

2.5. Uniform second-order approximation. For convenience of notation, we denote

L = ε2∆. (2.28)

We first check the consistency for the propagator SL( τ2 )SN (τ)SL( τ2 ). Concerning the operator
SN (τ), we note that if {

∂tw = w − w3, 0 < t ≤ τ ;

w
∣∣∣
t=0

= b,
(2.29)

where w admits uniform control of its Sobolev norm, then

w(τ) = b+ τ(b− b3) +
1

2
τ2(1− 3b2)(b− b3) +O(τ3). (2.30)

If b = SL( τ2 )a = a+ τ
2La+ τ2

8 L
2a+O(τ3), then we can simplify the above further and obtain

w(τ) = a+
τ

2
La+

τ2

8
L2a+ τ

(
(a+

τ

2
La)− (a+

τ

2
La)3

)
+
τ2

2
(1− 3a2)(a− a3) +O(τ3)

= a+ τ(a− a3 +
1

2
La) + τ2

(1

8
L2a+

1

2
La− 3

2
a2La+

1

2
(1− 3a2)(a− a3)

)
+O(τ3).

(2.31)
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Now if u = SL( τ2 )SN (τ)SL( τ2 )a, we have

u = SL(
τ

2
)w(τ) +O(τ3)

= SL(
τ

2
)(a+

1

2
τLa+

1

8
τ2L2a)

+ SL(
τ

2
)

(
τ(a− a3) + τ2

(1

2
La− 3

2
a2La+

1

2
(1− 3a2)(a− a3)

))
+O(τ3)

= SL(τ)a+ τ(a− a3) +
τ2

2

(
L(a− a3) + La− 3a2La+ (1− 3a2)(a− a3)

)
+O(τ3). (2.32)

We now turn to the expansion of the exact PDE solution. Let uP be the exact PDE solution to
(2.34) with initial data ã. We have

uP(τ) = SL(τ)ã+

∫ τ

0
SL(τ − s)(u(s)− u(s)3)ds

= SL(τ)ã+

∫ τ

0
(1 + (τ − s)L)(u(s)− u(s)3)ds+O(τ3)

= SL(τ)ã+

∫ τ

0

(
ã− ã3 + s(1− 3ã2)(Lã+ ã− ã3)

)
ds+

∫ τ

0
(τ − s)L(ã− ã3)ds+O(τ3)

= SL(τ)ã+ τ(ã− ã3) +
τ2

2

(
L(ã− ã3) + (1− 3ã2)(Lã+ ã− ã3)

)
+O(τ3). (2.33)

Clearly (2.32) and (2.33) have the same form in O(τ3).
Albeit standard, we now outline how to obtain the global error estimate O(τ2) for nτ ≤ T .

Denote T (τ) as the solution operator u(0) 7→ u(τ) to the exact PDE problem:{
∂tu = ε2∆u− f(u),

u
∣∣∣
t=0

= u(0).
(2.34)

Since we assume high regularity on the initial data u0 (see the description before (1.23)), we have

sup
nτ≤T

(
‖un‖Hk(Td) + ‖u(nτ)‖Hk(Td)

)
≤ C, (2.35)

where u(nτ) = T (nτ)u0 corresponds to the exact PDE solution. Now we write
un = SL(

τ

2
)SN (τ)SL(

τ

2
)︸ ︷︷ ︸

=:S(τ)

un−1,

u(nτ) = T (τ)u((n− 1)τ).

(2.36)

Clearly by the triangle inequality, we have

‖un − u(nτ)‖2 ≤ ‖S(τ)un−1 − T (τ)un−1‖2 + ‖T (τ)un−1 − T (τ)u((n− 1)τ)‖2. (2.37)

By using (2.32), (2.33) and (2.35), we have

‖S(τ)un−1 − T (τ)un−1‖2 ≤ B1τ
3, (2.38)

where B1 > 0 is independent of τ . By stability of the exact PDE solution and (2.35), we have

‖T (τ)un−1 − T (τ)u((n− 1)τ)‖2 ≤ eB2τ‖un−1 − u((n− 1)τ)‖2, (2.39)

where B2 > 0 is independent of τ . It follows that

‖un − u(nτ)‖2 ≤ eB2τ‖un−1 − u((n− 1)τ)‖2 +B1τ
3. (2.40)
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An elementary analysis gives

sup
nτ≤T

‖un − u(nτ)‖2 ≤ O(τ2). (2.41)

3. The case with logarithmic potentials

In this section, we consider the Allen–Cahn equation with logarithmic potential, i.e.

∂tu = ε2∆u+ θcu−
θ

2

(
ln(1 + u)− ln(1− u)

)
, (3.1)

where 0 < θ < θc. We shall consider Strang-type second order in time splitting. Define SL(τ) =
exp(ε2τ∆). For the nonlinear propagator, it is natural to consider the equation{

∂tw = θcw − θ artanh(w), 0 < t ≤ τ ;

w
∣∣∣
t=0

= w0.
(3.2)

Here

artanh(w) =
1

2

(
ln(1 + w)− ln(1− w)

)
. (3.3)

is the inverse hyperbolic function. Define S(LOG)
N (τ) as the nonlinear solution operator w0 → w(τ).

Theoretically speaking, one can develop the stability theory for the Strang-splitting approximation

un+1 = SL(
τ

2
)S(LOG)
N (τ)SL(

τ

2
)un. (3.4)

However on the practical side there is a serious issue. Namely in stark contrast to the polynomial
case, the system (3.2) does not admit an explicit solution formula. In yet other words, the solution

operator S(LOG)
N (τ) is difficult to implement in practice unless one makes a further discretization

or approximation. As we shall see momentarily, we shall resolve this problem by approximating

S(LOG)
N (τ) via a judiciously chosen numerical discretization. We should point it out that the

choice of the numerical solver is a rather subtle and technically involved one, since there are at
least two issues to keep in mind for the construction of the numerical solver:

(1) O(τ3)-truncation error. This is to ensure the genuine Strang-nature of the scheme. Since
the Strang-splitting is a second order in time scheme, the truncation error must be kept
within O(τ3) for the numerical solver.

(2) Strict phase separation. The numerical solver needs to preserve a sort of maximum prin-
ciple of the form |u| ≤ u∗ < 1 to ensure strict phase separation and stability of the overall
scheme.

In what follows we shall define g(u) as

g(u) = θcu− θ artanh(u). (3.5)

The condition 0 < θ < θc is always in force. Note that

g′(u) = θc − θ
1

1− u2
; (3.6)

g′′(u) = −θ 2u

(1− u2)2
. (3.7)

In particular g is concave on the interval (0, 1). Since g(0) = 0 and g(1−) = −∞, by using
concavity it is not difficult to check that g admits a unique root in (0, 1). Thereby we denote by
u∗ this unique solution of g(u) = 0 in (0, 1). One can see the left plot of Figure 2 for an example
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of the profile of g. It is not difficult to check that if u is a smooth solution to (3.1) satisfying
‖u‖∞ ≤ u∗ initially at time zero, then

sup
t>0
‖u(t, ·)‖∞ ≤ u∗. (3.8)

In designing the numerical solver it is of pivotal importance to preserve the maximum principle.

Figure 2. g(u) (left) and H(u) (right) w.r.t. u ∈ [−u∗, u∗], where θc = 1, θ = 1
2 ,

and a = 1
2 . The red star markers denote the nonzero roots of g, i.e., −u∗ and u∗.

3.1. PR-RK method for approximating S(LOG)
N (τ). Diagonally Implicit Runge-Kutta

(DIRK) formulae have been widely used for the numerical solution of stiff initial value prob-
lems. The simplest method from this class is the second order implicit midpoint method. To

approximate S(LOG)
N (τ)v for a given function v, we shall use the Pareschi and Russo’s two-stage

diagonally implicit Runge Kutta (PR-RK) method [13] (see Table 1) . One should note that
under the assumption of uniform Sobolev bounds on the numerical iterates, the truncation error
involved is guaranteed to be within O(τ3).

a a 0

1− a 1− 2a a

1
2

1
2

Table 1. Butcher tableau of Pareschi and Russo’s Runge-Kutta method with
constant a.

More precisely, for given v we approximate S(LOG)
N (τ)v via two internal stages (below a is a

constant parameter):

u1 = v + aτg(u1),

u2 = v + (1− 2a)τg(u1) + aτg(u2),

S(LOG)
N (τ)v ≈ S̃N (τ)v := v +

1

2
τg(u1) +

1

2
τg(u2).

(3.9)
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Since the PR-RK method is a second order method, it is not difficult to check that if

max{‖v‖∞, ‖u1‖∞, ‖u2‖∞, ‖S̃N (τ)v‖∞} ≤ u∗ < 1, (3.10)

and v has uniform Sobolev bounds, then

S(LOG)
N (τ)v = S̃N (τ)v +O(τ3). (3.11)

We shall verify (3.10) later under certain parametric conditions on (a, θ, θc, τ).
Concluding from the above discussion, we are led to the following RK based Strang-type

splitting algorithm for (3.1):

un+1 = SL(τ/2)S̃N (τ)SL(τ/2)un;

In terms of ũn = SL(τ/2)un, we have equivalently:

ũn+1 = SL(τ)S̃N (τ)ũn,

(3.12)

where S̃N (τ) is defined via (3.9). We tacitly assume that S̃N (τ) is the exact solver of (3.9) and
do not consider other intermediate numerical errors due to the implicit nature of the scheme.
The validity of this assumption will be examined in the next subsection.

3.2. Solvability of (3.9). Although the first two equations of (3.9) are implicit, they can be
tackled by the Newton method efficiently with quadratic convergence. In practice only a few
iterations are needed to achieve machine precision. The first two equations in (3.9) can be
rewritten as

H(u1)− v = 0; (3.13)

H(u2)− v − (1− 2a)τg(u1) = 0, (3.14)

where

H(u) := u− aτg(u) = (1− aτθc)u+ aτθ artanh(u). (3.15)

See the right plot of Figure 2 for a graphical illustration of H(u).
To solve (3.13), we implement the Newton iterationu

(k+1)
1 = u

(k)
1 −

H(u
(k)
1 )−v

H′(u
(k)
1 )

, k ≥ 0;

u
(0)
1 = sign(v)u∗.

(3.16)

Similarly, we use the following Newton iteration to solve (3.14)u
(k+1)
2 = u

(k)
2 −

H(u
(k)
2 )−v−(1−2a)τg(u1)

H′(u
(k)
2 )

, k ≥ 0;

u
(0)
2 = sign(v)u∗.

(3.17)

Lemma 3.1 (Unique solvability & convergence of Newton iterations). Assume that |v| ≤ u∗. If
0 < τ ≤ 1

(3a−1)(θc−θ) with a ≥ 1
2 , then (3.13) and (3.14) are uniquely solvable, and the Newton

iterations (3.16) and (3.17) converge.

Proof. Without loss of generality, we consider the case when 0 < v < u∗. Direct computation
gives

H ′(u) = 1− aτθc +
aτθ

1− u2
, H ′′(u) =

2aτθu

(1− u2)2
. (3.18)

From the condition 0 < τ ≤ 1
(3a−1)(θc−θ) with a ≥ 1

2 , we have 0 < τ ≤ 1
a(θc−θ) . Thus

H ′(u) > 1− aτθc + aτθ ≥ 0, ∀ 0 < u ≤ u∗. ⇒ H ′(u) > 0, ∀ 0 < u ≤ u∗. (3.19)

It is also clear that H ′′(u) > 0 for any 0 < u ≤ u∗.
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For (3.13), using the fact that f(u∗) = 0 we have

H(u∗)− v = u∗ − v > 0,

H(v)− v = −aτg(v) < 0.
(3.20)

Therefore, (3.13) is uniquely solvable. Given u
(0)
1 = u∗, it follows that the Newton iteration (3.16)

converges to the unique root u1 satisfying v < u1 < u∗.
We turn now to (3.14). By using the fact that g′(u) ≤ θc − θ for 0 ≤ u < 1, we have

g(u) ≤ (θc − θ)u for any 0 < u < u∗. By using

τ(3a− 1)(θc − θ) ≤ 1,

g(u) ≤ (θc − θ)u, ∀ 0 < u < u∗,
(3.21)

we have
H(0)− v − (1− 2a)τg(u1) = −u1 + (3a− 1)τg(u1) ≤ 0,

H(u∗)− v − (1− 2a)τg(u1) = u∗ − v + (2a− 1)τg(u1) > 0.
(3.22)

Therefore, (3.14) is uniquely solvable. Given u
(0)
2 = u∗, it follows that the Newton iteration (3.16)

converges to some root 0 < u2 < u∗. �

3.3. The maximum principle. In this subsection, we show that the RK-based Strang-splitting
method (3.12) preserves the maximum principle.

Theorem 3.1 (Maximum principle). Denote by u∗ the unique root of g(u) = 0 in (0, 1). If

a ≥ 1 +
√

2
2 , 0 < τ ≤ 1

(3a−1)(θc−θ) , and ‖ũn‖∞ ≤ u∗, then

‖S̃N (τ)ũn‖∞ ≤ u∗, (3.23)

where S̃N (τ) was defined in (3.9). It follows that

‖ũn+1‖∞ = ‖SL(τ)S̃N (τ)ũn‖∞ ≤ u∗; (3.24)

‖un+1‖∞ = ‖SL(τ/2)S̃N (τ)ũn‖∞ ≤ u∗. (3.25)

Proof. It suffices for us to treat ũn as a real number. With no loss we consider the case when

0 < ũn < u∗. As a ≥ 1 +
√

2
2 , we have shown in the proofs of Lemma 3.1 that

ũn < u1 < u∗ and 0 < u2 < u∗. (3.26)

By (3.9), we have

τg(u1) =
1

a
(u1 − ũn); (3.27)

τg(u2) =
1

a
(u2 − ũn)− 1

a
(1− 2a)τg(u1) =

1

a
(u2 − ũn)− 1

a2
(1− 2a)(u1 − ũn)

= (
1

a2
− 3

a
)ũn +

1

a
u2 +

2a− 1

a2
u1. (3.28)

Since a ≥ 1 +
√

2
2 , it is not difficult to check that the following inequality holds

3

2a
− 1

2a2
≥ 0 and 1− 2

a
+

1

2a2
≥ 0. (3.29)

Consequently we have

S̃N (τ)ũn = ũn +
1

2
τg(u1) +

1

2
τg(u2)

=
1

2a
u2 +

(
3

2a
− 1

2a2

)
u1 +

(
1− 2

a
+

1

2a2

)
ũn < u∗,

S̃N (τ)ũn = ũn +
1

2
τg(u1) +

1

2
τg(u2) > ũn.

(3.30)
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It follows that ‖S̃N (τ)ũn‖∞ < u∗. More generally, if ‖ũn‖∞ ≤ u∗, then

‖S̃N (τ)ũn‖∞ ≤ u∗. (3.31)

Thus

‖ũn+1‖∞ = ‖SL(τ)S̃N (τ)ũn‖∞ ≤ ‖S̃N (τ)ũn‖∞ ≤ u∗. (3.32)

The bound for un+1 follows similarly. �

3.4. Modified energy dissipation. By (3.12), we have

e−ε
2τ∆ũn+1 = S̃N (τ)ũn. (3.33)

Clearly
1

τ

(
e−ε

2τ∆ − 1
)
ũn+1 +

1

τ
(ũn+1 − ũn) =

1

τ

(
S̃N (τ)ũn − ũn

)
. (3.34)

By (3.9), we have
1

τ

(
S̃N (τ)ũn − ũn

)
=

1

2
g(u1) +

1

2
g(u2). (3.35)

The strategy is to rewrite the RHS above as −F ′(ũn), where F is a one-variable function serving
as the potential energy function. For this we need to introduce some notation.

Recall that in (3.9), u1 and u2 are implicitly defined as a function of u for given u. For
convenience of notation, we regard u1 = u1(u), u2 = u2(u) as two smooth functions of u ∈
[−u∗, u∗] solving

u1(u) = u+ aτg(u1(u)), u2(u) = u+ (1− 2a)τg(u1(u)) + aτg(u2(u)). (3.36)

We define F = F (u) as the unique smooth function satisfying

F
′
(u) =

d

du
F (u) = −1

2
g(u1(u))− 1

2
g(u2(u)), with F (0) = 0. (3.37)

The normalization F (0) = 0 is chosen in analogy with (1.3) since Ffh(0) = 0. With the help of
F , we rewrite (3.34) as

1

τ

(
e−ε

2τ∆ − 1
)
ũn+1 +

1

τ
(ũn+1 − ũn) = −F ′(ũn). (3.38)

Theorem 3.2 (Modified energy dissipation). Assume u0 ∈ H1(Td) and ‖u0‖∞ ≤ u∗ where u∗

is the unique root of g(u) = 0 in (0, 1). When a ≥ 1 +
√

2
2 and 0 < τ ≤ 1

3a(θc−θ) , the RK-

based Strang splitting method (3.12) preserves the maximum principle and the modified energy
dissipation property, namely

sup
n≥1

max{‖un‖∞, ‖ũn‖∞} ≤ u∗; (3.39)

E
n+1 ≤ En, ∀ n ≥ 1; (3.40)

E
n

:=
1

2

〈
1

τ
(e−ε

2τ∆ − 1)ũn, ũn
〉

+
〈
F (ũn), 1

〉
, (3.41)

where ũn = SL(τ/2)un and F is defined by (3.37).

Remark 3.1. For the energy dissipation to hold, formally speaking the argument only requires
the weaker condition a ≥ 1

2 and 0 < τ ≤ 1
3a(θc−θ) . However in order to have solvability of our

RK-based scheme for all n ≥ 1, we need to impose the stronger condition on the parameter a in
order to preserve the maximum principle.
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Proof. We only need to show (3.40). Direct computation gives

g′(u) = θc −
θ

1− u2
≤ θc − θ, ∀u ∈ [−u∗, u∗]. (3.42)

By (3.37), we have

F
′′
(u) = −1

2
g′(u1)u′1(u)− 1

2
g′(u2)u′2(u), ∀u ∈ [−u∗, u∗]. (3.43)

Taking the derivative of two equations in (3.36) w.r.t. u, we have

u′1(u) =
1

1− aτg′(u1)
,

u′2(u) =
(3− 1

a)− (2− 1
a)u′1(u)

1− aτg′(u2)
.

(3.44)

By (3.42) and the assumption 0 < τ ≤ 1
3a(θc−θ) , we have

g′(u) ≤ θc − θ ≤
1

3aτ
, ∀u ∈ [−u∗, u∗]. (3.45)

This yields

0 < u′1(u) ≤ 3

2
and

(
3− 1

a

)
−
(

2− 1

a

)
u′1(u) > 0. (3.46)

Substituting (3.44) into (3.43), we then have

F
′′
(u) = − 1

2
g′(u1) − 2aτ

−
(3− 1

a)− (2− 1
a)u′1(u)

2
g′(u2) − 2aτ

≤ 1

2aτ
+

3− 1
a

2aτ
=

4− 1
a

2aτ
≤ 2

τ
, ∀u ∈ [−u∗, u∗].

(3.47)

Multiplying (3.38) with (ũn+1 − ũn) and integrating over Td, we obtain

E
n+1 − En ≤ −

〈(
1

τ
− 1

2
F
′′
(ξn)

)
(ũn+1 − ũn)2, 1

〉
≤ 0, (3.48)

where −u∗ ≤ ξn ≤ u∗ is some function between ũn and ũn+1. �

Remark 3.2. The restrictions on (a, τ) in Theorem 3.1 and 3.2 do not depend on sup|u|≤u∗ |g
′(u)|

which could be very large.

We now complete the proof of Theorem 1.2.

Proof of Theorem 1.2. The first two statements follow from Theorem 3.2. The rest of the state-
ments can be proved along similar lines as in Theorem 1.1. We omit the details. �

4. Numerical results

In this section, we implement the Strang splitting methods on the AC equation (2.34) and
(3.1) with periodic boundary conditions.

Space discretization. We use the spectral method to compute the linear solution operator
SL(τ) in the Strang splitting method. Suppose that Ω = [0, L]2 with L > 0 is a periodic torus.
We can compute et∆hu via fast Fourier transform (FFT) as follows. Denote by ∆h the discrete
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Laplacian operator with h = L
N and N ≥ 1 being an integer. We use the following convention for

FFT:

uj =
∑

−N
2
<kx,ky≤N2

ûk e
2πi
N

j·k, (4.1)

ûk =
1

N2

N−1∑
jx,jy=0

uj e
− 2πi

N
j·k, (4.2)

where j = (jx, jy) and k = (kx, ky). We have

(∆hu)j =
ujx,jy+1 + ujx,jy−1 + ujx+1,jy + ujx−1,jy − 4ujx,jy

h2
. (4.3)

Clearly

(∆̂hu)k = wkûk, −N
2
< kx, ky ≤

N

2
, (4.4)

where

wk = h−2

(
2 cos

(
2π
kx
N

)
+ 2 cos

(
2π
ky
N

)
− 4

)
. (4.5)

It follows that

̂(SL(τ)u)k = ̂(eε2τ∆hu)k = eε
2τwk ûk, −N

2
< kx, ky ≤

N

2
. (4.6)

Taking the inverse fast Fourier transform (IFFT) then produces the numerical values of SL(τ)u
on the real side.

Similarly we compute e−ε
2τ∆u in the definition of modified energy by taking the IFFT of the

following equation

̂(e−ε2τ∆hu)k = e−ε
2τwk ûk, −N

2
< kx, ky ≤

N

2
. (4.7)

In the following numerical tests, we use the above spectral method for space discretization.

4.1. 2D Allen–Cahn with polynomial potential. Consider the AC equation (2.34) with
polynomial potential, where ε = 0.1 and the 2π-periodic domain Ω = [0, 2π]2. We take the initial
data u0 as

u0(x, y) = 0.05 sin(x) sin(y). (4.8)

We use N ×N = 512× 512 Fourier modes for the space discretization.
Since the exact PDE solution is not available, we take a small splitting step τ = 10−4, to

obtain an “almost exact” solution uex at time T = 20. Then, we take several different splitting
steps τ = 1

10 × 2−k with k = 0, 1, . . . , 4 and obtain corresponding numerical solutions at T = 20.
The `2-errors between these solutions and the “almost exact” solution are summarized in Table
2. Reassuringly, it is observed that the convergence rate is about 2, i.e. the scheme has second
order in-time accuracy.

Table 2. `2-errors of numerical solutions to the AC equation (2.34) with polyno-
mial potential at time T = 20 for different splitting steps.

τ 1
10

1
20

1
40

1
80

1
160

`2-error 9.367× 10−4 2.345× 10−4 5.865× 10−5 1.466× 10−5 3.665× 10−6

rate – 1.998 1.999 2.000 2.000
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Figure 3. Standard energy En and modified energy Ẽn w.r.t. time for the Strang
splitting method, with splitting step τ = 0.01 and number of Fourier modes 512×
512.

In Figure 3 we plot the standard energy versus the modified energy as a function of time. The
time step is τ = 0.01. It is observed that the standard energy and the modified energy coincide
approximately, and they both decay monotonically in time.

4.2. 2D AC with the logarithmic potential. Consider the AC equation (3.1) with logarithmic
potential, where ε = 0.01, θc = 1 and θ = 1

4 . The spatial domain is the two-dimensional 2π-

periodic torus Ω = [0, 2π]2. We take the initial condition u0 as

u0(x, y) = 0.5
[
χ
(
(x− π)2 + (y − π)2 ≤ 1.2

)
− 0.5

]
, (4.9)

where χ is the characteristic function. We employ the RK-based Strang splitting method (3.12) to
solve this equation. The tolerance threshold of the Newton iterative solver is set to be 10−12. We
use the standard Fourier spectral method with 512×512 Fourier modes for the space discretization.

As a first step, we test the convergence rate of the RK-based Strang splitting method. In Table
2, we show the `2-errors of the numerical solution at T = 1, where the parameter a in the PR-RK

method is set to a = 1 +
√

2
2 . As before, the “exact” solution is taken as the numerical solution

when τ = 10−4. It can be observed that the convergence order is about 2.

Table 3. `2-errors of numerical solutions at time T = 1 to the AC equation with
logarithmic potential (3.1) for different splitting steps, computed by the RK-based

Strang splitting method with a = 1 +
√

2
2 .

τ 1
10

1
20

1
40

1
80

1
160

`2-error 2.245× 10−2 4.935× 10−3 1.160× 10−3 2.815× 10−4 6.933× 10−5

rate – 2.186 2.088 2.043 2.022

Secondly, we test the convergence rate for an interesting case of a = 1
2 +

√
3

6 , where the PR-RK
method in Table 1 becomes the Crouzeix’s third order RK method. In this case the approximation
error of nonlinear solution operator becomes O(τ4), i.e.,

SN (τ)ũn = S̃N (τ)ũn +O(τ4). (4.10)
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On the other hand, the overall error of the method (3.9) is still second order in time. Interestingly,

the numerical results in Table 4 show that the convergence rate for a = 1
2 +

√
3

6 appears to be

higher than the corresponding case of a = 1 +
√

2
2 in Table 3. This is probably due to the

inaccuracy of the reference solution which was taken as the τ = 10−4-almost exact-solution.

Table 4. `2-errors of numerical solutions at time T = 1 to the AC equation with
logarithmic potential (3.1) for different splitting steps, computed by the RK-based

Strang splitting method with a = 1
2 +

√
3

6 .

τ 1
10

1
20

1
40

1
80

1
160

1
320

`2-error 9.440× 10−5 1.132× 10−5 1.392× 10−6 1.750× 10−7 2.286× 10−8 3.302× 10−9

rate – 3.060 3.023 2.992 2.936 2.792

Finally, we test the maximum principle and the energy dissipation of the RK-based Strang

splitting method. We set a = 1 +
√

2
2 and τ = 0.01, so that the restrictions in Theorem 3.1 and

3.2 are satisfied. Numerical solutions up to t = 10 are illustrated in Figure 4. It can be observed
that ‖u‖∞ is always less than u∗ ≈ 0.99933, i.e., the maximum principle holds. In Figure 5, we
plot the standard energy En w.r.t. time which clearly decays in time. Note that the modified
energy E

n
is implicit in this case and is not plotted here.

4.3. Seven circles. Consider the AC equation (3.1) with ε = 0.1, θc = 1 and θ = 1
4 . The

domain is the two-dimensional 2π-periodic torus Ω = [0, 2π]2. The initial condition consists of
seven circles with centers and radii given in Table 5:

u0(x, y) = −1 +
7∑
i=1

f0

(√
(x− xi)2 + (y − yi)2 − ri

)
, (4.11)

where

f0(s) =

{
2e−ε

2/s2 if s < 0,

0 otherwise.
(4.12)

Table 5. Centers (xi, yi) and radii ri in the initial condition (4.11).

i 1 2 3 4 5 6 7

xi π/2 π/4 π/2 π 3π/2 π 3π/2

yi π/2 3π/4 5π/4 π/4 π/4 π 3π/2

ri π/5 2π/15 2π/15 π/10 π/10 π/4 π/4

We use the RK-based Strang splitting method with a = 1 +
√

2
2 and τ = 0.01 to solve this

equation with the Newton iterative solver. To achieve mediocre accuracy the tolerance threshold
for the Newton iteration is set as 10−12 which is close to the machine precision. We employ the
spectral method with 512×512 Fourier modes for the space discretization. The evolution of phase
field is illustrated in Figure 6, where the annihilation of the circles take place gradually in time.
The corresponding energy evolution is recorded in Figure 7.
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Figure 4. Numerical solution to the AC equation with logarithmic potential
computed by the RK-based Strang splitting method with splitting step τ = 0.01
and number of Fourier modes 512×512. umax denotes the maximal absolute value
of u.

Figure 5. Standard energy w.r.t. time for the RK-based Strang splitting method
(3.12) with splitting step τ = 0.01 and number of Fourier modes 512× 512.
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Figure 6. Numerical solution of the seven circles example computed by the RK-
based Strang splitting method with splitting step τ = 0.01 and number of Fourier
modes 512× 512. umax denotes the maximal absolute value of u.

Figure 7. Standard energy w.r.t. time for the RK-based Strang splitting method
(3.12) in the seven circles example with splitting step τ = 0.01 and number of
Fourier modes 512× 512.
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5. Conclusion

In this work we investigated a class of second-order Strang splitting methods for Allen-Cahn
equations with polynomial and logarithmic nonlinearities. For the polynomial case we compute
both the linear and the nonlinear propagators explicitly. Unconditional stability is established for
any time step τ > 0. For a judiciously modified energy which coincides with the classical energy
up to O(τ), we show strict energy dissipation and obtain uniform control of higher Sobolev
norms. For the logarithmic potential case, since the continuous-time nonlinear propagator no
longer enjoys explicit analytic treatments, we adopted a second order in time two-stage implicit
Runge–Kutta (RK) nonlinear propagator together with an efficient Newton iterative solver. We
establish a sharp maximum principle which ensures phase separation. We prove a new modified
energy dissipation law under very mild restrictions on the time step. The methods introduced
in this work can be generalized to many other models including nonlocal Allen-Cahn models,
Cahn–Hilliard equations, general drift-diffusion systems and nonlinear parabolic systems.
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