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Abstract

To derive the hidden dynamics from observed data is one of the fundamental but also chal-
lenging problems in many different fields. In this study, we propose a new type of interpretable
network called the ordinary differential equation network (ODENet), in which the numerical
integration of explicit ordinary differential equations (ODEs) are embedded into the machine
learning scheme to build a general framework for revealing the hidden dynamics buried in mas-
sive time-series data efficiently and reliably. ODENet takes full advantage of both machine
learning algorithms and ODE modeling. On one hand, the embedding of ODEs makes the
framework more interpretable benefiting from the mature theories of ODEs. On the other
hand, the schemes of machine learning enable data handling, paralleling, and optimization to
be easily and efficiently implemented. From classical Lotka-Volterra equations to chaotic Lorenz
equations, the ODENet exhibits its remarkable capability in handling time-series data even in
the presence of large noise. We further apply the ODENet to real actin aggregation data, which
shows an impressive performance as well. These results demonstrate the superiority of ODENet
in dealing with noisy data, data with either non-equal spacing or large sampling time steps over
other traditional machine learning algorithms.
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1 Introduction

At every moment, massive data has been collected through diverse human activities. And revealing
the hidden dynamics from those collected time-series data is one fundamental goal of science. There
are many “standard” theories to describe such dynamics, among which differential equations are
probably the most successful one. For example, Newton’s equation F' = mZ combined with the law
of universal gravitation gives a simple and correct picture to explain the complicated motions of
planets and the sun and even the existence of Pluto more than half a century before its discovery.
However, many new fields, like psychology and social science, still lack rigorous and quantitative
theories/equations until now. Therefore, how to construct effective models from a data-driven point
of view becomes an interesting topic.
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Unfortunately, the time-series data in record usually contain a lot of missing points and even
flaws. They are also highly noisy, with useful signals deeply buried. These facts make analyzing
time-series data and extracting useful models or principles hard and tricky. A most famous example
is the explanation of planetary orbits in the solar system. Even though wrongly placing the earth at
the center, Claudius Ptolemy was still able to explain the motion of planets and the sun by obscure
deferent and epicycle with certain accuracy. Only 1,400 years later, after the landmark works of
Copernicus, Kepler, and Newton, a much simpler and more correct picture could be gradually
established and accepted. This story highlights the ambiguity and difficulty behind data-driven
modeling.

In recent years, the analysis of time-series data has already become a specific subject [1]. Espe-
cially in the presence of big data, plenty of machine learning algorithms, like recurrent neural network
(RNN) [2], long short-term memory (LSTM) [3], etc., have been widely applied to various fields.
RNN, which uses its internal state network to store representations of recent inputs and reuse the
output to process the time series, shows a dramatic different “memory” property and network flow
structure from other supervised neural networks. LSTM solves the problems of vanishing gradients
in RNN by using the so-called “long term” and “short term” memories. Though RNN and LSTM
are very successful in applications, their performance in dealing with time-series data collected from
physical processes are not very promising [4]. By adding short-cuts to jump over some layers, the
ResNet[5] can avoid the problem of vanishing gradients and shows better performances than classi-
cal deep learning networks. Those short-cuts can also be treated as some kind of “memory”, which
keeps the intrinsic properties unchanged during the learning procedure. Mathematically, the ResNet
is analogous to the numerical schemes of ODEs. This interesting connection leads to the so-called
continuous view of machine learning, which has been explored a lot from a mathematical point of
view [6, 7] and also been used for constructing new machine learning algorithms [8, 4].

Besides the above mentioned neural networks, there are many other attempts to extract dy-
namical equations from the time-series data in the past years. For example, Bongard and Schmidt
used symbolic regression to find nonlinear differential equations [9, 10, 11]. Kutz et al. proposed
a framework named “SINDy” by combining regression and sparse identification to reveal nonlinear
dynamical systems [12]. To stabilize the performance of sparse identification in the presence of
noise, some technical schemes for differential operations were proposed [13, 14]. Recently, Dong et
al. [15, 16] use kernels in CNN which mimic the differential operators to reveal the PDE dynamics
from the training data.

Inspired by the great success of modern machine learning algorithms, in the current study we
aim to reveal the hidden dynamics from the time-series data without prior knowledge. Different
from most previous works that focus on the efficiency and accuracy of predictions of neural networks
with little or no physical understandings, we are more interested in deriving the explicit governing
equations from the time-series data, which is done under the help of a new type of network, called the
ordinary differential equation network (ODENet). By combining the optimization structure of neural
networks with symbolic regression, sparse identification, and signal-noise decomposition, ODENet
exhibits an outstanding ability in deriving the explicit ODE models for population dynamics mod-
eled by Lotka-Volterra equations in presence of large noise, strange-attractors of Lorenz equations
in the chaotic region, as well as the hidden actin growth dynamics and molecular mechanisms base
on real experimental data under distinct conditions. In particular, through these studies our frame-
work has been proven to be robust, noise-tolerant, immune to unequal time steps of training data,
and therefore ODENet is quite suitable for time-series data analysis and data-driven mathematical
modeling.



2 The architecture of ODENet

There are two ways to interpret the dynamics behind the time-series data. The usual machine learn-
ing algorithms, like LSTM and deep learning, tend to use a vast neural network containing a large
number of free parameters to achieve the goal of representing a complex mapping function that best
fits the data set. Through iterative training and optimization, the data correlation is transformed
into very complicated and thus unexplainable relations among network nodes. In contrast, regres-
sion and sparse identification methods adopt an alternative view, which is more concerned about the
construction of explicit relations or dynamic differential equations for a globally fitting of the data
but only with a few parameters. Each way has its advantages and appropriate applicable regions.
Since we are more interested in the physical mechanisms and mathematical models behind the data,
the parts of the two ways are combined and realized through the ODENet in the current study.

As a modification of ResNet, the basic structure of ODENet (see Figure 1) mimics the numerical
solvation of ODEs with unspecified parameters to be learned from the data. Through iteratively
minimizing the difference between predicted time trajectories and training data measured by a
certain loss function, unknown parameters are optimized in such a way that the most suitable ODE
model for the given time-series data is explicitly specified.

Data Batching: To be concrete, the learning procedure of the ODENet begins with m ran-
domly selected points from the training data set, x;(to), for ¢ = 1,2,--- ,m, which will be used
as the starting points for integration. For each starting point, its following n successive data are
picked as labels. Till now, we have extracted m pieces of time-series data of length n + 1, i.e.
xl(to), .’131(t1)7 e xl(tn), .’Bg(to), mg(tl), s .’Bg(tn); teey, :Bm(to), azm(tl), s .’Bm(tn), which constitute
the batch shown in Figure 1b. In general, «,(¢;) is a d-dimensional vector, where index i represents
the i*" piece and index j represents the (j + 1)** point in the time-series data counting from the
starting one. Note t; —t;_1 may not necessarily be the same for different i € {0, 1,2,..,n}. However,
as large At will make the problem stiff while small At may be unable to provide sufficient infor-
mation for the dynamics, the time steps must be carefully adjusted in order to keep a well balance
between model accuracy and stiffness.

ODE Dynamics: Next, referring to each piece of data in the batch, we suppose they satisfy
the following initial-value problem of a system of autonomous ordinary differential equations,

dx

z(to) = (z1(to), z2(to), -+, za(to))”.

(1)

This is the key assumption of our ODENet. Here, the starting point @(¢g) at to is taken as the initial
value. 0 stands for the unspecified parameters, which determine the explicit form of the right-hand
side terms, and will be addressed later. Next, above ODEs will be solved numerically by mutual
ODE solvers, like the Runge-Kutta method, whose numerical solutions at ¢1,--- ,t, are denoted as
Z(t1), &(t2), - &(t,) respectively, in order to distinguish from the labels @(t1), z(t2), - - x(t,).

Therefore, we actually adopt an integral method to try to predict the ODE dynamics starting
from x(tp) at to. Unlike most previous regression based methods, e.g. SINDy [12], our approach
minimizes the deviations from the training data x(¢1), z(t2), - x(t,) at time t1,to,- - ,t, instead
of the derivatives. We will come back to this point soon.

Approximation of Unknown Functions: Before turning to the description of the loss
function and optimization scheme, we emphasis here the structure of the right-hand side terms
f(x;0) = (f1, f2,--, f4)T, whose form completely determines the ODE dynamics in (1) and has to
be found out from the training data.
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Figure 1: The architecture of ODENet with key steps highlighted in the right columns. (a) shows the
basic flowchart of the training algorithm, (b) exhibits the structure of training data, and (c¢) rooms

in to show the data structure of one training piece in one batch, and (d) gives the mathematical
schemes of ODEs.



There are two different ways — the implicit and the explicit. The usual neural networks, espe-
cially deep neural networks, which show a great ability to approximate very complicated mapping
functions, in reality, belong to the former since they often contain multiple layers, tremendous nodes,
and connections with massive adjustable free parameters. In most cases, they are “black boxes” to
us. The implicit approach has been adopted by several groups previously and applied to MINIST
as an example [4, 8].

In the current study, as we are more interested in the dynamics and mechanism behind the
time-series data, we hope to derive the ODE model in an explicit way. To achieve such a goal, the
right-hand side terms f(ax; 6) are expanded through basis functions with corresponding coefficients 6.
Although the selection of proper basis function is quite tricky and problem dependent, polynomials
are among the most often used ones in practice. For the d-dimensional vector € = (z1, 22, ,zq)7,
the p*-order complete polynomials

{17I1,172,"' y Xy, L1X1,X1T2, " - 7175}
have M = (p‘;d) terms. So that we have
F(x;0) = 0A, (2)

where A = (1, 21,29, -+ , g, 121, T1T2, " - ,xZ)T is the complete set of pt"-order polynomial basis
with coefficients 8 = (6;;)ax -
Loss Function: By tuning free parameters 8, which specify the concrete form of ODEs, the
loss function
L(O:N) = @ — |2 + |0 (3)

is expected to be minimized. Here the first term characterizes the difference between the training
data and predictions, while the second term represents the sparsity requirement with p > 0 as
a hyper parameter. According to the Occam’s Razor, “plurality should not be posited without
necessity.” So it is expected that the components of @ should be as many zeros as possible, which
thus corresponds to the simplest model and also the smallest L1 norm. Here we may encounter
the L1 optimization problem. The autograd adopted in PyTorch uses subderivatives for calculating
gradients of L1 norm at the non-differentiable points. We refer readers to alternative new algorithms,
such as the Split Bregman Method [17], Coordinate Descent [18], Proximal Gradient Method [19]
and etc., which may offer a better performance on optimizing L1 norm than the subgradients.
Besides p, and additional threshold parameter v > 0 is adopted to accelerate the learning of
sparse models. Once a component of 6 is smaller than v, it will be forced to be zero in the remain
learning process. As a consequence, 7y should be carefully tuned to make a good balance between
model simplicity and fitting accuracy. Generally speaking, within a certain region, the larger the
threshold is, the faster the loss function will converge. However, once the threshold becomes too
large, the learning process has a very high risk of failing due to too many abandoned terms.
Parameter Optimization: The searching of the best 0 is a global optimization problem, which
can be done via mature learning algorithms in the neural network, for example, gradient descent
or stochastic gradient descent combined with backward propagation algorithms [20]. Especially in
PyTorch, this can be simply done by an integrated autograd library. Once the forward flow is con-
structed, the backward flow will be automatically built by Pytorch [21]. It should be noted that
autograd is an automatic differentiation method, whose computational graph will become too large
and make the problem computationally very expensive once we want to simulate the system for
a long time. To avoid this difficulty, we have to look into the problem of stiffness, which is quite
often encountered in numerical simulations. Finally, repeating the above procedure iteratively until



the loss function does not decay efficiently anymore or less than a threshold, we finish the learning
procedure of ODENet, which is summarized through pseudocodes as below.

Algorithm 1: Pesudocode of ODENet (PyTorch)
T

Input: time-series data x(0), z(t1),- -, x(t,), where = (z1,22, -+ ,xq)" .
Output: d-dimensional first order ODEs % = f(=,0).

initialize parameters 0;

initialize hyperparameters: threshold_L, threshold_0, m,n;

while L > threshold_L do
// Construct one batch
select m-length intervals from m random positions for a batch;
batch < [[w(lh :l:%, T ’33711]’ [w(QJ’ :I:%, T ,:Bi], B [wz)n’w{n’ U 7wnmﬂ;
batch_t < [[t(%’t%v o vtvlz]v [t%ﬂﬁ’ e ,t%], T [tgnv 11n’ U 7t:ﬂ];
batch_init < batchl:, 1];
batch_label < batchl:,2 :;
batch_size < m;
L+ 0;
for i «+ 1 to batch_size do
// Compute the predictions based on batch_init

pred[i,:] < ODESolve(batch_init[i], batch_t[i,:], 6);
// The 0 matrix should be sparse matrix
L + L+ ||Abs(pred][i,:] — batch_label[i,:])||2 + 1]|0]1;
end
0.grad < % by BP algorithm;
Update parameters 6 by Adam methods[22]; // Set 6;; which is small enough to be zero
010 < v] + 0;
end

Stiffness Problem: It is noted that we put no constraint during the step of data selection.
On one hand, this provides great facility in dealing with real data; on the other hand, it also leaves
us in danger of facing stiffness problems from time to time during numerical simulations, which
becomes especially outstanding when linear combinations of high-order polynomials are taken as the
right-hand side terms of an ODE system.

According to the general knowledge of ODE numerics, we suggest the following ways for dealing
with the stiffness problem. First, divide long time trajectories of the training data set into many
short pieces. And thus each piece will contain only a few time steps, which could be easily solved by
classical gradient methods implemented in PyTorch. Second, towards the ODE solver, we suggest
using self-adaptive and/or implicit ODE solvers, such as dopri5 which was designed for solving
stiff cases for the best [23, 24]. Third, instead of arbitrarily setting parameters (coefficients of the
polynomial basis) through random number generators, regression methods can be introduced to
make a reasonable initial guess on the parameters [12]. Last, for recent advances in the direction
of multiscale modeling methods combined with ODE or PDE based neural networks, which may
provide an alternative solution to the stiffness problems, see e.g. Ref. [25, 26].

Integral v.s. Differential: One significant feature of the ODENet from previous regression
based methods like SINDy [12] is that our approach is based on an integration of explicit ODEs
along the time trajectory, while theirs [9, 10, 12] are all based on differentiation between neighboring
points. To be concrete, in our approach the data points on a time trajectory are predicted based on

an integral solution of the ODE model, i.e. z(f) = ftto f(z(7);0)dr + (o). The loss function is



designed to minimize the difference between the predicted () and real ones. In contrast, according
to the methods reported in Refs. [9, 10, 12], what they actually tried to minimize is the difference
between the function f(x(7); 0) on the right-hand side of (1) and the time derivative &(t) = w
calculated from the training data. Clearly, the latter is a kind of differentiation methods.

The differentiation methods are simple and straightforward, easy for implementation, numerically
fast and efficient, and suitable for high-dimensional complicated dynamics. In comparison, the
integral methods enjoy advantages like more stable against faults and flaws in data, more noise-
tolerant, able to endure data with large time steps, etc.

Noise: As we have discussed in the introduction, real data may have noise, flaws and faults. To
deal with this issue, we take a brutal method here by incorporating the strength of noise as learning
parameters too. Suppose there is a finite time series y(t) € R? with noise e(t) = ¢||y||son, where
¢ denotes the noise strength, ||y|| is the maximal value in y, and n ~ N(0,1) are d-dimensional
normally distributed random variables. ODENet is proposed to extract the following autonomous

system of ODEs
dx

5 = F(@:0), ()= y(t) —e(t) R (4)

And we can apply the same process as before to extract the governing dynamics from the data.
Apparently, at this time, the loss function depends on e(t) too, i.e. L = L(0,e(t);u) = ||& + & —
yll2 + p]|0]]1, where & and & denote the output of ODENet and learned noise respectively. Although
directly incorporating noise as learning parameters may cause a big increment in the computational
cost, it allows the treatment of large noise or color noise in principle. If the noise is relatively small,
it is more appropriate to try to learn the original data directly and then check its robustness against
noise. Interested readers may refer to Refs. [13, 14] for alternative solutions.

3 Numerical experiments

In this section, we are going to apply the ODENet to the study of Lotka-Volterra equations in diverse
parameter regimes and Lorenz equations in the chaotic regime. Through these examples, the power
and advantage of ODENet could be demonstrated.

3.1 Lotka-Volterra equations with and without large noise

The Lotka-Volterra (LV) equations, also known as predator-prey equations, were first introduced by
Lotka [27] and Volterra [28] in the 1920s to describe the population dynamics of preys interacting
with predators in ecological systems. LV equations have been widely applied to ecological balance
[29], environmental protection [30], disease prevention and control [31], etc. A very general form of
LV equations including species growth and death, intraspecies and interspecies competition reads

dz
7 = Onw+ Crawres + Ciaad,
(5)
dz
o = Cawa + Copras + Cisa

It’s easy to see above equations have four fixed points, i.e. (0,0), <_%;’0)’ ( ,—%) and

(—012*021_011*023 —C“*C”_C”*C?l) under the condition Ciz x Caz # Ci3 X Ca3,C13 # 0 and

C12%C22—C13%Ca3°  C12%C22—Ci13%Ca3
Ca3 # 0. And the dynamic behaviors of LV equations around these fixed points (z7,x3) are fully



specified by the Jacobian matrix (its eigenvalues to be exact)

J— Ci1 + Craz2 + 2C1311 Cramy 6

Caaxy Co1 + Coozy +2C9322 | (. .y (6)
(21.23)

which can be roughly classified into three basic types — the extinction of one species (over damped),

or the evolution to an equilibrated coexistence (spiral), or to a continuing oscillation (limit cycle)

[32].

P t
LV equations arameters
C11 Ci2 Ci3 Co Ca2 Coas
Model 1.5 -1 -1 -1 1 0
Over
damped ~ ODENet 1.49 -9.87x107"  -9.94x107" -1.00 9.95x107" 0
1% noise  SINDy#1 — — — — — —
SINDy#2 1.50 -1.00 -1.00 -1.00 1.00 0
Model 2 -1.1 -0.1 -1 -0.1 0.9
571)“31, ODENet 1.99 -1.11 -9.91x107% -9.87x107! -1.06x107' 9.02x107*
© noise SINDy#1 - - o o o o
SINDy#2 2.18 -8.54x107"  -1.04x107' -9.89x107' -1.01x107" 8.65x107!
Model 1 -0.05 0 -1 0.03 0
Limit
cycle ODENet 9.97x107" -4.98x1072 0 -1.00 2.99x107? 0
1% noise  SINDy#1 1.00 -4.98x1072 0 -9.98x1071  3.01x1072 0
SINDy#2 1.01 -4.99%1072 0 -9.95%x1071  3.00x1072 0
Model 1 -0.05 0 -1 0.03 0
Limit
cycle ODENet 9.69x107" -4.89x107> 0 -9.82x107"  2.96x107? 0
10% noise  SINDy#l 9.83x107' -5.04x1072 0 -1.00 3.02x1072 0
SINDy#2 1.00 -4.99x 1072 0 -9.97x107!  3.00x1072 0

Table 1: Comparison of ODENet and SINDy on model coefficients for three typical dynamics of
LV equations. For comparison, different data sampling time steps are adopted. For ODENet and
SINDy#1, At = 0.01, and for SINDy#2, At = 0.001. Instead of 12 coefficients for a 2-order complete
polynomial basis, only 6 coefficients corresponding to those in (5) are listed for simplicity. No
redundant coefficients have been learned by ODENet, in contrast to SINDy. The symbol “—”
indicates the failing in deriving a reasonable model from the given data set. In this study, SINDy
has been performed under different hyper-parameters for 50 independent runs. The best result is
picked out and shown in the table.

Based on the above analysis, the ODENet is applied to learn the dynamics of the LV model (5)
within different coefficient regimes, see Figure 2. As we do not want to introduce any prior knowledge,
the right-hand side terms of the ODE system are expanded through a complete polynomial basis.
Up to the second order, we have twelve free parameters to learn. The detailed setup can be found
in Box 1.

As summarized in Table 1, our ODENet shows a competitive performance with the state-of-
the-art methods, e.g. SINDy [12]. In fact, for all three typical LV dynamics, all zero terms in
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Figure 2: The accuracy of ODENet predictions in both time domain (left column) and phase space
(right column) in comparison with exact solutions of LV equations. 1% white noise is added.



Parameters

Limit cycle

Ci1 Ci2 Ci3 Cay Caz Cas
Model 1 -0.05 0 -1 0.03 0
Methods At
ODENet 0.001 9.93x107 ¢ -5.00x1072 0 -1.00 3.00x1072 0
SINDy 0.001 1.01 -4.99%1072 0 -9.95x10~* 3.00x10~2 0
ODENet 0.01 9.97x107! -4.98x1072 0 -1.00 2.99%x10~2 0
SINDy 0.01 1.00 -4.98%1072 0 -9.98x107 ¢ 3.01x1072 0
ODENet 0.1 9.82x107 ¢ -4.94%1072 0 -1.00 3.01x1072 0
SINDy 0.1 5.87x1071 -5.55%1072 0 0 1.83x1071 0
ODENet 0.5 9.90x107* -4.99%1072 0 -1.02 3.08x1072 0
SINDy 0.5 — — — — — —

Table 2: Influence of data sampling time step on the accuracy of ODENet and SINDy. 1% white
noise is added to the limit cycle case of LV equations. Again, redundant coefficients besides the six
ones in the given model (5) are omitted.

- Box 1: Lotka-Volterra models \

Goal: Find the correct Lotka-Volterra (LV) model from the given time-series data.

Data: Simulated time trajectories of LV equations representing different types of ODE dynam-
ics in phase space, combined with either small (1%) or large (10%) white noise (with respect
to the largest amplitude of data).

Setup: Complete polynomials up to the second order A = {1, 1,22, 23, ¥122, 23} with twelve
adjustable coefficients @ = (0;;)2x¢ are adopted to approximate function f(x). For large noise,
the noise term e(t) in (4) is added as learning parameters too.

Learning: Optimize parameters € and e following the procedure of Algorithm 1. Parameters
0;; less than the threshold 7 is set as zero to remove model redundancy. Regularization param-
eter y is decreased from 1073 to 10~°, while threshold 7 is increased from 10~™* to 102 with
iterations.

Results: The correct form of LV models is reproduced with most terms as zeros. The coeffi-
cients of remaining terms are close to their expected values, with the maximal relative errors
less than 6%. The distribution of noise is almost correctly predicted.
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the LV model in (5) has been correctly picked out by the ODENet through sparse identification.
Furthermore, the maximal relative errors between the learned ones and their true values of the
remaining nonzero coefficients are less than 6%. In contrast, SINDy fails to identify the redundant
terms in the spiral and limit-cycle cases, whose performance becomes even worse as the data sampling
time steps are increased to 0.01.

Even in the presence of large noise, for example in this case up to 10% white noise with respect
to the maximal signal value are added to the data (see Fig. 3), our ODENet still shows an aston-
ishing ability in finding out the correct governing equations and revealing the hidden deterministic
trajectories which are deeply buried inside noise-spoiled data. The learned noise correctly fits into
a Gaussian distribution as expected, though rare events with large displacements are overestimated
in the current case, as pointed out in Fig. 3c. Further studies show that the deviation from the
standard Gaussian distribution disappears as the noise level is lowered (data not shown). Most im-
portantly, in ODENet, no extra unwanted coefficient will be included in the model as a consequence
of sparse identification, even for the flawed and noisy data. This fact is clearly stated through the
zero values of C13 and Cbg in the fifth row of Table 1 for LV equations with large noise.

Compared to difference-based methods, the integration based methods are more tolerant to large
time steps in sampling data, as we have claimed. By gradually increasing the sampling time steps of
the training data set in the limit-cycle case of LV equations, it is expected that revealing the ODE
dynamics from the sample data becomes harder and harder, as less information about the system
is included. So that it is not astonishing to see that results of SINDy become untrustable when
At > 0.1. However, our ODENet still works quite well and shows high accuracy in revealing the
dynamics even when At = 0.5 (see Table 2).

3.2 Lorenz equations in chaotic regimes

In the 1960s, American meteorologist Lorenz proposed a simple mathematical system constituted
by three ordinary differential equations,

dd% = Crir1 + Craza,
2 = Cyi21 + Coawz + Coszyas, (7)

d133

72 = Cs123 + Czaw170.

for describing atmospheric turbulence [33]. Lorenz equations became very famous for its chaotic
solutions. For a typical parameter combination C1; = —C1o = 10,C%; = 28, —C50 = 8/3, —Cao =
—Co3 = (31 = 1, the Lorenz system has three equilibrium points, i.e., (0,0,0), (6\/5,6\5,27)
and (—G\f ,—6v/2, 27). Numerical simulation shows that typical trajectories of (7) follow a strange
attractor in a butterfly shape in the phase space, which first makes a few loops around (6\/§ ,6v/2, 27) ,
then jumps to loops around (76\/5, —6v/2, 27), and then come back to the point (6\/5,6\@, 27),
again and again (see Figure 4). In this case, solutions of the Lorenz equations are sensitive to
disturbance in the initial conditions, which is widely known as the “butterfly effect” in the literature.
Therefore, to catch the charming butterfly from chaotic data is an attractive task, which makes the
Lorenz system as a benchmark problem for testing the accuracy of numerical schemes as well as the
performance of machine learning algorithms.

To increase the learning difficulty, we introduced white noise with magnitude up to 0.5% of the
maximal signal data, though no disturbance is included in the initial values. According to the results
summarized in Table 3 and Figure 4, ODENet correctly reproduces the Lorenz attractor, and only
a small fraction of trajectories are mispredicted, which is inevitable in the study of chaos.
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Figure 3: (a-b) Predictions of ODENet on LV equations in the presence of large external noise (up
to 10% of the highest magnitude of the data). Distributions of learned noise in (c¢) x1 and (d) z2
are compared to the real ones.
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- Box 2: Strange attractors of Lorenz equations N

Goal: Predict the strange attractors of Lorenz equations.

Data: Time trajectories of Lorenz equations in the chaotic regime with 0.5% white noise
(with respect to the highest amplitude of data) added.

Setup: Complete polynomials up to the second order A =
{1, 21,22, 73,23, 7129, 7173, 3, Tox3, 73} Wwith thirty adjustable coefficients 8 = (0:i5)3x10
are adopted to approximate function f(x). As the orbits are very sensitive to initial values and
model coeflicients, they are divided into many small pieces to minimize predictive errors.
Learning: Parameters 6 are optimized according to the procedure of Algorithm 1. Sparsity
requirement is taken. The regularization factor u is set as a decreasing hyper-parameter from
10~% to 10~8 with iterations. The threshold ~ is an increasing parameter from 10~% to 1073
to remove redundant terms.

Results: The correct form of Lorenz equations are reproduced with the maximal relative
errors of coefficients less than 1%. The strange attractors are correctly predicted even in a
long time.

|\ J
Parameters
Lorenz
C11 Ci2 Ca1 Caa Cas C31 Cso
Model -10 10 28 -1 -1 -8/3 1
ODENet -9.989 9.982 28.02 -1.008 -1.000 -2.667 1.000
SINDy -9.899 9.976 26.72 -3.965x107! -9.747x107 ! -2.447 9.997x107*

Table 3: Comparison on the accuracy of ODENet and SINDy for Lorenz equations. For simplicity,
only 7 non-zero parameters corresponding to the true model in (7) are listed, while the rest 23
parameters are all zeros for ODENet. There is an extra term —5.115 in the third equation for
SINDy.

For simplicity, in the above two examples only the second-order complete polynomials have been
used to construct the initial model for the ODENet. And luckily the classical LV and Lorenz equa-
tions all fall into this category. If higher-order basis functions are adopted, the correct dynamics, in
general, could also be revealed, but at a price of larger computational costs and higher risks of facing
stiffness problems. This issue has been tested on the LV equations with respect to third-order and
fourth-order complete polynomial basis, in which all coefficients for high-order polynomials (above 2)
have been correctly eliminated by choosing suitable threshold parameters (data not shown). And in
the case of Lorenz equations, the ODENet works in second-order to fifth-order complete polynomial
bases but failed to find the correct answer when the right-hand side terms were expanded higher
than fifth-order polynomials, probably due to too many redundant terms. We call the attention of
readers to the trade-off between the accuracy and efficiency of our method.

4 Application to the kinetics of actin aggregation

Actin aggregation into microfilaments is responsible for the contraction of muscle cells and the
motility of other cells. In the 1960s, the first analytical molecular model was proposed by Oosawa

13
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Figure 4: Predictions of ODENet on Lorenz equations in the chaotic regime.
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Parameters

filaments
Qg %} (e %} asg Oy a5
actin in KCl  4.62x10~! -2.16x10~! -549x10~! 5.70x10~2 1.10x10~! 7.87x10!
actin in MgCl, 0 -1.41x1072 9.20x10~3 -3.75x1072 2.28x10~! 3.10x10!

Table 4: Learned coefficients for data-driven model of actin aggregation.

et al. [34], which stated the mechanism of actin aggregation includes three basic steps — primary
nucleation, elongation, and fragmentation. Primary nucleation is an initialization step to generate
new growth seeds through a self-organization process. Then small seeds grow into long actin fila-
ments by elongation, meaning monomeric actions are added to the filament ends sequentially. The
actin aggregation could be dramatically sped up by fragmentation, through which massive new seeds
are generated by breaking long filaments into two shorter pieces without involving primary nucle-
ation. It should be mentioned, besides those forward processes for actin growth, the corresponding
inverse processes, like monomer dissociation and fibril annealing, may also make a non-negligible
contribution to maintaining the equilibrium distribution of actin filaments. Based on the theory of
chemical kinetics, the above picture can be explicitly transformed into a mathematical language of
ordinary differential equations, which establishes a direct connection between experimental data and
molecular mechanisms of actin growth.

Ezxperimental data: In this study, we re-examine the classical experiments done by Wegner
et al. [35], which studied the phenomenon of actin aggregation under two distinct conditions.
One is varied concentrations of monomeric actins for my,; = 7.4,9.6,12.4,14.2,16.2,18.4, 20.5uM
incubated with 40mM KCl (Figure 5a), the other is my, = 6.7,8.5,11.5,14.9,17.3,20.3,22.9uM
actins incubated with 0.6mM MgCl, and 0.5mM EGTA (Figure 5b). The red circles in Figure 5a
and 5b indicate the mass concentration of actin filaments M (¢) which is measured through the ThT
fluorescence intensity under seven different concentrations of monomeric actins. Clearly, the data
are not equally spaced, and the sampling time step At is not very small.

To explore the influence of pre-knowledge (or physical insight) on machine learning-based mod-
eling, here we adopt two different setups — one is purely data-driven, the other is physical-based,
which, as we will see, leads to models in distinct forms, but all fit the data quite well.

Purely data-driven model: Firstly, we study the pure data-driven modeling without including
any pre-knowledge. To account for the concentration dependence, an additional variable — the actin
monomer concentration m(t) = myo — M(t) is introduced besides M (t). As a consequence, we need
to learn two ordinary differential equations from the data, i.e.

dM

T =g+ a1 M + agm + a3M2 + agmM + a5m2,

o (8)
a = —apg— a1 M — asm — a3M2 — aymM — asm?.

Corresponding to reactions up to the second order, terms on the right-hand side are also kept up to
the second-order polynomials of M and m. Due to the laws of mass conservation, i.e. M (t)+m(t) =
Myot, five free parameters in the second equation of m can be completely fixed. It is further noted
that, since in the current case at least seven concentrations of actin are considered, a global fitting
of data with different m;.; at the same time is essential for the learning procedure of ODENet.
Beyond the good agreement between ODENet predictions and experimental data as shown in
Figure 5, the learned ODE parameters for actin aggregation given in Table 4 are worthy of further
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clarification, especially their physical meanings. Terms ag, asm and asm? together account for
primary nucleation within two monomers. «a; M represents the process of degradation (or monomer
dissociation). Since it makes a negative contribution to the filament concentration, «; is always
negative as expected. The term aymM comes from actin filament elongation, which depends on not
only the monomer concentration but also the filament concentration. Only the physical meaning of
asM? is not so straightforward, which may originate from some complicated interactions between
filaments, like annealing or clumping. However, based on the coefficients listed in Table 4, we cannot
tell the difference between actin incubating with KCIl and with MgCl,. These limitations motivate
us to consider a more physical-based model.

(b) 5|

151

10 1

Time/h

Figure 5: Kinetics of actin aggregation in (a) KCI and (b) MgCls solutions respectively. Red circles
stand for experimental data in [35], blue solid lines for predictions of the data-driven model in (8),
green dashed lines for the physical-based model in (9).

Physical based model: According to the general theory for actin aggregation [36], besides the
mass concentrations of actin filaments and monomers, the number concentration of actin filaments P
also plays a non-negligible role in constructing a complete description of actin growth. So instead of
two ODES, in principle we should consider three coupled equations as the “correct” model. However,
as the experimental data contain no direct information on P, the variable P is actually a hidden
one. If we do not write it out explicitly, there is no way to learn it in a purely data-driven modeling.
Up to the second-order polynomials, we have

dP

o ap + aqm + asm? + asmM + au P 4+ asM + agP? + az PM,

dM 9

= Qo + arm + 2aom® + azmM + agM + agmP + a1 P, (9)
dm 9

a = —ag — aym — 2asm” — agmM — agM — agmP — aqoP.

Here those terms without any physical meaning have been removed, and only eleven free coefficients
are kept instead of thirty. The remaining terms all have clear physical interpretations. To be exact,
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Parameters

filaments
aq (&%) a3 Q4 &%) @10
actin in KCl ~ -5.12x1072 7.98x1073 1.16x1072 -5.33x10~! 7.39x10"! -8.82x107!
actin in MgCl, 2.15x1072 0 2.3x1072 0 1.19x10"  -2.97x10!

Table 5: Learned coefficients for physical-based model of actin aggregation. Unmentioned coefficients
are all zeros.

terms ag, a;m and asm? stand for primary nucleation, azmM for secondary nucleation, ay P and
agM for fibril degradation, as M for fragmentation, cig P2 for annealing, oy PM for clumping, agmP
for elongation and a9 P for monomer dissociation respectively.

The hidden variable P plays a key role in the physical-based model. But how to learn it is a
highly non-trivial task. Since we cannot make a direct comparison between the predicted P(t) with
its true values, it will not appear in the loss function. But as M (¢) depends on P(t) according to (9),
optimizing the predictions on M (¢) will also lead to an optimization of predicted P(t) simultaneously,
as long as the solution of the problem is a fixed-point (it is a general belief, though we are unable to
prove its convergence). To help the convergence, the initial values of P(t) were estimated through
the approximation dM/dt =~ agmP, as we regard elongation as the dominant process. Without a
proper guess on the initial values, the learning process will fail with a very high probability.

During the learning procedure of ODENet, terms o, asM, agP?, oy PM, and agM are elim-
inated by sparsity requirement, indicating the corresponding processes may not be essential for
modeling. The remaining terms listed in Table 5 suggest a clear molecular mechanism for the actin
aggregation, including primary nucleation (indicated by a;m and asm?), elongation (agmP), sur-
face catalyzed secondary nucleation (agmM ), monomer dissociation (a19P) and degradation ayP.
Among them, the first three processes are dominant for microfilament growth, while the latter two
are responsible for maintaining the equilibrium state. Further comparing the model coefficients
learned from ODENet, the elongation rate for actin aggregation in KCl solution is much smaller
than in MgCl, solution, suggesting the former process is dominated by primary nucleation, while
the latter is dominated by elongation and secondary nucleation instead. This dramatic distinction
is believed to be caused by different chemical valences of K™ and Mg®". Therefore, the physical-
based modeling by ODENet indeed provides new insights into those unknown phenomena we are
interested in. Qualitatively, the physical-based model uncovered by ODENet is in a good agreement
with previous models constructed purely by the human brain [36]. In the latter, primary nucleation,
elongation, and fragmentation (a kind of secondary nucleation) were considered as three dominant
processes for actin aggregation, and the difference between KCl and MgCl, solutions lies in the
strength of primary nucleation v.s. secondary nucleation.
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Box 3: Data-driven v.s. physical-based modeling of actin aggregation

Goal: Compare the purely data-driven model with the physical-based model on kinetics of
actin aggregation.

Data: Mass concentration M(t) of actin filaments recorded at different time points in ThT
fluorescence experiments. Seven protein concentrations and two buffer conditions are taken
into consideration.

Setup: There are two separate setups for the learning procedure:

1. Purely data-driven model. Without any pre-knowledge of the model, we just need
single equation of mass concentration M (t) to learn the dynamics. To account for the
concentration dependence, an additional variable m(t) = my, — M (t) is introduced too.
Mimicking the function on the right-hand side of ODEs by polynomials up to the second-
order, we have to optimize six coefficients 8 = (0;;)2x¢, where 0; = —61;, j =1,2,--- 6.

2. Physical based model. According to the general theory for actin aggregation [36],
another hidden variable — the number concentration of actin filaments P(t) is introduced
into the model. Furthermore, we require all kept terms have a clear physical meaning to
account for all possible mechanisms for actin growth. In this case, we have three ordinary
differential equations with eleven undetermined coefficients. The hidden variable P(t)
is constructed in a self-iterative way from the approximation dM/dt ~ agmP with a
pre-knowledge that elongation makes a major contribution to the mass growth of actin
filaments.

Learning: Parameters 0 are optimized according to the procedure of Algorithm 1. Sparsity
requirement is taken.

Results: Two simple models with and without hidden physical variable P(t) are learned
separately, both of which can fit ThT trajectories quite well.

5 Conclusion and Discussion

In this work, we proposed a general and flexible network called ODENet for revealing hidden ODE
dynamics from time-series data. A significant difference of ODENet from the state-of-art regression-
based methods like SINDy is the adoption of integration of explicit ODEs along the time trajectory.
By further combining with classical machine learning skills, like data batching, back-propagation
and optimization, ODENet inherits the advantages of both machine learning and ODEs. On one
hand, the embedding of ODEs makes the whole procedure transparent and interpretable. On the
other hand, the schemes of machine learning enable data handling, paralleling, and optimization to
be easily and efficiently implemented.

As illustrated through several novel examples including Lotka-Volterra models for population
dynamics, strange attractors of Lorenz equations, and the kinetics of actin aggregation into mi-
crofilaments, ODENet shows great merits in several aspects: (1) the ability to deal with data not
equally spaced, of a high noise to signal ratio, etc.; (2) tolerance with large sampling time steps;
(3) explicitly deriving interpretable models with fewer parameters; (4) efficiently optimizing param-
eters by BP algorithms; (5) very flexible network structure ready for the incorporation of various
new approaches. Therefore, we expect wider applications of ODENet in various branches of natural
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science, as well as non-trivial extensions to stochastic ODEs and PDEs for a better description of
the real world in the near future.
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