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Abstract

The paper addresses a two-temperature model for simulating compressible two-phase flow taking into account diffu-
sion processes related to the heat conduction and viscosity of the phases. This model is reduced from the two-phase
Baer-Nunziato model in the limit of complete velocity relaxation and consists of the phase mass and energy balance
equations, the mixture momentum equation, and a transport equation for the volume fraction. Terms describing effects
of mechanical relaxation, temperature relaxation, and thermal conduction on volume fraction evolution are derived and
demonstrated to be significant for heat conduction problems. The thermal conduction leads to instantaneous thermal
relaxation so that the temperature equilibrium is always maintained in the interface region with meeting the entropy
relations. A numerical method is developed to solve the model governing equations that ensures the pressure-velocity-
temperature (PVT) equilibrium condition in its high-order extension. We solve the hyperbolic part of the governing
equations with the Godunov method with the HLLC approximate Riemann solver. The non-linear parabolic part is
solved with an efficient Chebyshev explicit iterative method without dealing with large sparse matrices. To verify
the model and numerical methods proposed, we demonstrate numerical results of several numerical tests such as the
multiphase shock tube problem, the multiphase impact problem, and the planar ablative Rayleigh–Taylor instability
problem.

Keywords: Multiphase flow, heat conduction, viscosity, Godunov method, Chebyshev method of local iterations

1. Introduction

Numerical modeling of compressible multiphase flow have found many applications in various natural, industrial
and technological areas. Typical applications include bubble dynamics [52, 51], underwater explosion [45, 31, 27,
74], cavitation flows [39, 63, 62], multiphase flows in the porous rock [8], inertial confinement fusion [77, 53],
Rayleigh–Taylor [66, 38, 78] and Richtmyer–Meshkov instabilities [35, 9, 86] and so on. In some problems where
steep distributions of flow parameters occur, diffusion processes such as the heat conduction and viscous stress may
have significant impact. How to properly take into account these processes in multiphase hydrodynamics with resolved
interfaces is the main issue of the present paper.

Numerical methods for simulating compressible multiphase flows can be generally classified into two categories
depending on the approach to resolve material interfaces: Diffuse interface methods (DIM) [22, 64, 32, 21, 17, 16, 60,
58, 63, 59, 1, 44, 43, 15, 71, 72, 11] and the sharp interface methods (SIM) [33, 34, 18, 19, 37, 26, 25, 24, 46, 48, 20].
The present work is done in the framework of the former – DIM. Instead of explicitly tracking sharply resolved
material interfaces as in SIMs, material interfaces in DIMs are captured by allowing a numerical diffusion zone of
mixture flow that is modeled as physical one. Thanks to these numerical diffusion, different components can be
described with a unique set of partial differential equations and equation of state (EOS). Therefore, one can perform
throughout computations on the Eulerian grid without specifying concrete interface locations. Moreover, DIMs avoid
dealing with complicated grid movements and non-conservativeness issues.
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The models for multiphase flows with resolved interfaces generally fall into two groups: One is based on the
generalization of the conventional one-fluid Euler equations to multicomponent cases [1, 71, 72, 29, 3, 4], the other is
based on the reduction of non-equilibrium multi-phase flow models [6, 30, 63, 49, 47].

The first group is more concerned with numerical aspects, in particular, the property to preserve the pressure-
velocity equilibrium (the PV property), and also additionally temperature equilibrium (the PVT property) when the
thermal conduction is also considered. These properties are used as important numerical condition or criterion to
derive such models. The definitions of these properties are given in section 3.5. For these models, material interfaces
are represented by variable EOS parameters or by a characteristic function such as the Heaviside function that is
interpreted as volume fraction in the context of multiphase flows. A representative of these models is the following
model [73, 71, 10] based on the PV property, which is formulated as

∂ρ

∂t
+ ∇ · (ρu) = 0, (1a)

∂ρu
∂t

+ ∇ · (ρu ⊗ u) + ∇p = 0, (1b)

∂ρE
∂t

+ ∇ ·
[
(ρE + p) u

]
= 0, (1c)

∂

∂t

(
1

γ − 1

)
+ u · ∇

(
1

γ − 1

)
= 0, (1d)

∂

∂t

(
γp∞
γ − 1

)
+ u · ∇

(
γp∞
γ − 1

)
= 0, (1e)

∂ρq
∂t

+ ∇ · (ρqu) = 0, (1f)

where ρ, u, p, E are the mixture density, velocity, pressure and specific total energy, respectively. The parameters
γ, p∞, q come from the EOS. Here, we consider the stiffened gas (SG) EOS for the k-th component that takes the
following form:

ρkek =
pk + γk p∞,k
γk − 1

+ ρkqk, (2a)

ρkek = ρkCv,kTk + p∞,k + ρkqk, (2b)

where Cv,k is the specific heat at constant volume. The parameters γk, p∞,k and qk are constants characterizing the
thermodynamic behaviours of the k-th phase.

When thermal conduction is considered, the temperature becomes continuous at interfaces. However, Johnsen et
al. [3, 28] pointed out that the system of equations (1) does not preserve temperature equilibrium. Based on similar
ideas as in designing the model (1) with the PV property, they proposed a method for defining the mixture EOS that
ensures the PVT property. They add the following evolution equations for Cv, p∞ to the model eq. (1)

∂ρCv

∂t
+ ∇ · (ρCvu) = 0, (3a)

∂p∞
∂t

+ u · ∇p∞ = 0. (3b)

The evolved parameters obtained from eqs. (1d) to (1f) are used to compute the pressure, while those obtained
from eqs. (3a) and (3b) to compute the temperature. This model can also be formulated in volume fraction framework
by replacing all the evolution eqs. (1d) to (1f), (3a), and (3b) for EOS parameters with

∂ρY2

∂t
+ ∇ · (ρY2u) = 0, (4a)

∂α2

∂t
+ u · ∇α2 = 0. (4b)

where α2 and Y2 are the volume fraction and mass fraction of the second component, respectively.
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When velocity is spatially uniform, the internal energy is purely advected,

Dρe
Dt

= 0, (5)

where ρe =
∑
αkρkek, the operator D·/Dt denotes the material derivative.

By using eq. (5), the following mixture rules are proposed in [3, 28] to maintain the PVT property:

• To maintain pressure equilibrium, the mixture EOS parameters are defined as

1
γ − 1

=
∑ αk

γk − 1
,

γp∞
γ − 1

=
∑ αkγk p∞,k

γk − 1
, ρq =

∑
αkρkqk. (6)

• While to maintain temperature equilibrium, the following mixture EOS parameters should be defined as

ρCv =
∑

αkρkCv,k, p∞ =
∑

αk p∞,k, ρq =
∑

αkρkqk. (7)

As can be noted, two different mixture rules are used for computing pressure and temperature, resulting in two
different definitions for p∞ (and interface location when the fluid distribution is represented by their own p∞). This
ambiguity in mixture EOS definition also leads to difficulties in defining some thermodynamic variables, such as the
mixture entropy. Therefore, the issue of consistency with the second law of thermodynamics is a key point to cause
controversy. In fact, the volume fraction based model consisting of eqs. (1a) to (1c), (4a), and (4b) formally coincides
with the five-equation model [4] that lacks a mathematical entropy. In the following we refer to this model with the
mixture rules eqs. (6) and (7) as the one-temperature five-equation model.

Most of the second group models for simulating compressible multiphase flows come from the seven-equation
Baer-Nunziato one [6]. In the original Baer-Nunziato model, each component is described by their own velocity,
temperature, and pressure. However, for certain application scenarios such as the multiphase flows where each phase
occupies its own volume, the physics included in the Baer-Nunziato model is not always necessary. Therefore, a
variety of reduced models are proposed, for example, the six-equation model with equilibrium velocity [30, 63, 49],
the five-equation model with equilibrium velocity and equilibrium pressure [30, 47] and the four-equation model
with equilibrium velocity, pressure and temperature [39]. A complete hierarchy of these models are formulated in
[41]. Since these models are compatible with the complete Baer-Nunziato one, they are more physically sound
and reasonable. Besides, in [7] a one-temperature quasi-hydrodynamic multiphase model with viscosity and heat
conduction has been derived with the Coleman-Noll procedure [13].

Among these models, the model with equilibrium temperature [39] is most appropriate to consider heat conduction
process, however, it fails to ensure the PV or the PVT condition. Moreover, it does not provide topological information
of the material interface, nor does it describe the evolution of the volume-fraction averaged material properties such
as thermal conductivity and viscosity. Therefore, we are more interested in the temperature non-equilibrium models
[30, 47]. To the best of the author’s knowledge, the work on implementing heat conduction in the framework of
multi-temperature model is absent in literature. We aim to fill this gap in the present work.

We build a two-temperature model based on the reduction of the Baer-Nunziato one. The obtained model con-
sists of two energy equations including thermal relaxation between phases driving temperatures into equilibrium. It
includes viscosity, heat conduction and external energy source in each phase. Note that the heat conduction process
is accompanied with instantaneous thermal relaxation so that temperature equilibrium is maintained. We demonstrate
that the impact of these thermal relaxations (which are usually neglected in the first group models) on volume fraction
is significant. The obtained model ensures the pressure and the temperature equilibria during the heat conduction. We
prove that the model agrees with the second law of thermodynamics. Numerically, our model is proved to satisfy the
PVT property with a uniquely defined EOS.

We use the fractional step method to solve the model. The solution procedure can be divided into four steps, i.e.,
the hyperbolic step, the viscous step, the thermal relaxation step and the heat conduction step. The homogeneous
hyperbolic part is solved with the Godunov method coupled with the HLLC Riemann solver. The diffusion process
(viscous step and heat conduction step) are governed by a set of parabolic partial differential equations. They are
solved with an efficient method of local iterations, that allows much larger time step than the traditional explicit scheme
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and quite straightforward for parallel implementation. The thermal relaxation procedure is realized by solving a non-
linear system with two variables (equilibrium temperature and volume fraction). We prove that the thermal relaxation
procedure does not undermine the PVT property.

The rest of this article is organized as follows. In Section 2, we deduce a five-equation model and a six-equation
model, with more attention being devoted to the latter as it is more convenient for considering thermal processes in the
multiphase system with phase energy equations. In Section 3, we design numerical methods for solving the proposed
model and prove some relevant properties. In Section 4, numerical results of our model are presented and compared
with those of other models.

2. Model formulation

2.1. The Baer-Nunziato type model
The starting point of our model formulation is the complete Baer-Nunziato model [6] or its variant for compressible

two-phase flows [58]. In this model each phase is assumed to behave as a pure fluid except when it interacts with
the other fluid through relaxation terms. Including viscosity, heat conduction and external energy source to the Baer-
Nunziato model, we obtain the following formulation:

∂αkρk

∂t
+ ∇ · (αkρkuk) = 0, (8a)

∂αkρkuk

∂t
+ ∇ ·

(
αkρkuk ⊗ uk + αk pkI − αkτk

)
= pI∇αk

−τI · ∇αk +Mk, (8b)
∂αkρkEk

∂t
+ ∇ ·

[
αk (ρkEk + pk) uk − αkτk · uk

]
= pIuI · ∇αk

−uI ·
(
τI · ∇αk

)
− pIFk + uIMk + Qk + qk + Ik, (8c)

∂α2

∂t
+ uI · ∇α2 = F2, (8d)

where the notations used are standard: αk, ρk, uk, pk, τk, Ek are the volume fraction, density, velocity, pressure,
viscous stress, and specific total energy of k-th component.

For viscous stress we use the Newtonian approximation

τk = 2µDk +

(
µb,k −

2
3
µk

)
∇ · uk, (9)

where µk > 0 is the coefficient of shear viscosity and µb,k > 0 is the coefficient of bulk viscosity, Dk is defined as

Dk =
1
2

[
∇uk + (∇uk)T

]
.

The total energy is Ek = ek +Kk where ek, and Kk = 1
2 uk · uk are the specific internal energy and kinetic energy,

respectively.
The inter-phase exchange terms include the velocity relaxationMk, the pressure relaxationFk, and the temperature

relaxation Qk,

Mk = ϑ (uk∗ − uk) , Fk = η (pk − pk∗ ) , Qk = ς (Tk∗ − Tk) . (10)

where k∗ denotes the conjugate component of the k-th component, i.e., k = 1, k∗ = 2 or k = 2, k∗ = 1. The relaxation
rates are all positive ϑ > 0, η > 0, ς > 0.

The variables with the subscript “I” represent the variables at interfaces, for which there are several possible
definitions [50, 60]. Whatever the definitions we choose,

lim
η→∞

pI = lim
η→∞

pk = p, lim
ϑ→∞

uI = lim
ϑ→∞

uk = u, lim
ϑ→∞

τI = lim
ϑ→∞

τk = τ.
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The heat conduction term is given as:
qk = ∇ · (αkλk∇Tk) , (11)

and the external heat source term is written as:
Ik = αkIk, (12)

where Ik denotes the the intensity of the external heat source released in the k-th phase, and Ik ≥ 0.
For future use we can deduce the corresponding balance equations for phase internal energies and phase entropies

from eq. (8). The deduction procedure is similar to that in [80, 47, 30, 83, 84] with the exception that we include
viscosity, heat conduction, and external energy source here. We directly give the equation for the phase internal
energy as follows:

∂αkρkek

∂t
+ ∇ · (αkρkekuk) = −αk pk∇ · uk − pIFk + pI (uI − uk) · ∇αk

+ (uI − uk) · Mk + Qk + qk + Ik

+ (uk − uI) ·
(
τI · ∇αk

)
+ αkτk : Dk.

(13)

By using the Gibbs relation,
Tkdsk = dek −

pk

ρ2
k

dρk (14)

we further obtain
Tk

[
∂αkρk sk
∂t + ∇ · (αkρkuk sk)

]
= (pk − pI)Fk + (pI − pk) (uI − uk) · ∇αk

+ (uI − uk) · Mk + Qk + qk + Ik

+ (uk − uI) ·
(
τI · ∇αk

)
+ αkτk : Dk.

(15)

Even though eq. (8) is the most complete model including relaxations in pressure, velocity and temperature,
however, practical implementation of this model is rather complicated because of its complex wave structure and
stiff relaxation procedures. Therefore, we will consider two possible reductions of this model that are given in the
following sections.

The Baer-Nunziato model is deduced by using the Coleman-Noll procedure [14, 13, 6], keeping the second law
of thermodynamics. Maintaining the physical consistency with the Baer-Nunziato model, the reduced models should
also satisfy the second law of thermodynamics, as we demonstrate below.

Remark 1. The thermodynamically compatible two-phase compressible flow model proposed in [56, 54, 55, 57] can
also be reformulated in the form of Baer-Nunziato model with additional source terms describing the lift forces.

Remark 2. For turbulent bubbly flows, the viscous pressure has been proposed to consider the pulsation damping of
the bubbles [61, 50, 23]. Including this viscous pressure, the relaxing pressure is

p̃k = pk + pµ,k, (16)

with pµ,k being the viscous pressure [23]:

pµ,k = zk(αk)
DIαk

Dt
= zk(αk)Fk, (17)

where zk is a function of αk, DI ·

Dt denotes the material derivative related to the interface velocity uI , and Fk =

η ( p̃k − p̃k∗ ).
With the viscous pressure, the terms including Fk on r.-h.s. of eq. (13) and eq. (15) should be replaced by p̃IFk and

(pk − p̃I)Fk, respectively. In order that the term (pk − p̃I)Fk makes a non-negative contribution to the phase entropy
in eq. (15), p̃I should be a convex combination of p̃k and zk be non-positive.

It can be seen from eq. (17) that the viscous pressure pµ,k vanishes when pressure equilibrium is reached, thus,
it has no impact on the solution of the reduced models (in Sections 2.2 and 2.3) derived in the limit of instantaneous
mechanical relaxation. Therefore, we temporarily omit this term in the following discussions.
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2.2. The reduced five-equation model
By performing asymptotic analysis of the Baer-Nunziato model in the limit of instantaneous mechanical relax-

ations with the method similar to [30], one can obtain the following system of equations:

∂αkρk

∂t
+ ∇ · (αkρku) = 0, (18a)

∂ρu
∂t

+ ∇ ·

(
ρu ⊗ u + pI

)
= ∇τ, (18b)

∂ρE
∂t

+ ∇ · (ρEu + pu) = ∇ ·
(
τ · u

)
+

∑
qk +

∑
Ik, (18c)

∂α2

∂t
+ u · ∇α2 = Rp2 + Rq2 + RQ2 + RI2 , (18d)

where I is the unit tensor, ρ =
∑
αkρk and τ =

∑
αkτk are the mixture density and the mixture viscous stress,

respectively.
The right hand side terms of eq. (18d) are

Rp2 = α2
A − A2

A2
∇ · u, Rq2 = A

Γ2q2α1 − Γ1q1α2

A1A2
,

RQ2 = A
Γ2Q2α1 − Γ1Q1α2

A1A2
, RI2 = A

Γ2I2α1 − Γ1I1α2

A1A2
.

where Γk is the phase Gruneisen coefficient, Γk = Vk

(
∂pk
∂ek

)
Vk

, Vk = 1/ρk, a2
k = γk pkVk is the phase speed of sound,

γk = −Vk
pk

(
∂pk
∂Vk

)
sk

is the phase adiabatic exponent, Ak = ρka2
k , and 1/A =

∑
(αk/Ak).

In the case of the SG EOS (2a), these parameters are

Γk = γk − 1, (20)

γk = γk
pk + p∞,k

pk
> γk > Γk, (21)

Ak = γk(pk + p∞,k) =
γk (γk − 1) Cv,kTk

Vk
. (22)

The first term on the right hand side (r.-h.s.) of eq. (18d) Rpk comes from pressure relaxation. In fact, Wpk = −pRpk

represents the rate of work performed on material interfaces to maintain pressure equilibrium under compression or
expansion [36]. The significance of this term for spherical bubble dynamics and multiphase flows has been demon-
strated in [65] and [47], respectively.

In the limit of the sharp material interface, i.e. αk = 1, αl = 0 (l , k), the first r.-h.s. term of eq. (18d) Rpk

vanishes. The second term Rqk and the third term RIk also vanish in accordance of the definitions eq. (11) and eq. (12).
However, the term RQk due to temperature relaxation still remains. This means that for compressible multicomponent
problem with heat conduction, the thermal relaxation can not be neglected even for interface-tracking methods where
the diffused zone is absent. Therefore, vanishing the r.-h.s. of eq. (18d) and using just the pure advection equation for
volume fraction may lead to errors that come from physical defects instead of numerical ones.

If we define the mixture entropy as
s = Y1s1 + Y2s2, (23)

from eq. (15) one can deduce

∂ρs
∂t

+ ∇ · (ρus) =
α1τ1 : D1

T1
+
α2τ2 : D2

T2
+
Q1 + q1 + I1

T1
+
Q2 + q2 + I2

T2
. (24)

Proposition 1. In the absence of heat flows through the external boundaries of the control volume, eq. (24) is non-
negative.
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Proof 1. The first two terms on the r.-h.s. of eq. (24) can be proven to be non-negative, αkτk : Dk ≥ 0, by using the
definition eq. (9) and simple tensor manipulations.

Also, due to eq. (10)
Q1

T1
+
Q2

T2
= ς

(T2 − T1)2

T1T2
≥ 0. (25)

The heat conduction term can be recast as

qk

Tk
= −
∇ · qk

Tk
= −∇ · (

qk

Tk
) + qk · ∇(

1
Tk

) (26)

The first term is of the divergence type and represents external heat inflow to the phase material particle. The
second term is positive due to the Fourier’s law of heat conduction qk = −αkλk∇Tk, αk ≥ 0, λk ≥ 0 and Ik ≥ 0.
Therefore, except the heat inflow terms, the r.-h.s of the mixture entropy equation (2.11) is non-negative. This means
that the mixture entropy respects the second law of thermodynamics.

The model eq. (18) assumes two temperatures and only one energy equation. In this paper, we prefer to consider
the energy exchanges and thermal conduction with the six-equation model that consists of two energy equations and
physically consistent with the five-equation model eq. (18).

2.3. The reduced six-equation model

We first separate the physical process into three stages: the mechanical stage, the thermal relaxation stage and the
heat conduction stage, and then build thermodynamical consistency for each stage.

In the mechanical stage the pressure equilibrium is reached with the instantaneous pressure relaxation. Then ther-
mal relaxation drives the phase temperatures to equilibrium. The heat conduction proceeds maintaining the obtained
pressure equilibrium and temperature equilibrium.

Mechanical stage. For the mechanical stage, we temporarily omit thermal relaxation and conduction. In the limit
of instantaneous velocity relaxation, one can obtain the following six-equation model with one velocity from the
Baer-Nunziato model eq. (8)

∂αkρk

∂t
+ ∇ · (αkρku) = 0, (27a)

∂ρu
∂t

+ ∇ · (ρu ⊗ u) + ∇ (α1 p1 + α2 p2) = ∇ · τ, (27b)

∂αkρkek

∂t
+ ∇ · (αkρkeku) + αk pk∇ · u = −pIFk + αkτk : D, (27c)

∂α2

∂t
+ u · ∇α2 = F2. (27d)

The corresponding balance equation for mixture entropy is

∂ρs
∂t

+ ∇ · (ρus) =
α1τ1 : D1

T1
+
α2τ2 : D2

T2
+

(p1 − pI)F1

T1
+

(p2 − pI)F2

T2
(28)

As long as the interface pressure pI is assumed to be a convex combination of p1 and p2, i.e.,

pI = Z1 p1 + Z2 p2 (Z1,Z2 ∈ [0, 1], Z1 + Z2 = 1), (29)

the term (pk − pI)Fk remains non-negative and the second law of thermodynamics is respected.
When solving internal energy equations (27c), the total energy equation (18c) will have to be supplemented to

keep the energy conservation as in [63].
This stage consists of the hydrodynamic, the viscous and the pressure relaxation processes. The last relaxation

process drives the phase pressures into an equilibrium pressure p = limη→∞ p1 = limη→∞ p2.
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Thermal relaxation stage. The procedure is similar to that for deducing the model for phase transition in [79]. Having
reached the pressure equilibrium after the mechanical stage, we continue to build our model for the thermal relaxation
on the basis of the following physical assumptions:

• The mechanical relaxation happens much faster than the thermal relaxation, which means that the temperature
relaxation goes in the state of pressure equilibrium.

This assumption is reasonable for many applications, such as detonations and deflagration. The estimation analysis
performed in [30] demonstrates that the time scale for thermal relaxations are much larger than that for mechanical
relaxations.

The thermal relaxation process is assumed to be governed by the following equations:

∂αkρk

∂t
= 0, (30a)

∂ρu
∂t

= 0, (30b)

∂α1ρ1e1

∂t
= Q′1, (30c)

∂α2ρ2e2

∂t
= Q′2, (30d)

∂α2

∂t
= r0
Q′2

p
. (30e)

where Q′k is the thermal relaxation term defined in eq. (10), which results in the variation of the phase temperature
and the volume fraction. The term Q′2/p represents the volume fraction change rate if no phase temperature variation
is considered.

The parameter r0 is a dimensionless coefficient, balancing the phase temperature change and volume fraction
change. It is determined in such a way that the pressure equilibrium condition is maintained, i.e.,

∂p1

∂t
=
∂p2

∂t
. (31)

Thus one can obtain
r0 =

Γ1/α1 + Γ2/α2

(A1/α1 + A2/α2) /p − (Γ1/α1 + Γ2/α2)
, (32)

or
r0 =

Γ1/α1 + Γ2/α2(
γ1 − Γ1

)
/α1 +

(
γ2 − Γ2

)
/α2

, (33)

According to eqs. (22), (30a), and (32), r0 is a function of T1, T2 and α2, and from eq. (21), it satisfies

r0 = r0 (T1,T2, α2) > 0. (34)

By using eqs. (10), (14), (23), and (34) one can deduce

∂ρs
∂t

+ ∇ · (ρsu) = (1 + r0)
(

1
T2
−

1
T1

)
Q
′

2 ≥ 0 (35)

This means that the model for the thermal relaxation is consistent with the second law of thermodynamics.

Heat conduction stage. We build our model for thermal conduction under the following physical assumptions:

• The process of heat conduction goes under the condition of equilibrium in both pressure and temperature.
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This assumption means that the heat conduction time scale is larger enough than the heat transfer scale so that
temperature equilibrium always holds. In fact, this is a default assumption for models based on single temperature
formulation, for example, the four-equation conservative model in [39].

The heat conduction process (including the external heat source) is modeled by the following system of equations:

∂αkρk

∂t
= 0, (36a)

∂ρu
∂t

= 0, (36b)

∂α1ρ1e1

∂t
= δq1 + q1 + I1, (36c)

∂α2ρ2e2

∂t
= δq2 + q2 + I2, (36d)

∂α2

∂t
=

r10

p
δq2 +

r1

p
(q1 + I1) +

r2

p
(q2 + I2) . (36e)

Here, the term δqk represents an interphase heat conduction, and δq1 + δq2 = 0 for energy conservation. It plays a
vital role in maintaining thermodynamical consistency. In fact, without this interphase heat conduction the entropy
inequality does not hold.

The interphase heat conduction is defined as a linear combination of qk and Ik,

δq2 = r̂1(q1 + I1) + r̂2(q2 + I2). (37)

We then define the parameters r10, r1, r2, r̂1, r̂2 in this model in the following manner.

• Defining the parameters r10, r1, r2
The pressure equilibrium condition eq. (31) should be maintained, thus, one can obtain

r10 = r0, (38a)

r1 =
−Γ1/α1(

γ1 − Γ1
)
/α1 +

(
γ2 − Γ2

)
/α2

, (38b)

r2 =
Γ2/α2(

γ1 − Γ1
)
/α1 +

(
γ2 − Γ2

)
/α2

. (38c)

• Defining the parameters r̂1, r̂2
The temperature equilibrium condition should be satisfied, i.e.,

∂T1

∂t
=
∂T2

∂t
, (39)

which yields the coefficients in eq. (37) as

r̂1 = −
r1Y − m2Cv,2

r0Y − m1Cv,1 − m2Cv,2
, (40a)

r̂2 = −
r2Y + m1Cv,1

r0Y − m1Cv,1 − m2Cv,2
, (40b)

Y = m1Cv,1G2 + m2Cv,2G1, (40c)

where mk = αkρk, Gk = 1 + Γk/cv,k, with cv,k being the dimensionless specific heat, cv,k = pVk/(Cv,kTk).

By using eq. (36) and the Gibbs relation eq. (14), one can deduce

∂ρs
∂t

+ ∇ · (ρsu) =
q1

T1
+

q2

T2
+
I1

T1
+
I2

T2
+

(
1
T2
−

1
T1

)
δq2 +

(
p1

T1

Dα1

Dt
+

p2

T2

Dα2

Dt

)
. (41)
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Since we maintain the pressure equilibrium eq. (31) and temperature equilibrium eq. (39) in this process, the last
two terms in eq. (41) vanish. As for the first two terms, according to proof 1, we have∫

V

qk

Tk
dτ ≥ 0, (42)

if the net heat flux across the surface of the volume V vanishes.
We further deduce ∫

V

[
∂ρs
∂t

+ ∇ · (ρsu)
]

dτ ≥ 0, (43)

and as V is an arbitrary closed domain, one can write

∂ρs
∂t

+ ∇ · (ρsu) ≥ 0. (44)

From eq. (41) we see that without temperature equilibrium, the entropy inequality eq. (44) may be violated.

2.4. The final model

We summarize the finial model for compressible two-phase flows with viscosity and heat conduction as follows:

∂αkρk

∂t
+ ∇ · (αkρku) = 0, (45a)

∂ρu
∂t

+ ∇ · (ρu ⊗ u) + ∇ (α1 p1 + α2 p2) = ∇ · τ, (45b)

∂αkρkek

∂t
+ ∇ · (αkρkeku) + αk pk∇ · u = −pIFk + αkτk : D

+Q′k + δqk + qk + Ik, (45c)
∂α2

∂t
+ u · ∇α2 = F2 +

r0

p
(
Q′2 + δq2

)
+

r1

p
(q1 + I1) +

r2

p
(q2 + I2) . (45d)

The mechanical stage can violate the temperature equilibrium state of the phases that is reached and maintained
through following temperature relaxations. One can see that the temperature relaxation Qk in the considered model
eq. (8) consists of two parts: the thermal relaxation Q′k and the phase heat conduction δqk, with the former being much
faster than the latter. The former ensures the initial temperature equilibrium before the heat conduction progresses, the
latter maintains this temperature equilibrium while the heat conduction in and between the phases. Thus, temperature
equilibrium is still maintained after the heat conduction.

For each stage, the entropy inequality remains valid. Thus, after implementing the fractional step method corre-
sponding to the three relaxation stages, the solution obtained should not be contrary to the second law of thermody-
namics.

Since the final model is non-conservative for the mixture total energy, we supplement it with the mixture total
energy equation of the five-equation model eq. (18c) in order to correct the non-conservativeness. Similar idea is
adopted in [63] in the absence of the diffusion processes.

3. Numerical methods

In this section we describe the numerical methods for solving the above proposed model. The numerical method
is based on the operator splitting technique that consists of three stages: the mechanical (solving the hyperbolic,
viscous, and the pressure relaxation parts of the equations), the temperature relaxation, and the heat conduction stage.
We address these steps separately.
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3.1. Hyperbolic part

The homogeneous hyperbolic part of the governing equations eq. (45) to be solved first is as follows:

∂αkρk

∂t
+ ∇ · (αkρku) = 0, (46a)

∂ρu
∂t

+ ∇ · (ρu ⊗ u) + ∇ (α1 p1 + α2 p2) = 0, (46b)

∂αkρkek

∂t
+ ∇ · (αkρkekuk) + αk pk∇ · u = 0, (46c)

∂ ρE
∂t

+ ∇ ·
[
(ρE + α1 p1 + α2 p2) u

]
= 0, (46d)

∂α2

∂t
+ u · ∇α2 = 0. (46e)

As mentioned above, we adopt the idea similar to that of [63], i.e., using a redundant equation for the mixture total
energy eq. (46d) to correct the solution of the non-conservative equations for phase internal energies eq. (46c). One
can rewrite eq. (46) (without the redundant equation) into the following system with respect to the primitive variable
Z =

[
ρ1 ρ2 u v p1 p2 α2

]T

∂Z
∂t

+ A
∂Z
∂x

= 0. (47)

It can be shown that the matrix A has 7 real eigenvalues (i.e. u ± c and u of multiplicity 5) and the corresponding
set of six linearly independent right eigenvectors. Thus, the system is hyperbolic.

The mixture speed of sound for this model is

c2 = Y1c2
1 + Y2c2

2. (48)

This ensures monotonic variation of the characteristic velocity across the interface zone and therefore more robust
compared with the five-equation model eq. (18) where the mixture speed of sound is given by non-monotonic Wood’s
formulae.

We recast eq. (46) in the vector compact form (in 1D) as:

∂U
∂t

+
∂F (U)
∂x

+ R (U)
∂u
∂x

= 0, (49)

where
U =

[
α1ρ1 α2ρ2 ρu ρv α1ρ1e1 α2ρ2e2 ρE α2

]T ,

F (U) = uU + (α1 p1 + α2 p2)D,

D (U) = [0 0 1 0 0 0 u 0]T ,

R (U) =
[
0 0 0 0 α1 p1 α2 p2 0 − α2

]T .

We use the Godunov method coupled with the approximate Riemann solver HLLC to solve eq. (49):

Un+1
i = Un

i −
∆t
∆x

[
F

(
U∗i+1/2

)
− F

(
U∗i−1/2

)]
−

∆t
∆x

R
(
Un

i
) (

u∗i+1/2 − u∗i−1/2

)
, (50)

where U∗i+1/2 = U∗i+1/2 (Ui,Ui+1) is the Riemann solution at the cell face i + 1/2. Here we use the the three-wave
approximate Riemann solver HLLC [67, 68, 69, 76]. The dimensional spitting method is used for extension to multiple
dimensions.
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3.2. Viscous part
Viscous terms have no impact on the mass balance equations and affect only the momentum and energy equations.

The corresponding splitted equations are read as

∂αkρk

∂t
= 0,

∂αk

∂t
= 0,

∂ρu
∂t

= ∇ · τ,

∂αkρkek

∂t
= αkτk : D,

∂ρE
∂t

= ∇ ·
(
τ · u

)
.

(51)

To solve the parabolic PDE for velocity, we use an efficient method of local iterations based on Chebyshev param-
eters [87, 70]. A brief introduction on this method is given below.

Consider the following 1D parabolic PDE

∂v
∂t

= Lv + f (x, t) , x ∈ G ⊂ R (52)

where L is a linear elliptic self-adjoint positive-definite operator.
Given a grid Ωh = ∪[x j−1/2, x j+1/2] with a space step h, consider also a discrete operator Lhv j that approximates the

operator L with O(h2) on smooth solutions. For example, it can be the 1D reduction of the 7-point (in 3D) symmetric
discretization of L obtained with the finite volume method used in the present paper (see below). The operator Lh is
self-adjoint and has real positive eigenvalues within an interval [λmin, λmax].

The method of local iterations [87] is realized as 2P − 1 explicit iterations, where P =
⌈
π/4
√
τλmax + 1

⌉
, with τ

being the time step and dxe denoting the maximal integer to be greater than or equal to x. These explicit iterations are
written as follows (for details see [87]):

v(m) =
1

1 + τbm

(
vn + τbmv(m−1) − τLhv(m−1) + τ f (n)

)
, m = 1, 2, · · · , 2P − 1, (53)

where v(m) is the solution after m-th iteration, bm is a set of iteration parameters,

(b1, b2, · · · , b2P−1) = (aP, aP−1, · · · , a2, aP, aP−1, · · · , a1),

Here,

am =
λmax

1 + β1
(β1 − βm), m = 1, · · · , P, (54)

and the sequence (β1, · · · , βP) represents the roots of the Chebyshev polynomial TP(x) : cos (2 j−1)π
2P , j = 1, · · · , P,

arranged in the increasing order.
Since b2P−1 = 0, the last iteration becomes

v(2P−1) = vn + τLhv(2P−2) + τ f n, (55)

which is the pure explicit step and v(2P−2) can be viewed as a predicted solution.
This scheme ensures the monotonicity of the solution [87]. Each explicit iteration of eq. (53) is a conventional

explicit step, making its parallel realization quite straightforward.
According to eq. (51), the mixture density ρ does not vary with time at this stage. Therefore, the momentum

equation takes in 1D the following form:

ρ
∂u
∂t

=
∂

∂x

(
4
3
µ
∂u
∂x

)
. (56)

The above method of local iterations is applied to eq. (56). The operator Lh that approximates the r.-h.s. is given
by central differences as

Lh =
1

∆x

(
Fvis

i+1/2 − Fvis
i−1/2

)
, (57)

where
Fvis

i+1/2 =
4
3
µi+1/2

∂u
∂x

∣∣∣
i+1/2
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represents the viscous flux across the cell face i + 1/2.
The last iteration step is given in the conservative form,

(ρu)n+1
i − (ρu)n

i

∆t
= Lh (̂ui),

with û being the predicted velocity after the first (2P − 2) iterations.
Once the velocity is calculated, the total energy is then updated as follows:

(ρE)n+1
i − (ρE)n

i

∆t
=

1
∆x

(̂
ui+1/2Fvis

i+1/2 − ûi−1/2Fvis
i−1/2

)
. (58)

where Fvis
i+1/2 is determined by the velocity û calculated in the first 2P − 2 local iteration.

Note that αkτ : D = ∇ ·
(
αkτ · u

)
−

[
∇ ·

(
αkτ

)]
· u, then one can update the internal energies as follows:

(αkρkek)n+1
i − (αkρkek)n

i

∆t
=

1
∆x

(
αk,i+1/2ûi+1/2Fvis

i+1/2 − αk,i−1/2ûi−1/2Fvis
i−1/2

)
−

1
∆x

ui

(
αk,i+1/2Fvis

i+1/2 − αk,i−1/2Fvis
i−1/2

)
. (59)

Extensions of the above algorithm to multiple dimensions can be done straightforwardly in the directional splitting
manner.

3.3. Pressure relaxation part
Next step is to drive phase pressures into an equilibrium state by performing instantaneous pressure relaxation

procedures when τ = 1/η→ 0. The process can be described with the following equations:

∂αkρk

∂t
= 0,

∂ρu
∂t

= 0,
∂αkρkek

∂t
= −pIFk,

∂αk

∂t
= Fk, (60)

where Fk is defined in eq. (10).
Here we use the relaxation algorithm proposed in [63]. This algorithm consists of the following basic steps:

(1) Combining eq. (60) and eq. (2a), one can obtain the relaxed volume fraction as a function of the equilibrium
pressure p(1), i.e., α(1)

k = αk(p(1)). By using the saturation constraint
∑
αk(p(1)) = 1, we can find p(1) and α(1)

k .
(2) Having α(1)

k , we then re-evaluate the pressure by using the mixture total energy ρE (solved from the mechanical
part of eq. (18c)) to ensure the conservativeness of energy and obtain the final pressure as p(2) = p(α(1)

k , ρe),
where ρe = ρE − ρu · u/2.

(3) The phase internal energies are recalculated according to ek = ek(p(2), α(1)
k ).

It is reported that this solution algorithm turns to be only about 5% more expensive than that of the five-equation
model [65].

3.4. Temperature relaxation and heat conduction parts
The system of equations for the temperature relaxation read:

∂αkρk

∂t
= 0, (61a)

∂ρu
∂t

= 0, (61b)

∂αkρkek

∂t
= Q′k, (61c)

∂α2

∂t
+ u · ∇α2 =

r0

p
Q′2. (61d)
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And the heat conduction process is described by

∂αkρk

∂t
= 0, (62a)

∂ρu
∂t

= 0, (62b)

∂αkρkek

∂t
= δqk + qk + Ik, (62c)

∂α2

∂t
=

r0

p
δq2 +

r1

p
(q1 + I1) +

r2

p
(q2 + I2) . (62d)

We see that formally eq. (61) is a particular case of eq. (62) when qk + Ik = 0, δqk = Q′k. Therefore, we first deal
with numerical solutions of eq. (62) and then extend to eq. (61).

Considering ek = ek(Tk, ρk) and eliminating δq2 from eq. (62), one can deduce the following relation between
phase temperatures and volume fraction α2:

C2
∂T2

∂t
+ B2

∂α2

∂t
= R1 (q1 + I1) + R2 (q2 + I2) . (63)

B2C1
∂T1

∂t
+ (B1 + B2)C2

∂T2

∂t
= (B2 + B1R1) (q1 + I1) + (B2 + B1R2) (q2 + I2) . (64)

where
Ck = mkCv,k,

B1 (Tk, α2) = p (Tk, α2) (G2 −G1),

B2 (Tk, α2) = p (Tk, α2)
1 − r0 (Tk, α2) G2

r0 (Tk, α2)
,

R1 (α2) =
−Γ1/α1

Γ1/α1 + Γ2/α2
,

R2 (α2) = 1 +
Γ2/α2

Γ1/α1 + Γ2/α2
.

In the case of the SG EOS, we have:

B1 = p∞,1 − p∞,2, (65)

B2 =
p
r0

+ p∞,2. (66)

It can be seen that C1, C2, B1 are all constants in this case, while B2 is a function of α2, T1, T2 due to eq. (34))
and p = p(Tk, ρk) = p(Tk,

mk
αk

). Here, mk is constant as a result of eq. (61a).
Using eqs. (22), (32), and (66), B2(T1,T2, α2) can be explicitly written as

B2(T1,T2, α2) =
Γ1C1T1/α

2
1 + Γ1 p∞,1/α1 + Γ2C2T2/α

2
2 + Γ2 p∞,2/α2

Γ1/α1 + Γ2/α2
+ p∞,2. (67)
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3.4.1. Temperature relaxation
The temperature relaxation process is assumed to be much faster than phase heat conduction so that we take

q1 = q2 = 0 and I1 = I2 = 0. In this case, eqs. (63) and (64) are reduced to the following:

C2
∂T2

∂t
+ B2

∂α2

∂t
= 0, (68a)

B2C1
∂T1

∂t
+ (B1 + B2)C2

∂T2

∂t
= 0. (68b)

In the model considered, we neglect a finite temperature relaxation time and assume the temperature equilibrium
to occur within the time step. Using the superscript “0” and “′” to denote parameters before and after the temperature
relaxation stage, an implicit discretization of eqs. (68a) and (68b) can be written as

C2

(
T ′ − T 0

2

)
+ B2(T av

1 ,T
av
2 , α

av
2 )

(
α2
′ − α2

0
)

= 0, (69a)

B2(T av
1 ,T

av
2 , α

av
2 )C1

(
T ′ − T 0

1

)
+

(
B1 + B2(T av

1 ,T
av
2 , α

av
2 )

)
C2

(
T ′ − T 0

2

)
= 0. (69b)

Here the parameters C1, C2, andB1 are all constants, whileB2 is a function of the phase temperatures and the volume
fraction, B2 = B2(T1,T2, α2) that is approximated by the average values T av

k = (T 0
k + T ′)/2 and αav

2 = (α0
2 + α′2)/2,

i.e., B2 = B2(T av
1 ,T

av
2 , α

av
2 ). This system is solved with the Newton method or the simple iterative method. In the

present work we use the latter.

Remark 3. If we look at eq. (7) from the perspective of the temperature relaxation, the relaxed temperature defined
by the one-temperature five-equation model can be viewed as an averaged temperature:

ρe =
∑(

αkρkCv,kT 0
k + αk p∞,k + αkρkqk

)
= ρCvT ′ + p∞ + ρq, (70)

with

T ′ =
C1T 0

1 + C2T 0
2

C1 + C2
. (71)

In fact, in the case when p∞,1 = p∞,2 the solution of eq. (68b) coincides with eq. (71). Otherwise, we obtain a solution
different from eq. (71). Moreover, no corresponding volume fraction variation is considered in the one-temperature
five-equation model.

3.4.2. Heat conduction
The heat conduction process goes under the temperature equilibrium condition T1 = T2 = T , so that eqs. (63)

and (64) describe the change in time of temperature and volume fraction:

∂T
∂t

= V1 (q1 + I1) +V2 (q2 + I2) , (72a)

∂α2

∂t
= U1 (q1 + I1) +U2 (q2 + I2) , (72b)

where
V1 =

B2 + B1R1

(B1 + B2)C2 + C1B2
, V2 =

B2 + B1R2

(B1 + B2)C2 + C1B2
,

and
U1 =

R1 − C2V1

B2
, U2 =

R2 − C2V2

B2
.

Initial data for this system of ODE are T ′ and α′ obtained as the result of solving the temperature relaxation step
(see section 3.4.1).

Note that the coefficientsV1, V2, U1, U2 are functions of T and α2. The heat conduction coefficients commonly
depend on temperature, i.e., λk = λk(Tk). For example, for the thermal conductivity in completely ionized gas
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λk = O(T
5
2

k ) [75]. Therefore, eqs. (72a) and (72b) represent a system of non-linear PDEs, with the spatial differential
operator being applied only to T .

To solve this system of parabolic equations we implement the method of local iterations described above (eq. (53)).
The term due to heat conduction qk is approximated with the central difference scheme. For example, assuming the
1D case on a uniform grid, qk is discretized as

(qk)i =
Λk,i+1/2Ti+1 −

(
Λk,i+1/2 + Λk,i−1/2

)
Ti + Λk,i−1/2Ti−1

∆x2 (73)

where Λk = αkλk.
The method of local iterations is applied to solve eq. (72a) for temperature with iterative recalculation of volume

fraction in eq. (72b). The computational algorithm is formulated in Algorithm 1.

Algorithm 1 The iterative algorithm for solving eqs. (72a) and (72b)

Define the discretized solution
T := {T1,T2, . . . ,TN}, A := {α2,1, α2,2, . . . , α2,N}, T(1) := T′, A(1) := A′
Define it := 1, Conv := −1, tol
while Conv < 0 do

Calculate the parametersVk, Uk, Λk by using T(it), A(it)

Solve eq. (72a) with respect to T by using the method of local iterations (or a conventional implicit scheme) to
obtain T′
Solve eq. (72b) with respect to α2 with T′ and A(it) to obtain A′
Set T(it+1) = T′, A(it+1) = A′
Calculate err = ‖T(it+1) − T(it)‖

if err < tol then
Conv = 1

end if
Update it := it + 1

end while
return T(it+1), A(it+1)

3.5. Evolution of constant pressure and temperature profiles
For the interface-capturing schemes, an important property is the preservation of constant velocity and pressure

profiles, which is referred to as the PV property in literature and given by the following definition.

Definition 1. Say that an interface-capturing numerical scheme has the PV property if it ensures

un+1
i = u = const, pn+1

i = p = const

providing that
un

i = u = const, pn
i = p = const.

The numerical methods/models with this property have been studied, for example, in [1, 2, 71, 72, 42, 85, 4].
However, as pointed out in [29, 3], the methods with the PV property may result in erroneous temperature spikes
in the vicinity of the material interfaces. This phenomenon is not problematic when dissipative processes are not
considered. However, when heat conduction is involved, the numerical errors in temperature may affect the pressure
through the energy equation. Therefore, for compressible multi-fluid problems, instead of the above PV property we
require the following PVT property

Definition 2. An interface-capturing numerical scheme has the PVT property if it ensures

un+1
i = u = const, pn+1

i = p = const, T n+1
i = T = const,

providing that
un

i = u = const, pn
i = p = const, T n

i = T = const
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Johnsen et al. [29, 3] have proposed a methodology to get rid of the temperature spikes by introducing rules to
define different mixture EOS for computing pressure and temperature. Their idea is similar to that of [1] for designing
numerical methods to ensure the PV property. They developed their method based on the one-fluid formulation with
single velocity, pressure and temperature. In this model the interfaces are represented by discontinuity in material
properties.

However, this method may result in multiple definitions of material properties, and thus ambiguity in interface
locations. In fact, although they assume that the fluids are in temperature equilibrium, the resultant model formally
allows two temperatures. Their definitions of the mixture EOS for computing temperature is equivalent to averaging
the phasic temperatures according to eq. (71).

If we look at the problem from the perspective of the two-temperature model, the temperature averaging procedure
(by defining the mixture EOS) should be interpreted as a physical process – temperature relaxation. The impact of
temperature relaxation process on volume fraction evolution is significant, as we demonstrate below. In the model of
[29, 3] this impact is neglected and volume fraction is purely advected. As can be seen in our model formulation (see
Section 2), the impact of temperature relaxations (Q′k in eq. (30) and δq2 in eq. (36)) on volume fraction evolution has
been included and numerically treated properly in section 3.4.

In the case of ideal gas EOS, we have

p∞,k = 0, qk = 0, B1 = 0.

Then the solution of our temperature-relaxations equations (68b) reproduce eq. (71). In fact, as long as p∞,1 = p∞,2,
eq. (71) holds. If the phasic temperatures before thermal relaxation are in equilibrium, then the averaging procedure
does not change the temperature, nor the volume fraction.

Next we demonstrate that the proposed model preserves the PVT property, and is free of the temperature spike
problem. Let us consider the following Riemann problem with the initial discontinuity:

uL = uR = u > 0
ρL

k = ρR
k = ρk, k = 1, 2

eL
k = eR

k = ek, k = 1, 2
αL

2 , α
R
2 ,

T1 = T2 = T,
γ1 , γ2.

(74)

This problem is similar to that in [4, 85], the difference consists in that we additionally require an initial tempera-
ture equilibrium and consider the thermal relaxation process.

Proposition 2. The solution to our model equations with initial discontinuity (74) ensures that

u∗ = u
ρ∗k = ρk, k = 1, 2
e∗k = ek, k = 1, 2
T ∗1 = T ∗2 = T.

(75)

where the superscript “*” denotes the solution in the cell downstream the discontinuity after one time step.

Proof 2. We apply a Riemann solver that resolves isolated contact discontinuity exactly (for example HLLC [76, 69]).
After one time step, we have

U∗i = ξUi−1 + (1 − ξ)Ui, (76)

where U is the solution vector defined in eq. (49) and ξ = u∆t/∆x. After some algebraic manipulations, one can
obtain that

u∗ = u, p∗1 = p∗2 = p, e∗k = ek, ρ∗k = ρk. (77)

By using the EOS of each phase, one can deduce

T ∗k = Tk(p∗k, ρ
∗
k) = T. (78)
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Next we prove that the temperature relaxation eqs. (68a) and (68b) with T 0
k = T ∗k allows only one physically

admissible solution T ′ = T.
For the case p∞,1 = p∞,2, this consequence immediately comes from eq. (71).
For the case p∞,1 , p∞,2, the proof is not so straightforward. For this case, let us assume that there exists another

solution that T ′′ , T and satisfies eqs. (68a) and (68b). By using eq. (69b) and having in mind T ′′ − T , 0, one
obtains

B2

(
T av, αav

2

)
= −
C2B1

C
= B2 = const, (79)

where
C = C1 + C2,

T av = T av
1 = T av

2 = (T ′′ + T )/2,

αav
2 = (α′′2 + α2)/2.

By using eqs. (67) and (79), one can obtain

T av =
b1Γ1/α

av
1 + b2Γ2/α

av
2

Γ1C1/(αav
1 )2 + Γ2C2/(αav

2 )2 , (80)

where b1 = B2 − p∞,2 − p∞,1, b2 = B2 − 2p∞,2, αav
1 = 1 − αav

2 .
By using eqs. (69a) and (79), one obtains

T ′′ = T − 2
B2

C2

(
αav

2 − α2
0
)
, (81)

or
T av = T −

B2

C2

(
αav

2 − α2
0
)
, (82)

Combination of eqs. (80) and (82) leads to γ1 = γ2, which contradicts the initial condition (eq. (74)). Thus,
the temperature relaxation procedure does not violate the temperature equilibrium. Moreover, since velocity and
temperature are spatially uniform, the diffusion processes (heat conduction and viscosity) does not have any impact
on the solution.

3.6. Extension to high order and interface sharpening

The scheme can be extended to higher orders with the MUSCL or WENO scheme. Moreover, to minimize
numerical diffusion of material interfaces, we apply special interface-sharpening schemes [82, 74, 11, 12, 81]. One
principle for implementing these schemes is that the reconstruction schemes for volume fractions and phase densities
should be consistent, otherwise, the PVT property is violated. We give a simple explanation on this issue below.

Observing the above proof of the PVT property, one can see that an important condition for proving the tem-
perature equilibrium is ρ∗k = ρk. The high-order extensions should also ensure this condition. This is deduced from

(αkρk)∗i = ξ (αkρk)i−1 + (1 − ξ) (αkρk)i (83a)
(αk)∗i = ξ (αk)i−1 + (1 − ξ) (αk)i . (83b)

The corresponding high-order formulation is given as follows:

(αkρk)∗i = ξ (αkρk)i−1,RF + (1 − ξ) (αkρk)i,RF , (84a)
(αk)∗i = ξ (αk)i−1,RF + (1 − ξ) (αk)i,RF , (84b)

where the subscript “RF” represents the reconstructed values on the right face of the current cell.
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Assume that we use a reconstruction scheme that is a homogeneous function of degree 1 with respect to the
reconstruction stencil, i.e., Rec (βP) = βRec (P) , β = const > 0 . Note that the TVD schemes are such functions.
Then the reconstructed values are as follows:

(αk)i,RF = Rec (P) , (85a)

(αkρk)i,RF = Rec (ρkP) = ρkRec (P) , (85b)

where P is the reconstruction stencil, for example, for the MINMOD scheme, P = {(αk)i−1 , (αk)i , (αk)i+1}. Rec and
Rec are the reconstruction scheme for αk and αkρk, respectively.

Combination of eqs. (84a), (84b), (85a), and (85b) leads to the conclusion that ρ∗k = ρk holds only when Rec (P) =

Rec (P). This means that the same scheme should be used for reconstruction of (αk)i,RF and (αkρk)i,RF ; Otherwise, the
temperature equilibrium is violated. The numerical results presented in Section 4 also confirm this fact.

4. Numerical results

In this section we perform several numerical tests with the purpose to verify our model and numerical methods
and also compare with some other methods presented in literature. In the laser ablation problem (section 4.4), the
variables are measured in the centimetre-gram-microsecond system of units, and in SI units for other tests.

4.1. Preservation of the PVT property

The purpose of this test is to check the capability of different models to keep the PVT property. We consider the
translation of material interface with initially uniform velocity u = 1.00 × 103m/s, pressure p = 1.00 × 105Pa and
temperature T = 300.00K. Pressures and temperatures are all in equilibrium. The computational domain is [0m, 1m],
the material interface is initially located at x = 0.20m. The EOS parameters for the left component γ = 4.40, Cv =

500.00J/(kg · K), p∞ = 6.00 × 108Pa, and those for the right component γ = 1.40, Cv = 200.00J/(kg · K), p∞ =

0.00Pa.
Here and in the following subsections, we evaluate four different schemes:

(a) The conservative four-equation model with one temperature (4-eqn model 1T.) [39],
(b) The five-equation model with one temperature (5-eqn model 1T.) [3],
(c) The six-equation model with two temperatures (6-eqn model 2T.) [63],
(d) The proposed six-equation model with two temperatures and thermal relaxation (6-eqn model 2T. relaxed).

We perform computations with the above models to the moment t = 5.00 × 10−4s. The numerical results are
illustrated in Figure 1. The numerical results with different reconstruction schemes are displayed in Figure 2.

It can be seen that the five-equation and the six-equation models maintain the PVT property very well, while the
four-equation model triggers spurious oscillations in the velocity, pressure and temperature profiles (see Figures 1c
to 1e). From Figure 1f we see that the non-physical temperature spikes in the numerical results obtained with the
conservative four-equation model tend to increase with time. This error can infect the solution in the computational
domain through the heat conduction.

Moreover, as mentioned in section 3.6 regarding high-order extensions, the reconstruction schemes for the volume
fraction and phase densities should be consistent, otherwise non-physical spikes in temperature arise. If we use
the interface-sharpening scheme Overbee [12] for reconstructing the volume fraction, and MINMOD for the phase
densities, we obtain the results shown in Figure 2. The defect appeared in this figure arises because the inconsistent
scheme combinations fail to maintain constant phase densities.

4.2. Shock tube problem with heat conduction

In this section we consider a two-fluid shock tube problem with the purpose of evaluating different models. Two
fluids are initially at rest and and separated by the material interface located at x = 0.7m separating them. The fluid
on the left has the EOS parameters as γ = 4.40, p∞ = 6.00 × 108Pa, Cv = 1606.00J/(kg · K), and and that on the

19



right – γ = 1.40, p∞ = 0.00Pa, Cv = 714.00J/(kg · K). The initial pressure and temperature on both sides are given
as follows:

0.00 < x < 0.70m : p = 1.00 × 109Pa, T = 293.02K,

0.70 < x < 1.00m : p = 1.00 × 105Pa, T = 7.02K.

The initial densities are determined from the corresponding EOS.

Test without heat conduction. Computations are performed on a 1000-cell uniform grid. The obtained numerical
results obtained at the time moment t = 2.00 × 10−4s are compared to the exact Riemann solution in Figure 3. The
exact solution consists of a leftward rarefaction wave, a rightward contact wave (interface) and a rightward shock
wave.

From the density profiles Figure 3b and temperature profiles Figure 3d, one can see that the shock wave velocity
in the five-equation model with one temperature appears to be overestimated. This stems from the different estimation
of mixture acoustic velocity inside the diffused zone.

Note that as a solution to the Euler equations, the exact Riemann solution does not include any thermal relaxation.
Therefore, the solution to the two-temperature six-equation model with no thermal relaxation is expected to better
match the exact solution than that with thermal relaxation. In Figure 3e we plot the two temperatures of fluids
calculated in the non-equilibrium model without temperature relaxation. As seen, the temperature of the first fluid
quite well matches the exact solution on the left of the interface, while the temperature of the second fluid similarly
does on the right. Thermal relaxation drives the two temperatures into an equilibrium temperature – the profile denoted
as “6-eqn model 2T. relaxed” in Figures 3c and 3d.

Test with equal phase thermal conductivity. The above two-fluid shock tube problem is now considered with taking
into account the phase heat conduction effect. The diffusion PDEs are solved with the explicit method of local
iterations if not mentioned. The thermal conductivity is set to be a large number for comparison purpose. We first
assign the same heat conduction coefficient for the two fluids λ1 = λ2 = 1.00 × 106W/(m · K). The numerical results
obtained with different models are compared in Figure 4. The results marked as converged (“Conv”) are computed on a
fine grid consisting of 20000 computational cells. The difference between the converged solutions of different models
is indiscernible and they are taken as the reference solution for comparison. To demonstrate the difference between the
models, we show also the numerical solutions for a coarse grid of 200 cells. The results for the proposed model (6-eqn
model 2T.R.) agree much better with the reference solution than the five-equation model (see Figures 4c and 4d). The
results of the four-equation model are also satisfactory since the heat conduction seems to be not strong enough to
spread its erroneous temperature spikes. As the thermal conductivity is increased to λ1 = λ2 = 1.00 × 107W/(m · K),
we find that these models do not converge to the same solution. This is demonstrated in Figure 5, and is more clearly
seen in the temperature profiles. The results of the four-equation model on a 20000-cell grid diverge from those of the
five-equation and six-equation models to the right of the material interface. This can be explained by the numerical
errors in the diffused zone, which then contaminate the results in the second fluid due to large thermal conductivity.

In Figure 6 we verify the explicit method of local iterations that is used to solve efficiently the parabolic part of the
model (heat conduction). Here we compare this method with the implicit scheme solved by conventional Newtonian
iterations. In the implicit scheme, the preconditioned conjugate gradient method is used for solving the system of
algebraic equations. We see that the results obtained with both schemes on a 100-cell grid agree very well with the
reference solution.

Test with non-uniform thermal conductivity and viscosity. This test considers the shock tube problem for two fluids
which have different thermal conductivities and viscosities. For the left fluid, the thermal conductivity and dynamic
viscosity are assumed to be λL = 1.00 × 107W/(m · K) and µL = 5.00 × 102Pa · s and those for the right are λR =

1.00× 106W/(m · K) and µR = 1.00Pa · s. The viscosity and thermal conductivity are averaged with volume fractions,
i.e. λ =

∑
k αkλk, µ =

∑
k αkµk. The four-equation model does not provide solution of the volume fraction. Therefore,

we test only the five-equation model and the six-equation model. From Figure 7 one can see that the convergence
performance of the proposed six-equation model is still superior to that of the five-equation model.
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4.3. Two-phase problem

In this section, numerical experiments are performed for two-phase flows where the phases are mixed and may
occupy the same location in space.

Shock propagation in a water-gas mixture. The material properties of the phases are the same as in the previous test.
The volume fraction of each component is initially 0.50 in the whole computational domain. Other initial data is given
as follows:

x < 0.5m : P = 1.00 × 109Pa, T = 1000K;

x > 0.5m : P = 1.00 × 105Pa, T = 300K.

Initial densities are determined by the corresponding EOS of each phase. For comparison purpose, the conductivi-
ties of gas and water are set by effective values of 1.00×107W/m/K and 1.00×105W/m/K, respectively. Computations
are performed to the moment t = 2.00 × 10−4s on a 1000-cell uniform grid. The numerical results are shown in Fig-
ure 8. One can see that including temperature relaxation changes considerably the solution. The heat conduction
process smears the temperature profile near the contact discontinuity, also resulting in corresponding changes in other
variables.

Shock wave in solid alloys. We further consider an alloy impact problem from [47]. The alloy is composed of two
components epoxy and spinel. The volume fractions of these two components are 0.595 and 0.415, respectively. We
solve this problem as a two-phase one with the six-equation model. The materials are characterized by the following
EOS parameters:

• Epoxy – γ = 2.94, P∞,1 = 3.20 × 109Pa, ρ = 1185.00kg/m3,
• Spinel – γ = 1.62, P∞,2 = 1.41 × 1011Pa, ρ = 3622.00kg/m3.

The schematic of this problem is displayed in Figure 9. Calculations are carried out in the model without thermal
relaxation, as the time scale of this problem is much smaller than the characteristic relaxation time. However, the
mechanical relaxation is implemented.

For many metals, the shock velocity S linearly depends on the impact velocity uL. Calculations of the shock wave
propagation are done for different velocities uL. The results obtained are plotted in Figure 10 and compared with the
experimental data that is available from [47]. As can be seen, a linear profile of S well agrees with the experimental
data.

4.4. Laser ablation problem

This section addresses an application problem related to the field of inertial confinement fusion (ICF) – the laser
ablation problem. In the direct-drive ICF capsule, the laser is used as an energy source to accelerate the plastic (CH,
i.e., phenylethylene C8H8) target creating high temperature and high pressure environment for inward implosion.

One-dimensional planar target. First, the laser ablation problem is considered in the 1D approximation. It is assumed
that the target is plane, and the laser emission is uniform and normal to the the target surface. The target is placed in
vacuum that is approximated as a fluid with extremely low density. As shown in Figure 11, the laser radiation comes
from the right and its energy is absorbed by the CH material that then turns to high temperature ablated plasma. The
energy absorption occurs up to the critical density point (where the incident power energy equals the reflected one)
and over a distance dS (absorption area) to the right of the critical density point. We consider the following composite
target consisting of two different CH materials separated by the material interface at a distance xL

• CH #1 ρ = 1.00, γ = 1.666, Cv = 86.27,
• CH #2 ρ = 0.80, γ = 1.220, Cv = 76.27,

hereinafter dimensions used are centimeter, gramm and microsecond.
The vacuum is approximated as the material CH #2 with a density of 8.00×10−6. The critical density is ρcrt = 0.39

that can be calculated according to the inverse bremsstrahlung absorption theory.
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The electron, ion and photon in the plasma are assumed to be in thermal equilibrium. The thermal conductivity
of the plasma is approximated with the one-temperature Spitzer-Harm model [75, 40] and is a nonlinear function of
density and temperature:

λS H = 9.44
(

2
π

)3/2 (kBTe)5/2 kBNe
√

mee4

1
NiZe (Ze + 4) ln Λei

, (86)

where kB is the Boltzmann constant, Te is the electronic temperature, Ne is the electron density, e is the electronic
charge, me is the electronic mass, Ni is the ion density, Ze is the degree of ionization. For a certain plasma,

Ni =
N0

Ac
ρ, Ne = ZeNi, (87)

where Ac is the average atomic number, N0 is the Avogadro’s number.
ln Λei is the Coulomb logarithm of laser absorption and determined with

ln Λei =

 max
(
1, ln lD

lLD

)
,

Z2
e

3kBTe
≥ ldB,

max
(
1, ln lD

ldB

)
,

Z2
e

3kBTe
< ldB.

(88)

where lD is Debye length, lLD is Landau length, ldB is De Broglie wavelength.
When each component obeys their own Spitzer-Harm relation, the four-equation model is not applicable since the

conductivity is averaged by the volume fraction that is absent in this model. Therefore, for comparison purpose, we
assume equal phase conductivity defined with the same Spitzer-Harm relation.

Within the absorption distance dS = 2.00×10−3, the deposited laser power intensity is assumed to be constant, I =

1.00×103. In the vicinity of the right interface, the density is smoothed in the region from xR to xRR by an exponential
function of the spatial coordinate. The geometry of the computational domain is specified as L = 1.00 × 10−1 and
xL = 0.45L, xR = 0.50L, xRR = 0.51L. The initial temperature T = 3.00 × 10−4 in the whole computational domain.
Pressure is calculated with the EOS of each material.

Calculations are performed with three models (the four-equation model, the one-temperature five-equation model
and the proposed six-equation model) and two grids consisting of 1200 and 9600 equally distributed cells. To improve
the material interface resolution, we implement the MUSCL scheme with the Overbee limiter [12]. This scheme is
applied to phase masses αkρk and the volume fraction α1 for the five- and six-equation model, and to mixture density
ρ and mass fraction Y1 for the four-equation model.

The numerical results of these three models at t = 6.00×10−3 are compared in Figure 12. All three models tend to
converge to the same solution. The results show only minor differences. For example, convergence in density for the
four-equation model and convergence in temperature for the six-equation model are found to be worse in comparison
with the other two (Figures 12a, 12b, 12e, and 12f). There is also small difference in the interface velocity, as seen in
Figures 12c and 12d.

To demonstrate the interface-sharpening effect, we compare the results obtained with the MINMOD limiter to
those obtained with the Overbee scheme in Figure 13. One can see that with the Overbee limiter, the diffused interface
is within 2-3 computational cells, which is much less in comparison to the MINMOD scheme.

For the present problem, all materials are described with the ideal gas EOS. In this case, the effective temperature
averaging procedure (eq. (71)) of the one-temperature five-equation model and the temperature relaxation procedure
(eq. (68b)) of the six-equation model yield the same result for temperature. The former neglects the effect of tem-
perature relaxation on volume fraction within the diffused interface. This diffused interface is narrowed into 2-3
computational cells thanks to the interface-sharpening technique. Therefore, the advantage of the proposed model for
this problem is not so evident as that for the water-air shock tube problem in section 4.2.

Laser ablative Rayleigh–Taylor instability in a 2D thin target. Next we consider the laser ablation problem in the 2D
formulation. The interface is initially perturbed and has the following form:

xinter f ace = xR − Amcos
(
2πy/Ly

)
,

where Am is the perturbation amplitude taken as Am = 0.02Ly.
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The laser ablation of a thin target is considered, which is accompanied with the development of Rayleigh–Taylor
instability. The problem is a two-phase version of that in [40]. The problem set-up is displayed in Figure 14. The
left and right ends of the target are located at xLL = 0.50L and xR = 0.70L, respectively. The two CH materials
are separated by a planar interface at xL = 0.65L. The evolution of the ablated target modelled with the proposed
six-equation model is demonstrated in Figure 15. Here, the numerical Schlieren is qualitatively compared with the
experimental results for single material from GEKKO XII [5].

The numerical results obtained with different models are compared in Figure 16. We can see that although the
density distributions obtained with the three models are similar in appearance, the shapes of the material interfaces
are different from each other. The material interface obtained with the five-equation model is more diffusive and quite
different from the others. The difference in critical density distribution can be seen from the laser absorption area.
Again the one-temperature five-equation model result is found to be much different from the other two, mostly due to
the exceeded numerical diffusion of the material interface and violation of the second law of thermodynamics in the
diffused zone.

Conclusion

In this paper we have established a temperature non-equilibrium model for modelling compressible two-phase
flows with taking into account the dissipative thermal conduction and viscosity. We have proposed numerical methods
based on the fractional step approach for solving the proposed model. In this approach, the hyperbolic part of the
governing equations is solved with the Godunov-HLLC scheme, and the parabolic part with the method of local
iterations based on Chebyshev parameters.

The proposed model have demonstrated the following advantages.

• It is thermodynamically consistent.
• It ensures temperature equilibrium during the heat conduction process by implementing a special phase thermal

relaxation.
• It includes the effect of mechanical relaxation, thermal relaxation and heat conduction on the volume fraction.
• Numerically, it maintains the pressure, velocity and temperature equilibrium, thus avoids spurious oscillations

in the vicinity of material interfaces.
• It shows superior convergence performance when compared to other models with non-physical diffused mixture.
• Thanks to its physical consistency with the most complete Baer-Nunziato model, our model can be used for

simulating two-phase flows with both resolved and non-resolved interfaces.

We have compared the proposed six-equation model with the one temperature, one pressure five-equation model
both analytically and numerically. Our analysis shows that this five-equation model is not consistent with the second
law of thermodynamics. Numerical experiments on the laser ablation of a CH target demonstrate that the temperature-
equilibrium five-equation model yields numerical results much different from those of the four-equation and six-
equation models.

In our future work we plan to include enthalpy diffusion into our model.
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Figure 1: Pure translation of a two-fluid system: numerical solutions for different flow parameters.
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Figure 2: Numerical results of temperature(left) and pressure(right) along the computational domain when different reconstruction schemes used.
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Figure 3: Numerical results for the two-fluid shock tube problem without heat conduction.
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Figure 4: Numerical results for the two-fluid shock tube problem with equal phase heat conductivity λ = 1.00 × 106.
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Figure 5: Numerical results for the two-fluid shock tube problem with equal phase heat conductivity λ = 1.00 × 107.
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Figure 6: Numerical results for the two-fluid shock tube problem obtained with the explicit and implicit scheme on a 100-cell grid.
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Figure 7: Numerical results for the two-fluid shock tube problem with for the case of different phase coefficients of viscosity and heat conductivity.
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Figure 8: The numerical results for the water-gas multiphase shock tube problem. The lines ‘no T.R.’,‘with T.R.’,‘with T.R. H.C.’, represent the
numerical results without temperature relaxation, with temperature relaxation, with temperature relaxation and heat conduction, respectively.

Figure 9: Schematic of the alloy impact problem.
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Figure 10: Shock velocity diagramm for the epoxy/spinel alloy impact problem. The experimental data is from [47].

(a) Problem setup

(b) Critical density ρcrt and absorption distance dS

Figure 11: The laser ablation of a multicomponent planar target.
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Figure 12: Numerical results for the laser ablation of a multicomponent planar target.
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Figure 13: Comparison of the numerical results obtained the Overbee and MINMOD limiter schemes.

Figure 14: Schematic of the laser ablation of a thin two-phase target.

Figure 15: Evolution of the numerical Schlieren obtained with the proposed six-equation model. The figures on the right are experimental images
from [5].
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Figure 16: Comparison of the numerical results obtained with the four- (the first row), five- (the second row) and the six-equation model (the third
row). Displayed results from left to right: density, volume fraction, temperature, laser absorption area, numerical Schlieren.
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