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Abstract

In this paper, we construct a combined multiscale finite element method (Ms-

FEM) using the Local Orthogonal Decomposition (LOD) technique to solve the

multiscale problems which may have singularities in some special portions of

the computational domain. For example, in the simulation of steady flow trans-

porting through highly heterogeneous porous media driven by extraction wells,

the singularities lie in the near-well regions. The basic idea of the combined

method is to utilize the traditional finite element method (FEM) directly on

a fine mesh of the problematic part of the domain and using the LOD-based

MsFEM on a coarse mesh of the other part. The key point is how to define local

correctors for the basis functions of the elements near the coarse and fine mesh

interface, which require meticulous treatment. The proposed method takes ad-

vantages of the traditional FEM and the LOD-based MsFEM, which uses much

less DOFs than the standard FEM and may be more accurate than the LOD-

based MsFEM for problems with singularities. The error analysis is carried

out for highly varying coefficients, without any assumptions on scale separation

or periodicity. Numerical examples with periodic and random highly oscillat-
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ing coefficients, as well as the multiscale problems on the L-shaped domain,

and multiscale problems with high-contrast channels or well-singularities are

presented to demonstrate the efficiency and accuracy of the proposed method.

Keywords: Multiscale problems, non-periodic, LOD, well-singularity,

high-contrast channel.

2021 MSC: 34E13, 65N12, 65N30

1. Introduction

In this paper we consider the elliptic problems with rapidly varying (non-

periodic) coefficients, which involve many spatial scales. Such problems are

typically referred to as multiscale problems and often arisen in composite mate-

rials and flows in porous media. Any meaningful numerical simulation of these5

problems such as standard finite element method (FEM) has to account for the

highly heterogeneous fine-scale structures in the whole computational domain.

This means that the underlying computational mesh has to be sufficiently fine

and hence requires an enormous computational demand.

In order to overcome this difficulty, many kinds of methods have been de-10

veloped in recent decades to solve such multiscale problems. Roughly speaking,

from the perspective of final approximation solution, these numerical methods

can be categorized into two classes. One is to solve the original problem in the

constructed coarse-grid multiscale basis function space hence obtains a good

approximation of the original-problem solution; the other is to solve a macro15

model equivalent to the original problem on the coarse grid mesh hence grasps

the macro behavior of the multiscale solution. See, for example, the general-

ized FEM (GFEM) [1, 2, 3], the multiscale FEM (MsFEM) [4, 5, 6], the vari-

ational multiscale methods (VMM) or residual-free bubbles method (RFBM)

[7, 8, 9, 10], the heterogeneous multiscale methods (HMM) [11, 12, 13], the20

multiscale finite-volume method [14], the multigrid numerical homogenization

techniques [15, 16], the mortar multiscale methods [17, 18], the localized or-

thogonal decomposition methods (LODM) [19, 20, 21], the equation-free ap-
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proaches [22, 23], the generalized MsFEM (GMsFEM) [24, 25], the multiscale-

spectral GFEM (MS-GEFM) [26, 27], the constraint energy minimizing GMs-25

FEM (CEM-GMsFEM)[28, 29, 30], some numerical homogenization methods or

upscaling methods [31, 32, 33, 34, 35], and so on.

Most of the above mentioned multiscale methods consist of two parts, one is

the macro solver on coarse mesh such as various finite element or finite volume

methods, and the other is the cell problems solving on the coarse grid or over-30

sampling elements. The multiscale algorithm captures the fine-scale information

of the solution by solving the cell problems, and then uses the solutions of the

cell problems to form an equivalent macro model or a low dimensional multi-

scale approximation space of the solution. The definition of the cell problem

is mainly based on the differential operator of the original multiscale problem,35

such as the elliptic operator, so that the variability of the multiscale coefficients

can be brought into the final solution model through the solution of the cell

problems.

In this paper, we are concerned with a special kind of multiscale problems

– those with singularities. For example, the one in L-region has singularity40

near the corner; while the problem with high-contrast channel that connects

the boundaries of coarse-grid blocks has singularity at the edge of the channel

[36, 37, 38, 32]; furthermore, the problem with steady flow transporting through

highly heterogeneous porous media driven by extraction wells has singularity

near the well [39]. The traditional multiscale methods on coarse grids may be45

inefficient when dealing with singularity. This is mainly because the local sin-

gularity of the solution is hard to be grasped effectively at the coarse grid level.

To solve this kind of singular problems, some numerical methods have been pro-

posed in the literature. See, for instance, the adaptive GMsFEM used to solve

the high contrast problem [40, 41], the MsFEM used to solve the high contrast50

interface and channel problems [42, 36], the complete multiscale coarse grid algo-

rithm by using the Green functions for solving steady flow problem involving well

singularities in heterogeneous porous medium [39], the CEM-GMsFEM used to

solve the high contrast problem [28, 29], the LODM used to solve high contrast
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and complex geometric boundary problems [21, 43, 44], the combined MsFEM55

used to solve high contrast channel and well–singularity problems [45, 46], and

some generalized finite element methods and numerical homogenization meth-

ods used to solve high contrast problems [16, 26, 27, 31, 32], and so on. Among

them, most of the multiscale methods capture the small scale information of the

original-problem solution through the solution of the cell problems. Moreover,60

for the problems with singularities, such as the problem with high-contrast and

narrow channels, in order to grasp the singularities, it needs to construct multi-

scale finite element approximation space via solving special cell problems. For

example, the CEM-GMsFEM first needs to construct the auxiliary multiscale

functions by solving the local spectral problem. Consequently, the auxiliary65

function space is constructed by selecting the eigenfunctions corresponding to

small eigenvalues, which correspond to high contrast channels. Finally, the

online multiscale basis functions are constructed based on constrained energy

minimization in the auxiliary function space.

However, it is difficult to define the corresponding subproblems to construct70

the required approximation space for the problems with source term singular-

ity, such as the porous medium flow problem with well singularities. In [45, 46],

the authors combined the standard FEM with the oversampling MsFEM and

Petrov-Galerkin MsFEM to solve the multiscale problem with singularity. The

standard FEM is used on a fine mesh of the problematic part of the domain and75

the oversampling MsFEM or Petrov-Galerkin MsFEM is used on a coarse mesh

of the other part. The transmission condition on the interface between coarse

and fine meshes is dealt with the penalty technique. The proposed methods take

the advantages of the standard FEM and the MsFEM, and maintain the accu-

racy of the two methods. It is shown [45, 46] that the combined multiscale meth-80

ods can solve the multiscale elliptic problems with fine and long-ranged high

contrast channels and the well singularities very efficiently. But, the error anal-

ysis of the methods is still based on the classical homogenization theory, which

requires the assumption that the diffusion coefficient is periodic. Therefore, how

to improve the algorithm so that the optimal error estimate can be obtained for85
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any diffusion coefficient needs further study. We remark that in the past decade,

there are many nice multiscale methods dealing with arbitrary oscillating coeffi-

cients, such as the LODM, CEM-GMsFEM, MS-GFEM, and some numerical ho-

mogenization methods mentioned above [16, 19, 20, 21, 26, 27, 28, 29, 30, 31, 32].

In this paper, we focus on the LODM which was originally introduced in [19]90

and could be derived from the VMM framework [20, 21]. The orthogonal decom-

position method starts from two finite element spaces, a coarse space VH and a

very high dimensional space Vh which can approximate the multiscale solution

well. Further, the decomposition can be described in three steps: (1) define a

quasi-interpolation operator IH : Vh → VH , (2) define a high dimensional space95

of negligible information by the kernel of the operator IH , i.e. Wh:= kern(IH),

and (3) find the orthogonal complement of Wh in Vh with respect to the energy

scalar product. With this strategy, it is possible to split the space Vh into the

orthogonal direct sum of a low dimensional multiscale space V ms
H and a high

dimensional remainder space Wh. The multiscale problem is solved in the low100

dimensional space V ms
H and is therefore cheap. However, the construction of the

exact splitting of Vh = V ms
H ⊕Wh is unpractical since it needs to define the cor-

rection operator in the whole domain which is computationally expensive. We

call the method as an ideal one whose solution is referred as ideal solution. To

reduce the computational complexity, several localization strategies were pro-105

posed and analyzed in [19, 20, 21]. In fact, the computation of the orthogonal

decomposition is localized to the patches of the elements, which we introduced

as LODM. The reason which makes localization successful is that outside of

the support of the coarse finite element basis functions of VH , the canonical

basis functions of the multiscale space V ms
H have the property of exponential110

decay. We remark that the LODM often use the fine-scale solution in Vh for

comparison, which is referred to as reference solution.

The essence of the LODM is to construct a low-dimensional solution space

(with a locally supported basis functions) that has very accurate approximation

properties with respect to the exact solution. So far, the idea of LOD has been115

generalized to several kinds of discretization techniques such as discontinuous
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Galerkin [47], Petrov-Galerkin formulations [48] and mesh-free methods [49].

Moreover, the method has been successfully applied to many kinds of problems

such as semi-linear elliptic problems [50], eigenvalue problems [51, 52], problems

on complicated geometries [43], and so on. We refer the reader to [53, 54] and120

references therein for more works about LODM. The attractive point of this

method is that it does not rely on the classical homogenization theory and does

not need the scale separation assumption.

Based on the above observation, we will use the LOD technique to improve

the combined MsFEM and make it suitable for general multiscale problems.125

Note that the traditional FEM has many excellences to deal with the singular-

ities, such as, refining the mesh or enlarging the polynomial order of the finite

element space. Thus, in order to take advantages of both methods, we introduce

a combined FE and LOD method (FE–LODM) to solve the multiscale problems

with singularities. The idea of this approach is to utilize the traditional FEM130

directly on a fine mesh of the problematic part of the domain and use the LODM

on a coarse mesh of the other part. Comparing to the implement of LODM,

there are two key issues of the FE–LODM to consider. The first one is how to

define the corresponding quasi-interpolation operator in the subdomain using

fine mesh. Here we just choose the L2 projection Πh, which has the property135

that Πhuh = uh for uh belongs to the fine mesh linear FEM space. This property

is very important in our later error analysis, which yields a very useful result

that the ideal solution is equals to the reference solution in the subdomain using

fine mesh. The second one is how to define the correction operators near the

interface between the coarse and fine mesh. A delicate treatment should be done140

for the elements who have an edge or face in the interface of coarse–fine mesh.

For the introduced FE-LODM, we carry out a rigorous and careful analysis for

the elliptic equation with arbitrary diffusion coefficient to show both the energy

and L2 errors of the method have the optimal convergence rate. The numerical

results also show that the proposed FE-LODM is very efficient for multiscale145

problems with random generated coefficients and singularities.

The rest of this paper is organized as follows. In Section 2, we give the
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model problem and define a fine-scale reference problem. Section 3 is devoted

to deriving the FE-LODM. In Section 4, we present the error analysis of the

approach. In Section 5, we provide some numerical results to demonstrate the150

efficiency of our method. Conclusions are draw in the last section.

Throughout this paper, standard notations for Lebesgue and Sobolev spaces

are employed, and C denotes the generic constant, which depends on neither the

mesh size nor the diffusion coefficient. We also use the shorthand notation a . b

and b & a for the inequality a ≤ Cb and b ≥ Ca. In addition, the shorthand155

notation a h b represents that a . b and b . a.

2. Model problem and reference approximations

In this section, we first present the multiscale model problem, then introduce

its interior penalty continuous-discontinuous Galerkin (IPCDG) discretization

on fine meshes and discuss the approximation errors of the IPCDG method.160

The IPCDG solution will be used as a fine-scale reference solution to estimate

the error of the FE-LODM. Note that the IPCDG method was first introduced

in [55] for the Helmholtz equation.

2.1. Model Problem

In this paper, we consider a second order elliptic problem with highly varying

diffusion coefficient. Let Ω ⊂ R
d, d=2,3, be a polygonal/polyhedral domain, and

the elliptic equation reads as




−∇ · (A∇u) = f in Ω,

u = 0 on ∂Ω,
(2.1)

where we assume that f ∈ L2(Ω), and the diffusion matrix A ∈ L∞(Ω,Rd×d) is

a symmetric matrix with uniform spectral bounds β ≥ α > 0, i.e.

σ(A(x)) ⊂ [α, β] ∀x ∈ Ω. (2.2)

The weak formulation of problem (2.1) is to find u ∈ H1
0 (Ω) such that

∫

Ω

A∇u · ∇v dx =

∫

Ω

fv dx ∀ v ∈ H1
0 (Ω). (2.3)
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Clearly, the Lax-Milgram lemma [56] implies that (2.3) has a unique solution.165

In order to deal with the multiscale problem that has singularities, we de-

compose the research domain Ω into two parts, Ω1 and Ω2, where Ω1 consists

of some subdomain(s) containing the singularities and Ω2 = Ω\Ω1 (see Figure 1

for an illustration). Let Γ = ∂Ω1 ∩ ∂Ω2 be the interface between Ω1 and Ω2.

We assume that the length/area of Γ satisfies |Γ| = O(1), and Γ is Lipschitz170

continuous.

Figure 1: A decomposition of Ω into Ω1 with singularities and Ω2 = Ω\Ω1, where the green

lines represent the interface Γ. Left: A fine-scale mesh for the reference problem; Right: A

mesh for the combined multiscale methods.

For any subdomain ω ⊆ Ω, we denote by (u, v)ω =
∫
ω
uv. For any seg-

ment/patch γ ⊆ Γ, denote by 〈u, v〉γ =
∫
γ
uv. For brevity, let (u, v) = (u, v)Ω,

(∇u,∇v) = (∇u,∇v)Ω and 〈u, v〉 = 〈u, v〉Γ.

2.2. Reference problem175

In this subsection, we introduce the IPCDG method which will be used as

the fine-scale reference problem to estimate the error of our FE-LODM.

Let Mh,Ω1
andMh,Ω2

be regular and quasi-uniform triangulations of Ω1 and

Ω2, respectively. Denote by Mh,h := Mh,Ω1
∪Mh,Ω2

the resulted triangulation

of Ω. Note that any element in the triangulation is considered closed by con-180

vention. For any T ∈ Mh,h, let hT := diamT . Denote by h := maxT∈Mh,h
hT .

8



Let n be the unit normal vector of Γ that points from Ω1 to Ω2. We de-

fine the jump and average of a function v across Γ by [v] := v|Ω1
− v|Ω2

and

{v} := (v|Ω1
+ v|Ω2

)/2, respectively. Moreover, we denote by ∇h the piecewise

gradient on Ω1 ∪ Ω2, that is, ∇hv|Ωi
= ∇(v|Ωi

), i = 1, 2.185

Denote by Γi = ∂Ω ∩ ∂Ωi and

H1
Γi
(Ωi) :=

{
v ∈ H1(Ωi) : v|Γi

= 0 in the sense of trace
}
, i = 1, 2.

Let Vh,Ωi
be the continuous linear Lagrange finite element space on Mh,Ωi

, i =

1, 2, respectively, i.e.

Vh,Ωi
:=

{
vh ∈ H1

Γi
(Ωi) : vh|T ∈ P1, ∀T ∈ Mh,Ωi

}
,

where P1 is the set of polynomials with total degree ≤ 1. Then the approxima-

tion space of the fine-scale reference problem is defined by

Vh,h := {vh : vh|Ωi
∈ Vh,Ωi

, i = 1, 2} . (2.4)

Note that a discrete function in Vh,h is continuous on each Ωi, i = 1, 2, but may

be discontinuous across the interface Γ. Given some positive penalty parameters

γ0 > 0, for any subset ω ⊆ Ω, we define a symmetric bilinear form aω(·, ·) as

follows:

aω(u, v) :=(A∇hu,∇hv)ω −
(
〈{A∇hu · n}, [v]〉Γ∩ω + 〈[u], {A∇hv · n}〉Γ∩ω

)

+ Jω(u, v), (2.5)

Jω(u, v) :=
〈γ0
h
[u], [v]

〉

Γ∩ω
. (2.6)

Then the IPCDG method (cf. [55]) reads as: find uh,h ∈ Vh,h, such that

aΩ(uh,h, vh,h) = (f, vh,h) ∀ vh,h ∈ Vh,h. (2.7)

Remark 1. (1) Noticed that uh,h is continuous in Ω2 and subdomain(s) in

Ω1 and that the discontinuities across the interface Γ is treated by the interior

penalty technique from the IPDG methods [57], so we call this method (2.7) the

IPCDG method.

9



(2) It is easy to verify that the IPCDG method is consistent with the multi-

scale problem (2.1), that is

aΩ(u− uh,h, vh,h) = 0 ∀ vh,h ∈ Vh,h.

Introduce the discrete energy norm

‖|v|‖h,h =
(
‖A

1
2∇hv‖

2
0,Ω +

γ0
h
‖[v]‖2Γ +

h

γ0
‖{A∇hv · n}‖

2
Γ

) 1
2

.

Clearly, the bilinear form aΩ is continuous on V × V where V := {v : v|Ωi
∈

H2(Ωi) ∩H1
Γi
(Ωi), i = 1, 2}, i.e.

|aΩ(u, v)| . ‖|u|‖h,h ‖|v|‖h,h . (2.8)

Following [55, 57], it may be proved that there exists a positive constant α0

such that

aΩ(vh,h, vh,h) & ‖|vh,h|‖h,h vh,h ∈ Vh,h, if γ0 ≥ α0, (2.9)

and hence the following Céa’s lemma and the well-posedness hold for the IPCDG190

method (2.7) if the penalty parameter γ0 ≥ α0. We omitted the details.

Lemma 2.1. Suppose γ0 ≥ α0. Then the following error estimate holds:

‖|u− uh,h|‖h,h . inf
vh,h∈Vh,h

‖|u− vh,h|‖h,h .

Then the error estimate of the IPCDG method may be obtained by combin-

ing the above Céa’s lemma and the interpolation error estimates. We omitted

the details and just assume that the IPCDG solution uh,h is a good approxima-

tion of the exact solution u. We will use uh,h as a reference solution to estimate195

the error of our FE-LODM.

For further error analysis, we introduce the following norm on the restriction

of the space Vh,h onto a subdomain ω ⊆ Ω:

‖v‖h,h,ω =
(
‖A

1
2∇hv‖

2
0,ω +

γ0
h
‖[v]‖2Γ∩ω

) 1
2

(2.10)

and denote by ‖·‖h,h := ‖·‖h,h,Ω the norm on the whole domain Ω. Noting that

the norm ‖ · ‖h,h is just the norm ‖|·|‖h,h with the third term dropped, by using

the trace and inverse inequalities [56], it is easy to show that the two norms are

equivalent on the fine-scale approximation space Vh,h.200
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3. FE-LODM formulation

In this section, we will present the FE-LODMwhich uses FEM in the domain

Ω1 containing singularities and LODM in Ω2 where the solution is smooth but

highly oscillating and the two methods are joint at the interface Γ by using the

interior penalty technique. To do this, we first introduce coarse meshes on Ω2205

and coarse-scale finite element spaces, secondly state the multiscale decomposi-

tion of the fine-scale space Vh,h and the approximation space for the FE-LODM,

then present the ideal combined multiscale method, and finally formulate the

localized combined multiscale method, i.e., FE-LODM.

3.1. Coarse-scale FE spaces210

Let MH,Ω2
a shape-regular coarse triangulation of Ω2 such that the fine

reference meshMh,Ω2
is a refinement of it. Denote byH the maximum diameter

of elements in MH,Ω2
. Clearly, h < H . Let MΓh

and MΓH
be the set of

interface elements in Mh,Ω1
and MH,Ω2

, respectively, i.e.

MΓh
:= {T ∈ Mh,Ω1

: |T ∩ Γ| 6= 0} and MΓH
:= {T ∈ MH,Ω2

: |T ∩ Γ| 6= 0} .

Denote by Γh := {T ∩ Γ : T ∈ MΓh
} and ΓH := {T ∩ Γ : T ∈ MΓH

} the two

partitions of the interface Γ induced by Mh,Ω1
and MH,Ω2

, respectively. In

addition, we assume that Mh,Ω1
and MH,Ω2

satisfy the matching condition

that Γh is a refinement of ΓH . Introduce the coarse-scale finite element space

on the coarse mesh MH,Ω2
:

VH,Ω2
:=

{
vH ∈ H1

Γ2
(Ω2) : vH |T ∈ P1, ∀T ∈ MH,Ω2

}
.

Let

Vh,H := {vh,H : vh,H |Ω1
∈ Vh,Ω1

, vh,H |Ω2
∈ VH,Ω2

} .

Moreover, we denote by

V0,h := {vh,h ∈ Vh,h : vh,h|Ω1
= 0} and V0,H := {vh,H ∈ Vh,H : vh,H |Ω1

= 0}.

11



3.2. Multiscale Decomposition

First, we need to define a quasi-interpolation operator from the fine-scale

approximation space to the coarse-scale space. For this, we first introduce a

weighted Clément-type quasi-interpolation operator CH defined on the region

Ω2 (see [58, 59]). Let NH be the set of vertices of elements in MH,Ω2
and

let N̊H := NH\Γ2. For any node z ∈ NH , let Φz ∈ VH,Ω2
be the nodal basis

function at z. The Clément-type quasi-interpolation operator CH : H1
Γ2
(Ω2) 7→

VH,Ω2
is given by:

CHu :=
∑

z∈N̊H

uzΦz with uz =
(u,Φz)Ω2

(1,Φz)Ω2

∀u ∈ H1
Γ2
(Ω2). (3.1)

Further, let Πh : L2(Ω1) 7→ Vh,Ω1
be the L2-projection operator. Clearly,

Πhvh = vh ∀ vh ∈ Vh,Ω1
. (3.2)

Then the quasi-interpolation operator Ch,H :Vh,h 7→ Vh,H can be defined as





Ch,Hvh,h|Ω1
:= Πh(vh,h|Ω1

);

Ch,Hvh,h|Ω2
:= CH(vh,h|Ω2

),

for any vh,h ∈ Vh,h. (3.3)

By the operator Ch,H , we can define its kernel space Wh,h := {vh,h ∈ Vh,h |

Ch,Hvh,h = 0}, and use it to construct a splitting of the space Vh,h into the

direct sum

Vh,h = Vh,H ⊕Wh,h. (3.4)

Notice that, for any wh,h ∈ Wh,h, from (3.2) it follows that wh,h|Ω1
= 0. Hence,

in the following, we change the notation Wh,h into W0,h for emphasis.

Note that the subspaceW0,h is a fine-scale remainder space (high-dimensional215

space), which contains the fine-scale features of V0,h that can not be expressed

in the low-dimensional space V0,H . Following the idea of LODM ([21, 50]), we

look for a splitting Vh,h = V ms
h,H ⊕W0,h such that the space V ms

h,H has good H1

approximation properties to the solution of the multiscale problem. It is ob-

vious that V ms
h,H is a low-dimensional space that it has the same dimension as220
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Vh,H . In order to explicitly construct such a splitting, we look for the orthogonal

complement of W0,h in Vh,h with respect to the scalar product aΩ(·, ·).

The corresponding fine-scale projection Qh: Vh,h 7→ W0,h is given by: for

vh,h ∈ Vh,h, find Qhvh,h ∈ W0,h, such that

aΩ(Qhvh,h, w0,h) = aΩ(vh,h, w0,h) ∀w0,h ∈ W0,h. (3.5)

Using the fine-scale projection, we can define the approximation space on the

whole domain Ω for the ideal combined multiscale method by

Vms
h,H := (I −Qh)Vh,H . (3.6)

3.3. The ideal combined multiscale method

Next, we define the ideal combined multiscale method for the problem (2.7)

as follows: for all vms
h,H ∈ V ms

h,H , find ums
h,H ∈ Vms

h,H , such that

aΩ(u
ms
h,H , vms

h,H) = (f, vms
h,H). (3.7)

With above definition of the ideal method, we can see that, by taking vms
h,H =

ums
h,H in (3.7) and using the coercivity (2.9) of aΩ on Vh,h, we have the following

stability for the ideal solution ums
h,H : if γ0 ≥ α0,

‖ums
h,H‖h,h . ‖f‖L2(Ω). (3.8)

Remark 2. It can be proved that Ch,H is an isomorphism on Vh,H (see Lemma 4.4).

Thus we can split ums
h,H into

ums
h,H = (Ch,H |Vh,H

)−1Ch,Hums
h,H︸ ︷︷ ︸

∈Vh,H

−
(
(Ch,H |Vh,H

)−1Ch,Hums
h,H − ums

h,H

)
︸ ︷︷ ︸

∈W0,h

.

Moreover, it is easy to check that

(Ch,H |Vh,H
)−1Ch,Hums

h,H − ums
h,H = Qh((Ch,H |Vh,H

)−1Ch,Hums
h,H).

Therefore, we have the splitting that obeys (3.6)

ums
h,H = uh,H −Qh(uh,H), where uh,H := (Ch,H |Vh,H

)−1Ch,Hums
h,H . (3.9)

It is clear that Ch,Hums
h,H = Ch,Huh,H .

13



Before closing this subsection, we present an interesting result in the fol-225

lowing proposition about the ideal method (3.7) which says that there is no

difference between the ideal solution and the reference solution in the subdo-

main Ω1.

Proposition 1. Let uh,h and ums
h,H be the solutions to (2.7) and (3.7), respec-

tively. Then we have

uh,h − ums
h,H ∈ W0,h and Ch,Huh,h = Ch,Huh,H , (3.10)

where uh,H is defined in Remark 2. Especially, uh,h|Ω1
= ums

h,H |Ω1
.

Proof. Form (2.7) and (3.7), for all vms
h,H ∈ V ms

h,H , it follows that

aΩ(uh,h, v
ms
h,H) = (f, vms

h,H),

aΩ(u
ms
h,H , vms

h,H) = (f, vms
h,H).

Thus

aΩ(uh,h − ums
h,H , vms

h,H) = 0, (3.11)

which means uh,h − ums
h,H ∈ W0,h. Hence

Ch,Huh,h = Ch,Hums
h,H = Ch,Huh,H ,

which yields the results immediately.230

3.4. Formulation of FE-LODM

Note that the fine-scale projection Qh in (3.5) is defined globally onto W0,h,

and consequently, in order to calculating the basis functions of the discrete

space V ms
h,H , one has to solve many large equations with dim(W0,h) unknowns.

Therefore, for practical application, we have to localize the definition of Qh235

to obtain an approximation of the ideal combined multiscale method, i.e., FE-

LODM. To do so, we first decompose Qh by restrict (3.5) to each elements in

Mh,H and then localize the restrictions.
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For each T ∈ MH,Ω2
we associate it with a point set T̃ ⊇ T defined as

follows. If T ∈ MH,Ω2
\MΓH

, we just let T̃ = T . While, for T ∈ MΓH
, we let

T̃ := T ∪ {t ∈ MΓh
: (t ∩ Γ) ⊂ (T ∩ Γ)}

be the union of T and those interface elements in MΓh
whose intersections with

the interface Γ are contained in ∂T (see Figure 2 for an illustration).

Figure 2: An illustration of the interface combined element T̃ for T ∈ MΓH
.

240

Then we define the restrictions of Qh for any T ∈ MH,Ω2
as: QT

h vh,h ∈ W0,h

such that

aΩ(Q
T
h vh,h, w0,h) = aT̃ (vh,h, w0,h) ∀w0,h ∈ W0,h. (3.12)

Remark 3. For vh,h ∈ Vh,h, w0,h ∈ W0,h, aΩ(vh,h, w0,h) has nonzero terms

on the interface Γh. We integrate them into the definition of QT
h vh,h for the

elements T ∈ MΓH
by restricting the bilinear form a onto T̃ .

Noting that any function in W0,h vanishes in Ω1, from (2.5) we have

aΩ1\(∪T∈MΓh
T )(vh,h, w0,h) = 0 ∀ vh,h ∈ Vh,h, w0,h ∈ W0,h.

Therefore it follows from (3.5) that

aΩ(Qhvh,h, w0,h) =
∑

T∈MH,Ω2

aT̃ (vh,h, w0,h) ∀w0,h ∈ W0,h,

15



and hence we have the following decomposition:

Qh =
∑

T∈MH,Ω2

QT
h . (3.13)

Although the definitions of QT
h vh,H are independent of each other and can

be computed in parallel, they are still global and have to be solved on the whole245

fine-scale space W0,h.

Next we introduce local versions of the correction operators QT
h and give

error estimates between them. To this end, we need the definitions of element

patches (c.f. [21]).

Definition 1 (element patches). Given T ∈ MH,Ω2
, the patches TL are defined

recursively as follows:

T0 := T,

TL := {T ′ ∈ MH,Ω2
| T ′ ∩ TL−1 6= ∅} L = 1, 2, · · · .

The restriction of the fine-scale correction space W0,h to the element patch

TL is defined by

W0,h(TL) := {vh,h ∈ W0,h : vh,h = 0 in Ω\TL}.

The localized approximation of the correction operator QT
h is defined as follows.250

Definition 2. For T ∈ MH,Ω2
and the patch TL, the local correction operator

QT,L
h : Vh,h 7→ W0,h(TL) is defined as follows: given vh,h ∈ Vh,h, find QT,L

h vh,h

∈ W0,h(TL) such that

aΩ(Q
T,L
h vh,h, w0,h) = aT̃ (vh,h, w0,h) ∀w0,h ∈ W0,h(TL). (3.14)

According to the decomposition (3.13) and the above definition, the global

corrector of level L is given by

QL
h :=

∑

T∈MH,Ω2

QT,L
h . (3.15)

Further, we define the localized multiscale approximation space as follows:

V ms,L
h,H :=

(
I −QL

h

)
Vh,H=

{
vh,H −QL

hvh,H : vh,H ∈ Vh,H

}
. (3.16)

16



Then, the FE-LODM reads as: find ums,L
h,H ∈ V ms,L

h,H , such that

aΩ
(
ums,L
h,H , vms,L

h,H

)
=

(
f, vms,L

h,H

)
∀ vms,L

h,H ∈ V ms,L
h,H . (3.17)

Remark 4. (1) It is clear that V ms,L
h,H ⊂ Vh,h as a consequence of the assumption

that Mh,Ω2
is a refinement of MH,Ω2

. Therefore the FE-LODM inherits the

well-posedness from the reference problem (2.7).

(2) Unlike V ms
h,H whose multiscale basis functions supported globally on Ω2,

the multiscale basis functions of V ms,L
h,H locally support on small patches of size255

O(LH), and hence the computational cost for assembling the global system of the

FE-LODM (3.17) is usually much less than that for the ideal combined method

(3.7).

4. Error estimates for the FE-LODM

In this section, we derive the H1 and L2 error estimates for the proposed260

FE-LODM.

We first recall two local trace inequalities which will be used in this pa-

per frequently. Here we omitted the proof since it is a direct consequence of

the standard trace inequality (cf. [56, Theorem 1.6.6, p.39]) and the scaling

argument (cf. [60]).265

Lemma 4.1. Let T be an element in the triangulation Mh,Ω1
, Mh,Ω2

, or

MH,Ω2
. Then, we have

‖v‖0,∂T . diam(T )−
1
2 ‖v‖0,T + ‖v‖

1
2

0,T ‖∇v‖
1
2

0,T ∀ v ∈ H1(T ),

‖v‖0,∂T . diam(T )−
1
2 ‖v‖0,T ∀ v ∈ P1(T ),

where the invisible constants depend only on the regularity of the element T .

We shall also make use of the following norm on the restriction of the space

Vh,H onto a subdomain ω ⊆ Ω:

‖v‖h,H,ω =
(
‖A

1
2∇hv‖

2
0,ω +

γ0
H

‖[v]‖2Γ∩ω

) 1
2

, (4.1)

and denote by ‖ · ‖h,H := ‖ · ‖h,H,Ω. Note that the norm ‖ · ‖h,H,ω is almost the

same as the previous one ‖ · ‖h,h,ω in (2.10) except replacing γ0

h
there by γ0

H
.
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4.1. Properties of the operator Ch,H

In this subsection, we state two lemmas on the quasi-interpolation operator270

Ch,H given in (3.3).

First we recall some stability and error estimates for the operator CH , whose

proof can be found in [58, 59].

Lemma 4.2. For any T ∈ MH,Ω2
and vh ∈ Vh,Ω2

, there hold following esti-

mates

‖∇hCHvh‖0,T . ‖∇hvh‖0,T̂ , (4.2)

‖vh − CHvh‖0,T +H‖∇h(vh − CHvh)‖0,T . H‖∇hvh‖0,T̂ , (4.3)

where T̂ = ∪{T
′

∈ MH,Ω2
: T

′

∩ T 6= ∅}.

Using Lemma 4.2, we may prove the following stability result for Ch,H .275

Lemma 4.3. For any vh,h ∈ Vh,h, it holds that

‖Ch,Hvh,h‖h,H,ω . ‖vh,h‖h,H,ω̂, (4.4)

where ω̂ :=
⋃(

{T̂ : T ∩ ω 6= ∅, T ∈ MH,Ω2
} ∪ {T : T ∩ ω 6= ∅, T ∈ Mh,Ω1

}
)
.

Proof. From the definitions (2.10) and (4.1) of the norms, (3.2), (3.3), and (4.2),

it is easy to see that

‖Ch,Hvh,h‖
2
h,H,ω .

∑

T∈MH,Ω2
∩ω

‖A
1
2∇hvh,h‖

2
0,T̂

+ ‖A
1
2∇hvh,h‖

2
0,Ω1∩ω +

γ0
H

‖[Ch,Hvh,h]‖
2
Γ∩ω

. ‖A
1
2∇hvh,h‖

2
0,Ω∩ω̂ +

γ0
H

‖[Ch,Hvh,h]‖
2
Γ∩ω. (4.5)

For the second term on the right hand side, using the triangle inequality, we

have

γ0
H

‖[Ch,Hvh,h]‖
2
Γ∩ω .

γ0
H

‖[Ch,Hvh,h − vh,h]‖
2
Γ∩ω +

γ0
H

‖[vh,h]‖
2
Γ∩ω

.
∑

E∈ΓH

E∩ω 6=∅

γ0
H

‖CHvh,Ω2
− vh,Ω2

‖2E +
γ0
H

‖[vh,h]‖
2
Γ∩ω (4.6)

:= I +
γ0
H

‖[vh,h]‖
2
Γ∩ω,

18



where vh,Ω2
: =vh,h|Ω2

, and we have used the fact that Ch,Hvh,h|Ω1
= vh,h|Ω1

.

Further, from Lemma 4.1 and (4.3), it follows that

I .
∑

T∈MΓH

T∩ω 6=∅

γ0
H

(
H−1‖CHvh,Ω2

− vh,Ω2
‖20,T +H‖∇h(CHvh,Ω2

− vh,Ω2
)‖20,T

)

.
∑

T∈MΓH

T∩ω 6=∅

‖∇hvh,Ω2
‖2
0,T̂

,

which together with (4.5) and (4.6) yields the result immediately.

The following lemma gives a stability estimate of Ch,H |Vh,H
, whose proof is

arranged in Appendix A for the convenience of the reader.280

Lemma 4.4. Ch,H is an isomorphism on Vh,H and satisfies the following esti-

mate

∥∥(Ch,H |Vh,H

)−1
vh,H

∥∥
h,H

. ‖vh,H‖
h,H

∀ vh,H ∈ Vh,H .

The following lemma is crucial for the error analysis, which can be proved by

following the proof of [19, Lemma 2.1] or [49, Lemma 1]. We omit the details.

Lemma 4.5. For each v0,H ∈ V0,H , there exists a v0,h ∈ V0,h, such that

Ch,Hv0,h = v0,H , ‖v0,h‖h,h . ‖v0,H‖h,H and supp v0,h ⊆ supp (Ch,Hv0,H).

We emphasize that the above result holds for any function in V0,H , not285

Vh,H , which is sufficient for the later analysis. In fact, we have tried to use Vh,H

instead of V0,H , but the error estimate has become worse, multiplying by an

additional factor H/h.

4.2. Error estimate for the ideal combined multiscale method

The following theorem gives an error bound for the ideal multiscale method290

(3.7), where the correctors for the basis functions have to be solved globally (see

(3.5) and (3.6)). The proposed ideal combined multiscale method preserves the

common linear order convergence O(H) for the H1-error without suffering from

preasymptotic effects due to the highly varying diffusion coefficient.
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Theorem 4.1. If uh,h and ums
h,H are the solutions of the reference problem (2.7)

and the approximation problem (3.7) respectively, then it holds that

‖uh,h − ums
h,H‖h,h . H‖f‖L2(Ω). (4.7)

Proof. Let eh = uh,h − ums
h,H . From Proposition 1 we have eh ∈ W0,h. Hence

Ch,Heh = 0. Thus, using the Cauchy-Schwarz inequality and the coercivity

(2.9) of aΩ on Vh,h, we have

‖eh‖
2
h,h . aΩ(eh, eh) = (f, eh) = (f, eh − Ch,Heh)

≤ ‖f‖L2(Ω)‖eh − Ch,Heh‖L2(Ω)

= ‖f‖L2(Ω)

∑

T∈MH,Ω2

‖eh − CHeh‖0,T .

Further, from (4.3), it follows that

∑

T∈MH,Ω2

‖eh − CHeh‖0,T .
∑

T∈MH,Ω2

H‖∇eh‖0,T̂ . H‖eh‖h,h,

which combines the above estimate yields the result immediately.295

4.3. Error estimates for the localized method

In this subsection we first estimate the errors between the correctors QT
h and

QT,L
h due to the truncations to local patches. Then we provide H1- and L2-

error bounds for the FE-LODM.

We will frequently make use of the following cut-off functions on element

patches: for each T ∈ MH,Ω2
and l1 < l2 ∈ N, the cut-off functions ηl1,l2T ∈ Vh,H

satisfy

ηl1,l2T |Tl1
= 1, (4.8)

ηl1,l2T |Ω\Tl2
= 0, (4.9)

‖∇hη
l1,l2
T ‖L∞(Ω) .

1

(l2 − l1)HT

. (4.10)

Let Ih,h ( Ih,h|Ωi
: H1

Γi
(Ωi)∩C(Ω̄i) 7→ Vh,Ωi

, i = 1, 2 ) be the linear Lagrange300

interpolation operator with respect to Mh,h. The following lemma provides a

stability estimate of the operator Ih,h.
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Lemma 4.6. For T ∈ MH,Ω2
, assume that ηs,nT , n > s > 0 ∈ N is the cut-

off function which satisfies (4.8)–(4.10). Then for w ∈ W0,h, the following

estimates hold

‖Ih,h(η
s,n
T w)‖h,h . ‖w‖h,h,Tn+1

, (4.11)

‖ηs,nT w − Ih,h(η
s,n
T w)‖h,h . ‖w‖h,h,Tn+1\Ts−1

, (4.12)

‖Ih,h(η
s,n
T w)‖h,h,Tn\Ts

. ‖w‖h,h,Tn+1\Ts−1
, (4.13)

‖Ih,h(1− ηs,nT )w‖h,h . ‖w‖h,h,Ω\Ts−1
. (4.14)

The proof of this lemma is similar to that of [21, Lemma A.2], except that

we have to deal with the elements near the interface between coarse and fine

meshes. For convenience of the reader, we arrange it in Appendix B.305

The following key lemma says that the errors of the localized correction

problems decay exponentially with respect to the number of truncation layers

L.

Lemma 4.7. Let uh,h be the reference solution to (2.7) and ums
h,H ∈ V ms

h,H be the

ideal solution to (3.7), respectively. Denote by uh,H = (Ch,H |Vh,H
)−1Ch,Hums

h,H ∈

Vh,H . Further, for T ∈ MH,Ω2
and its element patch TL, let q

T
h = QT

h (uh,H) and

qT,L
h = QT,L

h (uh,H) be the global and local multiscale-corrected solution obtained

in (3.12) and (3.14), respectively. Then there exists a constant 0 < θ < 1

independent of L, h,H, and T , such that

‖qTh − qT,L
h ‖h,h . θL‖uh,H‖h,h,T̃ ,

where T̃ is defined in Section 3.4.

The proof of this lemma is similar to that given in [19] and [21], but with310

some special details related to the interface elements need to be accounted

for. To make the error analysis clearer, we arrange the proof of this lemma

in Appendix C.

The following theorem gives the H1-error estimate for the FE-LODM. Using

this theorem, we can quantify how many truncation layers in the localization315

patches can ensure the linear convergence of O(H).
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Theorem 4.2. Suppose γ0 ≥ α0. Let uh,h and ums,L
h,H be the reference solution

to (2.7) and the solution to the FE-LODM (3.17), respectively. Then we have

‖uh,h − ums,L
h,H ‖h,h . H‖f‖L2(Ω) +

(H
h

) 1
2

L
d
2 θL‖f‖L2(Ω), (4.15)

where 0 < θ < 1 is given in Lemma 4.7. Moreover, there exists a positive

constant L0 such that when L ≥ L0| log(Hh)
1
2 |, we have the following estimate,

which is of the same order as the ideal multiscale method,

‖uh,h − ums,L
h,H ‖h,h . H‖f‖L2(Ω). (4.16)

Proof. Let ums
h,H ∈ Vms

h,H be the solution to the ideal method (3.7) using the global

basis. From (3.9) and (3.13), the ideal solution can be rewritten as follows:

ums
h,H = uh,H −

∑

T∈MH,Ω2

QT
h (uh,H),

where uh,H = (Ch,H |Vh,H
)−1Ch,Hums

h,H ∈ Vh,H . Denote by

ũms,L
h,H := uh,H −

∑

T∈MH,Ω2

QT,L
h (uh,H),

z :=
∑

T∈MH,Ω2

(
QT

h (uh,H)−QT,L
h (uh,H)

)
.

It is easy to see that

‖ums
h,H − ũms,L

h,H ‖h,h = ‖z‖h,h. (4.17)

According to Lemma 4.5 with v0,H = Ch,HIh,h
(
z − ηL+2,L+3

T z
)
, there exists a

function b ∈ V0,h such that

Ch,H(b) = Ch,HIh,h
(
z−ηL+2,L+3

T z
)
, (4.18)

‖b‖h,h .
∥∥Ch,HIh,h

(
z − ηL+2,L+3

T z
)∥∥

h,H
=

∥∥Ch,HIh,h
(
ηL+2,L+3
T z

)∥∥
h,H

, (4.19)

where we have used Ch,HIh,hz = 0 to derive the last equality, which is a conse-

quence of the fact that z ∈ W0,h. From (4.9), we have

Ch,HIh,h
(
z − ηL+2,L+3

T z
)
= −Ch,HIh,h

(
ηL+2,L+3
T z

)
= 0 in Ω\TL+4,

which together with Lemma 4.5, implies that

supp(b) ⊆ supp
(
C2
h,HIh,h

(
z − ηL+2,L+3

T z
))

⊆ TL+5\TL.
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Therefore, from (4.18), we have Ih,h
(
z−ηL+2,L+3

T z
)
− b ∈ W0,h . Hence, from

(3.12) it follows that

aΩ
(
QT

huh,H , Ih,h(z − ηL−3,L−2
T z)− b

)
= aT̃

(
uh,H , Ih,h(z − ηL+2,L+3

T z)− b
)
= 0.

(4.20)

Further, from supp(Ih,h
(
z−ηL+2,L+3

T z
)
− b) ⊂ Ω2\TL, it follows that

aΩ
(
QT,L

h uh,H , Ih,h(z − ηL+2,L+3
T z)− b

)
= 0,

which combines with (4.20) yields

aΩ
(
(QT

h −QT,L
h )uh,H , z − Ih,h(η

L+2,L+3
T z)− b

)
= 0. (4.21)

Therefore, from (2.9), it follows that

‖z‖2h,h . aΩ(z, z)

=
∑

T∈MH,Ω2

aΩ
(
QT

huh,H −QT,L
h uh,H , z

)

=
∑

T∈MH,Ω2

aΩ
(
(QT

h −QT,L
h )uh,H , Ih,h(η

L+2,L+3
T z) + b

)
.

Further, using (4.19) and Lemmas 4.3 and 4.6, we obtain

‖z‖2h,h .
∑

T∈MH,Ω2

‖(QT
h −QT,L

h )uh,H‖h,h
(
‖Ih,h(η

L+2,L+3
T z)‖h,h + ‖b‖h,h

)

.
∑

T∈MH,Ω2

‖(QT
h −QT,L

h )uh,H‖h,h‖Ih,h(η
L+2,L+3
T z)‖h,h

.
∑

T∈MH,Ω2

‖(QT
h −QT,L

h )uh,H‖h,h‖z‖h,h,TL+4
.

Thus, by use of the Cauchy-Schwarz inequality, we have

‖z‖2h,h .

( ∑

T∈MH,Ω2

‖(QT
h −QT,L

h )uh,H‖2h,h

) 1
2
( ∑

T∈MH,Ω2

‖z‖2h,h,TL+4

) 1
2

.

( ∑

T∈MH,Ω2

‖(QT
h −QT,L

h )uh,H‖2h,h

) 1
2 (

L
d
2 ‖z‖h,h

)
,

which yields

‖z‖2h,h . Ld
∑

T∈MH,Ω2

‖(QT
h −QT,L

h )uh,H‖2h,h.
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According to Lemma 4.7, we have

‖z‖2h,h . Ldθ2L
∑

T∈MH,Ω2

‖uh,H‖2
h,h,T̃

. Ldθ2L‖uh,H‖2h,h.

Moreover, from Lemmas 4.4 and 4.3 and the stability estimate (3.8) of ums
h,H , we

have

‖uh,H‖2h,h .
H

h
‖uh,H‖2h,H =

H

h
‖(Ch,H |Vh,H

)−1Ch,Hums
h,H‖2h,H

.
H

h
‖Ch,Hums

h,H‖2h,H .
H

h
‖ums

h,H‖h,H .
H

h
‖f‖L2(Ω).

Thus,

‖z‖h,h .
(H
h

) 1
2

L
d
2 θL‖f‖L2(Ω). (4.22)

Noting that V ms,L
h,H ⊆ Vh,h, from the continuity and coercivity of aΩ (2.8)–(2.9),

we have the following estimate of Céa lemma type:

‖uh,h − ums,L
h,H ‖h,h . inf

v
ms,L

h,H
∈V

ms,L

h,H

‖uh,h − vms,L
h,H ‖h,h,

which implies that

‖uh,h − ums,L
h,H ‖h,h . ‖uh,h − ũms,L

h,H ‖h,h.

Thus, we have

‖uh,h − ums,L
h,H ‖h,h ≤ ‖uh,h − ums

h,H‖h,h + ‖ums
h,H − ũms,L

h,H ‖h,h

= ‖uh,h − ums
h,H‖h,h + ‖z‖h,h,

(4.23)

which combines (4.7) and (4.22) yields the estimate (4.15) immediately.

It remains to prove (4.16). Let θ1 = 1+θ
2 . Noting that L

d
2 θL . θL1 , we have

(H
h

) 1
2

L
d
2 θL .

(H
h

) 1
2

θL1 . H, if L ≥
| log(Hh)

1
2 |

| log θ1|
,

which implies that (4.16) holds. This completes the proof of the theorem.

Remark 5. (1) If h = Hm for some constant m > 1, then | log(Hh)
1
2 | h

| logH |, and hence the condition L ≥ L0| log(Hh)
1
2 | becomes L ≥ L′

0| logH | for320

some sufficiently large constant L′
0. Note that this is a standard condition for

LOD type methods [19, 21, 47].
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(2) In the case where h = H3, it is easy to see that
√

H
h

= H−1. Hence

(4.15) becomes

‖uh,h − ums,L
h,H ‖h,h . H‖f‖L2(Ω) +H−1L

d
2 θL‖f‖L2(Ω), (4.24)

which is the same result as those of the methods mentioned in [19, 48, 47]. We

emphasize that in our later numerical experiments, we choose h = Hm for some

constant 1 < m < 3, which follows that
√

H
h

< H−1. This means in this case325

the estimate (4.15) is better than (4.24).

The following theorem gives the L2 error estimate of the proposed FE-

LODM.

Theorem 4.3. Suppose γ0 ≥ α0. Then we have the following estimate:

‖uh,h − ums,L
h,H ‖L2(Ω) .

(
H +

(H
h

) 1
2

L
d
2 θL

)2

‖f‖L2(Ω). (4.25)

Moreover, there exists a positive constant L0 such that when L ≥ L0| log(Hh)
1
2 |,

we have the following estimate,

‖uh,h − ums,L
h,H ‖L2(Ω) . H2‖f‖L2(Ω). (4.26)

Proof. It suffices to prove (4.25). Let eh = uh,h − ums,L
h,H . We consider the dual

problem 


−∇ · (A∇w) = eh in Ω,

w = 0 on ∂Ω.

Let wh,h ∈ Vh,h be the IPCDG approximation of w:

aΩ(wh,h, φh,h) = (eh, φh,h) ∀φh,h ∈ Vh,h,

and let wms,L
h,H ∈ V ms,L

h,H be the FE-LOD approximation of w:

aΩ
(
wms,L

h,H , vms,L
h,H

)
=

(
eh, v

ms,L
h,H

)
∀ vms,L

h,H ∈ V ms,L
h,H .

Further, from (2.7) and (3.17), it follows that

aΩ
(
eh, w

ms,L
h,H

)
= 0.
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Thus from Theorem 4.2 we have

‖eh‖
2
L2(Ω) = aΩ(wh,h, eh) = aΩ

(
eh, wh,h − wms,L

h,H

)

. ‖eh‖h,h
∥∥wh,h − wms,L

h,H

∥∥
h,h

. ‖eh‖h,h
(
H +

(H
h

) 1
2

L
d
2 θL

)
‖eh‖L2(Ω),

which yields

‖eh‖L2(Ω) . ‖eh‖h,h
(
H +

(H
h

) 1
2

L
d
2 θL

)
.

(
H +

(H
h

) 1
2

L
d
2 θL

)2

‖f‖L2(Ω).

This completes the proof of the theorem.

5. Numerical Tests330

In this section, we first numerically study how the size of element patches

affects the errors, and then illustrate the ability of the proposed FE-LODM

to deal with singularities by solving multiscale elliptic problems with a corner

singularity and high-contrast channels and steady flow transporting through

highly heterogeneous porous media driven by extraction wells, respectively.

For comparison, we also present results of the local orthogonal decomposition

method (LODM) in [53] and the combined multiscale finite element method

(FE-OMsPGM) introduced in [46]. We use the IPCDG solution uh,h to (2.7) on

a very fine mesh as a reference solution. Denote the energy norm by ‖ · ‖E :=

‖∇A
1
2 · ‖0,Ω1∪Ω2

. We measure the relative errors of an approximate solution Uh

in the L2, L∞ and energy norms respectively as follows:

‖Uh − uh,h‖L2

‖uh,h‖L2

,
‖Uh − uh,h‖L∞

‖uh,h‖L∞

,
‖Uh − uh,h‖E

‖uh,h‖E
.

5.1. Effect of the size of the element patches

In this subsection we study how the size of element patches affects the errors

by simulating the following example.

Example 1. Consider the model problem (2.1) on the unit square Ω = (0, 1)×

(0, 1) with the source term f ≡ 1 and different diffusion coefficients to be speci-335

fied below. And we set Ω1 = (14 ,
3
8 )× (14 ,

3
8 ) as shown in Figure 3.
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Figure 3: An illustration of the separated domain used in Example 1.

First we test the dependence of the error on the size of the element patches.

Consider the following diffusion coefficient:

A(x1, x2) =
2 + 1.8 sin(2πx1/ǫ)

2 + 1.8 cos(2πx2/ǫ)
+

2 + 1.8 sin(2πx2/ǫ)

2 + 1.8 sin(2πx1/ǫ)
(5.1)

with ǫ = 1/5. We fix H=2−3, h = 2−7, and let the size of element patches

vary. Table 1 shows the relative errors in the energy and L2 norms on Ω and

Ω1 between the reference solution uh,h and the FE-LOD solution ums,L
h,H with

L = 1, 2, 3, 6, 10 and the ideal solution ums
h,H as well, respectively. It is observed

Table 1: Example 1: Relative errors for different L, h = 2−7, H = 2−3, γ0=10.

L

Error Error in Ω Error in Ω1

Energy L2 Energy L2

1 0.1360e-00 0.2929e-01 0.2580e-01 0.1429e-01

2 0.7361e-01 0.1127e-01 0.5881e-02 0.1371e-02

3 0.5712e-01 0.8685e-02 0.1453e-02 0.1712e-03

6 0.5534e-01 0.8625e-02 0.2586e-04 0.6106e-05

10 0.5509e-01 0.8570e-02 0.5213e-06 0.1604e-06

ideal solution 0.5509e-01 0.8569e-02 0.5984e-13 0.2713e-13

340
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that the larger the parameter L, the smaller the relative errors in the energy

and L2 norms on Ω, and tends the errors of the ideal solution, respectively. This

observation verifies the estimate in Theorem 4.2. We also notice that the errors

of the FE-LOD solution on Ω1 decrease very quickly as L increases. Especially,

in the ideal case, the errors on Ω1 are almost equal to zero, which is coincided345

with the result stated in Proposition 1.

Secondly, we study how to choose the size (L) of the element patches to

achieve the satisfied approximation behaviour for different coarse-fine grid ele-

ments. Recall that in Theorem 4.2, to balance the error between the terms on

the right-hand side of (4.15) , it is required that the localization parameter L350

satisfies L ≥ L0| log(Hh)
1
2 | for some positive constant L0. Hence, in the follow-

ing experiments, we choose L = ⌈L0| log(Hh)
1
2 |⌉ for different constants L0. We

adopt uniform coarse meshes with sizes H = 2−i, i = 2, 3, 4, 5, and choose the

fine scale reference mesh with size h = 2−9, which can resolve the multiscale

feature of A. The first test is done for the periodic diffusion coefficient defined355

in (5.1) with ǫ = 1/20, which is denoted by A1 for convenience.
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Figure 4: Example 1 with diffusion coefficient A1(x): Relative errors in energy-norm (left)

and L2-norm (right) against the size of coarse mesh for L0 = 1/2, 1, and 3/2, respectively.

Figure 4 shows the log-log plots of the relative errors in energy-norm (left)

and L2-norm (right) against the size of coarse mesh (H) with different constants

L0 = 1/2, 1, 3/2, respectively. It is observed that the method with L0 = 1/2 does
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not performs well for large mesh size H , while when L0 is taken as 1 or 3/2, the360

error between the terms on the right-hand side of estimate in Theorem 4.2 seems

to be balanced, and the convergence rate of the energy-norm error maintains as

well as that of the L2-norm error.

Note that for larger localization parameter L, it costs more computational

effort to compute the corrector functions and cause reduced sparseness in the365

coarse scale stiffness matrix. Therefore in the remaining numerical experiments

we use L0 = 1. In order to further illustrate the reasonability of choosing

L0 = 1, we show the relative error results in Figure 5 for three different diffusion

coefficients A: A1 is defined as above; A2 is taken as the background medium

in Figure 7, which is a piecewise constant function on a Cartesian grid of size370

2−9 and is periodic in both the x- and y-directions; A3 is a randomly generated

diffusion coefficient using the moving ellipse average technique in [61] with the

parameters described in Example 2 below. It can be seen that taking L ≥

| log(Hh)
1
2 | (i.e. L0 = 1) in the FE-LODM can give the optimal convergence

rates in both energy- and L2- norms for all cases, which are the same as those375

of the ideal combined multiscale method (see Theorems 4.1–4.3).
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Figure 5: Example 1: Relative errors in energy-norm (left) and L2-norm (right) against the

size of coarse mesh for L0 = 1 and A = Ai, i = 1, 2, 3, respectively.

5.2. Application to the multiscale elliptic problem with corner singularity

In this subsection, we consider the following L-shaped domain problem
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Figure 6: Example 2: The random log-normal permeability field A. Amax

Amin
=2.9642e+03.

.

Example 2. The multiscale problem (2.1) on the L-shaped domain Ω =
(
(0, 1)×

(0, 1)
)
\
(
(12 , 1)× (0, 1

2 )
)
with the random log-normal permeability field A, which380

is generated by using the moving ellipse average technique [61] with the variance

of the logarithm of the permeability σ2 = 1.5, and the correlation lengths l1 =

l2 = 0.01 (isotropic heterogeneity) in x1 and x2 directions, respectively. One

realization of the resulting permeability field in our numerical experiments is

depicted in Figure 6.385

In this example, we set the refined subdomain Ω1 =
(
(38 ,

5
8 )×(38 ,

5
8 )
)
\
(
(12 ,

5
8 )×

(38 ,
1
2 )
)
to capture the singularity at the reentrant corner, fix H = 2−5, h = 2−10,

and choose the parameter L = ⌈log
√
|Hh|⌉ = 3. We compare the relative er-

rors of the FE-LOD solution in the L2, L∞, and energy norms with those of

the LOD solution and FE-OMsPG [46] solution in the whole domain as well390

as in the refined region Ω1. The errors are listed in Table 2. We observe that

the introduced FE-LODM gives a better approximation than the LOD and FE-

OMsPG methods. In particular, in the refined region Ω1, our method gives

much better results than the LOD method, which is very useful if one needs

high-accuracy solution in the problematic area.395
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Table 2: Example 2: Relative errors for the model problem on the L-shaped domain. h = 2−10,

H = 2−5, γ0=10.

Method

Error
Energy norm L2 L∞

LODM 0.2834e-01 0.1553e-02 0.6536e-02

FE-LODM 0.2628e-01 0.1449e-02 0.6526e-02

FE-OMsPGM 0.1045e-00 0.7596e-02 0.2424e-01

LODM (error in Ω1) 0.1507e-02 0.1695e-02 0.5583e-02

FE-LODM (error in Ω1 ) 0.4257e-03 0.4043e-03 0.5018e-03

5.3. Application to the multiscale problem with high-contrast channels

In this subsection we use the FE-LOD method to solve the elliptic multiscale

problem with high–contrast channels.

Example 3. The oscillating coefficient is set as that of [46]. Namely, as shown

in Figure 7, we set the high-permeability channels and inclusions with perme-400

ability values equal to 105 and 8 × 104 respectively, and set the other values as

1.

Figure 7: Example 3: Permeability field A = 105 in two channels consisting of dark small

rectangles; A = 8× 104 in small square inclusions; A = 1 otherwise.
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We set Ω1 be the union of two layers of coarse-grid elements which con-

tain the channels, fix h = 2−10, H = 2−5, and choose the parameter L =

⌈log
√
|Hh|⌉ = 3 for this example. The results are listed in Table 3. It is405

observed that the FE-LOD method performs much better than the other two

methods.

Table 3: Example 3: Relative errors for the model problem with the coefficient given by Figure

7 .h = 2−10 , H = 2−5 , γ0 = 10.

Relative error Energy norm L2 L∞

LODM 0.4938e-01 0.4882e-02 0.1889e-01

FE-LODM 0.2169e-01 0.7238e-03 0.1248e-02

FE-OMsPGM 0.1063e-00 0.5564e-02 0.2580e-00

5.4. Application to the multiscale problem with Dirac singularities

In this subsection, we consider the multiscale problem with singular source

terms inside the domain, which originates from the simulation of steady flow410

transporting through highly heterogeneous porous media driven by extraction

wells. This kind of well-singularity problem is of great importance in hydrology,

petroleum reservoir engineering, and soil venting techniques.

Denote by d(P, r) the disk centered at point P with radius r > 0. We let

Ω=(0, 1) × (0, 1) and consider two wells dj = d(Pj , r), j = 1, 2 with P1(
1
4 ,

3
4 ),415

P2(
3
4 ,

1
4 ), and r = 10−5. Since the size of the well (radius r) is negligible

in situations, we make an approximation to the original single phase pressure

equation by the multiscale problem (2.1) with source term f =
2∑

j=1

qjδPj
(c.f.

[39]), where qj is the well flow rate and δPj
is the Dirac measure at Pj . On

the well boundary ∂dj , two quantities are of particular importance in practical420

applications: the well bore pressure (WBP) and the well flow rate. Here we fix

the well flow rate qj and try to find the well bore pressure. In the computations

we always take q1 = −1 and q2 = 1, which corresponds to the situation that the

well d1 is an extraction well and d2 is an injection well.
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In the following two examples, we set Ω1 be the union of two small squares425

with edge size of 1
16 centered at points Pi, i = 1, 2. And similarly, we choose the

localization parameter L = ⌈log
√
|Hh|⌉ = 3.

Example 4. Let the oscillating coefficient A be given by

A(x1, x2) =
1

(2 + 1.5 sin 2πx1

ǫ
)(2 + 1.5 sin 2πx2

ǫ
)
, (5.2)

where we fix ǫ = 1/64.

Since the exact WBPs are unknown, we use the method introduced in [39]

to compute them based on the well-resolved solutions obtained on a uniform430

2048× 2048 mesh. Then we can get the “exact” WBP α1 = −5.3884973 in the

first well and α2 = 5.3884973 in the second well (see [39, Example 7.1]).

In addition, we implement three other methods for comparison, including the

LODM, the MsFEM introduced in [39, Algorithm 7.1] (referred as G-MsFEM)

and the FE-OMsPGM introduced in [46]. The G-MsFEM needs to compute435

the discrete Green functions in a very fine mesh and it uses the developed new

Peaceman method to compute the WBPs (see [39, Section 6]). We also use the

new Peaceman method to calculate the WBP on each well for the LOD and FE-

LOD method. For FE-OMsPGM, we use the Peaceman model [62] to compute

the WBPs since the bilinear form of FE-OMsPG method is nonsymmetric. The440

results are listed in Table 4. We can see that our FE-LODM provides a better

approximation of the WBP than G-MsFEM and FE-OMsPGM, and a much

better approximation than the LODM in this example.

Example 5. We generate the random permeability field A on a uniform 1024×

1024 mesh by using the technique in [61]. Figure 8 shows a realization of the445

random permeability field.

Using the same method as above, we can get the “exact” well bore pressures

α1 = −0.9860407 and α2 = 4.6507306 by using the fine-grid solution on the

1024 × 1024 mesh. The results are presented in Table 5. We observe that

the proposed FE-LODM gives much better approximation than the other three450
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Table 4: Example 4: WBPs and relative errors at two wells.h = 2−11 , H = 2−6 , γ0=10.

Methods Well no. WBP Relative error

G-MsFEM 1 -5.3838442 0.8635e-03

FE-OMsPGM 1 -5.3843102 0.7770e-03

LODM 1 -5.6792672 0.5396e-01

FE-LODM 1 -5.3876085 0.1649e-03

G-MsFEM 2 5.3739254 0.2704e-02

FE-OMsPGM 2 5.3843102 0.7770e-03

LODM 2 5.6792672 0.5396e-01

FE-LODM 2 5.3876085 0.1649e-03
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Figure 8: Example 5: The random permeability field A, the ratio of Amax

Amin
=6.06629e + 003.

34



methods, which may be due to the fact that the FE-LODM has more accurate

solution near the well than others. This superiority can also be found in the

results of FE–OMsPGM, in which the local fine mesh approximation is used in

the well-singularity region that is same as that of FE-LODM.

Table 5: Example 5: WBPs and relative errors at two wells. h = 2−10 , H = 2−6 , γ0=10.

Methods Well no. WBP Relative error

G-MsFEM 1 -0.9478413 0.3874e-01

FE-OMsPGM 1 -0.9701813 0.1608e-01

LODM 1 -0.7536890 0.2356e-00

FE-LODM 1 -0.9864050 0.3695e-03

G-MsFEM 2 1.1477417 0.7532e-00

FE-OMsPGM 2 4.6391148 0.2498e-02

LODM 2 2.8657275 0.3838e-00

FE-LODM 2 4.6591764 0.1816e-02

6. Conclusions455

In this paper, we have proposed a new combined multiscale method to solve

the multiscale elliptic problems which may have singularities. In order to get a

good approximation of the solution in the problematic region, we use the tradi-

tional FEM directly on a very fine mesh of this subdomain, while in other region

where we have a highly oscillating coefficients, we use the multiscale LODM.460

The key point of implementing this idea is how to define the corrected basis

function in the near interface elements. To this end, we introduce a special defi-

nition of the cell problems for the elements near the interface. The error analysis

is carried out for highly varying coefficients, without any assumption on scale

separation or periodicity. Our theoretical and numerical results show that the465

proposed method is very attractive for multiscale problems with singularities.
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Appendix A. Proof of Lemma 4.4

Given vH =
∑

j∈N̊H

vjΦj ∈ VH,Ω2
, let wH := CHvH . From (3.1) and (3.3), it

follows that

wH =
∑

i∈N̊H

wiΦi withwi =
∑

j∈N̊H

(Φi,Φj)Ω2

(1,Φi)Ω2

vj .

Denote byD = diag
(
(1,Φ1)Ω2

, (1,Φ2)Ω2
, · · · , (1,ΦN )Ω2

)
,M =

(
(Φi,Φj)Ω2

)
N×N

,

V = (vi)N×1,W = (wi)N×1, where N represents the numbers of vertices in N̊H .

Thus we have D−1MV = W , which yields

V TMV = V TDW.

Hence, by use of the above equation, it is follows that

‖vH‖2L2(Ω) = V TMV ≤ |V ||DW | . H− d
2 ‖vH‖L2(Ω)H

d|W |

. ‖vH‖L2(Ω)‖wH‖L2(Ω),

which yields

‖vH‖L2(Ω) . ‖wH‖L2(Ω).

Therefore CH is an isomorphism on VH,Ω2
and it holds that

‖(CH |VH,Ω2
)−1wH‖0,Ω2

. ‖wH‖0,Ω2
. (A.1)

Thus, it follows from (3.2) that Ch,H is an isomorphism on Vh,H . For the sake

of simplicity, we denote (Ch,H |Vh,H
)−1 by C−1

h,H in the following. From (3.2), it is

clear that Ch,Hvh,H −vh,H ∈ V0,H . Using the inverse inequality and Lemma 4.1,

we have

‖vh,H − C−1
h,Hvh,H‖2h,H = ‖C−1

h,H(Ch,Hvh,H − vh,H)‖2h,H

= ‖A
1
2∇

(
(CH |VH,Ω2

)−1(Ch,Hvh,H − vh,H)
)
‖20,Ω2

+
γ0
H

‖(CH |VH,Ω2
)−1(Ch,Hvh,H − vh,H)‖2Γ

. H−2‖(CH |VH,Ω2
)−1(Ch,Hvh,H − vh,H)‖20,Ω2.

36



Further, from (A.1) and (4.3), we have

‖vh,H − C−1
h,Hvh,H‖2h,H . H−2‖Ch,Hvh,H − vh,H‖20,Ω

= H−2
∑

T∈MH,Ω2

‖Ch,Hvh,H − vh,H‖20,T

. ‖vh,H‖2h,H .

Finally, using triangle inequality, we conclude that

‖C−1
h,Hvh,H‖h,H ≤ ‖C−1

h,Hvh,H − vh,H‖h,H + ‖vh,H‖h,H

. ‖vh,H‖h,H .

This completes the proof of the lemma.

Appendix B. Proof of Lemma 4.6

We first prove the inequality (4.11). From the interpolation error estimates

and the inverse inequality, we have

‖∇Ih,h(η
s,n
T w)‖0,Ω2

≤ ‖∇Ih,h(η
s,n
T w)−∇(ηs,nT w)‖0,Ω2

+ ‖∇(ηs,nT w)‖0,Ω2

.

( ∑

T∈Mh,Ω2

h2
T |η

s,n
T w|22,T

) 1
2

+ ‖∇(ηs,nT w)‖0,Ω2

. ‖∇(ηs,nT w)‖0,Ω2
. (B.1)

Using the triangle inequality, we obtain

‖Ih,h(η
s,n
T w)‖2h,h = ‖A

1
2∇Ih,h(η

s,n
T w)‖20,Ω2

+
∑

e∈Γh

γ0
h
‖Ih,h(η

s,n
T w)‖2e

. ‖A
1
2∇(ηs,nT w)‖20,Ω2

+
∑

e∈Γh

γ0
h
‖ηs,nT w − Ih,h(η

s,n
T w)‖2e

+
∑

e∈Γh

γ0
h
‖ηs,nT w‖2e := R1 +R2 +R3.

Using the fact that Ch,Hw=0, from (4.3) and (4.10), we have

R1 .
∑

T∈Tn\Ts

‖(w − Ch,Hw)∇ηs,nT ‖20,T + ‖A
1
2∇w‖20,Tn

.‖H∇ηs,nT ‖2L∞(Ω)‖∇w‖20,Tn+1\Ts−1
+ ‖A

1
2∇w‖20,Tn

.‖A
1
2∇w‖20,Tn+1

.
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Further, from Lemma 4.1, it follows that

R2 .
∑

T∈Mh,Ω2

γ0
h

(
h−1‖ηs,nT w − Ih,h(η

s,n
T w)‖20,T

+ ‖ηs,nT w − Ih,h(η
s,n
T w)‖0,T ‖∇(ηs,nT w − Ih,h(η

s,n
T w))‖0,T

)

.‖A
1
2∇(ηs,nT w)‖20,Ω2

= R1.

For R3, it is easy to see

R3 .
∑

e∈Γh,e⊂Tn

γ0
h
‖w‖2e.

Combining the above estimates of R1,R2 and R3, we have

‖Ih,h(η
s,n
T w)‖2h,h . ‖w‖2h,h,Tn+1

,

which yields (4.11) immediately.470

Next, we give the proof of the (4.12). Noting that w ∈ W0,h, and ηs,nT |Ts
≡ 1,

ηs,nT |Ω\Tn
≡ 0, it is obvious that

‖ηs,nT w − Ih,h(η
s,n
T w)‖2h,h =‖A

1
2∇(ηs,nT w − Ih,h(η

s,n
T w))‖20,Tn\Ts

+
∑

e∈Γh

γ0
h
‖ηs,nT w − Ih,h(η

s,n
T w)‖2e := I1 + I2.

Similar to the estimate of R2, from Lemma 4.1, it follows that

I2 . I1.

Further, by a similar argument to (B.1) and using (4.3) and (4.10), we have

I1 . ‖A
1
2∇(ηs,nT w)‖20,Tn\Ts

.
∑

T∈Tn\Ts

‖(w − Ch,Hw)∇ηs,nT ‖20,T + ‖A
1
2∇w‖20,Tn\Ts

. ‖H∇ηs,nT ‖2L∞(Ω)‖∇w‖20,Tn+1\Ts−1
+ ‖A

1
2∇w‖20,Tn\Ts

. ‖A
1
2∇w‖20,Tn+1\Ts−1

,

which follows (4.12) immediately. The proof of (4.13) and (4.14) is similar to

the above inequality.
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Appendix C. Proof of Lemma 4.7

The proof is divided into four steps.

Step 1. In this step we prove the following estimate for L ≥ 5:

‖qTh − qT,L
h ‖h,h . ‖qTh ‖h,h,Ω\TL−5

. (C.1)

From (3.12) and (3.14), qTh ∈ W0,h and qT,L
h ∈ W0,h(TL) satisfy

aΩ(q
T
h , w) = aT̃ (uh,H , w) ∀w ∈ W0,h,

aΩ(q
T,L
h , w) = aT̃ (uh,H , w) ∀w ∈ W0,h(TL).

Subtracting the above two equations yields

aΩ(q
T
h − qT,L

h , w) = 0 ∀w ∈ W0,h(TL). (C.2)

Denote by e := qTh −qT,L
h . Using the coercivity and continuity of aΩ, from (C.2),

for any w ∈ W0,h(TL) it follows that

‖e‖2h,h . aΩ(e, q
T
h − qT,L

h ) = aΩ(e, q
T
h − w)

. ‖e‖h,h‖q
T
h − w‖h,h,

which yields

‖qTh − qT,L
h ‖h,h . inf

w∈W0,h(TL)
‖qTh − w‖h,h. (C.3)

For the element T , let ηL−3,L−2
T be the cut off function defined in (4.8)–(4.10)

(with l1 = L − 3, l2 = L − 2). Since ηL−3,L−2
T ≡ 1 on TL−3 and ηL−3,L−2

T ≡ 0

on Ω\TL−2, it is easy to check that:

Ch,HIh,h(η
L−3,L−2
T qTh ) = Ch,HqTh = 0 on TL−4,

and hence

supp(Ch,HIh,h(η
L−3,L−2
T qTh )) ⊆ TL−1\TL−4, (C.4)

supp(C2
h,HIh,h(η

L−3,L−2
T qTh )) ⊆ TL\TL−5. (C.5)
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Using Lemma 4.5, for Ch,HIh,h(η
L−3,L−2
T qTh ), there is a µ ∈ V0,h such that

Ch,Hµ = Ch,HIh,h(η
L−3,L−2
T qTh ), ‖µ‖h,h . ‖Ch,HIh,h(η

L−3,L−2
T qTh )‖h,H ,

and supp(µ) ⊆ TL\TL−5.

Further, using (C.4), Lemmas 4.3 and 4.6, we have

‖µ‖h,h . ‖Ch,HIh,h(η
L−3,L−2
T qTh )‖h,H,TL−1\TL−4

. ‖Ih,h(η
L−3,L−2
T qTh )‖h,h,TL\TL−5

= ‖Ih,h(η
L−3,L−2
T qTh )‖h,h,TL−2\TL−3

+ ‖qTh ‖h,h,TL−3\TL−5

. ‖qTh ‖h,h,TL−1\TL−5
.

(C.6)

Hence taking w = Ih,h(η
L−3,L−2
T qTh )−µ ∈ W0,h(TL) in (C.3) and using (C.6)

and Lemma 4.6, we have

‖qTh − qT,L
h ‖h,h . ‖Ih,h(1− ηL−3,L−2

T )qTh ‖h,h + ‖µ‖h,h

. ‖qTh ‖h,h,Ω\TL−4
+ ‖qTh ‖h,h,TL−1\TL−5

,

which implies that (C.1) holds.475

Step 2. Suppose we can prove the following recursive inequality

‖qTh ‖h,h,Ω\TM
≤ θ0‖q

T
h ‖h,h,Ω\Tm

∀m = M − 5 ≥ 0, (C.7)

where 0 < θ0 < 1 is a constant independent of M and qTh .

For L = 5k + j with integers k ≥ 1 and 0 ≤ j ≤ 4, setting θ = θ
1
5

0 and using

(C.7) repeatedly, we conclude that

‖qTh ‖h,h,Ω\TL−5
. θk−1

0 ‖qTh ‖h,h,Ω\Tj
. θL−j−5‖qTh ‖h,h

. θL‖qTh ‖h,h. (C.8)

Clearly, the above estimate also holds for 5 ≤ L ≤ 9 and hence (C.8) holds for

L ≥ 5.

Step 3. In this step we prove (C.7). Let ε = 1−ηm+2,M−2
T satisfying ε ≡ 1

in Ω\TM−2, ε ≡ 0 in Tm+2, and 0 < ε < 1 otherwise. It is easy to see that

‖qTh ‖
2
h,h,Ω\TM

≤ ‖εqTh ‖
2
h,h . aΩ(εq

T
h , εq

T
h )

= aΩ(q
T
h , ε

2qTh ) + (A∇hε · q
T
h ,∇hε · q

T
h ).

(C.9)
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For the function Ch,HIh,h(ε
2qTh ), using Lemma 4.5, there exists a γ ∈ V0,h such

that Ch,Hγ = Ch,HIh,h(ε
2qTh ), and

supp(Ch,HIh,h(ε
2qTh )) ⊆ TM−1\Tm+1,

supp(γ) ⊆ supp(C2
h,HIh,h(ε

2qTh )) ⊆ TM\Tm.

In addition, it holds that

‖γ‖h,h . ‖Ch,HIh,h(ε
2qTh )‖h,H . (C.10)

Since Ih,h(ε
2qTh )− γ ∈ W0,h(Ω2\Tm), from (3.12), it follows that

aΩ(q
T
h , Ih,h(ε

2qTh )− γ) = aT̃ (uh,H , Ih,h(ε
2qTh )− γ) = 0,

which combines (C.9) yields

‖qTh ‖
2
h,h,Ω\TM

. aΩ(q
T
h , ε

2qTh − Ih,h(ε
2qTh )) + aΩ(q

T
h , γ)

+ (A∇ε · qTh ,∇ε · qTh ) := T1 +T2 +T3.

Using the same argument as that of (4.12), we obtain

T1 . ‖qTh ‖h,h,TM−2\Tm+2
‖ε2qTh − Ih,h(ε

2qTh )‖h,h,TM−2\Tm+2

. ‖qTh ‖
2
h,h,TM−1\Tm+1

.

Further, for T2, using the same argument as that of (4.11), from (C.10), we

have

T2 . ‖qTh ‖h,h,TM\Tm
‖γ‖h,h

. ‖qTh ‖h,h,TM\Tm
‖Ch,HIh,h(ε

2qTh )‖h,H,TM−1\Tm+1

. ‖qTh ‖h,h,TM\Tm
‖Ih,h(ε

2qTh )‖h,h,TM\Tm

= ‖qTh ‖h,h,TM\Tm

(
‖qTh ‖h,h,TM\TM−2

+ ‖Ih,h(ε
2qTh )‖h,h,TM−2\Tm+2

)

. ‖qTh ‖
2
h,h,TM\Tm

.
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To estimate T3, by use of the assumption (4.8)–(4.10) and (4.3), it follows that

T3 = ‖A
1
2∇ε · qTh ‖

2
0,Ω =

∑

T∈MH,Ω2

‖A
1
2∇ε · qTh ‖

2
0,T

.
∑

T∈TM−2\Tm+2

‖∇ε‖2L∞(Ω)‖q
T
h − CHqTh ‖

2
0,T

. ‖qTh ‖
2
h,h,TM−1\Tm+1

.

Thus, by using the above estimates of T1,T2, and T3, we have, for some positive

constant C0,

‖qTh ‖
2
h,h,Ω\TM

≤ C0‖q
T
h ‖

2
h,h,TM\Tm

= C0‖q
T
h ‖

2
h,h,Ω\Tm

− C0‖q
T
h ‖

2
h,h,Ω\TM

,

which implies that (C.7) holds with θ0 :=
(

C0

C0+1

) 1
2 .

Step 4. Next, we estimate ‖qTh ‖
2
h,h in (C.8).

‖qTh ‖
2
h,h . aΩ(q

T
h , q

T
h ) = aT̃ (uh,H , qTh ) . ‖uh,H‖h,h,T̃‖q

T
h ‖h,h,

where T̃ is defined in Section 3.4, which together with (C.1) and (C.8) completes480

the proof of the lemma.
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[43] D. Elfverson, M. G. Larson, A. Målqvist, Multiscale methods for problems

with complex geometry, Comput. Methods Appl. Mech. Engrg. 321 (2017)

103–123.
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