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Abstract

In the present work, a general formulation is proposed to implement the contact angle boundary
conditions for the second-order Phase-Field models, which is applicable to N -phase (N > 2) moving
contact line problems. To remedy the issue of mass change due to the contact angle boundary condition,
a source term or Lagrange multiplier is added to the original second-order Phase-Field models, which
is determined by the consistent and conservative volume distribution algorithm so that the summation
of the order parameters and the consistency of reduction are not influenced. To physically couple the
proposed formulation to the hydrodynamics, especially for large-density-ratio problems, the consistent
formulation is employed. The reduction-consistent conservative Allen-Cahn models are chosen as exam-
ples to illustrate the application of the proposed formulation. The numerical scheme that preserves the
consistency and conservation of the proposed formulation is employed to demonstrate its effectiveness.
Results produced by the proposed formulation are in good agreement with the exact and/or asymptotic
solutions. The proposed method captures complex dynamics of moving contact line problems having
large density ratios.

Keywords: Contact angle; Contact line; Phase-Field; Allen-Cahn; Conservative Phase-Field; Multiphase
flow

1 Introduction

Moving contact line problems are ubiquitous in both natural phenomena and industrial applications. Various
numerical models have been developed for this kind of problems, such as the front tracking method [64, 63,
43, 46], the level-set method [49, 55, 60, 72], the conservative level-set method [47, 48, 70, 52], and the
volume-of-fluid (VOF) method [22, 53, 51, 2, 66], and the contact angle boundary conditions therein. We
refer interested readers to the comprehensive review [61].

In the present study, we focus on the Phase-Field (or Diffuse-Interface) models [5], where the interface is
represented as a transient layer with a small but finite thickness. Different from the sharp-interface models,
which only include advection, diffusion in the Phase-Field models regularizes the singularity at the contact
line. Such an additional effect can drive the contact line to move even though the no-slip boundary condition

∗©<2022>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/

licenses/by-nc-nd/4.0/.
†This manuscript was accepted for publication in Journal of Computational Physics, Vol 471, Ziyang Huang, Guang Lin,

Arezoo M. Ardekani, Implementing contact angle boundary conditions for second-order Phase-Field models of wall-bounded
multiphase flows, Page 111619, Copyright Elsevier (2022).

‡Email: ziyangh@umich.edu.
§Email: guanglin@purdue.edu; Corresponding author at Department of Mathematics, Purdue University, West Lafayette,

IN 47907, USA.
¶Email: ardekani@purdue.edu; Corresponding author at School of Mechanical Engineering, Purdue University, West

Lafayette, IN 47907, USA.

1

ar
X

iv
:2

10
3.

07
83

9v
2 

 [
ph

ys
ic

s.
fl

u-
dy

n]
  2

4 
Se

p 
20

22

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


is assigned [54, 32]. One commonly used procedure to derive the contact angle boundary conditions for the
Phase-Field models is in the context of wall energy relaxation [32, 50, 16, 6, 58], where the wall energy
is minimized by the L2 gradient flow. Such a procedure has been extended to include surfactant [74],
contact angle hysteresis [67], three fluid phases [59, 57, 73], and N (N > 2) fluid phases [17]. Alternatively,
the contact angle boundary conditions can also be geometry-based [15, 41, 42], where the orientation of
the interface is explicitly enforced, and the one in [15] has been extended to model contact lines formed
by three fluid phases [71]. Most of these contact angle boundary conditions can be in general written as
an inhomogeneous Neumann boundary condition. Among various Phase-Field models, the Cahn-Hilliard
Phase-Field model [10] is most popularly used to model moving contact line problems, since the contact
angle boundary conditions can be directly applied without influencing the mass conservation. The Cahn-
Hilliard model is a 4th-order partial differential equation (PDE) and therefore we also call it a 4th-order
Phase-Field model here. To uniquely solve it, each boundary requires two boundary conditions, one of which
is determined by mass conservation. Flexibility is given to the remaining one to control the morphology of
the interface, which is achieved by implementing the contact angle boundary conditions. The popularity of
implementing the Cahn-Hilliard model has motivated several theoretical analyses, e.g., in [32, 50, 69, 68, 65],
and comparison studies, e.g., in [15, 39].

More recently, the second-order Phase-Field models, such as the conservative Phase-Field models [12, 44]
and the conservative Allen-Cahn models [9, 28], have attracted lots of attention and became popular in
modeling both two-phase flows, e.g., in [12, 45, 33, 36, 35, 25], and N -phase (N > 2) flows, e.g., in [3, 24, 28].
They are modified from the Allen-Cahn model [4] and enjoy several desirable properties that the Cahn-
Hilliard model does not have, but are important in multiphase flow modeling, such as conserving volume
enclosed by the interface, preserving under-resolved structures, and the maximum principle [9, 38, 40, 37,
11, 44, 25, 28]. Moreover, it is easier and more efficient to solve the 2nd-order model than the 4th-order one.
However, difficulty appears when these 2nd-order Phase-Field models are used to model problems including
moving contact lines, because only a single boundary condition is needed. This boundary condition is
always determined by the mass conservation and the homogeneous Neumann boundary condition is normally
required. Consequently, only 900 contact angle can be assigned at the wall boundary, which strongly restricts
the application of the second-order Phase-Field models. So far, the second-order Phase-Field models have
not been able to share the fruitful progress made in the implementation of the contact angle boundary
conditions for moving contact line problems.

The present study attempts to address this issue and proposes a novel and general formulation which has
the following desirable properties:

• It is valid for both two-phase and N -phase (N > 2) cases.

• It does not rely on the specific forms of the 2nd-order Phase-Field models and the contact angle
boundary conditions.

• It grantees the consistency of reduction, the mass conservation of each phase, and the summation of
the volume fractions to be unity.

• It incorporates the consistency of mass conservation and the consistency of mass and momentum
transport for large-density-ratio problems.

The idea is to introduce a Lagrange multiplier to the original Phase-Field model, so that the mass change
due to the contact angle boundary condition is compensated. The Lagrange multiplier needs to be care-
fully designed to avoid producing voids, overfilling, or fictitious phases, and therefore the consistent and
conservative volume distribution algorithm is employed [28]. Finally, the coupling to the hydrodynamics is
accomplished by using the consistent formulation [25], which is essential for large-density-ratio problems.
This general formulation is applied to the reduction-consistent conservative Allen-Cahn models [8, 28], and
various tests are performed to demonstrate its effectiveness.

The consistency of reduction, consistency of mass conservation, and consistency of mass and momentum
transport are modeling principles followed in the present study. The consistency of reduction [7, 17, 18, 28]
requires that a N -phase model should be able to reduce to the corresponding M -phase (1 6 M 6 N − 1)
model when (N −M) phases are absent. Fictitious phases can be produced if this principle is violated,
as demonstrated in the references mentioned. The consistency of mass conservation and consistency of
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mass and momentum transport [26, 25, 29] illustrate the mass and momentum transport in the Phase-
Field models, which couples the Phase-Field models to the hydrodynamics. Violating these principles can
produce density-ratio-dependent velocity fluctuations, as demonstrated in the references mentioned. These
consistency conditions have been successfully implemented to not only two/N -phase flows [26, 25, 29, 28]
but also multiphase flows with mass transfer [27] and solidification/melting [30]. Various problems having
density ratios beyond 1, 000 have been tested in those references. We refer interested readers to [18, 26, 29]
where the definitions and analyses of the consistency conditions are detailed.

The rest of the paper is organized as follows. In Section 2, the general formulation to include the contact
angle boundary condition in the second-order Phase-Field models and its coupling to the hydrodynamics are
elaborated, followed by its application to the conservative Allen-Cahn models. In Section 3, the numerical
methods to solve the complete system is briefly summarized. In Section 4, various numerical tests are
performed to demonstrate the proposed formulation in moving contact line problems. In Section 5, the
present study is concluded and some possible future directions are introduced.

2 Definitions and governing equations

We first define the problem in Section 2.1. Then, the general formulation of implementing the contact
angle boundary condition for a second-order Phase-Field model is proposed and elaborated in Section 2.2.1,
along with its coupling to the hydrodynamics in Sections 2.2.2 and 2.2.3. Finally, two specific examples,
one for two-phase problems and the other for N -phase problems, are provided in Section 2.3, which are the
applications of the proposed general formulation described in Section 2.2.1 to the conservative Allen-Cahn
models.

2.1 Basic definitions

There areN (N > 2) different incompressible and immiscible fluid phases inside domain Ω, and their locations
are labeled by a set of order parameters {φp}Np=1. The order parameters need to follow the summation
constraint:

N∑
p=1

Cp =

N∑
p=1

1 + φp
2

= 1 or

N∑
p=1

φp = 2−N, (1)

where {Cp}Np=1 are the volume fractions of the phases and therefore their summation is always unity. In
other words, void or overfilling is not allowed to appear. The densities and viscosities of the phases are
denoted by {ρp}Np=1 and {µp}Np=1, respectively. As a result, the mixture density and viscosity are

ρ =

N∑
p=1

ρp
1 + φp

2
, µ =

N∑
p=1

µp
1 + φp

2
. (2)

Each pair of phases has a surface tension, for example, σp,q denotes the surface tension at the interface of
Phases p and q. θp,q is the contact angle in between Phase p and a wall boundary and formed by Phases p and
q. Notice that σp,q (= σq,p) is symmetry, while θp,q and θq,p are supplementary angles, i.e., θp,q + θq,p = π,
1 6 p, q 6 N . Since each phase is incompressible, the flow velocity is divergence-free [1, 18, 29], i.e.,

∇ · u = 0. (3)

If there are only two phases, we denote φ1 = φ, φ2 = −φ, σ = σ1,2, and θ = θ1,2 for convenience. Con-
sequently, one only needs to solve φ1 (or φ), and φ2 is obtained automatically from Eq.(1), or equivalently
φ2 = −φ1 = −φ. Unless otherwise specified, the domain boundary ∂Ω is composed of wall boundaries,
although periodic, inflow, or outflow boundaries can be incorporated, depending on specific problems.

2.2 Governing equations

The problem to be modeled by the second-order Phase-Field model and the contact angle boundary condition
is sketched in Fig.1. Here, the emphasis is on answering how to implement the contact angle boundary

3



Figure 1: Sketch of the problem to be modeled by the second-order Phase-Field model and the contact angle
boundary condition.

condition in the second-order Phase-Field model with the proposed general formulation. The hydrodynamics
is included, following the consistency of mass conservation and the consistency of mass and momentum
transport [26, 25].

2.2.1 The proposed general formulation

The general form of the second-order Phase-Field model can be written as

∂φp
∂t

+∇ · (uφp) = Lp[{φq}Nq=1] in Ω, 1 6 p 6 N, (4)

where L represents a functional of the order parameters, and the highest (spatial) derivatives included are the
second-order derivatives. This is the reason that Eq.(4) is called the second-order Phase-Field model. Because
of the divergence-free velocity Eq.(3), the convection term in Eq.(4) has been written in a conservative form.
To be physically admissible, L has the following properties:

N∑
q=1

Lq = 0,

∫
Ω

LpdΩ = 0, Lp|φp=−1 = 0, 1 6 p 6 N. (5)

The first property in Eq.(5) comes from the summation of the order parameters Eq.(1). The second one
implies the mass conservation of Phase p, which is shown more clearly after Eq.(4) is integrated over Ω:

d

dt

∫
Ω

φpdΩ +

∫
∂Ω

n · uφpdΓ = 0, 1 6 p 6 N. (6)

Since L usually contains a diffusive term of type ∇2φ, to achieve the second property in Eq.(5) and therefore
the mass conservation of individual phases, i.e., Eq.(6), the homogeneous Neumann boundary condition is
needed, i.e.,

∫
Ω
∇2φdΩ =

∫
∂Ω

n · ∇φdΓ = 0. Such a boundary condition avoids the diffusive flux into wall
boundaries. Additionally with the impermeability condition, i.e., n ·u = 0, at the domain boundary, we have
d
dt

∫
Ω
φpdΩ = 0 from Eq.(6), which means the total mass of Phase p in Ω will not change. The last property

in Eq.(5) corresponds to the consistency of reduction in the sense that Phase p will not be produced if it is
absent, i.e., (∂φp/∂t)|φp=−1 = 0. Notice that the convection term now becomes ∇·(uφp)|φp=−1 = −∇·u = 0.
However, in the present study, the contact angle boundary condition, i.e.,

n · ∇φp = Fwp [{φq}Nq=1; {θq,r}Nq,r=1] at ∂Ω, 1 6 p 6 N, (7)

needs to be implemented instead of the homogeneous Neumann boundary condition. As a result, the second
property of L in Eq.(5) is not guaranteed, and the mass conservation of each phase, i.e., Eq.(6), is probably
violated. It should be noted that the notation in Eq.(7) is simplified, and Fw and {θp,q}Np,q=1 can be different
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at individual wall boundaries in practice. Similar to L, physically admissible Fw has the following properties:

N∑
q=1

Fwq = 0, Fwp |φp=−1 = 0, 1 6 p 6 N, (8)

compatible with the summation of the order parameters Eq.(1) and the consistency of reduction, respectively.
This can be clearly seen after summing Eq.(7) over the phases or setting φp = −1 in Eq.(7), and one obtains
the respective two properties in Eq.(8).

In order to implement the contact angle boundary condition Eq.(7), while other physical principles are
not violated, we propose to modify the second-order Phase-Field model Eq.(4) to be

∂φp
∂t

+∇ · (uφp) = Lp[{φq}Nq=1] + Lwp in Ω, 1 6 p 6 N, (9)

where Lw is the newly introduced Lagrange multiplier and has the following properties:

N∑
q=1

Lwq = 0,

∫
Ω

Lwp dΩ = −
∫

Ω

LpdΩ = Sp with n · ∇φp = Fwp at ∂Ω, Lwp |φp=−1 = 0, (10)

1 6 p 6 N,

to satisfy the summation of the order parameters Eq.(1), mass conservation of the phases Eq.(6), and
consistency of reduction, as explained below Eq.(5). Here, we call Lw a Lagrange multiplier, following
studies like [56, 9, 38, 40] which calls a source term added to the Phase-Field equation to enforce mass
conservation a Lagrange multiplier. Now, the question turns into determining Lw that satisfies Eq.(10).
This question is successfully addressed by the consistent and conservative volume distribution algorithm in
[28]. Specifically, Lw is determined by

Lwp =

N∑
q=1

Wp,qB
w
q , 1 6 p 6 N, (11)

N∑
q=1

(∫
Ω

Wp,qdΩ

)
Bwq = Sp, Wp,q =

{
−(1 + φp)(1 + φq), p 6= q,
(1 + φp)(1− φq), p = q.

Notice that Bw depends only on time and is solved from a N -by-N symmetry and diagonally dominant
linear system, thanks to the definition of Wp,q. Due to

∑N
p=1Wp,q = 0 from Eq.(1) and the definition of

Wp,q in Eq.(11), it is straightforward to show
∑N
p=1 L

w
p =

∑N
q=1B

w
q (
∑N
p=1Wp,q) = 0. Satisfying the other

two properties in Eq.(10) by Lw in Eq.(11) is obvious, and the related proofs are available in [28]. We refer
interested readers to [28] for more details and analyses of the volume distribution algorithm which determines
Lw in Eq.(11).

When there are only two phases, as shown in [28], one can obtain Lw from Eq.(11) explicitly, i.e.,

Lwp =
Wp∫

Ω
WpdΩ

Sp, Wp = 1− φ2
p, p = 1, 2. (12)

As a result, we have the following two-phase second-order Phase-Field model with the contact angle boundary
condition:

∂φ

∂t
+∇ · (uφ) = L[φ] + Lw in Ω, n · ∇φ = Fw[φ; θ] at ∂Ω, (13)

Lw =
W∫

Ω
WdΩ

S, S = −
∫

Ω

LdΩ, W = 1− φ2.

Good performances of using Wp,q in Eq.(11) and its two-phase reduction Wp in Eq.(12) in Phase-Field models
have been shown in previous studies, e.g., [9, 38, 40, 28]. Their validity in two-/multi-phase flows has been
evidenced, e.g., in [25, 33, 36, 35, 28] where physical results are reported.
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The proposed general formulation is summarized as follows: given any physically admissible second-order
Phase-Field model, i.e., Eq.(4) satisfying Eq.(5), and contact angle boundary condition, i.e., Eq.(7) satisfying
Eq.(8), a new second-order Phase-Field model is developed, i.e., Eq.(9) and Eq.(11), with the same contact
angle boundary condition Eq.(7), so that the summation of the order parameters Eq.(1), mass conservation
of the phases Eq.(6), and consistency of reduction are all satisfied. For two-phase problems, the proposed
formulation becomes Eq.(13).

2.2.2 Mass conservation and consistent formulation

Before coupling to the hydrodynamics, we need to first determine the actual mass transport governed by
the newly developed second-order Phase-Field model Eq.(9) and the mixture density Eq.(2). For a clear
presentation, we combine L and Lw, i.e., L = L+ Lw, in Eq.(9), and obtain

∂φp
∂t

+∇ · (uφp) = Lp in Ω, 1 6 p 6 N, (14)

∫
Ω

LpdΩ = 0, 1 6 p 6 N, (15)

with the contact angle boundary condition Eq.(7). Next, we apply the consistent formulation [25]:

∇ · (WQ(φp)∇Qp) = Lp in Ω, n · ∇Qp = 0 at ∂Ω, WQ(φ) = 1− φ2, 1 6 p 6 N. (16)

Here, Q is the auxiliary variable of the consistent formulation. The consistent formulation Eq.(16) relates the
non-local term L to a local conservative form. More details about the consistent formulation are available in
its original work [25], and not repeated here. Notice that the homogeneous Neumann boundary condition of
Q is obtained from Eq.(15). After considering Eq.(14) and Eq.(16), the newly proposed Phase-Field model
Eq.(9) is equivalent to

∂φp
∂t

+∇ ·mφp
= 0, (17)

where the Phase-Field flux mφ is

mφp
= uφp −WQ(φp)∇Qp, 1 6 p 6 N. (18)

Following the formulation in [29], we can immediately obtain the consistent mass flux:

m =

N∑
p=1

ρp
2

(u + mφp), (19)

which leads to the mass conservation equation:

∂ρ

∂t
+∇ ·m = 0, (20)

after the mixture density Eq.(2) is included. The derivations in this section is based on the consistency of
mass conservation proposed and analyzed in [26, 29, 25].

2.2.3 Momentum equation

The fluid motion is governed by the momentum equation:

∂(ρu)

∂t
+∇ · (m⊗ u) = −∇P +∇ ·

[
µ(∇u +∇uT )

]
+ ρg + fs, (21)

where P is the pressure, g is the gravity, and fs is the surface tension force. Notice that the same mass
flux m, defined in Eq.(19), appears in both the mass conservation equation Eq.(20) and the inertial term
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of the momentum Eq.(21), which is required by the consistency of mass and momentum transport [26, 25].
As a result, the momentum equation Eq.(21) satisfies not only the momentum conservation but also kinetic
energy conservation (neglecting the viscosity, gravity and surface tension) and Galilean invariance, see [29].
It should also be noted that simply using ∇ · (ρu ⊗ u) as the nonlinear inertial term in the momentum
equation cannot simultaneously achieve these physical properties .

In the present study, the surface tension force is

fs = ξ∇φ, ξ = λ

(
1

η2
g′(φ)−∇2φ

)
, λ =

3

2
√

2
ση, g(φ) =

1

4
(1− φ2)2, (22)

for two-phase problems, and

fs =
1

2

N∑
p=1

ξp∇φp, ξp =

N∑
q=1

λp,q

[
1

η2
(g′1(φp)− g′2(φp + φq)) +∇2φq

]
, (23)

λp,q =
3

2
√

2
σp,qη, g1(φ) =

1

4
(1− φ2)2, g2(φ) =

1

4
φ2(φ+ 2)2,

for multiphase problems. Here, λ or λp,q is the mixing energy density, η is the interface thickness, g(φ), g1(φ),
and g2(φ) are potential functions, and g′(φ), g′1(φ), and g′2(φ) are their derivatives with respect to φ. Eq.(22)
and Eq.(23) have been widely used in two-phase and N -phase flows, e.g., in [31, 19, 26, 25, 18, 29, 23, 24].

In summary, given any physically admissible 2nd-order Phase-Field model and contact angle boundary
condition, i.e., L and Fw, the governing equations include Eq.(9) for the order parameters, Eq.(16) from the
consistent formulation, and Eq.(21) and Eq.(3) for the velocity and pressure. In the governing equations,
the density (viscosity), consistent mass flux, and surface tension force are computed from Eq.(2), Eq.(19),
and Eq.(23) (or Eq.(22)), respectively.

The proposed formulation has not considered the second law of thermodynamics, because many popularly
used 2nd-order Phase-Field models, such as [9, 12], and the contact angle boundary conditions, particularly
the geometry-based ones and the N -phase ones, e.g., [15, 41, 42, 71, 17], are not explicitly shown to be
consistent with the second law of thermodynamics. Moreover, it is still an open question to obtain a
Lagrange multiplier that satisfies the constraints in Eq.(10) and at the same time be consistent with the
second law of thermodynamics. Actually, satisfying the constraints in Eq.(10) alone is a very challenging
task. We implement the algorithm in [28] to determine Lw that satisfies all the constraints in Eq.(10), but
we are still unclear whether it is consistent with the second law of thermodynamics. Lastly, following the
analyses in [29], we would like to point out that, as long as the Phase-Field models with the contact angle
boundary conditions are consistent with the second law of thermodynamics, such consistency will still be
true after adding the momentum equation Eq.(21).

2.3 Application to the conservative Allen-Cahn models

In the present study, the conservative Allen-Cahn models are considered as examples to demonstrate the
effectiveness of the general formulation developed in Section 2.2.1. Specific formulations of L in the second-
order Phase-Field model Eq.(4) and Fw in the contact angle boundary condition Eq.(7) are provided, and
both two-phase and N -phase formulations are considered.

2.3.1 Two-Phase model

The two-phase conservative Allen-Cahn model proposed in [9] is considered, where L in the model is defined
as

L[φ] = Mλ

(
∇2φ− 1

η2
g′(φ)

)
+ Lc, (24)

Lc = WBc, W = 1− φ2, Bc =

∫
Ω
Mλ
η2 g

′(φ)dΩ∫
Ω
WdΩ

.
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Here, M is the mobility. One can easily show that L in Eq.(24) satisfies all the conditions in Eq.(5), and
therefore it is physically admissible. The two-phase contact angle boundary condition considered is

Fw[φ; θ] =

√
2

3η
cos(θ)g′w(φ), (25)

which is proposed in [32] from a wall functional. Here, gw(φ) is an interpolation function satisfying gw(±1) =
±1 and g′w(±1) = 0, and we choose gw(φ) = sin

(
π
2φ
)
, like [57, 6, 26, 58]. Another choice of gw(φ) is

the Hermite polynomial, i.e., gw(φ) = 1
2φ(3 − φ2), used, e.g., in [32, 16, 73, 67]. Our tests do not find

distinguishable difference of these two choices. Again, Fw in Eq.(25) is physically admissible since it satisfies
Eq.(8).

Then, we apply the proposed formulations in Section 2.2.1, i.e., Eq.(13), which introduces Lw to the
two-phase conservative Allen-Cahn model. Since both Lc in Eq.(24) and Lw in Eq.(13) share an identical
weight function W = 1 − φ2, we can combine Lc and Lw, i.e., La = Lc + Lw, as well as Bc and Bw, i.e.,
B = Bc +Bw, for simplicity. As a result, we reach the following system:

∂φ

∂t
+∇ · (uφ) = Mλ

(
∇2φ− 1

η2
g′(φ)

)
+ La in Ω, n · ∇φ =

√
2

3η
cos(θ)g′w(φ) at ∂Ω, (26)

La = WB, W = 1− φ2, B =

∫
Ω
Mλ

(
1
η2 g
′(φ)−∇2φ

)
dΩ∫

Ω
WdΩ

, gw(φ) = sin
(π

2
φ
)
.

One can understand La in Eq.(26) serving as a Lagrange multiplier to compensate the mass change inside
Ω from Mλ

η2 g
′(φ) and at ∂Ω from the contact angle boundary condition.

2.3.2 N-Phase model

Here, we consider the reduction-consistent multiphase conservative Allen-Cahn model proposed in [28], where
L is defined as

Lp[{φq}Nq=1] = Mλ0

(
∇2φp −

1

η2

(
g′(φp)−

1 + φp
2

Ls
))

+ Lcp, 1 6 p 6 N, (27)

Ls =

N∑
q=1

g′(φq), Lcp =

N∑
q=1

Wp,qB
c
q ,

∫
Ω

LcpdΩ =

∫
Ω

Mλ0

η2

(
g′(φp)−

1 + φp
2

Ls
)
dΩ.

Here, λ0 = max(λp,q), and Lc is also determined from the consistent and conservative volume distribution
algorithm [28]. Therefore L in Eq.(27) satisfies all the conditions in Eq.(5) and is physically admissible. We
employ the reduction-consistent contact angle boundary condition proposed in [17], whose formulation is

Fwp [{φq}Nq=1; {θq,r}Nq,r=1] =

N∑
q=1

ζp,q
1 + φp

2

1 + φq
2

, 1 6 p 6 N, (28)

ζp,q =
2
√

2

η
cos(θp,q).

Notice that ζp,q is antisymmetric, i.e., ζp,q = −ζq,p. Therefore, Fw in Eq.(28) also satisfies Eq.(8) and is
physically admissible.

Similar to the two-phase case in Section 2.3.1, we combine Lc and Lw after applying the general formu-
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lation proposed in Section 2.2.1, i.e., Eq.(9). Therefore, we have the following system:

∂φp
∂t

+∇ · (uφp) = Mλ0

(
∇2φp −

1

η2

(
g′(φp)−

1 + φp
2

Ls
))

+ Lap in Ω, (29)

n · ∇φp =

N∑
q=1

ζp,q
1 + φp

2

1 + φq
2

at ∂Ω, 1 6 p 6 N,

Ls =

N∑
q=1

g′(φq), Lap =

N∑
q=1

Wp,qBq,

∫
Ω

LapdΩ =

∫
Ω

Mλ0

(
1

η2

(
g′(φp)−

1 + φp
2

Ls
)
−∇2φp

)
dΩ,

Wp,q =

{
−(1 + φp)(1 + φq), p 6= q,
(1 + φp)(1− φq), p = q.

, ζp,q =
2
√

2

η
cos(θp,q).

La in Eq.(29) distributes the mass change due to both the Allen-Cahn model and the contact angle boundary
condition consistently and conservatively, thanks to the volume distribution algorithm in [28]. Based on the
analyses in [28, 17], Eq.(29) will exactly reduce to Eq.(26) with gw(φ) the Hermite polynomial, i.e., gw(φ) =
1
2φ(3 − φ2), when there are only two phases. Then, Eq.(26) or Eq.(29) is coupled to the hydrodynamics
following Section 2.2.2 and Section 2.2.3.

Here, Eq.(26) and Eq.(29) are the specific forms of Eq.(9) of the proposed general formulation in Sec-
tion 2.2.1, based on the conservative Allen-Cahn models. The rest of the governing equations have already
been summarized at the end of Section 2.2.3.

3 Discretizations

Details of applying the consistent formulation discretely and solving the momentum equation consistently
and conservatively are available in our previous works [26, 25]. The balanced-force method [26, 29] is used to
compute the surface tension force in Eq.(22) and Eq.(23). The (modified) conservative Allen-Cahn equations
Eq.(26) and Eq.(29) are numerically solved from the 2nd-order schemes in [25, 28], where the Allen-Cahn
model, i.e., the one neglecting all the Lagrange multipliers, is first solved, and then the Lagrange multipliers
are obtained from satisfying the summation of the order parameters Eq.(1), the mass conservation Eq.(15),
and the consistency of reduction. All the integrals are computed using the mid-point rule. The schemes
are semi-implicit based on the 2nd-order backward difference in time. The convection terms are treated
explicitly with the 5th-order WENO scheme [34], and the diffusion terms are treated implicitly with the
2nd-order central difference [21]. The non-linear term g′(φ) in both Eq.(26) and Eq.(29) is first linearized
and then treated implicitly. More details of the schemes can be found in [25, 28].

The only difference in the present study appears at the boundary condition of the order parameters, where
the homogeneous Neumann boundary condition is replaced by the contact angle boundary condition. This
requires only minor changes, and the contact angle boundary condition is implemented explicitly following
[26, 29, 16, 17], i.e.,

n · ∇φn+1
p = Fwp [{φ∗,n+1

q }Nq=1; {θq,r}Nq,r=1], (30)

where φ∗,n+1 is an explicit evaluation of φn+1 from φn, φn−1 etc. Specifically, φ∗,n+1 = φn is the first-order
estimate, i.e., φn+1 − φ∗,n+1 = φn+1 − φn ∼ O(∆t), and φ∗,n+1 = 2φn − φn−1 is the second-order estimate,
i.e., φn+1 − φ∗,n+1 = φn+1 − 2φn + φn−1 ∼ O(∆t2). We use the second-order estimate in the present study.

In summary, the solution procedure is as follows:

1. Solve Eq.(29) (or Eq.(26)) with the scheme in [28] (or [25]) and the boundary condition Eq.(30) to
update the order parameters.

2. Solve Eq.(16) with the scheme in [25] and then use Eq.(18) to obtain the Phase-Field flux.

3. Compute the density and viscosity with Eq.(2), the consistent mass flux with Eq.(19), the surface
tension force in Eq.(23) (or Eq.(22)) with the balanced-force method [26, 29].

4. Solve Eq.(21) and Eq.(3) to update the velocity and pressure with the scheme in [26].
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Table 1: Scales of the variables in the conservative Allen-Cahn models given a density scale ρref , length scale
Lref , and acceleration scale aref

Table 2: Material properties in the equilibrium drop

The chosen scheme has been carefully analyzed and verified, and we refer interested readers to [26, 29, 25, 28]
for more details.

4 Results

Here, we mainly focus on demonstrating the effectiveness of the proposed general formulation in Section 2.2.1,
which applies to the conservative Allen-Cahn models in Section 2.3, on modeling problems including moving
contact lines. When setting up a case, it is sometimes more convenient to non-dimensionalize the governing
equations in Section 2.2 and Section 2.3. Given a density scale ρref , length scale Lref , and acceleration scale
aref , one can determine the scales of other variables in the governing equations, and they are listed in Table 1,
specifically to the conservative Allen-Cahn models. Using those scales in Table 1, one is able to obtain the
dimensionless governing equations. The procedure is the same if ρref , Lref , and uref is given, and now aref

becomes u2
ref/Lref from Table 1. The initial velocity is u = 0m/s and we set Mλ = 10−3Lrefuref and η = h

unless otherwise specified, where h denotes the grid size.

4.1 Equilibrium drop

Here, we consider a semicircle liquid drop sliding on a horizontal solid wall using the two-phase model Eq.(26).
The water drop initially has a radius of R0 = 8mm, and is surrounded by the air. The material properties of
the water and air considered are listed in Table 2. The viscosities of the water and air are increased 20 and
10 times, respectively, in order to reach the equilibrium more quickly. Such a modification will not affect the
conclusions drawn from the present section. Considering the inertia-capillary velocity scale from the Weber
number We = ρ1U

2R0/σ1,2 = 1, we have the Reynolds number Re = ρ1UR0/µ1 = 38, and capillary number
Ca = µ1U/σ1,2 = 0.0263. When the gravity is neglected, i.e., |g| = 0, one can obtain the final shape of the
drop exactly using the mass conservation and the contact angle [14]. The exact solution is

Rd = R0

√
π/2

θ − sin(θ) cos(θ)
, Hd = Rd(1− cos(θ)), Ld = 2Rd sin(θ), (31)

where Rd, Hd, and Ld are the final radius, height, and spreading length of the drop, respectively, and θ is
the contact angle. Based on the asymptotic analysis for gravity-dominant cases [14], the final height of the
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drop becomes

Hd = 2

√
σds
ρd|g|

sin(θ/2), (32)

where ρd is the density of the drop, σds is the surface tension between the drop and the surrounding phase,
and g is the gravity pointing downward.

In the computation, we use ρ2 (the air density), Lref = 5R0 = 40mm, and aref = 1m/s2 as the density,
length, and acceleration scales, respectively, to non-dimensionalize the governing equations. The length scale
is chosen such that max(Ld)/Lref ∼ O(1), where max(Ld) denotes the maximum final spreading length of
the drop in all the considered cases. The acceleration scale is chosen for convenience when we investigate
the effect of the gravity, as the dimensionless gravity will have the same value as the dimensional one. After
the non-dimensionalization, the computational domain is [−0.5, 0.5]× [0, 0.3], and the drop is initially on the
middle of the bottom wall. The lateral boundaries are periodic while they are no-slip walls at the top and
bottom. Different contact angles are assigned at the bottom wall. We use 150× 45 grid cells and time step
∆t = 1× 10−4 to discretize the space and time, respectively. All the results in this section are presented in
their dimensionless forms.

We first neglect the gravity. Fig.2 shows the evolution of the drop with θ = 600 and θ = 1350, along with
the corresponding exact final solution from Eq.(31). As expected, the drop starts with the semicircle shape,
gradually approaches the final exact solution. The equilibrium shape agrees with the exact solution very
well. We consider the zero contour of φ as the interface and measure the final height and spreading length
of the drop for quantitative comparison. As shown in Fig.3 a), a good agreement with the exact solution
from Eq.(31) is obtained. Note that the height of the domain is changed to 0.5 for θ = 1350 and θ = 1500,
while the grid size remains unchanged. To investigate the convergence with respect to grid refinement,
the errors of the height and spreading length of the water drop versus the grid size is shown in Fig.4 a),
using data from θ = 600. The observed convergence rate is between 1st- and 2nd-order. The saturated
error of Ld in Fig.4 a) can be caused by the evaluation of the spreading length. Since the distance from
the bottom wall to the grid points nearest to it is a half of the grid size, the linear extrapolation is used
to evaluate the interface location at the bottom wall, which introduces additional errors in the spreading
length. Moreover, interactions of the Phase-Field model and the contact angle boundary condition, both of
which are non-linear, are also involved at the bottom wall. These complicated factors come into play, which
makes the analyses of the saturation in Fig.4 a) very difficult. Alternatively, we evaluate the time tc after
which the kinetic energy (EK =

∫
Ω

1
2ρu · udΩ) is less than 10−5. Considering the finest-grid result as the

reference value, a convergence rate near 2nd order is observed in Fig.4 b). Additionally, we supplement, in
Appendix A, a manufactured solution problem, which is commonly used to demonstrate the convergence.
The convergence of the order parameter, velocity, and pressure with respect to the cell size is observed.

Then, the effect of gravity is included, and the domain is changed to [−0.6, 0.6]×[0, 0.24] without changing
the grid size. Fig.5 shows the evolution of the drop with |g| = 10 and |g| = 15, along with the prediction from
Eq.(32). The contact angle is θ = 1350. One can observe that the drop is flattened, having a pancake-like
shape, when the gravity is added. The final height of the drop matches the asymptotic prediction. Fig.3 b)
shows the final height of the drop versus the gravity, and our numerical prediction overall agrees well with
both the exact solution Eq.(31) without gravity and the asymptotic solution Eq.(32) with dominant gravity.
Further, Fig.6 a) demonstrates the mass conservation of the proposed formulation, where the relative changes
of Φ (Φ =

∫
Ω
φdΩ) of the four cases reported in Fig.2 and Fig.5 are in the order of the round-off error.

Next, we supplement results of the N -phase model Eq.(29). The oil phase (Phase 3) is introduced, whose
material properties are listed in Table 2 as well. The domain size becomes [−1, 1]× [0, 0.5] while the grid size
is the same as the two-phase cases. The water drop right now is on the bottom wall with a contact angle
θ1,2 = 600, while the oil drop is attached to the top wall with a contact angle θ3,2 = 1200. Evolution of the
drops is shown in Fig.7. Not only both the water and oil drops finally match the exact solution Eq.(31) but
also the shape of the water drop at different moments is indistinguishable from the two-phase solution in
the left column of Fig.2. The final heights and spreading lengths of the two drops are measured and plotted
in Fig.3 a) as well, and good agreement is obtained with both the exact and two-phase solutions. Fig.4 also
shows the convergence behavior of the N -phase model Eq.(29). The behavior is similar to the two-phase one
Eq.(26) in Fig.4 a) in terms of the height and spreading length of the water drop. Convergence in between 1st
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Figure 2: Evolution of the water drop using Eq.(26) with |g| = 0. Yellow: water ( Phase 1); White: air
(Phase 2); Red dotted line: exact solution from Eq.(31). Left column: θ = 600; Right column: θ = 1350.
From top to bottom, t = 0.0, t = 0.2, t = 0.4, t = 1.0, t = 1.4, and t = 2.0 (left) and t = 3.0 (right).

and 2nd order is again observed in Fig.4 b) in terms of tc after which the kinetic energy (EK =
∫

Ω
1
2ρu ·udΩ)

is less than 10−5. The kinetic energy now includes the contribution from the oil drop.
Then, the gravity is added and the N -phase model Eq.(29) is again used. The surface tension between

the oil and air is adjusted so that the final heights of both the water and oil drops, predicted from the
asymptotic solution Eq.(32), are the same. The domain is [−1, 1]× [0, 0.3], and the magnitude of the gravity
is |g| = 10 . The contact angle of the water drop on the bottom wall is θ1,2 = 1350, while it is θ3,2 = 1200

for the oil drop. Evolution of the drops are shown in Fig.8. Both of the drops are compressed vertically and
finally reach a similar height to the asymptotic prediction. Again, the water drop behaves identically to the
two-phase solution in the left column of Fig.5. Fig.3 b) also includes the final heights of the two drops in this
case, and they are in good agreement with both the asymptotic and two-phase solutions. We also investigate
the mass conservation of the N -phase model, and the relative changes of Φp, where p is the index of the
phases, are in the order of the round-off error, as shown in Fig.6 b). In additional to that, the summation
of the order parameters exactly satisfies Eq.(1), which is shown in Fig.6 c).

The last property the N -phase model should satisfy is the consistency of reduction. We repeat the N -
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Figure 3: Height and spreading length of the drop. a) Hd and Ld versus θ with |g| = 0. b) Hd versus |g|
with θ = 1350.

Figure 4: Convergence behaviors versus the grid size. a) Errors of the height and spreading length, and b)
Errors of tc after which the kinetic energy (EK =

∫
Ω

1
2ρu ·udΩ) is less than 10−5, from the cases of the water

drop with θ = θ1,2 = 600 and |g| = 0.

phase case with |g| = 10 but only consider the left half of the domain, i.e., −1 6 x 6 0. Therefore, the
oil drop disappears at the beginning, i.e., φ3|t=0 = −1. Evolution of the water drop from the N -phase
model is shown in the left column of Fig.5 as well using the cyan dashed line, and the difference from the
two-phase solution is negligible. This also suggests that choosing gw(φ) in Eq.(25) as a Sine or Hermite
polynomial function has a negligible effect on the solution. Fig.9 quantitatively validates that not only the
mass conservation and the summation of the order parameters are exactly satisfied by the N -phase model
Eq.(29) but also the consistency of reduction since φ3 = −1 is true at ∀t > 0.

4.2 Couette flow

To demonstrate the proposed formulation in moving contact line problems, we consider the Couette flow in a
reference frame moving with the contact line. The same problem was performed in [69] to study the contact
line dynamics of the Cahn-Hilliard model. Following the setup in [69], we consider a channel having a height
L and a length 4L, see the schematic in Fig.10 a). The top wall of the channel is moving horizontally with
a velocity U , while the bottom wall is moving oppositely with the same speed. The steady state solution of
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Figure 5: Evolution of the water drop using Eq.(26) with θ = 1350. Yellow: water (Phase 1); White: air
(Phase 2); Red dotted line: asymptotic solution from Eq.(32); Cyan dashed line: N -phase solution from
Eq.(29) with φ3|t=0 = −1. Left column: |g| = 10; Right column: |g| = 15. From top to bottom, t = 0.0,
t = 0.2, t = 0.4, t = 1.0, t = 1.4, and t = 3.0.

the problem corresponds to a contact line moving at a constant speed U with respect to a fixed bottom wall.
Like those in [69], the capillary number is Ca = µ1U

σ = 0.02, the viscosity ratio is µ∗ = µ2

µ1
= 1, and the

inertia is neglected. Another dimensionless number related to the mobility in the conservative Allen-Cahn
model is SCAC = µ1M = 0.1. The channel is discretized by 400 × 100 grid cells, and the time step size is
U∆t
L = 1× 10−4. The homogeneous Neumann boundary condition is used at the left and right boundaries,

while the no-slip boundary condition is used at the top and bottom. The contact angle at the top wall is
either θ = 900 or θ = 1200, and the same at the bottom. The interface is initially vertical and the initial
velocity is identical to the steady state Couette flow without interfaces, i.e., uC =

{
2U
L

(
y − L

2

)
, 0
}

.
As shown in Fig.11, the steady state results from the proposed formulation agree very will with those

reported in [69] using the Cahn-Hilliard model, no matter the contact angle at the top and bottom walls
is 900 or 1200. Since only the steady state results of the problem are provided in [69], we supplement
the transitional results from the consistent and conservative Phase-Field method [26] which uses the same
Cahn-Hilliard model as the one in [69]. The transitional results correspond to the acceleration of the moving
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Figure 6: a) Relative changes of Φ (=
∫

Ω
φdΩ) from the two-phase solutions versus time. b) Relative changes

of Φ from the N -phase solutions versus time (p is the phase index). c) max |
∑
p φp − (2 − N)| from the

N -phase solutions versus time.

contact line before it reaches the final speed U . Again in Fig.11, not only the steady state results but also
the transitional ones from the proposed formulation match those from the Cahn-Hilliard model very well.

4.3 Poiseuille flow

The Poiseuille flow in a reference frame moving with the contact line, reported in [69], is also considered, see
the schematic in Fig.10 b). It corresponds to a fluid displacing another fluid in a capillary tube. The domain
is an axisymmetric capillary tube with a radius L and a length 6L. The tube wall is moving backward
with a velocity U , which is the average velocity of the fully-developed Poiseuille flow without interfaces, i.e.,
uP = {0, 2U

L2 (L2−x2)}. The dimensionless numbers Ca, µ∗, and SCAC = 0.1 are defined identically to those
in the Couette flow Section 4.2. The capillary tube is discretized by 100×600 grid cells, and the time step size
is U∆t

L = 1×10−4. The no-slip boundary condition is used at the tube wall, and the contact angle there is θ.

The Dirichlet boundary condition is used at the inlet and outlet with a velocity uio = {0, 2U
L2 (L2−x2)−U}.

The interface is initially vertical, and the initial velocity is identical to uio.
As shown in Fig.12 a), the steady state interface from the proposed formulation agrees well with the one

in [69] using the Cahn-Hilliard model, with Ca = 0.02, µ∗ = 1, and θ = 900. Notice that the coordinate
system shown in Fig.12 a) has been adapted to the one in [69] such that x/L = 0 is at the tube wall and
x/L = 1 at the axis of symmetry. Further, we consider the apparent contact angle θM versus the capillary
number Ca with µ∗ = 0.9 and θ = 980. Like those in [69] and the references therein, the apparent contact
angle is obtained from θM = arccos(−L/R), under the assumption that the interface is a spherical cap
with a radius R, as illustrated in Fig.10 b). In Fig.12 b), results from the proposed formulation agree with
both from the Cahn-Hilliard model [69] and the celebrated theory of Cox [13]. In [69], the adaptive mesh
refinement (AMR) has been implemented. With a smaller Ca, the interface is less deformed. Then, AMR
is able to locally increase the resolution near the interface, which is favorable in improving accuracy. This
explains the minor discrepancy in Fig.12 b) when Ca 6 0.01.

In the present section and Section 4.2, the Cahn-Hillard results from [69] used the dimensionless diffusion
length SCH =

√
µ1MCH/L = 0.01, where MCH is the mobility in the Cahn-Hilliard model. Moreover, the

authors of [69] related the dimensionless slip length in Cox’s formula to 2.5SCH , which is used in Fig.12
b). We discovery that quantitative matches between the Cahn-Hilliard model and the proposed formulation
with the conservative Allen-Cahn model in contact-line dynamics are obtained if we correspond SCH = 0.01
of the Cahn-Hilliard model to SCAC = 0.1 of the conservative Allen-Cahn model. To further verify, explain,
and generalize such a correspondence between the two Phase-Field models in contact-line dynamics will be
interesting, but needs non-trivial additional works and is outside the scope of the present study.
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Figure 7: Evolution of the water and oil drops using Eq.(29) with |g| = 0, θ1,2 = 600, and θ3,2 = 1200.
Yellow: water (Phase 1); White: air (Phase 2); Blue: oil (Phase 3); Red dotted line: exact solution from
Eq.(31); Cyan dashed line: two-phase solution from Eq.(26) in the left column of Fig.2. From top to bottom,
t = 0.0, t = 0.2, t = 0.4, t = 1.0, t = 1.4, and t = 2.0.

4.4 Spreading drop

To further demonstrate the proposed formulation in dynamical problems with inertia, we consider spreading
of a drop on a solid substrate, reported in [51] using the Volume-of-Fluid (VoF) method. The setup in [51]
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Figure 8: Evolution of the water and oil drops using Eq.(29) with |g| = 10, θ1,2 = 1350, and θ3,2 = 1200.
Yellow: water (Phase 1); White: air (Phase 2); Blue: oil (Phase 3); Red dotted line: asymptotic solution
from Eq.(31); Cyan dashed line: two-phase solution from Eq.(26) in the left column of Fig.5. From top to
bottom, t = 0.0, t = 0.2, t = 0.4, t = 1.0, t = 1.4, and t = 3.0.

is followed: The computational domain is [0, 1]× [0, 1], whose left and right boundaries are periodic, and the
top and bottom are no-slip. A circular drop of Phase 1 with a radius of R0 = 0.2 is centered at (0.5, 0.85)
and surrounded by Phase 2. The contact angle at the top wall is set to be θ = 70.530. The two phases have
a matched density ρ = 0.1 and viscosity µ = 0.001, and the surface tension between them is σ = 0.03. The
mobility follows Mλ = 8× 10−3. The domain is discretized by 128× 128 grid cells, and the time step size is

∆t = 1×10−4. Using the inertia-capillary time scale T =

√
ρR3

0

σ to determine the velocity scale, i.e., U = R0

T ,

the Reynolds number and capillary number in this problem are Re = ρUR0

µ = 24.5 and Ca = µU
σ = 0.04,

respectively.
The dynamical process of the problem is shown in Fig.13. The initial configuration of the drop and the

top wall intersect with an angle different from the assigned contact angle. Such a difference drives the drop
to spread and deform, and finally reach the equilibrium shape. For comparison, the results in [51] using the
Volume-of-Fluid method are also plotted in Fig.13. The entire process predicted by the proposed formulation
agrees very well with those in [51], which demonstrates the effectiveness of the proposed formulation.
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Figure 9: a) Relative changes of Φ (=
∫

Ω
φdΩ) from the N -phase solution versus time (p is the phase index)

with φ3|t=0 = −1. b) max |
∑
p φp − (2−N)| from the N -phase solutions versus time with φ3|t=0 = −1. c)

max |φ3 + 1| from the N -phase solutions versus time with φ3|t=0 = −1.

Figure 10: Schematics of a) the Couette flow, and b) the Poiseuille flow.

Figure 11: Results of the Couette flow. a) θ = 900. b) θ = 1200. Blue solid lines: Interface at Ut
L = 0.00,

0.05, 0.10, 0.25, and steady state, from the proposed formulation with the conservative Allen-Cahn model.
Yellow dash-dotted line: Interface at steady state from [69] using the Cahn-Hilliard model. Red dashed lines:
Interface at Ut

L = 0.05, 0.10, and 0.25, from the consistent and conservative Phase-Field method [26] using
the same Cahn-Hilliard model as the one in [69].

4.5 Axisymmetric spreading drop

Here, we present spreading of an axisymmetric drop on a solid substrate, mimicking the experiment in [20].
The liquid drop is a mixture of Glycerine (79%) and water (21%), and its material properties are listed in
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Figure 12: Results of the Poiseuille flow. a) Steady state interface with Ca = 0.02, µ∗ = 1, and θ = 900.
The coordinate system has been adapted to the one in Yue et al. (2010) [69] such that x/L = 0 is at the
tube wall and x/L = 1 at the axis of symmetry. b) Apparent contact angle θM versus capillary number Ca,
with µ∗ = 0.9 and θ = 980, from the proposed formulation with the conservative Allen-Cahn model, Yue et
al. (2010) [69] using the Cahn-Hilliard model, and the theory of Cox (1986) [13].

Figure 13: Results of the spreading drop. From left to right, top to bottom, t = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, and 1.0. Results from the proposed formulation with the conservative Allen-Cahn model label Phase 1
in yellow and Phase 2 in white. Results from [51] using the Volume-of-Fluid (VoF) method are denoted by
red dashed lines.

Table 3: Material properties in the axisymmetric spreading drop

Table 3, along with those of the surrounding air. The contact angle at the substrate is θ = 850. Initially, the
spherical drop of a radius R0 = 0.5mm is released at z = R0, in contact with the solid substrate at z = 0.

The specific computational setup is as follows. We use a length scale Lref = 2R0 = 1mm, density scale
ρref = 1kg/m3, and acceleration scale aref = 1m/s2 to non-dimensionalize the governing equations. As a
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Figure 14: Results of the axisymmetric spreading drop. a) Evolution of the drop. The x (r) axis is horizontal,
the z axis is vertical, and the unit is millimeter (mm). From left to right, top to bottom, t = 0s, 6.32×10−4s,
1.58×10−3s, 3.16×10−3s, 4.74×10−3s, 6.32×10−3s, 7.91×10−3s, and steady state. Yellow: Liquid. White:
Air. Red dashdotted line: exact steady state solution with a zero gravity. b) Radius r (mm) of the wetted
area versus time t (s). The experimental data are from [20].

result, the computational domain is [0, 1]× [0, 1.25]. The top and right boundaries are the outflow boundary,
the left is the axis of symmetric, and the bottom is the no-slip wall. Like in Section 4.4, the mobility follows
Mλ = 8× 10−3. The domain is discretized by 128× 160 grid cells, and the time step size is ∆t = 5× 10−5.

Fig.14 shows the results in their dimensional forms. The evolution of the drop is shown in Fig.14 a),
along with the exact steady state solution with a zero gravity. The exact solution is obtained by matching
the volume of a spherical cap to the volume of the liquid drop, i.e., 4

3πR
3
0 = 1

3πh
2(3R − h) where R and

h = R(1−cos(θ)) are the radius and height of the spherical cap, respectively. From Table 3, one can compute

the Eötvös (or Bond) number Eo =
ρ1|g|R2

0

σ = 0.0456, which represents the ratio of the gravity force to the
surface tension. With such a small Eo, the drop should finally be very close to the exact solution with a zero
gravity, which is the case shown in Fig.14 a). Fig.14 b) shows the radius of the wetted area versus time. The
present results are compared to the experimental data in [20], and a good agreement is achieved. The major
dynamics are well captured but one may notice that the present results report a smoother transition than the
experimental one in the approach of the drop to the stationary state. The difference is in an acceptable range,
and can be caused by the experimental uncertainties, such as the roughness of the substrate. The mobility
in Sections 4.4 and 4.5 is obtained by trial and error, and the general trend we observed is that the contact
line moves faster as the mobility increases. We expect future studies on theoretical analyses of the contact
line dynamics of the conservative Allen-Cahn or the 2nd-order Phase-Field models, like [32, 50, 69, 68, 65]
for the Cahn-Hilliard model, will provide more insights.

So far, we have demonstrated the proposed formulation with the conservative Allen-Cahn model in
various equilibrium and dynamical problems quantitatively. The remaining cases will show some potential
applications and most of those results are reported qualitatively.

4.6 Bouncing drop

Here, we consider a falling water drop bouncing back after it contacts the bottom wall, using the two-phase
model Eq.(26). The circular drop, surrounded by the air, has a radius R0 = 1.25mm, and is released
above the bottom wall. The distance from the drop center to the bottom wall is H0 = 4R0 = 5mm.
The material properties of the fluid phases considered are listed in Table 4. In the computation, non-
dimensionalization is performed to the governing equations, based on ρ2 (the air density), H0 (the release
height), and aref = 1m/s2 as the density, length, and acceleration scales, respectively. The acceleration scale
is chosen for convenience so that the dimensionless value of the gravity is the same as the dimensional one.
After the non-dimensionalization, the computational domain is [−0.5, 0.5]× [0, 1.5], and the circular drop is
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Table 4: Material properties in the bouncing drop

initially at (0, 1). The length of the domain is 4 times the initial radius of the drop to prevent the drop from
touching the lateral sides of the domain in the investigated cases of θ > 900. The boundaries are periodic
at the lateral sides while no-slip at the top and bottom walls. The dimensionless grid size and time step are
h = 0.01 and ∆t = 5× 10−5, respectively. All the results reported in this section are in their dimensionless
forms.

Fig.15 shows results with contact angle θ = 1650 at the bottom wall. The drop remains circular as it is
falling down. After the drop impacts on the bottom wall, it is strongly deformed to reduce the downward
velocity and finally reaches a “dumbbells-like” shape. Then, the drop tries to restore the circular shape
and jumps upward, leaving the bottom wall and finally arriving at a height lower than where it is initially
released. This process repeats and the velocity is gradually reduced to zero. Finally, the drop settles down
on the bottom wall and the equilibrium shape deviates slightly from the circular one because of the gravity.

Different contact angles at the bottom wall are considered. We observe that the drop is unable to bounce
back when the contact angle is less than or equal to 1200 and the water finally fills the bottom of the domain
when the contact angle is less than or equal to 900. The same behaviors are also reported in [16]. Fig.16
shows shapes of the drops from different contact angles at t = 0.46, right after the first impact to the bottom
wall, and at t = 4.00. The (y-component) center of mass of the drop yc (yc =

∫
Ω
y 1+φ

2 dΩ/
∫

Ω
1+φ

2 dΩ) versus
time is shown in Fig.17 a). Until the second impact to the bottom wall, the centers of mass from θ = 1650

and θ = 1500 move very similarly, as shown in Fig.17 a). However, with a smaller contact angle, length of
the drop in contact with the bottom wall is larger, as shown in Fig.16. This can provide more dissipation,
and as a result, the drop have a less chance to bounce back. On the other hand, each time when the drop
impacts to the wall induces a large deformation of the drop, which also produces a strong dissipation due
to the viscosity of the water. Therefore, from Fig.17 a), peaks of the curves describing the motion of center
of mass decay very fast for the drops that bounce back, e.g., those with θ = 1650 and 1500. For the drop
that is unable to bounce back, e.g., the one with θ = 1200, it oscillates on the bottom wall, and its center
of mass curve has a higher frequency but there is less attenuation between the two neighboring peaks. For
the drop that will finally fill the bottom, e.g., those with θ = 900 and θ = 600, we observe a long-term but
small-amplitude oscillation of the center of mass. This is caused by the capillary wave on the horizontal
water-air interface, as shown in Fig.16.

Finally, we consider the effect of the mobility M . Fig.18 shows shapes of the drops with different
mobilities (or Mλ), and the mass centers (y component) are shown in Fig.17 b). With a larger mobility,
the drop becomes more “rigid” and therefore less deforms, as shown in Fig.18. On the other hand, a too
“soft” drop, resulting from a small mobility, suffers from fictitious oscillation on the side close to the bottom
wall. Even worse, the oscillation destroys the symmetry of the solution, and at the end produces a non-
symmetry drop staying biased to left half of the domain. The drop with the smallest mobility finally is
floating above the bottom wall because the interface is over-thickened. However, these unphysical behaviors
are not observed in the cases with a larger mobility. As shown in Fig.17 b), there is no significant difference
due to the mobility before the first impact of the drop to the bottom wall. The one with the largest mobility
can only bounce back once and settles down very fast. The one with the smallest mobility bounces back
multiple times although the height it returns to after the first impact is lowest among the three cases. These
behaviors suggest that a larger mobility produces more dissipation.
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Figure 15: Results of the bouncing drop using the two-phase model Eq.(26) with θ = 1650. Yellow: water
(Phase 1); White: air (Phase 2); From left to right and top to bottom: t = 0.00, t = 0.30, t = 0.44, t = 0.46,
t = 0.48, t = 0.50, t = 0.52, t = 0.56, t = 0.60, t = 0.64, t = 0.68, t = 0.72, t = 0.80, t = 0.85, t = 0.90,
t = 1.00, t = 1.05, t = 1.10, t = 1.15, and t = 1.20.

4.7 Compound drop

Here, we report a compound drop sliding on a horizontal solid wall using the N -phase model Eq.(29).
Initially, the compound drop is semicircular with a radius R0, composed of two quarter-circular drops. The
left and right quarters are full of Phases 1 and 2, respectively, and they are surrounded by Phase 3. The
Reynolds number and capillary number considered are Re = ρ1UR0/µ1 = 10 and Ca = µ1U/σ1,2 = 0.1,

respectively. Here, U is determined from the inertia-capillary time scale T =
√
ρ1R3

0/σ1,2, i.e., U = R0/T ,
which leads to the Weber number We = ρ1U

2R0/σ1,2 = 1. The material properties of the other two phases
are related to ρ1, µ1, and σ1,2, and are listed in Table 5.

The computational domain is [−2R0, 2R0]×[0R0, 1.2R0], and the periodic and no-slip boundary conditions
are assigned along the x and y axes, respectively. The compound drop is initially on the middle of the bottom

22



Figure 15 (continued): From left to right and top to bottom: t = 1.25, t = 1.30, t = 1.40, t = 1.50, t = 1.55,
t = 1.60, t = 1.70, t = 1.75, t = 1.80, t = 1.90, t = 1.95, t = 2.00, t = 2.05, t = 2.15, t = 2.20, t = 2.35,
t = 2.50, t = 3.00, t = 3.50, and t = 4.00.

wall. The space and time are discretized by 200 × 60 grid cells and U∆t/R0 = 1 × 10−4. Evolution of the
drops are shown in Fig.19, along with the exact solution from [71] for the equilibrium state. The drops move
towards the equilibrium shape, which agrees well with the exact solution. Quantitatively, the spreading
lengths (normalized by R0) of Phases 1 and 2 are 1.0547 and 1.6871, respectively, and the relative errors are
1.614% and 1.166% after comparing to the exact ones 1.0720 and 1.7070 from [71].

Next, we investigate sliding motion of the compound drop when the bottom wall is moving backward
with a speed U , and the setup is slightly changed as follows. Using the speed of the bottom wall, the
corresponding Reynolds number, capillary number, and Weber number considered are Re = ρ1UR0/µ1 =
66.6, Ca = µ1U/σ1,2 = 0.075, and We = ρ1U

2R0/σ1,2 = 5, respectively. The dynamic viscosity ratios are
changed to be µ2/µ1 = 0.67 and µ3/µ1 = 0.33. The domain height becomes 1.5R0, while the grid size
remains the same. Results are shown in Fig.20, and the behaviors of the drops are significantly different
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Figure 16: Shapes of the drops with different contact angles. Yellow: water (Phase 1); White: air (Phase 2);
From left to right: θ = 1650, θ = 1500, θ = 1200, θ = 900, and θ = 600. Top: t = 0.46; Bottom: t = 4.00.

Figure 17: Mass center (y component) of the drop versus time a) with different contact angles, b) with
different mobilities.

from those on a stationary wall. We observe that the Phase 1 (yellow) drop climbs onto the Phase 2 (blue)
drop, and thoroughly leave the bottom wall, sitting on the Phase 2 drop. Then, it crosses the Phase 2 drop
and returns on the bottom wall. At the end, the Phase 1 drop is still in contact with the Phase 2 drop but
moves in front of it.

5 Conclusions and future works

In the present work, we proposed a general formulation to implement the contact angle boundary conditions
for the second-order Phase-Field models. The original second-order Phase-Field models are modified by
adding a Lagrange multiplier that enforces the mass conservation but does not change the summation of
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Figure 18: Shapes of the drops with different mobilities. Yellow: water (Phase 1); White: air (Phase 2);
From left to right: Mλ = 5× 10−3, Mλ = 1× 10−3, and Mλ = 1× 10−4. Top: t = 0.60; Bottom: t = 4.00.

Table 5: Material properties in the compound drop

the order parameters and the consistency of reduction. The newly introduced Lagrange multiplier is deter-
mined by the consistent and conservative volume distribution algorithm [28]. The proposed formulation is
applicable to not only two-phase but also N -phase (N > 2) cases. Then, this novel formulation is physically
coupled to the hydrodynamics using the consistent formulation [25] and can be applied to large-density-ratio
problems. To demonstrate its effectiveness of moving contact line simulations, we apply the proposed formu-
lation to the reduction-consistent multiphase conservative Allen-Cahn model [28], whose two-phase version
is equivalent to the one in [9]. The complete system is numerically solved by the consistent and conservative
scheme [25, 28], which preserves the mass conservation, the summation of the order parameters, and the
consistency of reduction exactly on the discrete level, as validated in the present study. Various numerical
tests are performed in both 2D Cartesian and axisymmetric coordinates. The proposed formulation accu-
rately reproduces the exact and/or asymptotic solutions for equilibrium problems, and captures important
dynamical behaviors reported, e.g., in [69, 71, 16, 17] using the Cahn-Hilliard models which are a 4th-order
Phase-Field model, in [51] using the Volume-of-Fluid (VoF) method, and in [20] performing experiments.
Since the parallelization has not been implemented, only two-dimensional and axisymmetric results are re-
ported. The extension of the proposed formulation to three-dimensional problems is straightforward without
any modifications, and the physical properties demonstrated in the present study, such as the summation
of the order parameters, mass conservation, and consistency of reduction, will remain intact. However, an
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Figure 19: Evolution of the compound drop using Eq.(29) with a stationary bottom wall. The coordinate
has been normalized by the initial radius of the compound drop R0. Yellow: Phase 1; Blue: Phase 2; White:
Phase 3; Red dotted line: exact solution from [71]. From top to bottom and left to right: Ut/R0 = 0.0, 0.2,
0.4, 1.0, 1.4, 2.0, 3.0, 4.0, 5.0 and 6.0, where U =

√
σ1,2/(ρ1R0) is the inertia-capillary velocity scale.

efficient parallel strategy with adaptive mesh refinement (AMR) is desired for three-dimensional problems,
and this is a valuable future direction to proceed with the present study.

The present study leaves open the possibility of using the 2nd-order Phase-Field models for moving contact
line problems, which has never been considered before. Therefore, it provides plenty of new opportunities
to study in the future. Generally speaking, the accuracy of the prediction heavily relies on the properties of
the Phase-Field model and the contact angle boundary condition, i.e., the definitions of L in Eq.(4) and Fw
in Eq.(7), and on the parameters therein. Since the pool of plausible Phase-Field models for moving contact
line problems is greatly expanded, it is now not only possible but also desirable to investigate and clarify
their performance. Unlike the Cahn-Hilliard models, there is little theoretical analysis of the 2nd-order
Phase-Field models in moving contact line problems, e.g., the asymptotic analysis as the interface thickness
tends to zero. Such an analysis is important to provide physical insights of determining the parameters in
the models. We expect the present study will motivate consideration of using 2nd-order Phase-Field models
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Figure 20: Evolution of the compound drop using Eq.(29) with a translating bottom wall. The coordinate
has been normalized by the initial radius of the compound drop R0. Yellow: Phase 1; Blue: Phase 2; White:
Phase 3. From top to bottom and left to right: Ut/R0 = 0.0, 0.2, 0.4, 1.0, 1.4, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0,
and 8.0, where U is the speed of the bottom wall.

in moving contact line problems as the effectiveness has been demonstrated.
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Figure 20 (continued): From top to bottom and left to right: Ut/R0 = 9.0, 10.0, 11.0, 12.0, 13.0, and 14.0,
where U is the speed of the bottom wall.
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A Manufactured solution

Here, we perform a manufactured solution test to the two-phase conservative Allen-Cahn model including
the contact angle boundary condition to further demonstrate the convergence. In this problem, we assume
that the exact solutions of the order parameter, velocity, and pressure are φE = cos(x) cos(y) sin(t), uE =
sin(x) cos(y) cos(t), vE = − cos(x) sin(y) cos(t), and PE = cos(x) cos(y) sin(t), respectively. Then, a source
term SBC is added to the contact angle boundary condition, i.e., n · ∇φ = Fw[φ; θ] + SBC , where SBC is
directly obtained with φE , i.e., SBC = n · ∇φE −Fw[φE ; θ]. In a similar manner, one can obtain the source
terms added to the right-hand side of the Phase-Field model Eq.(13) and the momentum equation Eq.(21).
We additionally assume QE = cos(x) cos(y) sin(t) to obtain the source term added to the right-hand side
of the consistent formulation Eq.(16). The parameters used are ρ1 = 3, ρ2 = 1, µ1 = 0.02, µ2 = 0.01,
σ = 0.0094, g = {1,−2}, η = 0.1, and M = 0.001. The domain considered is [−π, π] × [−π, π] with the
free-slip boundary condition. The contact angles at the boundaries are 900 except the bottom one that is
750. The initial conditions are φE , uE , vE , and PE evaluated at t = 0. The time step size is ∆t = 1× 10−3,
and the computations last till t = 1. We output φ, u, v, and P , and depict the L1 norms of φ− φE , u− uE ,
v − vE , and P − PE , i.e., the averages of |φ − φE | etc. over the domain, in Fig.21. All the variables are
converging as the cell size is refined.
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Figure 21: L1 errors of φ, u, v, and P versus the cell size in the manufactured solution problem.
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