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Abstract

In this paper, the gentlest ascent dynamics (GAD) developed in W. E and X. Zhou (2011) [21] is
extended to a constrained gentlest ascent dynamics (CGAD) to find constrained saddle points with
any specified Morse indices. It is proved that the linearly stable steady state of the proposed CGAD
is exactly a nondegenerate constrained saddle point with a corresponding Morse index. Meanwhile,
the locally exponential convergence of an idealized CGAD near nondegenerate constrained sad-
dle points with corresponding indices is also verified. The CGAD is then applied to find excited
states of single-component Bose–Einstein condensates (BECs) in the order of their Morse indices
via computing constrained saddle points of the corresponding Gross–Pitaevskii energy functional
under the normalization constraint. In addition, properties of the excited states of BECs in the
linear/nonlinear cases are mathematically/numerically studied. Extensive numerical results are re-
ported to show the effectiveness and robustness of our method and demonstrate some interesting
physics.

Keywords: constrained saddle points, constrained gentlest ascent dynamics, linear stability,
Bose–Einstein condensates, excited states

1. Introduction

Saddle points appear widely in various scientific fields as, for example, excited states in atomic,
molecular and optical systems or transition states in chemical reactions. Particularly, the index-1
saddle point is a central concept in the study of rare events, which corresponds to the transition state
between metastable states in randomly perturbed system [20, 21]. In practice, excited states in some
scenarios only occur instantaneously. And, transition states usually occur with very low probability.
Owning to these difficulties in direct experimental observation, the effective numerical search of
saddle points has attracted more and more attentions. Different numerical algorithms for finding
saddle points have been carried out in the literature in recent decades, most of which are related
to unconstrained saddle points. However, many physical/chemical/biological systems in practical
scientific problems are constrained by one or more physical constraints, e.g., the wave function of
a Bose–Einstein condensate (BEC) is constrained by one or more normalization conditions [15, 3].
And, the volume and surface area of a biological vesicle membrane are fixed to be prescribed
constants in the phase field model [18, 13]. This motivates us to concern finding constrained saddle
points.
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In terms of numerical methods for finding unconstrained saddle points of given nonconvex energy
functionals or multiple unstable solutions of nonlinear partial differential equations, we refer to the
mountain-pass algorithm [14], the high-linking algorithm [17], the local minimax method (LMM)
[30], the search extension method [11], the bifurcation method [37], the string method [20], the
gentlest ascent dynamics (GAD) [21], the dimer method [26] and the shrinking dimer dynamics
(SDD) [44], etc. Typically, the GAD developed by E and Zhou [21] is a continuous dynamical
system that describes the escape from the attractive basins of stable invariant sets. It is proved
that the linearly stable steady state of the GAD proposed in [21] is exactly an index-1 saddle point.
And, due to its simplicity and effectiveness, the GAD has been applied to compute index-1 saddle
points in many problems [29, 28, 45]. Several variants of the GAD such as the iterative minimization
algorithm [22] and the multiscale GAD [24], were presented in literature. In [35], Quapp and Bofill
proposed a generalized GAD algorithm that can compute unconstrained high-index saddle points.
In addition, the SDD proposed by Zhang and Du [43] is closely related to the GAD. In fact, the
SDD can be obtained by approximating the Hessian in the formulation of the GAD with first-order
derivatives and introducing an additional dynamics for shrinking the length of the so-called dimer.
Recently, Yin, Zhang and Zhang [41] extended the SDD to find unconstrained high-index saddle
points, and proposed a high-index optimization-based shrinking dimer (HiOSD) method.

There have existed several effective numerical methods in the literature to find constrained saddle
points. In [19], Zhang and Du proposed a constrained string method to compute the minimum
energy path (MEP) with given constraints. In this way, the index-1 constrained saddle point given
by the local maximizer of the energy functional on the MEP can be obtained accordingly. In a
subsequent work of [44], Zhang and Du also proposed a constrained SDD (CSDD) [43] to search
index-1 constrained saddle points. In [28], Li, Lu and Yang modified the GAD to find index-1 saddle
points of the Kohn–Sham density functional under the orthonormality constraints. Other numerical
methods for finding constrained saddle points include the LMM based on the Rayleigh quotient or
the active Lagrangian [39, 40], the LMM using virtual geometric objects [31], and the Ljusternik–
Schnirelman minimax algorithm [38]. These methods can be regarded as the variants of the original
LMM developed by Li and Zhou in [30] and corresponding two-level optimization problems have
to be solved. In summary, the above mentioned methods are mainly used to compute index-1
constrained saddle points or their efficiency are needed to be further improved. Thus, efficient
numerical methods as well as the corresponding theoretical analysis are still called for to compute
the general high-index constrained saddle points.

One of the important applications of computing constrained saddle points is to find the excited
states of BECs. The BEC was first realized experimentally in dilute weakly interacting gases in
1995 [1, 8, 16]. As is known, one of the basic problems in numerical studies of BEC is to determine
the stationary states, i.e., the critical points of the energy functional under certain normalization
constraints, by the mean field Gross–Pitaevskii (GP) theory. In the physics literatures, the station-
ary state with the lowest energy is called the ground state of BEC, whereas the stationary states
with higher energies are usually called excited states. In the past two decades, based on the Gross–
Pitaevskii equations (GPEs), many effective numerical methods for computing the ground states of
BECs have been developed, as reviewed in, e.g., [3]. However, the numerical methods for finding
excited states of BECs are still relatively limited. The normalized gradient flow or the imaginary
time evolution method [5], as one of the most popular techniques for computing the ground states
of BECs, has been extended to compute the ‘first’ excited states of single-component BECs with
symmetries, see, e.g., [5, 2]. In addition, some continuation algorithms [10, 12] and Newton-based
iterative algorithm [36] are also designed to compute excited states of BECs. However, the con-
vergence of these methods depend on the choice of initial data, and more efficient and accurate
methods to compute excited states of BECs are still worthwhile explored.

In this paper, we are interested in developing a continuous dynamical system to stably search
for constrained saddle points with any specified Morse indices. Due to the difficulties caused by

2



constraints, instability, nonlinearity and nonconvexity, it is quite challenging to find constrained
saddle points with general constraints in a stable way, especially for high-index ones. Inspired by
the works of the original GAD [21] for index-1 unconstrained saddle points and the CSDD [43] for
index-1 constrained saddle points, we are aimed to propose a constrained gentlest ascent dynamics
(CGAD) to compute general constrained saddle points with any specified indices and analyze its
linear stability and local convergence. Further, we apply the CGAD to simulate excited states of
BECs to demonstrate its effectiveness and robustness and then illustrate an interesting problem,
i.e., the relation among the GP energies, chemical potentials and Morse indices of the excited states
(as constrained saddle points) of BECs. In fact, it was found numerically that both the GP energy
and chemical potential of the excited state increase with the increase of its Morse index, whereas
the excited states with the same index may be at different energy levels.

The paper is organized as follows. In section 2, we describe the definitions of constrained saddle
points and their Morse indices. In section 3, we briefly review the original GAD and construct the
CGAD to search for index-k constrained saddle points. In section 4, the mathematical justifications
of the CGAD, including the linear stability and the local convergence of an idealized CGAD, are
analyzed. In section 5, the CGAD is implemented to find some excited states of single-component
BECs. Several interesting mathematical properties of excited states and the detailed numerical
results in 1D and 2D are presented. Finally, some conclusions are drawn in section 6.

2. Constrained saddle points and Morse indices

Let X be a real Hilbert space with its inner product 〈·, ·〉 and norm ‖ · ‖. An energy functional
E ∈ C2(X,R) and m constraint functionals Gi ∈ C2(X,R), i = 1, 2, . . . ,m are given. Consider
critical points of the energy functional E under constraints

Gi(u) = 0, i = 1, 2, . . . ,m. (2.1)

Denote M = {u ∈ X : Gi(u) = 0, i = 1, 2, . . . ,m} as the constraint manifold.

Definition 2.1. u∗ ∈ X is called a constrained critical point of E on the manifold M, or a
constrained critical point of E under the constraints (2.1), if there exist µ∗

i ∈ R, i = 1, 2, . . . ,m,
such that

E′(u∗)−
m
∑

i=1

µ∗
iG

′
i(u

∗) = 0, Gi(u
∗) = 0, i = 1, 2, . . . ,m, (2.2)

where E′ and G′
i represent the Fréchet derivatives (or gradients) of E and Gi, respectively. The

constrained critical point that is not local extremizer (i.e., maximizer or minimizer) is called a
constrained saddle point.

Throughout this paper, we assume that the constraints (2.1) are regular, i.e., their gradients
G′

i(u), i = 1, 2, . . . ,m, are linearly independent for all u ∈ M. Then M is a C2 differential manifold,
and its tangent space at u ∈ M is given by TuM = {v ∈ X : 〈G′

i(u), v〉 = 0, i = 1, 2, . . . ,m}. A
direct computation shows that the orthogonal projection operator from X onto the tangent space
TuM at u ∈ M takes

Pu = I −
m
∑

i=1

m
∑

j=1

gij(u)
[

G′
i(u)⊗G′

j(u)
]

, (2.3)

where I is the identity operator, gij(u) are the (i, j)-elements of the inverse to the (positive definite)
Gram matrix [〈G′

i(u), G
′
j(u)〉]i,j=1,2,...,m, and ⊗ denotes the tensor product operator defined as

(v ⊗ w)ξ = 〈w, ξ〉v, ∀v,w, ξ ∈ X. The projected gradient of E at u ∈ M can be written as

F (u) := PuE
′(u) = E′(u)−

m
∑

i=1

µi(u)G
′
i(u), (2.4)
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with µi(u) =
∑m

j=1 gij(u)
〈

G′
j(u), E

′(u)
〉

, i = 1, 2, . . . ,m. Clearly, u∗ ∈ X is a constrained critical
point of E on M if and only if Gi(u

∗) = 0, i = 1, 2, . . . ,m, and F (u∗) = 0.
For u ∈ M, denoting H(u) := E′′(u)−

∑m
i=1 µi(u)G

′′
i (u) the effective Hessian operator [34], we

define the projected Hessian operator

Ĥ(u) = PuH(u)Pu : TuM → TuM, (2.5)

which is a self-adjoint linear operator on the tangent space TuM. Similar to the concept of Morse
indices for unconstrained critical points [9], the stability/instability of a constrained critical point
u ∈ M can be depicted by examining the spectrum of the linear operator Ĥ(u). More precisely, we
introduce the following definition.

Definition 2.2. Assume that u∗ is a constrained critical point of E on the manifold M. Let
Tu∗M = T− ⊕ T 0 ⊕ T+, dim(T 0) < ∞, where T−, T 0 and T+ are, respectively, the maximum
negative, null, and maximum positive subspaces according to the spectral decomposition of the linear
operator Ĥ(u∗) : Tu∗M → Tu∗M. The Morse index of u∗ is defined as index(u∗) = dim(T−). u∗

is nondegenerate if T 0 = {0}. Otherwise, u∗ is degenerate and dim(T 0) is called its nullity. When
index(u∗) = k (k = 1, 2, . . .), u∗ is called an index-k constrained saddle point, T− is called its
unstable (tangent) subspace and each nonzero vector in T− is called an unstable (tangent) direction
at u∗.

3. The constrained gentlest ascent dynamics

3.1. Review of the GAD

To propose our CGAD method, we first review the GAD developed in [21] for finding index-1
unconstrained saddle points of E, which is formulated as

{

u̇ = −E′(u) + 2〈E′(u), v〉v,
v̇ = −E′′(u)v + 〈E′′(u)v, v〉v,

(3.1)

starting at (u(0), v(0)) = (u0, v0) ∈ X2 with v0 satisfying the normalization condition ‖v0‖ = 1.
Compared to the steepest descent dynamics or gradient flow

u̇ = −E′(u), (3.2)

which works for finding local minima, the GAD (3.1) consists of two equations. The first equation
in (3.1) can be obtained by performing the Householder transformation for the gradient flow with
respect to the auxiliary unit vector v, where the last term in it makes v a stable direction. The
second equation in (3.1), evolving the vector v, is constructed by solving the Rayleigh quotient
minimization problem min‖v‖=1〈E′′(u)v, v〉, which makes v approximate the unstable direction of
the target index-1 saddle point. It was proved in [21] that, for an appropriately smooth energy
function E defined on an Euclidean space, the linearly stable steady state of the GAD (3.1) is
exactly an index-1 saddle point of E.

3.2. CGAD for index-1 constrained saddle points

The aim of this section is to propose the CGAD for finding constrained saddle points with any
specified indices. To clarify the idea, we first construct the formulation of the CGAD to search for
index-1 constrained saddle points.

Let u ∈ M be an approximation of an index-1 constrained saddle point of E on the constraint
manifold M = {u ∈ X : Gi(u) = 0, i = 1, 2, . . . ,m}, and the unit vector v ∈ TuM be an approxi-
mation of the corresponding unstable tangent direction, see Fig. 1 (left). We discuss below how to
construct the evolution equations of u and v.
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Figure 1: Illustration of the index-1 CGAD. Left: u ∈ M and v ∈ TuM approximate an index-1 constrained saddle
point on the manifold M and its unit unstable direction, respectively. Right: the projected gradient F (u) = PuE

′(u)
has the decomposition F (u) = Fv(u)+F⊥(u) with Fv(u) ∈ TuM∩ span{v} and F⊥(u) ∈ TuM∩ span{v}⊥, and thus,
the force of the index-1 CGAD to evolve u is constructed as FCGAD = Fv(u)− F⊥(u) = −F (u) + 2Fv(u).

• Construction of the dynamics for u. To guarantee that u moves towards an index-1
constrained saddle point, the evolution of u in the direction v has to increase the energy, while
the evolution in other directions decreases the energy. Moreover, to preserve the constraint
u ∈ M (i.e., Gi(u) = 0, i = 1, 2, . . . ,m), the force to evolve u must be in the tangent space
TuM. Thus, we construct the dynamics for u as

u̇ = Fv(u)− F⊥(u), (3.3)

where Fv(u) = 〈F (u), v〉v is the component of the projected gradient F (u) = PuE
′(u) in v

and F⊥(u) = F (u)−〈F (u), v〉v the component of F (u) in the orthogonal complement of v, as
illustrated in Fig. 1 (right). Intuitively, the first term in (3.3) makes the energy increase in v
and the second term makes the energy decrease in other directions.

• Construction of the dynamics for v. From the definition of unstable directions, if u is
an index-1 constrained saddle point, its unstable direction v is an eigenvector of the pro-
jected Hessian Ĥ(u) corresponding to the unique negative eigenvalue. By the Rayleigh-Ritz
variational principle [42], v can be obtained by solving the following minimization problem

min
v∈TuM,‖v‖2=1

〈Ĥ(u)v, v〉. (3.4)

Considering the Lagrangian

L(v, λ, λ̄1, λ̄2, . . . , λ̄m) =
1

2
〈Ĥ(u)v, v〉 − λ

2
(‖v‖2 − 1)−

m
∑

i=1

λ̄i〈G′
i(u), v〉, (3.5)

we construct the dynamics for v as

v̇ = − δ

δv
L(v, λ, λ̄1, λ̄2, . . . , λ̄m) = −Ĥ(u)v + λv +

m
∑

i=1

λ̄iG
′
i(u), (3.6)

where λ = λ(u, v) and λ̄i = λ̄i(u, v) are the Lagrange multipliers corresponding to the con-
straints ‖v‖2 = 1 and 〈G′

i(u), v〉 = 0, i = 1, 2, . . . ,m (i.e., v ∈ TuM), respectively.

In summary, the CGAD for finding an index-1 constrained saddle point is formulated as











u̇ = −F (u) + 2〈F (u), v〉v,

v̇ = −Ĥ(u)v + λv +

m
∑

i=1

λ̄iG
′
i(u),

(3.7)
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with the initial data (u(0), v(0)) = (u0, v0) satisfying u0 ∈ M, v0 ∈ Tu0M and ‖v0‖2 = 1. The
Lagrange multipliers λ and λ̄i (i = 1, 2, . . . ,m) in (3.7) are chosen such that the flow preserves the
constraints ‖v‖2 = 1 and 〈G′

i(u), v〉 = 0 (i = 1, 2, . . . ,m), respectively. Therefore, 〈v, v̇〉 = 0 and
〈G′

i(u), v̇〉+ 〈G′′
i (u)u̇, v〉 = 0, which lead to

λ = 〈Ĥ(u)v, v〉, λ̄i =

m
∑

j=1

gij(u)
〈

G′′
j (u)v, F (u)− 2〈F (u), v〉v

〉

, i = 1, 2, . . . ,m.

3.3. CGAD for high-index constrained saddle points

Now, we extend the index-1 CGAD (3.7) to general high-index cases. To construct the CGAD
for finding an index-k (k = 1, 2, 3, . . .) constrained saddle point of the energy functional E ∈
C2(X,R) on the constraint manifoldM, we need to consider k linearly independent unstable tangent
directions v1, v2, . . . , vk ∈ TuM (see Fig. 2). Let u ∈ M be an approximation of an index-k
constrained saddle point and V = span{v1, v2, . . . , vk} the approximation of corresponding unstable
subspace. Denote W by the orthogonal complement of V in TuM.

TuM
u

v1

v2

vk
.

.

.

Figure 2: Illustration of unstable directions v1, v2, . . . , vk ∈ TuM for an index-k constrained saddle point u ∈ M.

In order to make u move towards an index-k constrained saddle point, the force that evolves u
needs to be in the tangent space TuM with its components in V and W increasing and decreasing
the energy, respectively. It is natural to evolve u by the steepest ascent dynamics in V and the
steepest descent dynamics in W , i.e., the dynamics for u is as

u̇ = FV (u)− FW (u), (3.8)

where FV (u) and FW (u) = F (u) − FV (u) are the orthogonal projections of the projected gradi-
ent F (u) = PuE

′(u) on V and W , respectively. If v1, v2, . . . , vk ∈ TuM satisfy the orthonormal
conditions: 〈vi, vj〉 = δij , then FV (u) =

∑k
j=1〈F (u), vj〉vj , and (3.8) becomes

u̇ = −F (u) + 2FV (u) = −F (u) + 2

k
∑

j=1

〈F (u), vj〉vj . (3.9)

It is worthwhile to point out that, if u is an index-k constrained saddle point, its unstable di-
rections v1, v2, . . . , vk can be taken as the orthonormal eigenvectors of the projected Hessian Ĥ(u)
corresponding to the k smallest and negative eigenvalues. By the Rayleigh-Ritz variational princi-
ple [42], the eigenvector v1 corresponding to the smallest eigenvalue can be obtained by minimizing
〈Ĥ(u)v1, v1〉 under the constraints v1 ∈ TuM and ‖v1‖2 = 1. And, when eigenvectors v1, v2, . . . , vi−1

of Ĥ(u) corresponding to the first i − 1 smallest eigenvalues are known, the eigenvector vi corre-
sponding to the i-th smallest eigenvalue can be obtained by solving the following Rayleigh-Ritz
minimization problem [42]

min
vi

〈Ĥ(u)vi, vi〉 s.t. vi ∈ TuM, 〈vi, vj〉 = δij , j = 1, 2, . . . , i. (3.10)
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Consider the Lagrangian

Li(vi, λi1, λi2, . . . , λii, λ̄i1, λ̄i2, . . . , λ̄im)

=
1

2
〈Ĥ(u)vi, vi〉 −

λii

2

(

‖vi‖2 − 1
)

−
i−1
∑

j=1

λij〈vi, vj〉 −
m
∑

l=1

λ̄il〈G′
l(u), vi〉,

with Lagrange multipliers λij (j = 1, 2, . . . , i) and λ̄il (l = 1, 2, . . . ,m) corresponding to constraints
〈vi, vj〉 = δij and 〈G′

l(u), vi〉 = 0 (i.e., vi ∈ TuM), respectively. The gradient flow for solving (3.10)
is given by the following dynamics for vi (i = 1, 2, . . . , k):

v̇i = −δLi

δvi
= −Ĥ(u)vi +

i
∑

j=1

λijvj +

m
∑

l=1

λ̄ilG
′
l(u).

Based on the above discussion, we propose the following CGAD to search for the index-k con-
strained saddle point:



























γ0u̇ = −F (u) + 2
k

∑

i=1

〈F (u), vi〉vi,

γiv̇i = −Ĥ(u)vi +
i

∑

j=1

λijvj +
m
∑

l=1

λ̄ilG
′
l(u), i = 1, 2, . . . , k.

(3.11)

Here γi > 0 (i = 0, 1, . . . , k) are relaxation parameters. The Lagrange multipliers λij (j = 1, 2, . . . , i)
and λ̄il (l = 1, 2, . . . ,m) are chosen such that the flow preserves the constraints 〈vi, vj〉 = δij and
〈G′

l(u), vi〉 = 0, respectively, which leads to 〈v̇i, vj〉+ 〈vi, v̇j〉 = 0 and 〈G′′
l (u)u̇, vi〉+ 〈G′

l(u), v̇i〉 = 0.
Hence

λij = (1 + γi/γj − δij) 〈Ĥ(u)vi, vj〉, j = 1, 2, . . . , i, (3.12)

λ̄il =
γi
γ0

m
∑

l′=1

gll′(u)

〈

G′′
l′(u)vi, F (u)− 2

k
∑

j=1

〈F (u), vj〉vj
〉

, l = 1, 2, . . . ,m, (3.13)

for i = 1, 2, . . . , k. The initial data (u(0), v1(0), . . . , vk(0)) of (3.11) is assumed to satisfy u(0) ∈ M,
vi(0) ∈ Tu(0)M and 〈vi(0), vj(0)〉 = δij for 1 ≤ j ≤ i ≤ k, or equivalently,

Gl(u(0)) = 0, l = 1, 2, . . . ,m, (3.14a)

〈G′
l(u(0)), vi(0)〉 = 0, l = 1, 2, . . . ,m, i = 1, 2, . . . , k, (3.14b)

〈vi(0), vj(0)〉 = δij , 1 ≤ j ≤ i ≤ k. (3.14c)

Clearly, the index-1 CGAD (3.7) is a special case of the CGAD (3.11).

Remark 3.1. According to the CGAD (3.11), the CSDD proposed in [43] for finding index-1 con-
strained saddle points can be easily extended to a high-index CSDD for searching for index-k con-
strained saddle points. Actually, the approximation

Ĥ(u)vi ≈
F (u+ ℓvi)− F (u− ℓvi)

2ℓ
, i = 1, 2, . . . , k,

and an additional dynamics for shrinking the parameter ℓ > 0, e.g., ℓ̇ = −ℓ [43, 44], should be
implemented to construct the index-k CSDD from the CGAD (3.11).

The following lemma states that the CGAD (3.11) preserves exactly the constraints (3.14).

7



Lemma 3.2. Assume that E,Gl ∈ C2, l = 1, 2, . . . ,m, and the constraints (2.1) are regular. Let
(u(t), v1(t), . . . , vk(t)) be the solution of (3.11) with the initial data satisfying (3.14). Then

Gl(u(t)) ≡ 0, l = 1, 2, . . . ,m, (3.15a)

〈G′
l(u(t)), vi(t)〉 ≡ 0, l = 1, 2, . . . ,m, i = 1, 2, . . . , k, (3.15b)

〈vi(t), vj(t)〉 ≡ δij , 1 ≤ j ≤ i ≤ k. (3.15c)

Proof. See detailed proof in Appendix A.

4. Linear stability and local convergence

In this section, we study the stability and convergence of the CGAD (3.11). The following
lemma will play important role in the subsequent analysis, with its proof detailed in Appendix B.

Lemma 4.1. Assume that E,Gi ∈ C2, i = 1, 2, . . . ,m, and the constraints (2.1) are regular. Then,
for u ∈ M,

F ′(u)v = Ĥ(u)v −
m
∑

i=1

m
∑

j=1

gij(u)
〈

G′′
j (u)F (u), v

〉

G′
i(u), ∀v ∈ TuM. (4.1)

In particular, F ′(u∗) = Ĥ(u∗) if u∗ ∈ M is a constrained critical point.

4.1. Linear stability of the CGAD

We now show that the linearly stable steady state of the CGAD (3.11) is exactly a nondegen-
erate index-k constrained saddle point of E on the manifold M. Similar results of the GAD for
unconstrained saddle points and the CSDD for index-1 constrained saddle point can be found in
[21, 41] and [43], respectively.

Theorem 4.2. Assume that E,Gl ∈ C3, l = 1, 2, . . . ,m, and the constraints (2.1) are regular. Let
u∗ ∈ M and v∗i ∈ Tu∗M, i = 1, 2, . . . , k, satisfy 〈v∗i , v∗j 〉 = δij .

(a) (u∗, v∗1 , . . . , v
∗
k) is a steady state of (3.11) if and only if u∗ is a constrained critical point of E

on the manifold M and v∗i , i = 1, 2, . . . , k, are eigenvectors of Ĥ(u∗).

(b) (u∗, v∗1 , . . . , v
∗
k) is a linearly stable steady state of (3.11) if and only if the following hold:

(i) u∗ is a nondegenerate index-k constrained saddle point of E on the manifold M;

(ii) all the eigenvalues of Ĥ(u∗), say {λ∗
i }, satisfy λ∗

1 < λ∗
2 < · · · < λ∗

k < 0 < λ∗
k+1 ≤ λ∗

k+2 ≤
· · · ;

(iii) for i = 1, 2, . . . , k, v∗i is the eigenvector of Ĥ(u∗) corresponding to the eigenvalue λ∗
i .

Proof. (a) Necessity. Suppose that (u∗, v∗1 , . . . , v
∗
k) is a steady state of (3.11), i.e.,

−F (u∗) + 2

k
∑

i=1

〈F (u∗), v∗i 〉v∗i = 0, (4.2)

−Ĥ(u∗)v∗i +

i
∑

j=1

λ∗
ijv

∗
j +

m
∑

l=1

λ̄∗
ilG

′
l(u

∗) = 0, i = 1, 2, · · · , k, (4.3)

where λ∗
ij and λ̄∗

il are given in (3.12)-(3.13) with (u, v1, . . . , vk) replaced by (u∗, v∗1 , . . . , v
∗
k). Noting

that 〈v∗i , v∗j 〉 = δij , taking the inner product in both sides of (4.2) with v∗j yields 〈F (u∗), v∗j 〉 = 0,
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j = 1, 2, . . . , k. Therefore, F (u∗) = 0, i.e., u∗ is a constrained critical point. Moreover, by (3.13),
we have λ̄∗

il = 0, thus (4.3) becomes

Ĥ(u∗)v∗i =
i

∑

j=1

λ∗
ijv

∗
j , i = 1, 2, · · · , k. (4.4)

Taking the inner product in both side of (4.4) with v∗l (∀l < i) implies that 〈Ĥ(u∗)v∗i , v
∗
l 〉 =

∑i
j=1 λ

∗
ij〈v∗j , v∗l 〉 = λ∗

il, which states λ∗
il = 0 (otherwise, one gets a contradiction with (3.12)).

Consequently, Ĥ(u∗)v∗i = λ∗
iiv

∗
i , i = 1, 2, · · · , k, i.e., {(λ∗

ii, v
∗
i )}ki=1 are eigenpairs of Ĥ(u∗).

Sufficiency. Suppose that u∗ is a constrained critical point of E on the manifold M and v∗i
(i = 1, 2, . . . , k) are eigenvectors of Ĥ(u∗). Then F (u∗) = 0, (4.2) is satisfied, and λ̄∗

il = 0. On the

other hand, for each i = 1, 2, . . . , k, since v∗i is an eigenvector of Ĥ(u∗), there exists an ω∗
i ∈ R such

that Ĥ(u∗)v∗i = ω∗
i v

∗
i . We have

λ∗
ij = (1 + γi/γj − δij)〈Ĥ(u∗)v∗i , v

∗
j 〉 = (1 + γi/γj − δij)ω

∗
i δij = ω∗

i δij .

Thus, (4.3) holds. Consequently, (u∗, v∗1 , . . . , v
∗
k) is a steady state of (3.11).

(b) Consider the Jacobian operator of the right-hand-side of (3.11), denoted by J . Direct
computations and the application of Lemma 4.1 show that

J =















J00 J01 J02 · · · J0k
J10 J11 0 · · · 0
J20 J21 J22 · · · 0
...

...
...

. . .
...

Jk0 Jk1 Jk2 · · · Jkk















,

where

J00 =
δu̇

δu
= − 1

γ0

(

I − 2

k
∑

j=1

vj ⊗ vj

)(

Ĥ(u)−
m
∑

l=1

m
∑

l′=1

gll′(u)
[

G′
l(u)⊗ F (u)

]

G′′
l′(u)

)

,

J0i =
δu̇

δvi
=

2

γ0

(

〈F (u), vi〉I + vi ⊗ F (u)
)

,

Jii =
δv̇i
δvi

=
1

γi

(

− Ĥ(u) + λiiI +

i
∑

j=1

(1 + γi/γj) (vj ⊗ vj)Ĥ(u) +

m
∑

l=1

G′
l(u)⊗

δλ̄il

δvi

)

,

for i = 1, 2, . . . , k, with

δλ̄il

δvi
=

γi
γ0

m
∑

l′=1

gll′(u)

[

G′′
l′(u)

(

I − 2
k

∑

j=1

vj ⊗ vj

)

F (u)− 2
(

〈F (u), vi〉I + vi ⊗ F (u)
)

G′′
l′(u)vi

]

.

Since at the steady state (u∗, v∗1 , . . . , v
∗
k), F (u∗) = 0 and Ĥ(u∗)v∗i = λ∗

i v
∗
i with λ∗

i := λ∗
ii =

〈Ĥ(u∗)v∗i , v
∗
i 〉, i = 1, 2, . . . , k, the Jacobian J at (u∗, v∗1 , . . . , v

∗
k) is a linear operator from (Tu∗M)k+1

to (Tu∗M)k+1 and takes a block lower triangular form with diagonal blocks

J00 =
1

γ0

(

2

k
∑

j=1

λ∗
j(v

∗
j ⊗ v∗j )− Ĥ(u∗)

)

,

Jii =
λ∗
i I − Ĥ(u∗)

γi
+

i
∑

j=1

(

1

γi
+

1

γj

)

λ∗
j (v

∗
j ⊗ v∗j ), i = 1, 2, . . . , k.
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Moreover, since {(λ∗
i , v

∗
i )}ki=1 are eigenpairs of Ĥ(u∗), the diagonal blocks J00, J11, . . . , Jkk and Ĥ(u∗)

share the same eigenvectors v∗i (i = 1, 2, . . . , k). Let λ∗
k+1 ≤ λ∗

k+2 ≤ · · · be all other eigenvalues of

Ĥ(u∗) and v∗k+1, v
∗
k+2, · · · ∈ Tu∗M be the corresponding eigenvectors. Due to Ĥ(u∗) is self-adjoint

and {v∗j }kj=1 is orthonormal, one may assume that {v∗j }j≥1 is an orthonormal system. It is calculated
that

J00v
∗
l =

1

γ0

(

2

k
∑

j=1

λ∗
j〈v∗j , v∗l 〉v∗j − Ĥ(u∗)v∗l

)

=

{

(λ∗
l /γ0)v

∗
l , 1 ≤ l ≤ k,

−(λ∗
l /γ0)v

∗
l , l > k,

Jiiv
∗
l =

λ∗
i v

∗
l − Ĥ(u∗)v∗l

γi
+

i
∑

j=1

(

1

γi
+

1

γj

)

λ∗
j〈v∗j , v∗l 〉v∗j =

{

(λ∗
i /γi + λ∗

l /γl)v
∗
l , 1 ≤ l ≤ i,

((λ∗
i − λ∗

l )/γi)v
∗
l , l > i.

Hence all eigenvalues of J are given as

{λ∗
i /γ0, −λ∗

l /γ0, λ
∗
i /γi + λ∗

r/γr, (λ
∗
i − λ∗

s)/γi, ∀ 1 ≤ r ≤ i ≤ k < l, s > i} .

Thus, (u∗, v∗1 , . . . , v
∗
k) is a linearly stable steady state of (3.11) if and only if all eigenvalues of J are

negative, i.e., λ∗
1 < λ∗

2 < · · · < λ∗
k < 0 < λ∗

k+1 ≤ λ∗
k+2 ≤ · · · . Equivalently, (i) u∗ is a nondegenerate

index-k constrained saddle point; (ii) all eigenvalues of Ĥ(u∗) satisfy λ∗
1 < λ∗

2 < · · · < λ∗
k < 0 <

λ∗
k+1 ≤ λ∗

k+2 ≤ · · · ; and (iii) v∗i is the eigenvector of Ĥ(u∗) corresponding to λ∗
i , i = 1, 2, . . . , k.

Remark 4.3. For the index-1 case, the condition/conclusion (ii) in part (b) of Theorem 4.2 does
not need to appear in the theorem since it is implied by the nondegeneracy in (i).

4.2. Locally exponential convergence of an idealized CGAD

Due to the complexity of constraints and nonlinearities, there are some potential difficulties in
directly analyzing the global convergence of the CGAD (3.11). For simplicity, based on a similar
idea to the study on an idealized version of the original GAD in [27], we consider the following
idealized CGAD:

u̇ = −F (u) + 2

k
∑

i=1

〈F (u), vi(u)〉vi(u), u(0) = u0 ∈ M, (4.5)

where vi(u) ∈ TuM, satisfying 〈vi(u), vj(u)〉 = δij , are exact eigenvectors of the linear operator
Ĥ(u) : TuM → TuM corresponding to the smallest k eigenvalues λ1(u) ≤ λ2(u) ≤ · · · ≤ λk(u).

Since u̇ ∈ TuM by (4.5), we have

d

dt
Gl(u) = 〈G′

l(u), u̇〉 = 0, l = 1, 2, . . . ,m.

The initial condition u(0) = u0 ∈ M implies Gl(u(t)) ≡ 0, l = 1, 2, . . . ,m, i.e., u(t) ∈ M. Thus, the
dynamics (4.5) preserves the constraints (2.1). Moreover, we have the following locally exponential
convergence result of the dynamics (4.5) around a nondegenerate index-k constrained saddle point.

Theorem 4.4. Assume that E,Gl ∈ C3, l = 1, 2, . . . ,m, and the constraints (2.1) are regular. Let
u = u(t) be the solution of the dynamics (4.5). Then

d

dt
‖F (u)‖2 ≤ −2min{−λk(u), λk+1(u)}‖F (u)‖2, ∀t ≥ 0, (4.6)

where λk+1(u) is the (k+1)-th smallest eigenvalue of Ĥ(u). Further, if there exists a constant c > 0
such that λk(u) ≤ −c and λk+1(u) ≥ c for all t ≥ 0, then

‖F (u(t))‖ ≤ e−ct‖F (u0)‖. (4.7)
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Proof. Applying Lemma 4.1, and noting that F (u), vi(u) ∈ TuM, Ĥ(u)vi(u) = λi(u)vi(u), i =
1, 2, . . . , k, we have

d

dt
‖F (u)‖2 = 2

〈

F ′(u)u̇, F (u)
〉

= 2
〈

Ĥ(u)u̇, F (u)
〉

− 2

m
∑

i=1

m
∑

j=1

gij(u)
〈

G′′
j (u)F (u), u̇

〉〈

G′
i(u), F (u)

〉

= 2

〈

Ĥ(u)

(

− F (u) + 2

k
∑

i=1

〈F (u), vi(u)〉vi(u)
)

, F (u)

〉

= −2

〈(

Ĥ(u)− 2

k
∑

i=1

λi(u)
[

vi(u)⊗ vi(u)
]

)

F (u), F (u)

〉

.

Clearly, the smallest eigenvalue of the linear operator A(u) : TuM → TuM, with

A(u) := Ĥ(u)− 2

k
∑

i=1

λi(u)
[

vi(u)⊗ vi(u)
]

,

is cu := min{−λk(u), λk+1(u)}. Thus, 〈A(u)ϕ,ϕ〉 ≥ cu‖ϕ‖2 for all ϕ ∈ TuM, and

d

dt
‖F (u)‖2 = −2〈A(u)F (u), F (u)〉 ≤ −2cu‖F (u)‖2.

This is (4.6). Further, when cu ≥ c for some constant c > 0 and for all t ≥ 0, (4.6) becomes
d
dt‖F (u)‖2 ≤ −2c‖F (u)‖2. Then the conclusion (4.7) follows from the Grönwall’s inequality.

Remark 4.5. Under all assumptions of Theorem 4.4, if some additional assumptions on compact-
ness (e.g., the constrained Palais–Smale condition [31]) are made, one can establish the existence
of a nondegenerate index-k constrained saddle point u∗ ∈ M such that, for any initial data u0 ∈ M
near u∗, the solution u = u(t) of the dynamics (4.5) converges to u∗ as t → +∞ with exponential
convergence rate:

‖u(t)− u∗‖ ≤
∫ ∞

t
‖u̇(s)‖ds

=

∫ ∞

t

∥

∥

∥

∥

F (u(s)) − 2

k
∑

i=1

〈F (u(s)), vi(u(s))〉vi(u(s))
∥

∥

∥

∥

ds

=

∫ ∞

t
‖F (u(s))‖ds

≤ e−ct‖F (u0)‖/c.

5. Applications to finding excited states of single-component BECs

The CGAD can be applied to solve many scientific problems. In this section, we apply the
CGAD (3.11) to find real-valued excited states of single-component BECs.

Within the mean-field theory, the GP energy functional of the wave function φ = φ(x) of a
single-component BEC in d (d = 1, 2, 3) dimension is given as [15, 3]

E(φ) =

∫

U

(

1

2
|∇φ|2 + V (x)|φ|2 + β

2
|φ|4

)

dx, (5.1)
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where U ⊂ R
d is the spatial domain, V (x) ≥ 0 is the real-valued trapping potential and the pa-

rameter β ∈ R characterizes the strength of the interaction. When U is bounded, the homogeneous
Dirichlet boundary conditions (i.e., φ|∂U = 0) can be imposed. In the following, we assume that all
wave functions involved below are real-valued functions for simplicity.

The stationary state of a BEC is usually defined as the eigenfunction φ to the Euler–Lagrange
equation (or time-independent GPE) [3]

−1

2
∆φ+ V (x)φ+ β|φ|2φ = µφ, (5.2)

under the normalization constraint

‖φ‖2 :=

∫

U
|φ(x)|2dx = 1, (5.3)

with µ the corresponding eigenvalue or chemical potential. When φ is an eigenfunction of (5.2)-(5.3),
the corresponding chemical potential is given as

µ(φ) =

∫

U

(

1

2
|∇φ|2 + V (x)|φ|2 + β|φ|4

)

dx = E(φ) +
β

2

∫

U
|φ|4dx. (5.4)

The ground state is a stationary state with the lowest value of GP energy functional E, while
stationary states with higher energies are called excited states [3]. Noticing that E′(φ) = −∆φ +
2V (x)φ+ 2β|φ|2φ and setting G(φ) = ‖φ‖2 − 1, we have G′(φ) = 2φ, and (5.2)-(5.3) turns to be

E′(φ) = µG′(φ), G(φ) = 0. (5.5)

Thus, all eigenfunctions of (5.2)-(5.3) are exactly the constrained critical points of the GP energy
functional E (5.1) on the unit spherical manifold S = {φ ∈ L2(U) : φ|∂U = 0, G(φ) = ‖φ‖2 − 1 =
0, E(φ) < ∞}. The ground state is the constrained minimizer of E (5.1) on S. Since constrained
saddle points possess higher energy than that of the ground state, they are sure to be excited states.
Although there may be excited states that are not constrained saddle points, such as constrained
local minima with higher energies than that of the ground state, here we only consider the excited
states corresponding to constrained saddle points of the GP energy functional E.

Taking 〈·, ·〉 as the real L2 inner product (or duality pairing), the tangent space of the constraint
manifold S at φ ∈ S is TφS = {v ∈ L2(U) : 〈G′(φ), v〉 = 0} = span{φ}⊥. For φ ∈ S, the orthogonal
projection operator from L2(U) onto TφS is Pφ = I − (φ⊗ φ). Then, the projected gradient of the
energy functional E at φ reads as

F (φ) := PφE
′(φ) = E′(φ)− µ(φ)G′(φ) = −∆φ+ 2V (x)φ+ 2β|φ|2φ− 2µ(φ)φ, (5.6)

with µ(φ) = 1
2〈E′(φ), φ〉 given in (5.4). The effective and projected Hessian operators at φ ∈ S

are, respectively, given as H(φ) = E′′(φ) − µ(φ)G′′(φ) and Ĥ(φ) = PφH(φ)Pφ where E′′(φ) =
−∆+ 2

(

V (x) + 3β|φ|2
)

I and G′′(φ) = 2I with I the identity operator.
We remark that any constrained saddle point must be an excited state, thus we call an index-

k constrained saddle point φk an index-k excited state. Now one can distinguish the ground state
φg ∈ S and different excited states according to their energies, chemical potentials (i.e., eigenvalues),
and Morse indices. A very interesting question is whether the index-k excited state φk is precisely
the k-th excited state in the sense that

E(φg) < E(φ1) < E(φ2) < · · · < E(φk) < · · · , (5.7)

and/or whether it is the k-th eigenstate such that

µ(φg) < µ(φ1) < µ(φ2) < · · · < µ(φk) < · · · . (5.8)
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5.1. Properties of excited states in linear case

For the linear case (i.e., β = 0), the nonlinear eigenvalue problem (5.2)-(5.3) reduces to

− 1

2
∆φ+ V (x)φ = µφ, G(φ) = ‖φ‖2 − 1 = 0, x ∈ U (5.9)

with homogeneous Dirichlet boundary conditions φ|∂U = 0, and the energy (5.1) and the chemical
potential (5.4) are identical. As a result, (5.7) and (5.8) are completely equivalent.

The following result provides an exact characterization for all excited states in linear case.

Theorem 5.1. Assume that U is a bounded domain with Lipschitz boundary, 0 ≤ V (x) ∈ L∞(U),
β = 0, and φ∗ ∈ S is an eigenfunction of the linear eigenproblem (5.9) with µ∗ = µ(φ∗) = E(φ∗) the
corresponding eigenvalue. Let 0 < µ0 < µ1 ≤ µ2 ≤ · · · be all the eigenvalues with φ0, φ1, φ2, · · · the
corresponding orthonormal eigenfunctions of the linear eigenproblem (5.9). Then φ∗ is an index-k
(k = 1, 2, . . .) excited state if and only if µk−1 < µ∗ = µk. Moreover, the unstable tangent subspace
of an index-k excited state φ∗ is T−(φ∗) = span{φ0, φ1, . . . , φk−1}.

Proof. Denote A := −1
2∆+V (x)I. According to the spectral theory of uniformly elliptic operators

[23], the set of all eigenfunctions of A forms a complete basis of L2(U). Since Aφ∗ = µ∗φ∗, we have
H(φ∗) = −∆+ 2(V (x) − µ∗)I = 2(A − µ∗I), and therefore, H(φ∗)φ∗ = 2(Aφ∗ − µ∗φ∗) = 0. Then,
for any ξ ∈ Tφ∗

S, noting that Pφ∗
ξ = ξ, we have

Ĥ(φ∗)ξ = Pφ∗
H(φ∗)ξ = H(φ∗)ξ − 〈φ∗,H(φ∗)ξ〉φ∗

= H(φ∗)ξ − 〈H(φ∗)φ∗, ξ〉φ∗ = H(φ∗)ξ = 2(A− µ∗I)ξ,

Thus, Ĥ(φ∗) = 2(A− µ∗I) : Tφ∗
S → Tφ∗

S.

Necessity. Suppose that φ∗ is an index-k excited state. Then the linear operator Ĥ(φ∗) has
exactly k negative eigenvalues. Let λ0 ≤ λ1 ≤ · · · ≤ λk−1 < 0 ≤ λk ≤ λk+1 ≤ · · · be all
eigenvalues of Ĥ(φ∗) with {ηj}∞j=0 ⊂ Tφ∗

S the corresponding orthonormal eigenfunctions. Then

L2(U) = span{φ∗} ⊕ Tφ∗
S = span{φ∗, ηj , j = 0, 1, . . .}. Noting that Aφ∗ = µ∗φ∗ and

Aηj =

(

µ∗I +
1

2
Ĥ(φ∗)

)

ηj =

(

µ∗ +
λj

2

)

ηj , j = 0, 1, . . . ,

one obtains that all eigenvalues of A are

µ∗ +
λ0

2
≤ µ∗ +

λ1

2
≤ · · · ≤ µ∗ +

λk−1

2
< µ∗ ≤ µ∗ +

λk

2
≤ µ∗ +

λk+1

2
≤ · · · .

Therefore, µk−1 = µ∗ +
λk−1

2 < µ∗ = µk.
Sufficiency. Suppose that µk−1 < µ∗ = µk. Without loss of generality, assume φ∗ = φk. Then

Tφ∗
S = span{φ∗}⊥ = span{φ0, φ1, . . . , φk−1, φk+1, . . .}. Note that

Ĥ(φ∗)φi = 2(A− µkI)φi = 2(µi − µk)φi, i = 0, 1, . . . , k − 1, . . . , k + 1, . . . .

The maximum negative definite subspace of the linear operator Ĥ(φ∗) : Tφ∗
S → Tφ∗

S is given as
T− = span{φ0, φ1, . . . , φk−1}. Thus, the Morse index of φ∗ is dim(T−) = k, i.e., φ∗ is an index-k
excited state.

Remark 5.2. The result of Theorem 5.1 can be extended to the cases when U = R
d and the

potential V (x) satisfies: V (x) is continuous in R
d, V (x) ≥ 0 and lim|x|→∞ V (x) = ∞. In addition,

Theorem 5.1 can also be proved by applying the generalized Courant-Fischer formula or min-max
principle for self-adjoint operators (see, e.g., [32]).
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Noting that, when β = 0, E(φ) = µ(φ), we have the following corollaries.

Corollary 5.3. Under assumptions of Theorem 5.1, if further µ0 < µ1 < · · · < µk, i.e., µ0, µ1, . . . , µk−1

are single-fold eigenvalues, then φ∗ is an index-k excited state if and only if it is the k-th eigenstate
defined in (5.8) (equivalently, it is the k-th excited state defined in (5.7)). In particular, since µ0 is
single-fold, the index-1 excited state is exactly the first excited state and the first eigenstate.

Corollary 5.4. Under assumptions of Theorem 5.1, all excited states are constrained saddle points,
and the ground state φg (up to the sign) is the only possible constrained local minimizer and thus
the constrained global minimizer.

Example 5.5. Assume β = 0. Take V (x) as the box potential:

Vbox,L(x) =

{

0, x ∈ U := [0, L]d,

∞, x /∈ U,
x = (x1, x2, · · · , xd)T

with L > 0 the width of the box. The eigenpairs of the linear eigenproblem (5.9) are

φbox
j (x) =

(

2

L

)d/2 d
∏

α=1

sin
(jα + 1)πxα

L
, x ∈ U, µbox

j =
π2

2L2

d
∑

α=1

(jα + 1)2, (5.10)

for all j = (j1, j2, · · · , jd) ∈ N
d. From Theorem 5.1 and Corollary 5.3, we have the following

conclusions:

(i) φbox
0 is the ground state.

(ii) When d = 1, we have µbox
j = π2

2L2 (j + 1)2, j = 0, 1, · · · and therefore µbox
0 < µbox

1 < µbox
2 <

µbox
3 < · · · . Thus φbox

k (k ≥ 1) is exactly an index-k excited state as well as the k-th excited
state (and the k-th eigenstate) with its unstable tangent subspace T−(φbox

k ) = span{φbox
j : j =

0, 1, · · · , k − 1}.

(iii) When d = 2, the first few stationary states with corresponding energy levels and Morse indices
are listed in Table 1. Thus any φ ∈ S ∩ span{φbox

(1,0), φ
box
(0,1)} is an index-1 excited state as well

as the first excited state with its unstable tangent subspace spanned by φbox
(0,0). However, the

second excited state φbox
(1,1) is actually an index-3 excited state with its unstable tangent subspace

spanned by φbox
(0,0), φ

box
(1,0) and φbox

(0,1). In general, as shown in Table 1, the order of energies or
chemical potentials of excited states is accordance with that of Morse indices.

Table 1: Energy levels and indices of the first few excited states for the box potential in 2D with β = 0.
j (0, 0) (1, 0), (0, 1) (1, 1) (2, 0), (0, 2) (2, 1), (1, 2) (3, 0), (0, 3) (2, 2)

(2L2/π2)µbox
j 2 5 8 10 13 17 18

energy levels 0 1 2 3 4 5 6
indices 0 1 3 4 6 8 10

Example 5.6. Assume β = 0. Take V (x) as the harmonic oscillator potential:

Vho(x) =
1

2
|x|2 = 1

2

d
∑

α=1

x2α, x = (x1, x2, · · · , xd)T ∈ U = R
d.

Then the eigenpairs of the linear eigenproblem (5.9) are given as

φho
j (x) =

d
∏

α=1

ĥjα(xα), µho
j = |j|+ d

2
, j = (j1, j2, · · · , jd) ∈ N

d, (5.11)
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where |j| := ∑d
α=1 jα, ĥj(x) are the Hermite functions:

ĥj(x) =
1

π1/4
√

2jj!
e−x2/2hj(x), j = 0, 1, 2, · · · , (5.12)

with hj(x) = (−1)jex
2 dj

dxj (e
−x2

) the Hermite polynomials. Obviously, φho
0 is the ground state. From

Theorem 5.1 and Corollary 5.3, any function φ ∈ S ∩ span{φho
j : j ∈ N

d, |j| = k} is the k-th excited

state and an index-id(k) excited state with its unstable tangent subspace T−(φ) = span{φho
j : j ∈

N
d, |j| ≤ k − 1}, where

id(k) = #{j ∈ N
d : |j| ≤ k − 1} =











k, d = 1,
1
2k(k + 1), d = 2,
1
6k(k + 1)(k + 2), d = 3.

It is observed that, id(k) = k if either d = 1 or k = 0, 1; Otherwise, id(k) > k.

5.2. CGAD for single-component BECs and its time discretization

We now propose the formulation of the CGAD for computing excited states of a single-component
BEC and its efficient time discretization scheme.

Let φ ∈ S be an approximation of an index-k excited state and {vi}ki=1 ⊂ TφS be the approxi-
mations of corresponding unstable tangent directions. Noting that G′(φ) = 2φ and G′′(φ) = 2I, by
applying the CGAD (3.11) to the single-component BEC model, we obtain



























γ0∂tφ(x, t) = −F (φ) + 2
k

∑

j=1

〈F (φ), vj〉vj ,

γi∂tvi(x, t) = −Ĥ(φ)vi +
i

∑

j=1

λijvj + 2λ̄iφ, i = 1, 2, . . . , k,

(5.13)

where γi > 0 (i = 0, 1, . . . , k) are relaxation parameters, Lagrange multipliers λij and λ̄i are given
as

λij =

(

1 +
γi
γj

− δij

)

〈

Ĥ(φ)vi, vj
〉

, λ̄i =
γi

2γ0‖φ‖2
〈

vi, F (φ)− 2

k
∑

j=1

〈F (φ), vj〉vj
〉

, 1 ≤ j ≤ i ≤ k.

Lemma 3.2 states that (5.13) preserves constraints φ ∈ S, vi ∈ TφS, 〈vi, vj〉 = δij , i.e.,

‖φ‖2 = 1, 〈φ, vi〉 = 0, 〈vi, vj〉 = δij , 1 ≤ j ≤ i ≤ k. (5.14)

Using (5.14), we have 〈F (φ), vi〉 = 〈E′(φ), Pφvi〉 = 〈E′(φ), vi〉,

Ĥ(φ)vi = Pφ(E
′′(φ)− 2µ(φ)I)Pφvi = E′′(φ)vi − 〈E′′(φ)φ, vi〉φ− 2µ(φ)vi,

λij =

(

1 +
γi
γj

− δij

)

〈E′′(φ)vi, vj〉 − 2µ(φ)δij , λ̄i = − γi
2γ0

〈E′(φ), vi〉.

Noting that E′(φ) = −∆φ + 2V (x)φ + 2β|φ|2φ, E′′(φ) = −∆ + 2
(

V (x) + 3β|φ|2
)

I, by taking
γ0 = γ1 = · · · = γk = 2, (5.13) can be simplified as



























∂tφ(x, t) =
1

2
∆φ− V (x)φ− β|φ|2φ+ µ(φ)φ+ 2

k
∑

j=1

ξjvj ,

∂tvi(x, t) =
1

2
∆vi − V (x)vi − 3β|φ|2vi + σiφ+

i
∑

j=1

νijvj , i = 1, 2 . . . , k,

(5.15)
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where

ξi = ξi(φ, vi) =

∫

U

(

1

2
∇φ · ∇vi + V (x)φvi + β|φ|2φvi

)

dx, (5.16)

νij = νij(φ, vi, vj) = (2− δij)

∫

U

(

1

2
∇vi · ∇vj + V (x)vivj + 3β|φ|2vivj

)

dx, (5.17)

σi = σi(φ, vi) = 2β

∫

U
|φ|2φvidx, 1 ≤ j ≤ i ≤ k. (5.18)

Various suitable numerical schemes could be used to solve (5.15). For simplicity and efficiency,
we use the prediction-correction strategy to discretize (5.15) in time with a (semi-implicit) backward-
forward Euler scheme followed by the Gram–Schmidt orthonormalization process to preserve the
constraints (5.14) in the discretized level.

The initial data (φ0, v01 , . . . , v
0
k) is chosen satisfying the constraints (5.14). Set tn = nτ , n =

0, 1, . . ., with τ > 0 a selected time step length. Let (φn, vn1 , . . . , v
n
k ) be the numerical approxi-

mation of the solution of (5.15) at t = tn. We adopt the following iterative scheme to compute
(φn+1, vn+1

1 , . . . , vn+1
k ) from (φn, vn1 , . . . , v

n
k ):











































φ̃n+1 − φn

τ
=

1

2
∆φ̃n+1 − V (x)φn − β|φn|2φn + µnφn + 2

k
∑

j=1

ξnj v
n
j ,

ṽn+1
i − vni

τ
=

1

2
∆ṽn+1

i − V (x)vni − 3β|φn|2vni + σn
i φ

n +

i
∑

j=1

νnijv
n
j , i = 1, 2, . . . , k,

[

φn+1, vn+1
1 , . . . , vn+1

k

]

= GSON
(

[

φ̃n+1, ṽn+1
1 , . . . , ṽn+1

k

]

)

,

(5.19)

where µn = µ(φn) (5.4), ξni = ξi(φ
n, vni ) (5.16), ν

n
ij = νij(φ

n, vni , v
n
j ) (5.17), σ

n
i = σi(φ

n, vni ) (5.18),
and GSON denotes the standard Gram–Schmidt orthonormalization procedure to preserve that
(φn+1, vn+1

1 , . . . , vn+1
k ) satisfies the constraints (5.14). We remark that GSON in (5.19) can also be

implemented with its variants (e.g., the modified Gram-Schmidt algorithm or the Gram-Schmidt
with re-orthogonalization) to overcome the numerical instability (of round-off errors) that may
occur in some extreme and ill-conditioned cases. We choose the current version of GSON (i.e., the
standard Gram–Schmidt procedure) in our numerical experiments for simplicity since it works well
for all cases of this paper.

Clearly, the main computational cost of the scheme (5.19) at each time step is to solve a com-
pletely decoupled system of k + 1 linear elliptic equations with constant coefficients. All equations
in the system take the same form: − τ

2∆u + u = f , only with different right-hand-side terms f .
Thus, they can be solved very efficiently, especially when a fast Poisson solver (e.g., fast Fourier
transform) and parallel algorithms are available.

In our numerical computation, the iterative scheme (5.19) for computing index-k excited states
of a single-component BEC is stopped when the following stopping criteria are satisfied:

‖Fn‖∞ < ε,
‖φn+1 − φn‖∞

τ
< ε,

‖vn+1
i − vni ‖∞

τ
< ε, i = 1, 2, . . . , k, (5.20)

where Fn := −1
2∆φn + V (x)φn + β|φn|2φn − µnφn is the residual of the Euler–Lagrange equation

(5.2) at (µn, φn), and ε > 0 is a given tolerance.

Remark 5.7. In order to improve the computational efficiency of the scheme (5.19), one can
introduce a suitable stabilization term [5, 4, 3] with constant coefficient for each equation in (5.19)
so that the larger step length can be chosen in practice. Our numerical experiments show that such
a stabilized version of (5.19) is efficient. However, due to the limit of page, we leave the rigorous

16



stability analysis for the scheme (5.19) to future work. It is worthwhile to mention that, on the
stability at large step size for index-1 saddle points of functionals, one existing approach is to use
the iterative minimization formulation (IMF) [22] to have a sequence of minimization problems and
to design a convex splitting method [25] to minimize the auxiliary functional at each cycle of the
IMF.

Remark 5.8. If one takes k = 0 (i.e., remove all approximations of the unstable directions vi) in
(5.15), then the CGAD (5.15) reduces to the continuous normalized gradient flow (CNGF) [5] for
computing the ground state of single-component BECs, and the corresponding time discretization
scheme (5.19) becomes the backward-forward Euler scheme (followed by a normalization step) for
the CNGF (see [33]).

5.3. Numerical results

We now report the numerical results of the excited states of single-component BECs in 1D and
2D computed by the numerical scheme (5.19) of the CGAD. In particular, the asymptotic properties
of the energies and chemical potentials of excited states corresponding to different parameters β
are investigated. Meanwhile, the energies and chemical potentials of the ground state and excited
states with different Morse indices are compared.

In our experiments, the following three types of potentials are considered [3]:

(i) the box potential

Vbox(x) =

{

0, x ∈ U = [0, 1]d,

∞, x /∈ U,
d = 1, 2, (5.21)

(ii) the harmonic oscillator potential

Vho(x) =

{

x2/2, d = 1,

(x2 + y2)/2, d = 2,
(5.22)

(iii) the harmonic oscillator plus optical lattice potential

Vhol(x) = Vho(x) +

{

κ sin2(πx/4), d = 1,

κ
(

sin2(πx/4) + sin2(πy/4)
)

, d = 2,
(5.23)

with κ > 0 the depth of the optical lattice.

We compute excited states by the numerical scheme (5.19) of CGAD with time step τ = 0.01.
The stopping criterion (5.20) with ε = 10−12 is applied. For numerical comparison, we also use the
normalized gradient flow [5, 33] to compute the ground state. All algorithms are implemented on
a bounded domain U ⊂ R

d (d = 1, 2) with the spatial sine-pseudospectral discretization (see, e.g.,
[4]) with mesh size h = 1

32 .

5.3.1. Numerical results in 1D

Example 5.9. In this example, the first few excited states with the box potential V (x) = Vbox(x)
(5.21) in 1D and various interaction coefficient β are computed. Then, the asymptotic properties of
their energies and chemical potentials are studied.

Let φβ
k be the numerical index-k excited state for specified β computed with the initial data:

φ0(x) = φbox
k (x) =

√
2 sin((k + 1)πx) and v0i (x) = φbox

i−1(x) =
√
2 sin(iπx), x ∈ [0, 1], i = 1, 2, . . . , k.

Fig. 3 plots the profiles of φβ
k(x), k = 1, 2, · · · , 9, with different β = 100, 3200, 102400. The energies

and chemical potentials of φβ
g and φβ

k (k = 1, 2, · · · , 9) for various β are listed in Table 2 (the initial
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Figure 3: Profiles of index-k (k = 1, 2, . . . , 9) excited states φβ

k(x) in Example 5.9 with β = 100 (black dash-dot lines),
3200 (red dash lines) and 102400 (blue solid lines).

Table 2: Energies and chemical potentials of the ground state φβ
g and excited states φβ

k (k = 1, 2, · · · , 9) versus the
interaction coefficient β in Example 5.9.

β E(φβ
g ) E(φβ

1 ) E(φβ
2 ) E(φβ

3 ) E(φβ
4 ) E(φβ

5 ) E(φβ
6 ) E(φβ

7 ) E(φβ
8 ) E(φβ

9 )

0 4.93480 19.7392 44.4132 78.9568 123.370 177.653 241.805 315.827 399.719 493.480
0.01 4.94230 19.7467 44.4207 78.9643 123.378 177.660 241.813 315.835 399.726 493.488
1 5.67870 20.4876 45.1625 79.7064 124.120 178.403 242.555 316.577 400.469 494.230

100 65.5472 86.4930 114.450 150.756 196.171 251.062 315.606 389.893 473.972 567.870
1600 855.384 915.080 979.419 1048.75 1123.46 1203.94 1290.61 1383.89 1484.21 1591.96
12800 6552.87 6709.84 6871.03 7036.56 7206.52 7381.05 7560.27 7744.28 7933.24 8127.25
102400 51628.7 52061.4 52498.2 52939.1 53384.1 53833.4 54286.8 54744.6 55206.6 55673.0

β µ(φβ
g ) µ(φβ

1 ) µ(φβ
2 ) µ(φβ

3 ) µ(φβ
4 ) µ(φβ

5 ) µ(φβ
6 ) µ(φβ

7 ) µ(φβ
8 ) µ(φβ

9 )

0 4.93480 19.7392 44.4132 78.9568 123.370 177.653 241.805 315.827 399.719 493.480
0.01 4.94980 19.7542 44.4282 78.9718 123.385 177.668 241.820 315.842 399.734 493.495
1 6.41672 21.2345 45.9111 80.4557 124.869 179.152 243.305 317.327 401.219 494.980

100 122.100 148.803 180.961 219.961 267.060 323.031 388.293 463.078 547.512 641.672
1600 1682.02 1768.20 1858.67 1953.60 2053.11 2157.38 2266.55 2380.85 2500.53 2625.93
12800 13028.3 13260.6 13497.1 13737.7 13982.5 14231.6 14484.9 14742.7 15004.9 15271.6
102400 103042 103688 104338 104992 105650 106313 106979 107650 108324 109003

guess for the ground state φβ
g is taken as φ0(x) = φbox

0 (x) =
√
2 sin(πx)). Moreover, the asymptotic

behaviors of the energies of excited states in the weakly repulsive interaction regime, i.e., 0 < β ≪ 1,
and the strongly repulsive interaction regime, i.e., β ≫ 1, are shown in Fig. 4.

From the experimental results that are partially shown in Figs. 3-4 and Table 2, we have the
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Figure 4: Asymptotic behaviors of the energies for index-k (k = 1, 2, · · · , 9) excited states for the weakly (left) and
strongly (right) repulsive interaction regime in Example 5.9.

following numerical observations:

(i) Fig. 3 shows that the index-k excited state φβ
k is oddly symmetric for k = 1, 3, 5, 7, 9 (i.e., k is

odd) and evenly symmetric for k = 2, 4, 6, 8 (i.e., k is even) with respect to the line x = 1/2. For

relatively small β, the profile of φβ
k(x) is similar to that of φ0

k(x) = φbox
k (x) =

√
2 sin((k+1)πx).

When β is large, φβ
k (x) has precisely two boundary layers and k interior layers distributed

equidistantly. It looks like a piecewise two-valued function that evenly takes +1 and −1.

(ii) Table 2 shows that, for any β ≥ 0, the excited state with higher Morse index possesses higher
energy and larger chemical potential, namely,

E(φβ
g ) < E(φβ

1 ) < E(φβ
2 ) < · · · ⇐⇒ µ(φβ

g ) < µ(φβ
1 ) < µ(φβ

2 ) < · · · .

Furthermore, for fixed k = 1, 2, · · · , we observe that

lim
β→+∞

E(φβ
k )

E(φβ
g )

= 1, lim
β→+∞

µ(φβ
k)

µ(φβ
g )

= 1 and lim
β→+∞

µ(φβ
k)

E(φβ
k )

= 2.

(iii) From Fig. 4, one observes that for the weakly repulsive interaction regime,

E(φβ
k ) =

(k + 1)2π2

2
+

3

4
β + o(β) = E(φbox

k ) + o(β),

where φbox
k (x) =

√
2 sin((k+1)x), while for the strongly repulsive interaction regime, E(φβ

k ) ≈
β/2.

These observations are consistent with the results in [6, 7].

Example 5.10. We now compute the first few excited states for the harmonic oscillator potential
V (x) = Vho(x) (5.22) in 1D with various interaction coefficient β and study the asymptotics of their
energies and chemical potentials.

The computational domain is taken as U = [−16, 16]. Let φβ
k and φβ

g be the numerical index-k

excited state and ground state, respectively, for specified β. The initial data for φβ
k and φβ

g are,
respectively, chosen as φ0(x) = φho

k (x), v0i (x) = φho
i−1(x), i = 1, 2, . . . , k − 1, and φ0(x) = φho

0 (x).

Fig. 5 plots the profiles of φβ
k (x), k = 1, 2, · · · , 9, with different β = 100, 400, 1600. The energies
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Figure 5: Profiles of index-k (k = 1, 2, . . . , 9) excited states φβ

k(x) for β = 100 (black dash-dot lines), 400 (red dash
lines) and 1600 (blue solid lines) in Example 5.10.

Table 3: Energies and chemical potentials of the ground state φβ
g and excited states φβ

k (k = 1, 2, · · · , 9) versus the
interaction coefficient β in Example 5.10.

β E(φβ
g ) E(φβ

1 ) E(φβ
2 ) E(φβ

3 ) E(φβ
4 ) E(φβ

5 ) E(φβ
6 ) E(φβ

7 ) E(φβ
8 ) E(φβ

9 )

0 0.50000 1.50000 2.50000 3.50000 4.50000 5.50000 6.50000 7.50000 8.50000 9.50000
0.01 0.50199 1.50150 2.50128 3.50115 4.50105 5.50098 6.50093 7.50088 8.50084 9.50081
1 0.68948 1.64655 2.62626 3.61361 4.60467 5.59787 6.59246 7.58800 8.58424 9.58101
10 1.94713 2.76538 3.64568 4.55841 5.49090 6.43654 7.39147 8.35325 9.32029 10.2914
100 8.50853 9.24191 10.0079 10.7989 11.6100 12.4378 13.2797 14.1338 14.9985 15.8725
400 21.3601 22.0777 22.8116 23.5594 24.3196 25.0909 25.8721 26.6626 27.4614 28.2680
1600 53.7855 54.4968 55.2154 55.9407 56.6723 57.4098 58.1528 58.9011 59.6545 60.4127

β µ(φβ
g ) µ(φβ

1 ) µ(φβ
2 ) µ(φβ

3 ) µ(φβ
4 ) µ(φβ

5 ) µ(φβ
6 ) µ(φβ

7 ) µ(φβ
8 ) µ(φβ

9 )

0 0.50000 1.50000 2.50000 3.50000 4.50000 5.50000 6.50000 7.50000 8.50000 9.50000
0.01 0.50398 1.50299 2.50256 3.50229 4.50211 5.50197 6.50186 7.50177 8.50169 9.50162
1 0.86994 1.79015 2.75102 3.72629 4.70870 5.69528 6.68456 7.67572 8.66825 9.66182
10 3.10724 3.86320 4.68057 5.53782 6.42244 7.32672 8.24566 9.17583 10.1148 11.0610
100 14.1343 14.8505 15.5846 16.3352 17.1008 17.8799 18.6713 19.4739 20.2868 21.1092
400 35.5775 36.2881 37.0061 37.7313 38.4636 39.2026 39.9480 40.6998 41.4576 42.2212
1600 89.6319 90.3404 91.0518 91.7662 92.4834 93.2035 93.9265 94.6523 95.3809 96.1123

and chemical potentials of φβ
g and φβ

k (k = 1, 2, · · · , 9) for various β are listed in Table 2. Fig. 6

shows that the asymptotics of the energies of φβ
k (k = 1, 2, · · · , 9) in both the weakly and strongly

repulsive interaction regime.
From the experimental results that are partially shown in Figs. 5-6 and Table 3, we have the

following numerical observations:
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Figure 6: Asymptotic behaviors of the energy for index-k (k = 1, 2, · · · , 9) excited states for the weakly (left) and
strongly (right) repulsive interation regime in Example 5.10.

(i) Fig. 5 shows that the index-k excited state φβ
k is precisely an odd function when k is odd and

an even function when k is even. For relatively small β, the profile of φβ
k(x) is similar to that of

φ0
k(x) = φho

k (x). When β is large, φβ
k(x) has exactly k interior layers or oscillations distributed

densely near the center of domain, i.e., x = 0, thus the multiscale structures are observed.

(ii) Table 3 shows that, for any β ≥ 0, all of the excited states we obtain have higher energies
than that of the ground state. Moreover, the higher Morse indices the excited states have,
the higher energy levels they possess. This observation is also available for the relationship
between the Morse indices and the chemical potentials of excited states. That is

E(φβ
g ) < E(φβ

1 ) < E(φβ
2 ) < · · · ⇐⇒ µ(φβ

g ) < µ(φβ
1 ) < µ(φβ

2 ) < · · · .

Meanwhile, for fixed k = 1, 2, · · · , we observe that

lim
β→∞

E(φβ
k )

E(φβ
g )

= 1, lim
β→∞

µ(φβ
k )

µ(φβ
g )

= 1, lim
β→+∞

µ(φβ
k)

E(φβ
k )

=
5

3
.

(iii) Fig. 6 shows that, for the weakly repulsive interaction regime,

E(φβ
k ) = k +

1

2
+ Ckβ + o(β) = E(φho

k ) + o(β),

with Ck = 1
2

∫

R
|φho

k (x)|4dx, whereas for the strongly interaction regime, E(φβ
k ) ≈ 2

5β
2/3.

These observations are consistent with the results in [6, 7].

5.3.2. Numerical results in 2D

Example 5.11. In this example, we compute excited states in 2D BECs for the following four cases
with various β.
Case I. V (x, y) = Vbox(x, y) (5.21), U = [0, 1]2;
Case II. V (x, y) = Vho(x, y) (5.22), U = [−10, 10]2;
Case III. V (x, y) = Vhol(x, y) (5.23) with κ = 25, U = [−10, 10]2;
Case IV. V (x, y) = Vhol(x, y) (5.23) with κ = 50, U = [−10, 10]2.

As suggested by subsection 5.1, the information of initial guesses is given in Table 4. We compute
the ground state (by the normalized gradient flow [5, 33]) and a few excited states for four cases
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Table 4: Initial guesses in Example 5.11. ϕj = φbox
j (5.10) for Case I and ϕj = φho

j (5.11) for Cases II-IV.

solution k (index) initial guess for φ initial guess for (v1, . . . , vk)

φg 0 ϕ(0,0) –
φ10 1 ϕ(1,0) ϕ(0,0)

φ01 1 ϕ(0,1) ϕ(0,0)

φ10+01 1 [ϕ(1,0) + ϕ(0,1)]/
√
2 ϕ(0,0)

φ10−01 1 [ϕ(1,0) − ϕ(0,1)]/
√
2 ϕ(0,0)

φ11 3 ϕ(1,1) (ϕ(0,0), ϕ(1,0), ϕ(0,1))

Table 5: Energies and chemical potentials of ground and excited states for Case I in Example 5.11.
β Eg E10 E01 E10+01 E10−01 E11

0 9.8696 24.6740 24.6740 24.6740 24.6740 39.4784
10 19.4655 34.7611 34.7611 36.3205 36.3205 50.1222
50 49.2110 67.5593 67.5593 72.1768 72.1768 86.3251
100 81.8684 103.473 103.473 110.034 110.034 125.648
500 314.632 351.897 351.897 365.667 365.667 389.910
1000 589.286 638.718 638.718 657.680 657.680 688.933

β µg µ10 µ01 µ10+01 µ10−01 µ11

0 9.8696 24.6740 24.6740 24.6740 24.6740 39.4784
10 28.0732 44.0760 44.0760 46.9070 46.9070 60.2603
50 83.3738 105.336 105.336 112.458 112.458 127.971
100 145.019 172.513 172.513 182.220 182.220 200.761
500 594.368 646.225 646.225 666.306 666.306 698.892
1000 1131.39 1201.69 1201.69 1229.47 1229.47 1272.81

Table 6: Energies and chemical potentials of ground and excited states for Case II in Example 5.11.
β Eg E10 E01 E10+01 E10−01 E11

0 1.0000 2.0000 2.0000 2.0000 2.0000 3.0000
10 1.5923 2.4916 2.4916 2.4916 2.4916 3.4003
50 2.8960 3.7111 3.7111 3.7111 3.7111 4.5283
100 3.9459 4.7329 4.7329 4.7329 4.7329 5.5204
500 8.5118 9.2567 9.2567 9.2567 9.2567 10.0014
1000 11.9718 12.7059 12.7059 12.7059 12.7059 13.4399

β µg µ10 µ01 µ10+01 µ10−01 µ11

0 1.0000 2.0000 2.0000 2.0000 2.0000 3.0000
10 2.0638 2.9094 2.9094 2.9094 2.9094 3.7618
50 4.1430 4.9128 4.9128 4.9128 4.9128 5.6813
100 5.7598 6.5109 6.5109 6.5109 6.5109 7.2613
500 12.6783 13.4051 13.4051 13.4051 13.4051 14.1317
1000 17.8886 18.6097 18.6097 18.6097 18.6097 19.3306

with various β = 0, 10, 50, 100, 500, 1000. Tables 5-8 list the energies and chemical potentials of
these solutions. Fig. 7 plots the pseudo-color images of excited states with β = 1000.

From the numerical results shown in Fig. 7, Tables 5-8, and additional experimental results not
shown here, we have the following numerical observations:

(i) From Tables 5-8, we observe that for each case, E(φ10) = E(φ01), µ(φ10) = µ(φ01), E(φ10+01) =
E(φ10−01), and µ(φ10+01) = µ(φ10−01). From Fig. 7, the profiles of φ01 and φ10−01 can be
obtained from that of φ10 and φ10+01, respectively, by a 90◦ rotation. Moreover, some bound-
ary/interior layers and multiscale structures are observed. It is worthwhile to point out that,
the shape and symmetry of excited states are independent of the shape of domain if V (x) is a
harmonic or optical lattice potential and the computational domain is large enough so that the
error of domain truncation can be ignored, whereas they are affected by the shape of domain
if V (x) is a box potential.

(ii) Tables 5-8 show the following facts:
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Table 7: Energies and chemical potentials of ground and excited states for Case III in Example 5.11.
β Eg E10 E01 E10+01 E10−01 E11

0 5.4894 10.8158 10.8158 10.8158 10.8158 16.1421
10 8.6291 13.0150 13.0150 12.8903 12.8903 17.9353
50 13.4615 16.4307 16.4307 15.4508 15.4508 20.1165
100 16.0172 18.7438 18.7438 17.5627 17.5627 21.6350
500 24.5175 26.3802 26.3802 25.6729 25.6729 28.2840
1000 29.8150 31.4142 31.4142 30.8570 30.8570 33.0400

β µg µ10 µ01 µ10+01 µ10−01 µ11

0 5.4894 10.8158 10.8158 10.8158 10.8158 16.1421
10 11.0942 14.3353 14.3353 13.9468 13.9468 18.9615
50 16.7198 19.4602 19.4602 17.9147 17.9147 21.9572
100 20.2267 22.3176 22.3176 21.2398 21.2398 24.2538
500 31.2499 32.7361 32.7361 32.2639 32.2639 34.1864
1000 38.3834 39.6557 39.6557 39.2391 39.2391 41.0250

Table 8: Energies and chemical potentials of ground and excited states for Case IV in Example 5.11.
β Eg E10 E01 E10+01 E10−01 E11

0 7.7626 15.3637 15.3637 15.3637 15.3637 22.9649
10 12.2495 17.1385 17.1385 16.6037 16.6037 23.7793
50 17.6091 21.4544 21.4544 19.8357 19.8357 25.6103
100 20.8412 24.1152 24.1152 22.6530 22.6530 27.4948
500 32.2079 34.6044 34.6044 33.8998 33.8998 37.0849
1000 39.6188 41.7623 41.7623 41.0769 41.0769 43.9528

β µg µ10 µ01 µ10+01 µ10−01 µ11

0 7.7626 15.3637 15.3637 15.3637 15.3637 22.9649
10 15.7812 18.6102 18.6102 17.5856 17.5856 24.2988
50 21.7101 24.9488 24.9488 23.2633 23.2633 27.6786
100 25.9323 28.4524 28.4524 27.4443 27.4443 30.9539
500 41.7854 43.8228 43.8228 43.2263 43.2263 46.1402
1000 51.2663 52.9797 52.9797 52.3203 52.3203 54.7172

• For Case I with β > 0,

E(φg) < E(φ10) = E(φ01) < E(φ10+01) = E(φ10−01) < E(φ11),

µ(φg) < µ(φ10) = µ(φ01) < µ(φ10+01) = µ(φ10−01) < µ(φ11).

• For Case II with β > 0 (or each case with β = 0),

E(φg) < E(φ10) = E(φ01) = E(φ10+01) = E(φ10−01) < E(φ11),

µ(φg) < µ(φ10) = µ(φ01) = µ(φ10+01) = µ(φ10−01) < µ(φ11).

• For Cases III and IV with β > 0,

E(φg) < E(φ10+01) = E(φ10−01) < E(φ10) = E(φ01) < E(φ11),

µ(φg) < µ(φ10+01) = µ(φ10−01) < µ(φ10) = µ(φ01) < µ(φ11).

Consequently, for all cases in this example, the order of energies is consistent with that of
chemical potentials of solutions we obtained. The first excited states are exactly index-1
excited states, but different index-1 excited states may have different energies and chemical
potentials. Moreover, the index-3 excited state φ11 possess higher energy and larger chemical
potential than those of index-1 excited states.

These numerical results indicate that the Morse index of the excited state has a certain monotonous
dependence on energy and chemical potential (i.e., the higher the index, the larger the energy and
chemical potential), but generally there is no strict one-to-one correspondence.
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Figure 7: Four index-1 excited states φ10(x, y) (left column), φ01(x, y) (second column), φ10+01(x, y) (third column),
φ10−01(x, y) (fourth column) and an index-3 excited state φ11(x, y) (right column) with β = 1000 in Example 5.11.
(a) ∼ (d) for Cases I∼IV, respectively.

6. Concluding remarks

In this paper, a constrained gentlest ascent dynamics (CGAD) for finding general constrained
saddle points with any specified Morse index was proposed. The linearly stable steady state of the
CGAD was proved to be exactly a nondegenerate constrained saddle point with the correspond-
ing index. The locally exponential convergence of an idealized CGAD around a nondegenerate
constrained saddle point with the corresponding Morse index was also provided. Moreover, the
CGAD was applied to compute some excited states of single-component Bose–Einstein condensates
by finding constrained saddle points of the corresponding Gross–Pitaevskii energy functional under
the normalization constraint. The properties of excited states were studied both mathematically
and numerically. Extensive numerical results were reported to show the effectiveness and robustness
of our method and demonstrate some interesting physics. It is worthwhile to point out that the
CGAD can be applied to solve many other scientific problems. And, many optimization and pre-
conditioning techniques can be used to further improve the computational efficiency of the CGAD.
Some related works are ongoing.
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Appendix A. Proof of Lemma 3.2

For l = 1, 2, . . . ,m and i = 1, 2, . . . , k, applying (3.11) and noting that 〈G′
l(u), Ĥ(u)vi〉 = 0, we

have

d

dt
〈G′

l(u), vi〉 = 〈G′′
l (u)u̇, vi〉+ 〈G′

l(u), v̇i〉

= − 1

γ0

〈

G′′
l (u)vi, F (u)− 2

k
∑

j=1

〈F (u), vj〉vj
〉

+
1

γi

i
∑

j=1

λij〈G′
l(u), vj〉+

1

γi

m
∑

l′=1

λ̄il′〈G′
l(u), G

′
l′(u)〉.

By the definition of λ̄il′ in (3.13), which is equivalent to

− 1

γ0

〈

G′′
l (u)vi, F (u)− 2

k
∑

j=1

〈F (u), vj〉vj
〉

+
1

γi

m
∑

l′=1

λ̄il′〈G′
l(u), G

′
l′(u)〉 = 0,

it holds,

d

dt











〈G′
l(u), v1〉

〈G′
l(u), v2〉
...

〈G′
l(u), vk〉











=











λ̃11 0 · · · 0

λ̃21 λ̃22 · · · 0
...

...
. . .

...

λ̃k1 λ̃k2 · · · λ̃kk





















〈G′
l(u), v1〉

〈G′
l(u), v2〉
...

〈G′
l(u), vk〉











, l = 1, 2, . . . ,m,

with λ̃ij := λij/γi (1 ≤ j ≤ i ≤ k). Then the conclusion (3.15b) follows from the initial condition
(3.14b). Moreover, by using (3.11) and (3.15b), and noting that 〈G′

l(u), F (u)〉 = 0, l = 1, 2, . . . ,m,
we have

d

dt
Gl(u) = 〈G′

l(u), u̇〉 =
2

γ0

k
∑

i=1

〈F (u), vi〉〈G′
l(u), vi〉 = 0, l = 1, 2, . . . ,m.

Thus, (3.15a) is verified immediately from (3.14a). Furthermore, by using (3.11), (3.12) and (3.15b),
we have, for 1 ≤ j ≤ i ≤ k,

d

dt
(〈vi, vj〉 − δij) = 〈v̇i, vj〉+ 〈vi, v̇j〉

= −
(

1

γi
+

1

γj

)

〈Ĥ(u)vi, vj〉+
1

γi

i
∑

l=1

λil〈vl, vj〉+
1

γj

j
∑

l=1

λjl〈vl, vi〉

=

{

2
γi

∑i
l=1 λil (〈vi, vl〉 − δil) , j = i,

1
γi

∑i
l=1 λil (〈vl, vj〉 − δjl) +

1
γj

∑j
l=1 λjl (〈vl, vi〉 − δil) , j < i.

Denote y as the vector of length k(k+1)
2 formed by (〈vi, vj〉 − δij) , 1 ≤ j ≤ i ≤ k. Then, we have

y′(t) = A(t)y(t), where A is a matrix of degree k(k+1)
2 , whose elements only depend on Lagrange

multipliers λij , 1 ≤ j ≤ i ≤ k (3.12) and relaxation constants. The initial condition y(0) = 0 (3.14)
leads to y(t) ≡ 0. That is (3.15c). The proof is completed.
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Appendix B. Proof of Lemma 4.1

Note that, by (2.4),

m
∑

j=1

〈

G′
i(u), G

′
j(u)

〉

µj(u) =
〈

G′
i(u), E

′(u)
〉

, i = 1, 2, . . . ,m.

Differentiating in both sides of the above equation and applying the definitions of F (u) (2.4) and
H(u), we obtain

m
∑

j=1

〈

G′
i(u), G

′
j(u)

〉

µ′
j(u) = G′′

i (u)E
′(u) + E′′(u)G′

i(u)−
m
∑

j=1

µj(u)
[

G′′
i (u)G

′
j(u) +G′′

j (u)G
′
i(u)

]

= G′′
i (u)F (u) +H(u)G′

i(u), i = 1, 2, . . . ,m.

Thus

µ′
i(u) =

m
∑

j=1

gij(u)
[

G′′
j (u)F (u) +H(u)G′

j(u)
]

, i = 1, 2, . . . ,m.

For any v ∈ TuM, applying definitions of Pu (2.3) and Ĥ(u) (2.5), yields

F ′(u)v = E′′(u)v −
m
∑

i=1

µi(u)G
′′
i (u)v −

m
∑

i=1

〈

µ′
i(u), v

〉

G′
i(u)

= H(u)v −
m
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i=1

m
∑

j=1

gij(u)
[〈

G′′
j (u)F (u), v

〉

+
〈

H(u)G′
j(u), v

〉]

G′
i(u)

= Ĥ(u)v −
m
∑

i=1

m
∑

j=1

gij(u)
〈

G′′
j (u)F (u), v

〉

G′
i(u),

where the self-adjointness of H(u) and the fact Puv = v are used. The proof is completed.
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