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Abstract

Second-order flows in this paper refer to some artificial evolutionary differential equations involving
second-order time derivatives distinguished from gradient flows which are considered to be first-order
flows. This is a popular topic due to the recent advances of inertial dynamics with damping in convex
optimization. Mathematically, the ground state of a rotating Bose-Einstein condensate (BEC)
can be modeled as a minimizer of the Gross-Pitaevskii energy functional with angular momentum
rotational term under the normalization constraint. We introduce two types of second-order flows
as energy minimization strategies for this constrained non-convex optimization problem, in order
to approach the ground state. The proposed artificial dynamics are novel second-order nonlinear
hyperbolic partial differential equations with dissipation. Several numerical discretization schemes
are discussed, including explicit and semi-implicit methods for temporal discretization, combined
with a Fourier pseudospectral method for spatial discretization. These provide us a series of efficient
and robust algorithms for computing the ground states of rotating BECs. Particularly, the newly
developed algorithms turn out to be superior to the state-of-the-art numerical methods based on
the gradient flow. In comparison with the gradient flow type approaches: When explicit temporal
discretization strategies are adopted, the proposed methods allow for larger stable time step sizes;
While for semi-implicit discretization, using the same step size, a much smaller number of iterations
are needed for the proposed methods to reach the stopping criterion, and every time step encounters
almost the same computational complexity. Rich and detailed numerical examples are documented
for verification and comparison.

Keywords: rotating Bose-Einstein condensate, Gross-Pitaevskii energy functional, ground state,
inertial dynamics, second-order dissipative hyperbolic PDEs, constrained non-convex minimization

1. Introduction

1.1. Context and background

The renowned Bose-Einstein condensate (BEC) is a state of matter that was predicted theoret-
ically by S. N. Bose and A. Einstein in 1924–1925 and first realized experimentally in 1995 in dilute
bosonic atomic gases at extremely low temperatures [4, 20, 31]. Up to now, BEC has been created
in a variety of other bosonic systems (e.g., molecules, quasiparticles and photons) and in different
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environments (e.g., in an Earth-orbiting research lab), and has become an underlying tool/platform
for experiments in many related fields such as superfluids, supersolids, quantum information pro-
cessing and precision atomic devices [11, 37, 44, 51]. As one of the most active directions of BECs,
the study of quantized vortices has attracted great interests from both the physics and mathematics
communities, and in particular it provides valuable perspectives for exploring mysterious superflu-
ids [17, 37]. Experimentally, quantized vortices could usually be generated from the ground state
of rotating BECs [1, 34, 35, 49, 48]. Meanwhile, with the growth of computing power, numerical
simulation to efficiently find the ground state can facilitate a better understanding of theories and
vortex properties of rotating BECs as well as predicting and guiding experiments.

Within the mean-field theory, a rotating BEC at zero or very low temperature can be modeled by
the Gross-Pitaevskii (GP) equation with an angular momentum rotational term [12, 15, 27, 36, 54].
In this setting, after proper nondimensionalization and dimension reduction, the ground state is
defined as a complex-valued macroscopic wave function (or order parameter) φg : Rd → C (d = 2, 3)
that minimizes the GP energy functional [12, 17, 27, 45, 54]

E(φ) =

∫

Rd

(
1

2
|∇φ(x)|2 + V (x)|φ(x)|2 + β

2
|φ(x)|4 − Ωφ(x)Lzφ(x)

)
dx (1.1)

under the normalization constraint

‖φ‖2 :=

∫

Rd

|φ(x)|2dx = 1. (1.2)

Here, x = (x, y)T if d = 2 and x = (x, y, z)T if d = 3, ∇ is the gradient operator with respect to the
spatial coordinate x ∈ Rd, V (x) ≥ 0 is a real-valued external potential, β ∈ R is a real parameter
describing the strength of the interaction between particles (positive for repulsive interaction and
negative for attractive interaction), Ω is an angular velocity, φ denotes the complex conjugate of
the wave function φ, and

Lz = −i(x∂y − y∂x)

is the z-component of the angular momentum operator L = x ×P with P = −i∇ the momentum
operator. We set Lz = 0 and write x = x if d = 1 in the model problem (1.1)-(1.2) to make it cover
the (non-rotating) one-dimensional case.

This turns out to be a constrained non-convex minimization problem: Find φg ∈ S such that

Eg := E(φg) = inf
φ∈S

E(φ), (1.3)

where S =
{
φ | ‖φ‖2 = 1, E(φ) < ∞

}
denotes the L2 unit sphere. The associated Euler-Lagrange

equation (or first-order optimality condition) is




µφ(x) = −1

2
∆φ(x) + V (x)φ(x) + β|φ(x)|2φ(x) − ΩLzφ(x), x ∈ Rd,

‖φ‖2 = 1,
(1.4)

which is a nonlinear eigenvalue problem for (µ, φ) under the normalization condition, where ∆ is the
Laplace operator with respect to x. The first equation in (1.4) is also known as the stationary/time-
independent GP equation. Each eigenfunction φ of (1.4) is called a stationary state solution, and
thus the ground state φg is the one with least energy. In addition, when φ ∈ S is an eigenfunction,
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the corresponding eigenvalue µ = µ(φ) ∈ R is also called the chemical potential, which can be
computed as

µ(φ) =

∫

Rd

(
1

2
|∇φ|2 + V |φ|2 + β|φ|4 −ΩφLzφ

)
dx = E(φ) +

β

2

∫

Rd

|φ(x)|4dx. (1.5)

Theoretical results on the existence of a minimizer to the minimization problem (1.3) can be
found, e.g., in [12, 17, 45, 54] and the references therein. It is noted that, for a non-rotating BEC,
i.e. Ω = 0, the ground state is unique up to a constant phase and is strictly positive, while for
a rotating BEC with suitably large rotation speed (e.g., |Ω| > Ωc for some critical rotation speed
Ωc > 0), problem (1.3) may no longer admits a unique minimizer [12, 17]. On the other hand,
existing experimental observations and numerical simulations [6, 17, 22, 30, 34, 35, 58] show that
very complicated vortex patterns (e.g., Abrikosov lattice and giant vortices) appear in the ground
state of fast rotating BECs, especially in the strong repulsive interaction regime (i.e., β ≫ 1),
and the corresponding GP energy landscape can be quite complex (e.g., it may have many local
minima) and difficult to minimize. Therefore, one of the particular interests in numerical study of
BECs is to develop numerical methods for computing the ground state of a rotating BEC with high
computational efficiency and high accuracy.

Anchored by the above GP theory framework, in the past two decades, various feasible numerical
methods have been proposed to compute the ground state of rotating or non-rotating BECs, mainly
consisting of energy minimization methods using gradient flow [14, 17, 25, 58, 5, 46, 21, 61] or
other optimization techniques [6, 7, 16, 28, 39, 29, 30, 43, 57, 23, 42] and some nonlinear eigenvalue
solvers [60, 24, 56, 3]. Here we mainly focus on energy minimization methods. In particular, we
are going to briefly introduce the story of the normalized gradient flow methods since it is closely
related to the work of this paper and is one of the most popular techniques for computing the
ground states of BECs in the literature. In fact, the normalized gradient flow approaches, including
the continuous normalized gradient flow (CNGF) and the gradient flow with discrete normalization
(GFDN) or the imaginary time evolution method, was originally proposed for non-rotating case
[25, 14, 13] and then extended to rotating case [17, 58, 5]. In 2005, Bao et al. [17] applied the
CNGF method with a linearized backward Euler finite difference discretization (which can also be
viewed as a full discretization of the GFDN) [14] to compute the ground, symmetric and central
vortex states for a rotating BEC. Then, in [58], Zeng and Zhang adopted the GFDN method with
the semi-implicit Euler Fourier pseudospectral discretization to simulate vortex lattice structures
of condensate ground states in rapid rotating BECs. In [5], Antoine and Duboscq designed a
preconditioned Krylov subspace iterative method to solve the linearized backward Euler Fourier
pseudospectral scheme of the GFDN method for rotating BECs. Recently, the authors in [46]
revisited the GFDN for single- and multi-component BECs in non-rotational frame and pointed out
that, except for some special cases (e.g., the linearized backward Euler scheme in single-component
case), the temporal discretizations of the GFDN generally produces spurious ground states since
the GFDN itself suffers from artificial splitting error terms that are of the same order of the time
step size. They further proposed the normalized gradient flow with Lagrange multiplier (GFLM),
which can be viewed as an approximation of the CNGF or a modified GFDN by introducing explicit
Lagrange multiplier term in the gradient flow part, so that various temporal discretizations based
on it can capture the correct ground state [46, 21]. In fact, the main idea in [46, 21] is quite general,
and in particular, it is straightforwardly applicable to the rotational situations. In addition to
gradient flow approaches, energy minimization methods have also been considered for computing
the ground states of rotating BECs based on optimization techniques, such as the preconditioned
nonlinear conjugate gradient method [6, 7, 38], the Sobolev gradient method [29], the Riemannian
conjugate gradient method [30] and the regularized Newton method [57].
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The normalized gradient flow approaches mentioned above are considerably popular and widely
used to compute the ground states of BECs due to the following benefits: (i) the form of the gradient
flow is concise, which can be implemented easily via different discretization strategies; (ii) only the
gradient information (or first-order variational derivative) of the objective functional E(φ) is needed,
which makes the computation at each iteration easy to handle when a suitable discretization such as
the explicit or semi-implicit Euler scheme is adopted. However, the limitation of the gradient flow
methods is also quite explicit. Firstly, the slow convergence makes it sometimes very expensive in
practice, especially for challenging optimization problems, such as the computation of ground states
for rotating BECs with high rotation speed and/or strong interatomic interaction. Additionally,
gradient flow stops whenever a stationary state (or critical point of the non-convex minimization
problem) is reached, thus it may fail to converge to the ground state of rotating BECs. With these
in mind, we are very much motivated to find methods that can retain the benefits of the normalized
gradient flow for a rotating BEC but overcome the shortcomings to a certain extent.

We entrust the potential of second-order inertial dynamical flows, which is a recent topic initial-
ized by the work of Su et al. [55]. There a second-order ordinary differential equation (ODE) was
proposed and its connection to Nesterov’s accelerated gradient method [50] was revealed. The ac-
celeration property of such second-order flows were proven theoretically. Since then, there has been
plenty of research focused on inertial dynamics by second-order ODEs, see for instance [9, 8, 19, 59]
and the references therein. Second-order ODE formulations have some advantages in comparison
to the discrete acceleration algorithms (heavy ball method [53] and Nesterov’s accelerated gradient
method [50]). First, it has been shown that the ODEs can recover the discrete gradient methods
if certain discretization is applied. On the other hand, mechanism of the dynamical flows is more
intuitive which makes the analysis of many properties of the acceleration algorithms more direct
using the continuous ODE formulations. In particular, there are different ways to discretize the
ODEs, which would generate variants of numerical algorithms, and some of them can have better
numerical stability and efficiency. Among several directions of investigations, a very recent and
comprehensive study of second-order flows as ODEs from theoretical point of view can be found in
[8]. In Section 2, we give a short review on the development of the inertial dynamics with respect to
ODEs for convex optimization. Second-order flows have been considered recently also in the setting
of partial differential equations (PDEs) [18, 32], which brings new challenges to the topic, especially
to their theoretical understanding and numerical analysis. In [32], a class of geometric second-order
quasilinear hyperbolic PDEs with applications in imaging are studied, and some of their analytical
properties are proven, e.g., well-posedness, asymptotic behavior of solutions. Numerical analysis is
still quite open in [32], and also in general to the topic of second-order nonlinear hyperbolic PDEs
with dissipation. Having said that, studies in the literature mostly focus on convex optimization.
In many applications, however, problems emerged often have to be formulated as non-convex op-
timization, i.e., the objective function is non-convex or the feasible set is non-convex, such as the
ground state problem of rotating BECs (1.3) studied in this paper.

1.2. Contribution and structure of the paper

We propose two types of dissipative second-order nonlinear hyperbolic PDEs (systems), and
they both are generalized inertial dynamics aiming for the constrained non-convex minimization
problem (1.3). The first one intends to have the whole trajectory of the evolutionary PDE to satisfy
the normalization constraint. To achieve this, a Lagrange multiplier term is introduced into the
second-order PDE, which is capable of preserving the normalization constraint. This is a similar
formulation as the CNGF [14, 17]. Under this guideline, we use again an explicit update of the
Lagrange multiplier coupled with a discrete normalization, as in the GFLM [46]. The second one
is based on a different idea which we do not enforce the exact constraint for the whole trajectory
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but only at the end of convergence. This is realized by leveraging the formulation of augmented
Lagrange multiplier for generating the dynamical flow, from which a coupled differential system with
primal and dual variables is derived. These novel second-order hyperbolic PDEs (systems) become
our starting point to develop efficient numerical algorithms. We choose an explicit scheme and also
a semi-implicit scheme for the temporal discretization, in combination with a Fourier pseudospectral
method for spatial discretization. Particularly, finite difference schemes of second-order accuracy for
the temporal discretization (of first-order and second-order time derivatives) are employed to better
simulate their continuous counterparts. At every time step, either a simple update is needed for the
explicit scheme, or a linear system with constant coefficients needs to be solved for the semi-implicit
scheme, where some stabilization technique is applied. This also shows a difference between the
continuous flows and discrete gradient methods, as a different discretization scheme would produce
a variant numerical algorithm. In the end, they contribute a rich family of much more efficient
and robust algorithms in comparison with algorithms from gradient flow type methods: Larger
sizes of time steps can be applied for explicit schemes, and a much smaller number of iterations
are consumed for semi-implicit algorithm using the same step size. Note that for a fixed step size,
the computational complexity of second-order flow algorithms at every time step is the same as the
(first-order) gradient flow ones. Moreover, the second-order flow based algorithms are observed to
be less sensitive to the initial guess, and can reach lower energy state solutions, in particular, for
fast rotating BECs. Plenty of numerical examples are provided for verification and comparison. In
all cases, the methods corresponding to the second-order flows with suitable damping coefficients
can perform significantly better than the methods corresponding to the normalized gradient flow.
In particular, we test a few examples with strong interaction and fast rotation where the gradient
flow approaches often consume a much larger unit of computational power and the Newton-type
methods in the literature generally converge to some higher energy state solution, whereas the
proposed methods produce the most competitive results.

During the preparation of our manuscript, we are aware that a damped second-order approach
named dynamical functional particle method (DFPM) was proposed in [52, 40], which was based
on an earlier work in [33]. These works considered constrained nonlinear Schrödinger equations and
applied to a rotating BEC with a different setting from (1.3), in particular different dynamics and
also different numerical methods were studied there. A further remark on the differences between
DFPM and our proposed approaches can be found in Example 5.4 in Section 5.

The rest of this paper is organized as follows. First, some preliminaries for second-order flows
are provided in Section 2. Then, two types of second-order flows with damping for the energy
minimization problem (1.3) are introduced in Section 3. In Section 4, several efficient temporal
and spatial discretization strategies are proposed to yield practical numerical algorithms. Detailed
numerical results are reported in Section 5 to illustrate the efficiency and accuracy of our algorithms.
Finally, some concluding remarks are given in Section 6.

We emphasize here that the concept of second-order flows should not be confused with second-
order methods in optimization. The former means an evolutionary equation involves second-order
derivative with respect to the (artificial) time variable, while the latter often requires second-
order derivative (or its approximations) of the objective function in optimization, such as Newton’s
method. It should also be distinguished from the second-order accuracy for the numerical schemes
in temporal discretization.

2. Primer of second-order flows for convex optimization

In order to motivate our second-order flows for computing the ground state of a rotating BEC,
here we briefly introduce some preliminaries of inertial dynamics in convex optimization. Let us
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pick the following abstract unconstrained minimization problem for illustration:

min
u∈H

f(u), (2.1)

where f : H → R is a given convex differentiable function on a Hilbert space H. Our discussion
starts with the steepest descent method (SDM) for minimizing the convex function f , which reads

uk = uk−1 − s∇f (uk−1) , k = 1, 2, . . . , (2.2)

with s > 0 a step length and u0 ∈ H a given initial guess. However, the SDM is not an optimal
convergent first-order method, and the convergence rate can be very slow. In order to improve the
convergence rates of the SDM, there has been a lot of research in the literature. One of them is the
heavy ball method proposed by Polyak in 1964 [53], which has the form

uk+1 = uk − s∇f (uk) + γ (uk − uk−1) , k = 1, 2, . . . , (2.3)

for given u0 and u1. Here the term γ (uk − uk−1), called a momentum, corrects the local steepest
descent direction by extrapolating the direction with previous steps, and γ > 0 is some constant.
As shown in Fig. 1, the negative gradient direction does not point towards the minimizer in most
of the iterations. The SDM tends to oscillate from one side to the other, progressing slowly to the
minimizer (see Fig. 1(a)). Fig. 1(b) shows how the momentum term helps to speed up convergence
to the minimizer by damping these oscillations, even though theoretical optimal convergence rates
seems not available for heavy ball method.

(a) Steepest descent method (b) Heavy ball method

Figure 1: Illustration of the heavy ball method to alleviate the zig-zag phenomenon.

Nesterov’s accelerated gradient method [50] is based on a similar idea as heavy ball method,
which uses, instead, an adaptive coefficient in front of the momentum term. It gives the following
updates, and in particular returns improved convergence rates (optimal as first-order methods):





uk = wk−1 − s∇f (wk−1) ,

wk = uk +
k − 1

k + 2
(uk − uk−1) .

(2.4)

These iterative type methods are fundamental in optimization, and more interestingly they can
connect to some continuous evolutionary differential equations, which is summarized in Table 1.

Table 1: Convergence rates of representative continuous flows and corresponding first-order optimization methods to
the minimizer u⋆ of a convex function f .

Continuous flow f(u(t))− f(u⋆) Corresponding optimization method f(uk)− f(u⋆)

u̇(t) = −∇f(u(t)) O(1/t) Steepest descent method (2.2) O(1/k)

ü(t) + ηu̇(t) +∇f(u(t)) = 0,
O(1/t) Heavy ball method (2.3) O(1/k)

where η > 0 is a constant

ü(t) + 3

t
u̇(t) +∇f(u(t)) = 0 O(1/t2) [55] Nesterov’s acceleration method (2.4) O(1/k2) [50]
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In fact, in the literature, second-order flows with general damping coefficients α
t for α > 0 are

often considered, e.g. [55, 9]. It was shown that α = 3 is a critical point, as for α < 3, the optimal
convergence rate of first-order methods may not be possible in that case. For α > 3, improved
convergence rates are available given some strong convexity assumptions on f .

It is not hard to find that the SDM can be viewed as an explicit Euler method for the gradient
flow (i.e., the first continuous flow in Table 1). Similarly, the heavy ball method and Nesterov’s
acceleration method are also corresponding to explicit time discretization schemes of the second [10]
and the third continuous flows [55], respectively, in Table 1, which can be included into a common
form as {

ü(t) + η(t)u̇(t) = −∇f(u(t)), t > 0,

u(0) = u0, u̇(0) = v0.
(2.5)

Here η(t) > 0 is the given damping coefficient, and u0 and v0 are the initial position and velocity,
respectively. Note that η(t) being a positive constant corresponds to the heavy ball method, and
η(t) = 3/t corresponds to Nesterov’s acceleration method. The results in Table 1 have been much
enriched or improved in the literature. Some recent comprehensive investigation within convex
optimization can be found for instance in [9, 8]. Moreover, different aspects of second-order flows as
regularization methods for linear ill-posed problems have been developed in [19], where a detailed
comparison of convergence rates of first-order and second-order flows are provided.

Even though the second-order flows can accelerate the convergence of gradient flows in some
sense, we mention that they are in general not monotonically descent methods for minimizing the
convex function f . Instead, the ODE (2.5) decays the “total energy” or “Hamiltonian” defined
as E(t) = 1

2‖u̇(t)‖2H + f(u(t)), of which the first term is similar to the “kinetic energy” and the
second one is viewed as the “potential energy”. At this point, we see that the second-order flows
are actually fundamental objectives in classical mechanics. Another interesting difference between
the gradient flow and the second-order flow is that the latter is capable of escaping saddle points or
even local minima while the former typically stops at those points, when both are applied to non-
convex optimization. This can be observed from the one-dimensional non-convex example shown in
Fig. 2, where the non-convex objective function f has a global minimizier u⋆ and a local minimizer
ul with f(ul) > f(u⋆). For the gradient flow of f with the initial value u0, the flow will typically
approaching u = ul, but for the second-order flow with proper choice of the initial velocity and the
damping coefficient, it has the potential to reach the global minimizer u = u⋆ instead of u = ul.

Figure 2: Profile of a one-dimensional non-convex function f with local minima.

The acceleration property and the potential of escaping local minima and/or saddle points of the
second-order flow inspired our work in this paper, which aims to find solutions of the constrained
non-convex minimization problem in (1.3).
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3. Two families of damped second-order flows for computing BEC ground states

In this section, we propose two different second-order flows with respect to two different ideas
of dealing with the normalization constraint. The first one uses a similar idea as the CNGF [14, 17]
and the GFLM [46, 21], where we try to enforce the constraint to be satisfied along the whole
trajectory of the second-order flow by embedding a Lagrange multiplier into the flow. The second
one is built on the augmented Lagrangian with a primal-dual coupled system, and it does not require
the constraint to be satisfied all the time but only when it comes to the end of the convergence. Due
to the connection to normalized gradient flows, the conventional normalized gradient flow methods
and the GFLM method to compute ground states of rotating BECs are described in Appendix A
for comparison purposes. Throughout this paper, we use 〈·, ·〉 to denote the L2 inner product, i.e.,

〈u, v〉 =
∫

Rd

u(x)v(x)dx, ∀u, v ∈ L2(Rd),

and the L2 norm ‖ · ‖ is reduced from this inner product. For simplicity, we assume β ≥ 0 in
subsequent discussions.

3.1. Damped second-order flow with discrete normalization

Inspired by the second-order ODEs for convex optimization introduced in Section 2 and the
CNGF method described in (A.2), we first propose a continuous normalized second-order flow for
φ = φ(x, t) to approach the ground state of a rotating BEC defined in (1.3) as




φ̈+ η(t)φ̇ =

1

2
∆φ− V φ− β|φ|2φ+ΩLzφ+ λφ(t)φ, x ∈ Rd, t > 0, (3.1a)

φ(x, 0) = φ0(x), φ̇(x, 0) = v0(x), x ∈ Rd, (3.1b)

where t is the artificial time variable, η(t) > 0 is a given damping coefficient, φ0 ∈ S is an initial guess
for the ground state, and v0 is the initial velocity. Two typical examples of the damping coefficient
are η > 0 being a constant and η(t) = α/t for some α ≥ 3, which are respectively correspond to
the heavy ball method and (generalized) Nesterov’s acceleration method in convex optimization
described in Section 2. The Lagrange multiplier λφ(t) intends to make the flow (3.1) preserve
automatically the normalization constraint (1.2), i.e., ‖φ(·, t)‖2 ≡ ‖φ0‖2 = 1 for all t > 0. There
are probably several formulations of λφ(t) to achieve this. Here we construct an explicit expression
of λφ(t) according to the following two conditions that are expected to hold for a suitably smooth
solution φ = φ(x, t) of (3.1):

d

dt

(
‖φ‖2

)
= 2Re〈φ, φ̇〉 = 0 and

d2

dt2
(
‖φ‖2

)
= 2

(
Re 〈φ, φ̈〉+ ‖φ̇‖2

)
= 0, ∀t > 0. (3.2)

Taking the L2 inner products with φ on both sides of (3.1a) and then taking the real parts, yields

Re〈φ, φ̈〉+ η(t)Re〈φ, φ̇〉 = −
∫

Rd

(
1

2
|∇φ|2 + V |φ|2 + β|φ|4 −ΩφLzφ

)
dx+ λφ(t)‖φ‖2. (3.3)

Substituting (3.2) into (3.3), we derive (formally)

λφ(t) =

∫
Rd

(
1
2 |∇φ|2 + V |φ|2 + β|φ|4 − ΩφLzφ

)
dx− ‖φ̇(·, t)‖2

‖φ(·, t)‖2 . (3.4)
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It is easy to see that the Lagrange multiplier λφ(t) given in (3.4) is associated with the GP energy
functional E(φ) (1.1) and the Lagrange multiplier µφ(t) in the CNGF (A.2) through the following
expression:

λφ(t) =
E(φ) + β

2

∫
Rd |φ(x, t)|4dx− ‖φ̇(·, t)‖2

‖φ(·, t)‖2 = µφ(t)−
‖φ̇(·, t)‖2
‖φ(·, t)‖2 , (3.5)

where µφ(t) =
1

‖φ(·,t)‖2

∫
Rd

(
1
2 |∇φ|2 + V |φ|2 + β|φ|4 − ΩφLzφ

)
dx is the same as in (A.2). In addi-

tion, the condition (3.2) also requires that the initial velocity v0 satisfies Re〈φ0, v0〉 = 0.
Formally, at the steady state or fixed point of the flow (3.1), all the time derivative terms vanish,

i.e., φ̇ = 0 and φ̈ = 0, which leads to λφ(t) = µφ(t). With the normalization constraint ‖φ‖2 = 1
conserved by the flow (3.1), the steady state equation of (3.1a) matches exactly the Euler-Lagrange
equation (1.4). Actually, the fixed point of (3.1) in the (φ, φ̇)-phase space is (φ, φ̇) = (φ∗, 0) with
φ∗ an eigenfunction to the Euler-Lagrange equation (1.4), i.e., a stationary state of the BEC.

We introduce the total cost function associated with the solution φ = φ(x, t) to (3.1) defined as

F(t) = E(φ(·, t)) + ‖φ̇(·, t)‖2. (3.6)

The following property shows that, under certain conditions, the continuous normalized second-
order flow (3.1) is indeed normalization-conservative and has a dissipation structure with respect
to F(t).

Property 3.1. Let φ = φ(x, t) be the solution to (3.1) with λφ(t) given in (3.4) and initial data
satisfying ‖φ0‖ = 1 and Re〈φ0, v0〉 = 0. We further assume φ ∈ C2 ((0,∞),X), where X ={
φ ∈ H1(Rd) : E(φ) < ∞

}
. If the damping coefficient η(·) is positive and locally integrable on

(0,+∞), then we have

‖φ(·, t)‖2 ≡ ‖φ0‖2 = 1,
d

dt
F(t) = −2η(t)‖φ̇(·, t)‖2, ∀ t > 0. (3.7)

Proof. Combining (3.3) and (3.4), we have d
dtRe〈φ, φ̇〉 = −η(t)Re〈φ, φ̇〉. Since Re〈φ, φ̇〉

∣∣
t=0

=
Re〈φ0, v0〉 = 0 and η > 0 is locally integrable on (0, t] for all t > 0, we conclude that

Re〈φ, φ̇〉 = lim
ε→0+

e−
∫ t

ε
η(s)ds Re〈φ(·, ε), φ̇(·, ε)〉 = 0, ∀t > 0.

Therefore, d
dt

(
‖φ‖2

)
= 2Re〈φ, φ̇〉 = 0, and the conservation of the normalization constraint is

verified. Further, utilizing (3.1a) and noting that Re〈φ, φ̇〉 = 0, a direct calculation shows that

d

dt
F(t) = 2Re〈φ̇, φ̈〉+ 2Re

〈
−1

2
∆φ+ V φ+ β|φ|2φ− ΩLzφ, φ̇

〉

= 2Re
〈
φ̇,−η(t)φ̇+ λφ(t)φ

〉

= −2 η(t)‖φ̇‖2.

Since η(t) > 0, this gives the dissipation of F(t), and the proof is completed.

From the decaying property of F(t) by the flow (3.1) described in above, we have (formally)

E(φ(·, t)) + ‖φ̇(·, t)‖2 + 2

∫ t

0
η(s)‖φ̇(·, s)‖2ds = F(0) = E(φ0) + ‖v0‖2, ∀t > 0. (3.8)
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Thus, the GP energy E(φ) along the trajectory of (3.1) is always bounded by F(0) = E(φ0)+‖v0‖2.
In particular, if the initial velocity is taken as v0 = 0, the whole trajectory of the flow (3.1) is
naturally contained in the energy sublevel set {φ ∈ S : E(φ) ≤ E(φ0)}. This provides some
local stability to the method of the continuous normalized second-order flow (3.1) for computing
the ground state. Note that when the initial value φ0 is taken as a metastable state, i.e., a local
minimizer of the GP energy functional (if it exists), a nontrivial initial velocity v0 may help to
escape from this local minimum, which is another remarkable feature of the second-order flow
methods compared to the ones by gradient flow.

It is noted that the system (3.1) is a partial integro-differential equation for φ = φ(x, t), in
which the nonlocal Lagrange multiplier term λφ(t)φ will bring difficulties for possible normalization-
preserving discretizations. For the convenience of numerical implementation, referring to the idea
of the GFLM (A.4), we propose the following computational model, which is referred to as the
damped second-order flow with discrete normalization (DSFDN):





φ̈+ η(t)φ̇ =
1

2
∆φ− V φ− β|φ|2φ+ΩLzφ+ λφ(tn)φ, t ∈ (tn, tn+1), (3.9a)

φ(x, tn+1) := φ(x, t+n+1) =
φ(x, t−n+1)

‖φ(·, t−n+1)‖
, n ≥ 0, (3.9b)

φ̇(x, tn+1) := φ̇(x, t+n+1) = φ̇(x, t−n+1), n ≥ 0, (3.9c)

φ(x, 0) = φ0(x), φ̇(x, 0) = v0(x), x ∈ Rd. (3.9d)

Here tn = nτ (n = 0, 1, . . .) and τ > 0 is a time step length, φ(x, t±n ) = limt→t±n
φ(x, t), φ̇(x, t±n ) =

limt→t±n
φ̇(x, t), and λφ(tn) is given explicitly as

λφ(tn) =

∫

Rd

(
1

2
|∇φ(·, tn)|2 + V |φ(·, tn)|2 + β|φ(·, tn)|4 − Ωφ(·, tn)Lzφ(·, tn)

)
dx− ‖φ̇(·, tn)‖2.

The system (3.9), as a piecewise-defined PDE system, can be viewed as an approximation of the
continuous normalized second-order flow (3.1). Formally, as τ → 0, we have λφ(t) − λφ(tn) → 0,
then the second-order flow equation (3.9a) converges to (3.1) and the normalization factor (3.9b)
converges to identity. Due to the fact that the evolution equation (3.9a) in each time interval is a
hyperbolic PDE (with damping term), the initial conditions for both φ and φ̇ at t = tn+1 (n ≥ 0)
need to be specified whenever the evolution over a new time interval (tn+1, tn+2) is considered.
Various choices of the initial value of φ̇ at t = tn+1 (n ≥ 0) are possible. As in (3.9c), we simply
use φ̇(·, t−n+1), which is obtained by the evolution of (3.9a) in the previous time interval (tn, tn+1).

An alternative way to define the initial condition of φ̇ at t = tn+1 is to assign it as the projection
of φ̇(·, t−n+1) onto the L2-orthogonal complement of φ(·, tn+1). This makes the instantaneous rate of
change of the normalization constraint at t = tn+1 is zero (cf. (3.2)) and seems to produce a good
analog to the continuous flow (3.1) in terms of the normalization-preserving property. However,
such an orthogonal projection is somewhat cumbersome or redundant in the DSFDN, because the
normalization condition at t = tn+1 is guaranteed strictly by (3.9b). Thus, we only focus on the
current version of (3.9c) for brevity and convenience. Actually, as we will see later, the condition
(3.9c) does not have to appear explicitly in further discretizations of the DFSDN.

We emphasize that the explicit Lagrange multiplier term λφ(tn)φ in (3.9a) plays a crucial role
to ensure that the DSFDN (3.9) can capture the correct stationary state with a finite time step
length τ > 0. To illustrate this, we simply assume that φ(·, 0) = φg and φ̇(·, 0) = 0 in (3.9), where
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φg ∈ S denotes the ground state defined in (1.3). It implies

λφ(0) =

∫

Rd

(
1

2
|∇φg|2 + V |φg|2 + β|φg|4 − ΩφgLzφg

)
dx = µ(φg) =: µg,

the chemical potential of φg (1.5), and the evolution equation (3.9a) becomes a steady dynamics at
(φ, φ̇) = (φg, 0) due to the fact that (µg, φg) solves the Euler-Lagrange equation (1.4). Further, the
normalization factor in the projection step (3.9b) becomes ‖φ(·, t−n+1)‖ = 1. On the other hand, as a
twin version of (3.9) we consider the situation without the explicit Lagrange multiplier term λφ(tn)φ
in (3.9a). Then the resulting evolutionary equation starting from the ground state φg with zero
initial velocity v0 = 0 leads to a non-steady dynamics at (φ, φ̇) = (φg, 0), and due to the nonlinear
effects from the interaction term β|φ|2φ (when β 6= 0), it usually fails to pull φ(·, t−n+1) back to
φg with the subsequent normalization step that is a linear process. Thus, in general, dropping the
explicit Lagrange multiplier term λφ(tn)φ in (3.9a) causes the system (3.9) to produce an incorrect
solution with an artificially introduced error depending on the time step parameter τ > 0. In
addition, the explicit Lagrange multiplier term λφ(tn)φ in (3.9a) can be taken as other forms, e.g.,
λφ(tn)φ(·, tn), as long as (φ, φ̇) = (φg, 0) is the fixed point of the system (3.9).

In terms of dealing with constraint, the DSFDN method (3.9) uses a normalization at each
time step to exactly project the solution back to the constraint manifold S. For the minimization
problem of a single-component BEC model with only one normalization constraint on which we
focus in this paper, the exact projection is rather easy to handle. This might not be the case when
one considers the ground state problem of general multi-component BECs with multiple constraints,
e.g., high-spin BEC system with the two constraints on the total mass and magnetization, as the
computation of the exact projection rises some challenges [21]. In the next subsection, we propose
another framework to compute the ground state of a rotating BEC, which can be better generalized
in the face of more complex constraints.

3.2. Damped second-order flow based on augmented Lagrangian method

Augmented Lagrange multiplier is a very popular framework in constrained optimization, which
combines the strengths of Lagrange multiplier and penalty method. The advantage is that it
stabilizes the update of the primal variable using the augmented term but without sending the
penalty parameter to ∞ to have the constraint to be satisfied. Based on the formulation of the
augmented Lagrangian, we consider here another novel damped second-order dynamical systems.
To adapt better to the normalization constraint of the non-convex minimization problem (1.3), we
propose the following general form of augmented Lagrangian

Lσ(φ, χ) := E(φ)− χ(‖φ‖2 − 1) + σR(‖φ‖2 − 1), (3.10)

where χ ∈ R is the multiplier and the augmentation parameter σ > 0 is a given constant. Here
R(·) : R → R is some penalty function which satisfies

(i) R(0) = 0 and R(ζ) ≥ 0 for all ζ ∈ R, and it is coercive in the positive direction, i.e.,

limζ→+∞
R(ζ)
ζ = +∞.

(ii) R is convex, continuously differentiable, and R′(0) = 0.

In this paper, we will consider two examples of such functions:

(a) R(ζ) =
1

2
|ζ|2 and (b) R(ζ) =

1

2
(max(ζ, 0))2. (3.11)
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Standard augmented Lagrangian usually takes the quadratic penalty function in Example (a). In
the normalization constraint case, the quadratic penalty appears to be not the best choice, as the
functional (‖φ‖2 − 1)2 is non-convex, which makes the optimization problem harder to solve in
particular when the penalty parameter σ gets larger and larger. To make the penalty term to be
convex, Example (b) seems to be more appealing for the normalization constraint. In our numerical
experiments in Section 5, we employ Example (b) for two-dimensional rotating BECs.

The Lagrangian dual function is then defined as

g(χ) = inf
φ

Lσ(φ, χ), (3.12)

and its corresponding dual problem is

sup
χ

g(χ). (3.13)

This converts the primal problem (1.3) to an unconstrained saddle-point problem for (φ, χ), i.e.,

sup
χ

inf
φ

Lσ(φ, χ), (3.14)

and its optimal value gives a lower bound on the optimal value of the primal problem.
For brevity, hereafter we use

δE(φ)

δφ
= −1

2
∆φ+ V φ+ β|φ|2φ− ΩLzφ (3.15)

to denote the Wirtinger’s variational derivative of the GP energy functional E(φ) (1.1) with respect
to a complex-valued function φ : Rd → C. Let (φ⋆, χ⋆) be a saddle point of the augmented
Lagrangian Lσ(φ, χ). Then (φ⋆, χ⋆) satisfies the Karush-Kuhn-Tucker (KKT) condition





δLσ

δφ
(φ⋆, χ⋆) =

δE

δφ
(φ⋆)− χ⋆φ⋆ + σR′(‖φ⋆‖2 − 1)φ⋆ = 0,

∂Lσ

∂χ
(φ⋆, χ⋆) = ‖φ⋆‖2 − 1 = 0,

(3.16)

which is exactly the nonlinear eigenvalue problem (1.4) for (χ⋆, φ⋆) since R′(0) = 0.
To approach the saddle point of the augmented Lagrangian Lσ(φ, χ), we first consider the

following gradient flow based on augmented Lagrangian (GFAL) for (φ, χ) = (φ(x, t), χ(t)):




φ̇ = −δE

δφ
(φ) + χ(t)φ− σR′(‖φ‖2 − 1)φ, x ∈ Rd, t > 0, (3.17a)

1

ξ(t)
χ̇ = 1− ‖φ‖2, t > 0, (3.17b)

φ(·, 0) = φ0, φ̇(·, 0) = v0, χ(0) = χ0, (3.17c)

where ξ(t) > 0 is a real function which serves as a scaling factor to control the pace of the evolution
of χ(t), and (φ0, v0, χ0) are the initial data. Intuitively, the negative gradient of the penalty (i.e.,
−σR′(‖φ‖2−1)φ in (3.17a)) behaves as a pull-back force that makes φ move towards the normaliza-
tion constraint manifold S with a magnitude proportional to the augmentation parameter σ. When
‖φ‖2 ≫ 1, due to the coercive property of R, this pull-back force can become significant (in fact, it
grows superlinearly as ‖φ‖ → ∞). When the normalization constraint is approaching, χ̇ will also
gradually go to 0.
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Slightly different to the inertial dynamics of gradient flows for the primal problem (1.3), we intro-
duce the following primal-dual system called damped second-order flow based on augmented
Lagrangian (DSFAL):





φ̈+ η(t)φ̇ = −δE

δφ
(φ) + χ(t)φ− σR′(‖φ‖2 − 1)φ, x ∈ Rd, t > 0, (3.18a)

1

ξ(t)
χ̇ = 1− ‖φ‖2, t > 0, (3.18b)

φ(·, 0) = φ0, φ̇(·, 0) = v0, χ(0) = χ0, (3.18c)

with a given damping coefficient η(t) > 0. Clearly, when the system comes to a steady state, i.e.,
φ̇, χ̇ and φ̈ all become 0, (φ, χ) satisfies exactly the KKT condition (3.16). Note that it couples a
second-order flow for primal variable φ and a first-order flow for dual variable χ. The heuristic of
(3.18) is that an inertial dynamics of Lσ(φ, ·) is applied with respect to φ, whereas a gradient flow
is still employed to evolve χ. We notice that Lσ(·, χ) is formally a linear function with respect to
χ whose gradient direction is the steepest rising direction. In [32, Theorem 2.8], it is proven that
there exists no finite extinction time of second-order flows for homogeneous functional, whereas the
extinction time is finite for gradient flows of homogeneous functionals (though it was proven for
a special case, the idea is identical for general homogeneous functionals). This shows that in the
linear function case, first-order flows are superior in terms of convergence rates, which also gives
the intuition why we choose first-order flow for the multiplier χ. In our numerical experiments,
we find that this second-order and first-order coupled system for φ and χ has better performance
in comparing with the coupled system with both second-order flows for primal and dual variables.
The latter has been recently proposed in the literature, e.g., [41].

Remark 3.2. We notice that the second-order system (3.18) may require different scaling factor
ξ(t) from the first-order system (3.17). For the latter, ξ(t) can be chosen as a positive constant, while
for the former, an attenuation function, which satisfies ξ(t) → 0 as t → +∞ and

∫∞
0 ξ(t)dt = +∞,

is proposed to improve the numerical stability. Later in the numerical tests in Section 5, we consider
ξ(t) of the following form for both first- and second-order systems (3.17)-(3.18):

ξ(t) =

{
b, t ≤ ts,

b/(t− ts + 1), t > ts.
(3.19)

Here b > 0 is a constant, and ts > 0 is a turning point which we choose to be dependent on
the constraint violation |‖φ‖2 − 1|. Such a decay property of ξ(t) appears to be crucial for the
computational stability of the second-order flow methods while it does not matter much for the
gradient flow methods. However, we do not investigate this topic theoretically here.

A decaying total cost function for the DSFAL may be obtained under certain convexity assump-
tions from some existing works [47, 41]. However, for the non-convex problem considered in this
paper, whether it is possible to construct a decaying cost function for the DSFAL is still open,
which we do not pursue here. Nevertheless, our numerical results in Section 5 demonstrate that the
DSFAL is feasible and efficient for our constrained non-convex minimization problem (1.3).

The two proposed PDEs (systems) (3.1) and (3.18) turn out to be novel, and they are interesting
topics in PDE analysis on their own right. However, analytical aspects of the two PDEs, e.g., well-
posedness and regularity of solutions, are out of the scope of the current paper, we leave them for
future work and for readers who are interested in these problems.

13



4. Discretization of the proposed second-order flows

In this section, we provide several numerical strategies to discretize the two types of second-
order flows proposed in the last section. We investigate the temporal and spatial discretization
strategies separately, with some emphases on the former. In terms of temporal discretization, we
give an explicit discretization scheme (the leap-frog scheme) and a type of semi-implicit discretiza-
tion method. Both schemes are of second-order accuracy in terms of approximation rates to time
partial derivatives, which contribute to the stability of the corresponding algorithms. A Fourier
pseudospectral method is applied in all the cases for spatial discretization.

In the subsequent discussions, we assume v0 ≡ 0 in both DSFDN (3.9) and DSFAL (3.18) for
simplicity.

4.1. Temporal discretizations of DSFDN

We provide two temporal discretization schemes for the DSFDN (3.9). One is an explicit leap-
frog scheme and the other is a semi-implicit scheme with stabilization.

Set φ0 = φ0 and tn = nτ with τ > 0 a given time step length. Let φn be a numerical
approximation of φ(·, tn) for n = 1, 2, . . .. Denote ηn = η(tn) = η(nτ), n = 1, 2, . . ., and

G(φn) =
δE

δφ
(φn) = −1

2
∆φn + V φn + β|φn|2φn − ΩLzφ

n, n = 0, 1, . . . . (4.1)

In the following temporal discretizations for the DSFDN (3.9), the explicit Lagrange multiplier will
be approximated by

λn :=

{
µ0 − ‖v0‖2 = µ0, n = 0,

µn − ‖(φn − φn−1)/τ‖2, n = 1, 2, . . . ,
(4.2)

with

µn := 〈G(φn), φn〉 =
∫

Rd

(
1

2
|∇φn|2 + V |φn|2 + β|φn|4 − ΩφnLzφ

n

)
dx = E(φn) +

β

2

∫

Rd

|φn|4dx.

Here the forward first-order finite difference is applied to approximate φ̇(·, tn) in the Lagrange
multiplier λφ(tn) in (3.9). It is believed that there are many other reasonable ways to do this. Our
numerical results presented in Section 5 show that the current version of λn is feasible and accurate.
More precisely, for the two schemes described below, the error of the numerical solution φn of the
DSFDN is indeed of second-order accuracy with respect to the time step size τ . We will, then, stick
to the form of λn in (4.2) through out the paper.

4.1.1. Leap-frog temporal discretization

We start with the explicit leap-frog scheme for the DSFDN (3.9) (DSFDN-LF) given by

φ̃n+1 − 2φn + φn−1

τ2
+ ηn

φ̃n+1 − φn−1

2τ
= −G(φn) + λnφn, x ∈ Rd, (4.3a)

φn+1 = φ̃n+1/‖φ̃n+1‖, n ≥ 1. (4.3b)

Since this is a three-level scheme, to initialize, we compute the first step φ1 ≈ φ(·, τ) by using the
second-order Taylor’s expansion at t = 0 and noting φ̇(·, 0) = v0 = 0:

φ̃1 = φ0 + τ φ̇
∣∣
t=0

+
τ2

2
φ̈
∣∣
t=0

= φ0 +
τ2

2

(
−G(φ0) + λ0φ0

)
, (4.4a)

φ1 = φ̃1/‖φ̃1‖. (4.4b)

In detail, the DSFDN-LF (4.3)-(4.4) can be summarized as in Algorithm 1.
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Algorithm 1 Leap-frog scheme for DSFDN (DSFDN-LF)

First step: Compute φ̃1 = φ0 + τ2

2

(
−G(φ0) + λ0φ0

)
and φ1 = φ̃1/‖φ̃1‖

while not converge do
Compute G(φn) and λn according to (4.1) and (4.2), respectively
Compute φ̃n+1 via

φ̃n+1 =
(τηn − 2)φn−1 + 4φn + 2τ2(−G(φn) + λnφn)

2 + τηn
(4.5)

Update φn+1 = φ̃n+1/‖φ̃n+1‖
n := n+ 1

end while

Remark 4.1. Notice that (4.5) can be rewritten as

φ̃n+1 = φn − 2τ2

2 + τηn

(
G(φn)− λnφn

)
+

2− τηn

2 + τηn

(
φn − φn−1

)
.

This formulation reminds us again the connection of the second-order flows to the Nesterov’s (or
Polyak’s) methods, which gives an interpretation of the accelerating phenomenon of second-order
flows. For convex optimization problems, in comparison with the gradient flow, the second-order
flow method allows larger step sizes in explicit discretization, i.e., 2/ℓh for gradient flows can be
improved to 2/

√
ℓh for the second-order flows, where ℓh is a relatively large constant determined

by the spatial discretization and the Lipschitz constant of nonlinearities (see, e.g., [18]). For the
non-convex optimization problem studied in this paper, we think that similar properties should hold
locally. In our numerical experiments later, in term of computational stability, it is evident that
the DSFDN-LF (4.3) allows larger time step compared to the explicit scheme of gradient flow type
methods such as the GFLM-FE (A.5), though further rigorous mathematical discussions are not
provided here.

The following property states that the convergent state of the DSFDN-LF scheme (4.3)-(4.4) is
exactly the eigenfunction to the Euler-Lagrange equation (1.4).

Property 4.2. The iterative scheme (4.3) reaches its fixed point (i.e., φn+1 = φn = φn−1) for some
n ≥ 1 if and only if G(φn) = λnφn (or equivalently, G(φn) = µnφn and φn = φn−1).

Proof. Necessity. Suppose φn+1 = φn = φn−1 for some n ≥ 1. Then λn = µn and φ̃n+1 = c φn with
c = ‖φ̃n+1‖ > 0, so that the iterative scheme (4.3) becomes

(c− 1)φn

τ2
+ ηn

(c− 1)φn

2τ
= −G(φn) + µnφn. (4.6)

Taking the L2 inner product in both side of (4.6) with φn and noting that ‖φn‖ = 1, we get

(c− 1)

(
1

τ2
+ ηn

1

2τ

)
= −〈G(φn), φn〉+ µn = 0,

which implies c = 1. Applying (4.6) and the fact λn = µn, we arrive at G(φn) = λnφn.
Sufficiency. Suppose G(φn) = λnφn. Then, by utilizing ‖φn‖ = 1, we have λn = 〈G(φn), φn〉 =

µn. Applying (4.2) leads to φn = φn−1. Thus the iterative scheme (4.3) becomes

φ̃n+1 − φn

τ2
+ ηn

φ̃n+1 − φn

2τ
= 0.
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This means that φ̃n+1 = φn, and therefore, φn+1 = φ̃n+1 = φn = φn−1.

Since the proof of the above property is based on inner products, it is easy to check that the
same result holds for a Galerkin-type full discretization of the DSFDN-LF scheme (4.3)-(4.4).

According to the above property and noting that ‖φn‖ = 1 by the normalization step, the
condition G(φn) = µnφn (i.e., (µn, φn) solving the Euler-Lagrange equation (1.4)) is necessary, but
not sufficient, for the DSFDN-LF scheme (4.3)-(4.4) to converge. This actually shows an essential
difference between the second-order flow and gradient flow methods. In our numerical experiments,
we terminate the DSFDN-LF iteration if the maximal residual of the Euler–Lagrange equation (1.4)
at (µn, φn),

enr := ‖G(φn)− µnφn‖∞ < εr (4.7)

and the discretized velocity

dnv :=

∥∥φn − φn−1
∥∥
∞

τ
< εv (4.8)

with εr and εv two tolerances. As shown in the above property, one can also compute the difference
between three consecutive iteration points (e.g., max{‖φn+1 −φn‖, ‖φn −φn−1‖}) or the residual of
the Euler–Lagrange equation (1.4) at (λn, φn) (i.e., ‖G(φn)− λnφn‖∞) to check the convergence of
the DSFDN-LF scheme (4.3)-(4.4).

4.1.2. Stabilized semi-implicit temporal discretization

We then propose to apply a semi-implicit scheme with stabilization for (3.9) that reads as

φ̃n+1 − 2φn + φn−1

τ2
+ ηn

φ̃n+1 − φn−1

2τ

=

(
1

2
∆− ϑn

)
φ̃n+1 + φn−1

2
+ ϑnφn − V φn − β|φn|2φn +ΩLzφ

n + λnφn, (4.9a)

φn+1 = φ̃n+1/‖φ̃n+1‖, n ≥ 1, (4.9b)

where ϑn ≥ 0 is a stabilization factor. Similar to the stabilized semi-implicit schemes for normalized
gradient flow approaches (cf. [12, 46]), the scheme is expected to be able to take a larger stable time
step through a proper choice of the stabilization parameter ϑn. The same stabilization parameter
as in the gradient flow case is adopted in our numerical experiments (see (5.5) for the detail) and
is shown to be effective numerically, though an optimal choice of it needs in-depth investigation,
which could be an interesting topic for further study. The first step φ1 in (4.9) is also computed
through (4.4), the same as in the DSFDN-LF scheme.

Similar to the previous property of the DSFDN-LF scheme, we have the following result. The
proof is omitted here for brevity.

Property 4.3. The iterative scheme (4.9) reaches its fixed point (i.e., φn+1 = φn = φn−1) for some
n ≥ 1 if and only if G(φn) = λnφn (or equivalently, G(φn) = µnφn and φn = φn−1).

In practice, the DSFDN-SI scheme (4.9) can be implemented as in Algorithm 2 with the stopping
criterion (4.7)-(4.8).

Remark 4.4. The main computational cost at each time step for the DSFDN-SI scheme is to solve
(4.10), a linear elliptic equation with constant coefficient, which can be solved efficiently by some
fast Poisson solver, e.g., the fast Fourier transform (FFT), of which the details is presented in
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Algorithm 2 Semi-implicit scheme for DSFDN (DSFDN-SI)

First step: Compute φ̃1 = φ0 + τ2

2

(
−G(φ0) + λ0φ0

)
and φ1 = φ̃1/‖φ̃1‖

while not converge do
Compute G(φn) and λn according to (4.1) and (4.2), respectively
Compute

Hn =

(
−1 +

τ

2
ηn − τ2

2
ϑn

)
φn−1 +

τ2

4
∆φn−1 + 2φn + τ2

(
(ϑn + λn)φn − 1

2
∆φn −G(φn)

)

Solve the linear elliptic equation for φ̃n+1:

(
1 +

τ

2
ηn +

τ2

2
ϑn

)
φ̃n+1 − τ2

4
∆φ̃n+1 = Hn. (4.10)

Update φn+1 = φ̃n+1/‖φ̃n+1‖
n := n+ 1

end while

Section 4.3. In fact, both DSFDN-SI and DFSDN-LF have O(τ2) accuracy in temporal approxi-
mation when they are stable for the selected time step size τ . This is confirmed by our numerical
experiments (see Fig. 4(b) in Section 5). On the other hand, for the DSFDN-SI, the choice of
time step size is less restrictive on the mesh size of the spatial discretization, thus obtaining a more
stable algorithm without much computational cost increment compared to the DSFDN-LF when a
fast Poisson solver is employed. To keep track with the trajectories of the PDEs, we choose the time
step size τ to not larger than 0.1 in most of our numerical experiments.

4.2. Temporal discretizations of DSFAL

Taking into account the stability, approximation accuracy and computational efficiency, we focus
on a similar semi-implicit discretization scheme as (4.9) for DSFAL (3.18), referred as DSFAL-SI:

φn+1 − 2φn + φn−1

τ2
+ ηn

φn+1 − φn−1

2τ
=

(
1

2
∆− ϑn

)
φn+1 + φn−1

2

+ ϑnφn − V φn − β|φn|2φn +ΩLzφ
n + χnφn − σR′(‖φn‖2 − 1)φn, (4.11a)

χn+1 − χn

ξnτ
= 1− ‖φn+1‖2, n = 1, 2, . . . , (4.11b)

with ϑn ≥ 0 a stabilization factor. ξn evaluates from ξ(tn) using the form (3.19), and ts in (3.19) is
taken as ts = nsτ , where ns represents the smallest positive integer n satisfying

|‖φn‖2 − 1| < ǫs, (4.12)

where ǫs is some threshold value of small scales. Later, in the numerical examples in Section 5, we
take ǫs as 10−14. Starting from the initial data φ0 = φ0 and χ0 = χ0, we compute φ1 based on the
second-order Taylor’s expansion at t = 0 and the initial velocity φ̇(·, 0) = v0 = 0 as

φ1 = φ0 + τ φ̇
∣∣
t=0

+
τ2

2
φ̈
∣∣
t=0

= φ0 +
τ2

2

(
−G(φ0) + χ0φ0

)
,

and then set χ1 = χ0 + τξ0(1−‖φ1‖2). The specific iteration steps of the DSFAL-SI scheme (4.11)
are summarized in Algorithm 3.
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Algorithm 3 Semi-implicit scheme for DSFAL (DSFAL-SI)

First step: Compute φ1 = φ0 + τ2

2

(
−G(φ0) + χ0φ0

)
and χ1 = χ0 + τξ0(1− ‖φ1‖2)

while not converge do
Compute

Hn =

(
−1 +

τ

2
ηn − τ2

2
ϑn

)
φn−1 +

τ2

4
∆φn−1

+ 2φn + τ2
((

ϑn + χn − σR′(‖φn‖2 − 1)
)
φn − 1

2
∆φn −G(φn)

)

Update φn+1 by solving the linear elliptic equation

(
1 +

τ

2
ηn +

τ2

2
ϑn

)
φn+1 − τ2

4
∆φn+1 = Hn.

Update χn+1 = χn + τξn(1− ‖φn+1‖2)
n := n+ 1

end while

Property 4.5. The iterative scheme (4.11) reaches its fixed point (i.e., φn+1 = φn = φn−1 and
χn+1 = χn) for some n ≥ 1 if and only if the following hold:

G(φn) = χnφn, ‖φn‖2 = 1, φn = φn−1.

Moreover, in this case, χn = 〈G(φn), φn〉 = µn.

Proof. Necessity. Suppose φn+1 = φn = φn−1 and χn+1 = χn for some n ≥ 1. From (4.11b), we
have ‖φn+1‖2 = 1. Then ‖φn‖2 = 1 and (4.11a) becomes exactly G(φn) = χnφn.

Sufficiency. Suppose G(φn) = χnφn, ‖φn‖2 = 1 and φn = φn−1 for some n ≥ 1. Then (4.11a)
becomes (

1

τ2
+

ηn

2τ
+

ϑn

2
− 1

4
∆

)(
φn+1 − φn

)
= 0,

which implies φn+1 = φn. Thus ‖φn+1‖ = ‖φn‖ = 1, and (4.11b) shows χn+1 = χn.

In our numerical experiments, the stopping conditions for the DSFAL-SI (4.11) is set as

enr := ‖G(φn)− µnφn‖∞ < εr, (4.13a)

dnv :=

∥∥φn − φn−1
∥∥
∞

τ
< εv , (4.13b)

enc := |‖φn‖2 − 1| < εc, (4.13c)

with some tolerances εr, εv and εc, and the initial value for the Lagrange multiplier χ0 is taken as

χ0 = χ0 :=

∫
Rd

(
1
2 |∇φ0|2 + V |φ0|2 + β|φ0|4 − Ωφ0Lzφ0

)
dx

‖φ0‖2
+ σR′(‖φ0‖2 − 1). (4.14)
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For comparison, we describe the following semi-implicit scheme (GFAL-SI) to discretize the
GFAL (3.17):

φn+1 − φn

τ
=

(
1

2
∆− ϑn

)
φn+1 +

(
ϑn − V − β|φn|2 +ΩLz + χn − σR′(‖φn‖2 − 1)

)
φn, (4.15a)

χn+1 − χn

ξnτ
= 1− ‖φn+1‖2, n = 0, 1, . . . (4.15b)

4.3. Spatial discretization with Fourier pseudospectral method

There are various options to further spatially discretize the previously proposed temporal semi-
discrete schemes to produce corresponding full-discretization algorithms, such as finite element
methods, finite difference methods or spectral methods. We adopt a Fourier pseudospectral method
[12, 58] here. For simplicity, the following description is presented for two-dimensional cases (d = 2),
and the cases of other dimensions can be straightforwardly generalized.

Due to the external trapping potential V (x), the stationary state solution decays to zero ex-
ponentially when |x| → ∞ [12]. Therefore, in practical computations, the problem in Rd can be
naturally truncated to a suitably large bounded domain, which is referred to as the computational
domain here. Especially, we choose D = [−L,L]2 to be the computational domain with periodic
boundary conditions, where L > 0 is large enough so that the domain truncation error can be ig-
nored. Uniformly sampled grid is adopted with mesh size h = 2L/M , where M is an even number.
Then the domain D is divided with (M +1)× (M +1) grid points {(xj , yk)}Mj,k=0 with xj = −L+ jh
and yk = −L+ kh (j, k = 0, 1, . . . ,M).

Let φjk be the numerical approximation for the value of a function φ at (xj , yk). The Fourier
pseudospectral approximations to the operators ∆ and Lz are given as

(∆hφ)jk = −
M/2−1∑

p=−M/2

M/2−1∑

q=−M/2

(
(̺xp)

2 + (̺yq)
2
)
φ̂pq e

i 2jpπ
M ei

2kqπ

M ,

(Lh
zφ)jk = −i

(
xj(∂

h
yφ)jk − yk(∂

h
xφ)jk

)
, j, k = 0, 1, · · · ,M − 1,

where ̺xp = pπ/L, ̺yq = qπ/L, −M/2 ≤ p, q ≤ M/2− 1, and

(∂h
xφ)jk =

M/2−1∑

p=−M/2

M/2−1∑

q=−M/2

i̺xp φ̂pq e
i 2jpπ

M ei
2kqπ

M , (∂h
yφ)jk =

M/2−1∑

p=−M/2

M/2−1∑

q=−M/2

i̺yq φ̂pq e
i 2jpπ

M ei
2kqπ

M ,

with φ̂pq = 1
M2

∑M−1
j=0

∑M−1
k=0 φjk e

−i 2jpπ
M e−i 2kqπ

M the discrete Fourier coefficients of mesh function

φjk. Therefore, the discretized energy Eh(·), chemical potential µh(·) and L2-norm ‖ · ‖h can be,
respectively, computed as

Eh(φ) = h2
M−1∑

j=0

M−1∑

k=0

(
1

2
|(∂h

xφ)jk|2 +
1

2
|(∂h

xφ)jk|2 + V (xj , yk) |φjk|2 +
β

2
|φjk|4 − Ωφjk(L

h
zφ)jk

)
,

µh(φ) = Eh(φ) +
βh2

2

M−1∑

j=0

M−1∑

k=0

|φjk|4 , ‖φ‖2h = h2
M−1∑

j=0

M−1∑

k=0

|φjk|2 .

Finally, we shall solve the linear elliptic equation with constant coefficient using the discrete
Fourier transform (DFT), which is the main cost for the implementation of semi-implicit temporal
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discretization schemes presented in Section 4.1 and Section 4.2. Taking (4.10) as an example to
apply the Fourier pseudospectral spatial discretization with d = 2, we get

(
1 +

τ

2
ηn +

τ2

2
ϑn

)
φ̃n+1
jk − τ2

4

(
∆hφ̃

n+1
)
jk

= Hn
jk, j, k = 0, 1, . . . ,M − 1, (4.16)

where φ̃n+1
jk and Hn

jk are, respectively, the discretized values of φ̃n+1 and Hn in (4.10). Then,
performing the DFT on both sides of (4.16), yields

(
1 +

τ

2
ηn +

τ2

2
ϑn +

τ2

4

(
(̺xp)

2 + (̺yq)
2
))

̂(φ̃n+1)pq = (̂Hn)pq, p, q = −M

2
, . . . ,

M

2
− 1.

Taking the inverse DFT, the system is solved as

φ̃n+1
jk =

M/2−1∑

p=−M/2

M/2−1∑

q=−M/2

(̂Hn)pq

1 + τ
2η

n + τ2

2 ϑ
n + τ2

4

(
(̺xp)

2 + (̺yq)2
) ei

2jpπ

M ei
2kqπ

M .

We can see that the memory cost is O(M2) and the computational cost is O(M2 ln(M2)) when the
FFT method is applied here.

Remark 4.6. Direct numerical computation with a very fine spatial grid in 2D and 3D is expensive,
even when the FFT method is applied. This typically arises, for example, in the simulation of the
ground state of fast rotating BECs, where a relatively small spatial mesh size is taken to capture
complex vortex patterns with high resolution. Similar to [57], we adopt a cascaded multigrid tech-
nique to further improve the computational efficiency. In 2D, the basic idea of its implementation
is as follows: First, we solve the minimization problem (1.3) by an iterative algorithm presented
in Section 4.1-4.2 on a coarse spatial grid with (2p + 1) × (2p + 1) points for some positive inte-
ger p; Then we interpolate the obtained numerical ground state solution to the refined grid with
(2p+1 + 1)× (2p+1 + 1) points to get the initial guess for the iterative algorithms on this finer grid;
Repeat this process several times until we obtain the numerical ground state solution on the finest
grid. This multigrid technique is applied in our numerical experiments of Example 5.6 in Section 5.

5. Numerical results

In this section, we show several numerical examples ranging from 1D to 2D to illustrate the
accuracy and efficiency of the proposed methods. Section 5.1 gives comparison of the different
methods for 1D cases, while Section 5.2 is for 2D cases with and without the rotation term, and
Section 5.3 sticks to 2D cases with rotation term under two different trapping potential functions.
All algorithms were implemented in Python (v3.8.10) and all experiments were performed on a
workstation with a 2.40 GHz CPU.

We choose the damping coefficient η(t) in the DSFDN (3.9) and the DSFAL (3.18) as η(t) = α/t,
where α ≥ 3 is a parameter that can be tuned for optimal numerical performances. Initial velocity
v0 is uniformly taken as v0 ≡ 0 throughout the experiments. Three types of trapping potential V (x)
are involved in our numerical experiments: (i) the harmonic potential [12]

V (x) = Vho(x) :=
1

2

{
γ2xx

2, d = 1,

γ2xx
2 + γ2yy

2, d = 2,
(5.1)
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where γx, γy > 0 are the trapping frequencies; (ii) the harmonic-plus-lattice potential [6, 12]

V (x) = Vho(x) +
κ

2

{
sin2 (qxx) , d = 1,

sin2 (qxx) + sin2 (qyy) , d = 2,
(5.2)

where κ, qx and qy are positive constants; and (iii) the harmonic-plus-quartic potential in 2D [57]

V (x) = (1− θ)
x2 + y2

2
+

κ
(
x2 + y2

)2

4
(5.3)

with θ and κ two positive constants. For non-rotating BECs, refer to [6], we uniformly take the
initial value φ0 as

φ0(x) =
φTF(x)

‖φTF‖ with φTF(x) =

{√
(µTF − V (x)) /β, if V (x) ≤ µTF,

0, otherwise,
(5.4)

where µTF = 1
2 (3βγx)

2/3 if d = 1 and µTF = (βγxγy)
1/2 if d = 2.

For fair comparisons, we conduct all numerical experiments on the bounded domain D with
periodic boundary conditions, and the Fourier pseudospectral method described in Section 4.3 is
utilized for spatial discretization with mesh size h. Furthermore, the stabilization parameters ϑn in
all semi-implicit schemes are chosen as the following form:

ϑn =
1

2

(
(V + β|φn|2)max + (V + β|φn|2)min

)
, (5.5)

where (·)max and (·)min represent respectively the maximum and minimum with respect to the
spatial variable x ∈ D. Finally, the stopping criterion (4.7)-(4.8) is adopted for the DSFDN-LF,
DSFDN-SI, GFLM-FE and GFLM-BF schemes, while the stopping condition given in (4.13) is
applied for the DSFAL-SI and GFAL-SI schemes. In the following, we use “Iter” and “CPU(s)” to
represent the number of iterations and the CPU time consumed to achieve convergence, respectively.

5.1. Numerical results and comparisons in 1D examples

In this subsection, we perform some numerical computations in the 1D situation to compare
the numerical efficiency of the second-order flow methods proposed in Section 3-4 with the GFLM
methods described in Appendix A. The harmonic potential (5.1) and the harmonic-plus-lattice
potential (5.2) in 1D case are considered here with γx = 1, κ = 25 and qx = π

2 . D = [−32, 32] is set
to be the computational domain, and h = 1

32 is taken as the mesh size. We choose the tolerances
εv = εr = 10−12 and εc = 10−14 in (4.7)-(4.8) and (4.13) all through 1D cases. Unless specified, we
use Eg and µg to represent the corresponding GP energy and chemical potential of the computed
ground state solution, respectively.

Example 5.1. In this example, we investigate the properties of second-order flow algorithms
through a simple example in 1D with harmonic potential (5.1) and β = 250.

We first numerically check the impact of damping parameter α on the DSFDN-SI as a showcase
example. Fig. 3(a) visualizes the temporal error order for approximating φ(·, t = 5) with three

different values of α. The error function eφ∞ (tn) = ‖φ (·, tn)− φn‖∞ at t = tn = nτ is introduced
here. It appears that numerically larger α gives more stable iterates, and a stable second-order
temporal accuracy is achieved for all α > 3 when τ < 0.01. Based on this observation, we fix four
different time step sizes, vary α from 3 to 300, and test the total time consumed in order to reach
the stopping criteria. Fig. 3(b) shows that when the time step size τ is small (e.g., τ = 0.01 or
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Figure 3: Numerical tests of DSFDN-SI with different α for 1D cases in Example 5.1.

0.001), the fastest convergence with respect to t is achieved around α = 40. It is believed that
this result is close to that of the continuous PDE system of DSFDN since the small time step sizes
yield a sufficiently accurate approximation to the original continuous system. On the other hand,
we observe in Fig. 3(b) that DSFDN-SI achieves the fastest convergence with respect to t when α
takes a larger value and a larger step size is used (e.g., τ = 0.1). Although the approximation of the
continuous flow by DSFDN-SI could be rough for such large time step, as a numerical algorithm,
fewer iterations indicate less CPU computational time, which is still appealing as an algorithm for
finding the BEC ground states. Therefore, in later examples, we will not exclude to use large time
step such as τ = 0.1. The experiments here provide intuition for selecting the damping parameter.

We then explore the numerical efficiency of DSFDN compared with GFLM. Table 2 exhibits the
results. For the semi-implicit schemes, when the time step size 0.05 ≤ τ ≤ 1, the DSFDN-SI only
needs approximately one-tenth of the iterations required for the GFLM-BF to reach the stopping
condition, and the CPU time consumed is correspondingly shorter. For the explicit schemes, the
maximal size of a stable time step allowed for the GFLM-FE is approximately 0.0006, whereas the
DSFDN-FE can choose up to 0.025, which is slightly larger than

√
0.0006. This result corroborates

our discussion in Section 4.1 and illustrates that the DSFDN-LF can boost performance by rescaling
the time step sizes compared with the gradient flow methods.

Next we verify the temporal discretization schemes described in Section 4.1 holding O(τ2) accu-
racy. It can be seen from Fig. 4(a) that for a fixed α, the number of iterations required to converge
for the DSFDN-SI is approximately inversely proportional to the time step size τ when it is suit-
ably small (e.g., τ ≤ 0.1 for α = 300 as shown in the figure). This illustrates that the DSFDN-SI,
as a second-order accurate temporal discretization scheme, can approach well its continuous form.
Fig. 4(b) further visualizes the temporal error order for the DSFDN-SI and DSFDN-LF by exam-

ining the error functions eλ∞(tn) = |λφ (tn)−λn| and eφ∞(tn) = ‖φ (·, tn)−φn‖∞ at t = tn. Fig. 4(b)
shows that both schemes achieve O(τ2) time accuracy for approximating λφ(t) and φ(·, t) at t = 1.
It should be noted that the O(τ2) time error vanishes at the convergent state, as mentioned in
Section 3-4.

Lastly, we fix τ = 0.1 and α = 300, and explore the convergence behaviors of the DSFDN-SI
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Table 2: Comparison of numerical results computed by the DSFDN-SI, GFLM-BF, DSFDN-LF and GFLM-FE
schemes for the 1D BEC in Example 5.1.

Method α τ Iter CPU(s) Eg µg enr

DSFDN-SI

30000 1 576 0.34 15.62475 26.01221 6.13E-13

5000 0.5 489 0.28 15.62475 26.01221 7.26E-13

300 0.1 564 0.31 15.62475 26.01221 5.58E-13

100 0.05 646 0.36 15.62475 26.01221 7.77E-13

100 0.025 1196 0.63 15.62475 26.01221 9.39E-13

GFLM-BF

- 1 5804 2.25 15.62475 26.01221 9.94E-13

- 0.5 5812 2.24 15.62475 26.01221 9.95E-13

- 0.1 5854 2.25 15.62475 26.01221 1.00E-12

- 0.05 5912 2.29 15.62475 26.01221 9.94E-13

- 0.025 6025 2.32 15.62475 26.01221 9.95E-13

DSFDN-LF

100 0.025 1137 0.46 15.62475 26.01221 4.90E-13

100 0.02 1422 0.62 15.62475 26.01221 4.35E-13

100 0.01 2844 1.13 15.62475 26.01221 8.88E-13

GFLM-FE

- 0.0006 9317 2.14 15.62475 26.01221 9.98E-13

- 0.0004 13982 3.18 15.62475 26.01221 9.96E-13

- 0.0001 55980 12.68 15.62475 26.01221 9.99E-13
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Figure 4: Numerical results of different numerical schemes for 1D cases in Example 5.1.

scheme by investigating the evolution of various variables. We first compare the decaying phe-
nomenon concerning the maximal residual enr (4.7) of DSFDN-SI and GFLM-BF. From left subfig-
ure of Fig. 5, we observe that for the GFLM-BF scheme, enr shows a linear exponential downward
trend, whereas for the DSFDN-SI scheme, enr shows a faster oscillating decline. Then we show the
change curves of the three quantities enr (4.7), dnv (4.8), and dna in DSFDN-SI during the iterative
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Figure 5: Convergence behavior of DSFDN-SI for Example 5.1. Left: Decaying process comparison for enr of DSFDN-
SI and GFLM-BF. Right: Decaying process of various quantities for DSFDN-SI: the maximal residual of Euler-
Lagrange equation enr , the discretized velocity dnv and the discretized acceleration dna .

process, where

dna :=

∥∥φ̃n+1 − 2φn + φn−1
∥∥
∞

τ2
, n ≥ 1. (5.6)

From right subfigure of Fig. 5, all the three quantities in DSFDN-SI decay with oscillations, and
enr can be lower than dnv and dna . This oscillation phenomenon is one of the features of inertial
dynamics, which is also typically observed in Nesterov’s (or Polyak’s) accelerated gradient method
and the second-order flow systems for convex optimization problems.

In all the subsequent examples in 1D, we always adopt semi-implicit numerical schemes with
τ = 0.1 and α = 300.

Example 5.2. In this example, we compare the robustness of the DSFDN approach and the GFLM
approach in 1D problems. Fig. 6 shows the number of iterations required to converge of the DSFDN-
SI and GFLM-BF schemes under different potential functions when β varies from 1 to 10000. From
this figure, we can observe that the DSFDN-SI scheme shows more efficient and robust results
than the GFLM-BF scheme for both the harmonic potential (5.1) and the harmonic-plus-lattice
potential (5.2). In particular, under the harmonic-plus-lattice potential, the different values of β
have a significant impact on the convergence rate of the GFLM-BF scheme. In contrast, the number
of iterations required for the convergence of the DSFDN-SI scheme for different β is always in a
small range (between 500 and 2000), which indicates an insensitivity of the DSFDN-SI scheme to
the nonlinearity strength β and shows the strong robustness of our DSFDN approach.

Example 5.3. In this example, we investigate the numerical performance of the DSFAL approach.
To this end, we take V (x) as the harmonic potential (5.1) and test the convergence results of the
DSFAL-SI scheme (4.11) and the GFAL-SI scheme (4.15) for different β. Fix σ = 100. Fig. 7
shows the number of iterations to converge against various constant b > 0 appeared in the scaling
factor ξ(t) (3.19) when β is 250, 3000 and 10000. From Fig. 7 and additional results not shown
here for brevity, we find that the constant b affects significantly the overall convergence rate of the
DSFAL-SI scheme when it is not too large, and the larger b is, the smaller number of time steps
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Figure 6: Number of iterations of the DSFDN-SI and GFLM-BF schemes to converge for various values of β under
the harmonic potential (left) and the harmonic-plus-lattice potential (right) in Example 5.2.

5 10 15 20
b

1000

2000

3000

4000

5000

# 
Ite

r

β= 250

GFAL-SI
DSFAL-SI

20 40 60 80 100
b

1000

2000

3000

4000

5000

# 
Ite

r

β= 3000
GFAL-SI
DSFAL-SI

50 100 150 200
b

1000

2000

3000

4000

# 
Ite

r

β= 10000
GFAL-SI
DSFAL-SI

Figure 7: Number of iterations of the DSFAL-SI and GFAL-SI schemes to converge for various values of the constant
b appeared in the scaling factor ξ(t) in (3.19) under different nonlinear strengths β in Example 5.3.

is required to reach the stopping criteria (i.e., the faster the convergence is). The results in Fig. 7
show that, compared with the GFAL-SI scheme, the DSFAL-SI scheme requires a larger constant b
to make the gradient flow of χ match the convergence speed of the damped second-order flow with
respect to φ and obtain a better overall convergence rate.

On the other hand, Table 3 shows a comparison of the DSFAL-SI scheme and the DSFDN-SI
scheme when β is 250, 3000 and 10000. From Table 3, we observe that the DSFAL-SI scheme with
a suitably large b can achieve a comparable numerical performance as the DSFDN-SI scheme in this
1D example.

5.2. Numerical results and comparisons in 2D examples

Then we compare different methods in 2D. Unless otherwise specified, the computational domain
and the mesh size are chosen to be D = [−16, 16]2 and h = 1

32 , respectively. The following seven
types of initial guesses for ground states are used in our numerical computations in rotating cases
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Table 3: Numerical comparison of the DSFDN-SI and DSFAL-SI schemes for different β in Example 5.3.

Method β τ b Iter CPU(s) Eg µg enr

DSFDN-SI

250 0.1 - 523 0.2898 15.62475 26.01221 9.81E-13

3000 0.1 - 434 0.2282 81.77652 136.2867 4.71E-13

10000 0.1 - 379 0.2035 182.4691 304.1114 4.69E-13

DSFAL-SI

250 0.1 20 677 0.3947 15.62475 26.01221 9.72E-13

3000 0.1 100 436 0.2625 81.77652 136.2867 7.35E-13

10000 0.1 200 399 0.2343 182.4691 304.1114 9.88E-13
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Figure 8: Number of iterations of the DSFDN-SI scheme and the GFLM-BF scheme in 2D non-rotating cases for
various values of β under the harmonic potential (left) and the harmonic-plus-lattice potential (right).

in 2D [6, 17]:

(a) φa(x) = φho(x) =
1√
π
e−(x

2+y2)/2, (5.7a)

(b) φb(x) = φv
ho(x) = (x+ iy)φho(x), (b) φb(x) = φb(x), (5.7b)

(c) φc(x) =
φho(x) + φv

ho(x)∥∥φho + φv
ho

∥∥ , (c) φc(x) = φc(x), (5.7c)

(d) φd(x) =
(1− Ω)φho(x) + Ωφv

ho(x)∥∥(1− Ω)φho +Ωφv
ho

∥∥ , (d) φd(x) = φd(x). (5.7d)

The tolerances in stopping conditions (4.7)-(4.8) and (4.13) are taken as εv = εr = 10−10 and
εc = 10−12 for all 2D cases.

Example 5.4. In this example, we illustrate the efficiency of DSFDN-SI through abundant com-
parison with other methods. Two different problem settings are considered here:

(i) a fixed Ω with various β;

(ii) a fixed β with various Ω.

We first set Ω = 0 and vary the value of β from 1 to 50000. φ0(x) given in (5.4) is taken as our
initial guess for ground state. The left-hand side of Fig. 8 shows the number of iterations to converge
against various β with V (x) being taken as the harmonic potential (5.1) with γx = γy = 1, and the
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Table 4: Numerical results computed by GFLM-BF and DSFDN-SI with different parameters, for 2D rotating BECs
in Example 5.4 with β = 500 and different Ω. The maximum iterations allowed for all algorithms are set as 500000.

Ω Method η τ Iter CPU(s) Energy enr

0.5

GFLM-BF - 0.01 500000 42839 8.032225 9.59E-05

DSFDN-SI 30/t 0.01 157880 15984 8.019671 9.21E-11

DSFDN-SI 50/t 0.1 23838 2510 8.019671 9.79E-11

DSFDN-SI 4 0.1 114796 11630 8.019671 9.85E-11

0.6

GFLM-BF - 0.01 500000 42697 7.584454 1.41E-08

DSFDN-SI 30/t 0.01 66402 6222 7.584454 4.50E-11

DSFDN-SI 100/t 0.1 10290 1092 7.584454 2.29E-11

0.7

GFLM-BF - 0.01 500000 42815 6.972631 5.55E-07

DSFDN-SI 30/t 0.01 86391 8960 6.972631 9.96E-11

DSFDN-SI 300/t 0.1 17211 1827 6.972631 1.40E-11

0.8

GFLM-BF - 0.01 500000 42996 6.102827 8.35E-04

DSFDN-SI 30/t 0.01 73738 7723 6.099744 3.60E-11

DSFDN-SI 200/t 0.1 18843 2001 6.099744 7.98E-12

0.9

GFLM-BF - 0.01 500000 42890 4.780601 5.78E-05

DSFDN-SI 30/t 0.01 254448 26307 4.777739 9.98E-11

DSFDN-SI 50/t 0.1 24773 2614 4.777739 9.99E-11

right-hand side shows the situation when V (x) is taken as the harmonic-plus-lattice potential (5.2)
with γx = γy = 1, κ = 25 and qx = qy = π

2 . From Fig. 8, similar outcomes to 1D cases (see Fig. 5)
are further observed in 2D cases without rotation. The superiority of the DSFDN-SI method in
terms of convergence rate compared to the GFLM-BF method is also prominent for 2D cases.

Then we consider the rotating BEC in 2D cases with angular velocity Ω > 0. Fix β = 500
for different Ω. V (x) is chosen to be the harmonic potential (5.1) with γx = γy = 1. The initial
guess for ground state is taken as φd(x) (5.7d). The maximum number of iterations allowed for
all algorithms is set to be 500000. Our numerical computations show that in this example when
Ω ≥ 0.5, with the same stabilization factor given in (5.5), the allowed maximum time step size of
the GFLM-BF scheme for different Ω is approximately 0.01, whereas the DSFDN-SI scheme can
take the time step size up to 0.1. Therefore, we only test the situation τ = 0.01 for the GFLM-BF
scheme, and test two cases of τ = 0.1 and τ = 0.01 for the DSFDN-SI scheme. We uniformly select
α = 30 in the DSFDN-SI scheme when τ = 0.01. For τ = 0.1, since the computational cost is less
intensive, we test the DSFDN-SI scheme with different α = 50, 100, 150, 200, 250, and 300, and
select the optimal result among which.

We make some comments on the work in [52, 40] here. Compared with the DFPM in [52, 40],
the two families of damped second-order flows proposed in this paper adopt completely different
ways of handling constraints. Moreover, efficient second-order time-accurate discretization schemes
are employed in this paper rather than the symplectic Euler algorithm in [52, 40] with first-order
accuracy for the time derivatives. The second-order discretization of the time derivatives can better
represent the continuous flows without increasing the computational complexity in comparison with
first-order discretizations, thus obtaining faster convergence rates when a suitably larger time step
is applied. In addition, numerical experiments in this paper take the general damping coefficient
η(t) as α/t for some α ≥ 3 instead of simply using constant damping parameters as in [52, 40]. In
that regard, we test an example where η is constant and list the result in Table 4 but using the
same discretization scheme as DSFDN-SI. Referring to [52], we take η = 4, τ = 0.1, and test the
case of Ω = 0.5. Even though the discretization is different from [52, 40], they approximate the
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Table 5: Numerical results of 2D rotating BECs computed by DSFAL-SI with different augmentation parameter σ in
Example 5.5 for β = 500 and different Ω.

Ω σ τ Iter CPU(s) Energy enr enc
0.5 200 0.1 10786 1152 8.019671 1.08E-11 1.20E-14

0.6 100 0.1 11055 1178 7.584454 9.98E-12 2.79E-14

0.7 100 0.1 13738 1366 6.972631 9.60E-12 3.38E-14

0.8 100 0.1 20048 2102 6.099744 6.47E-12 9.33E-14

0.9 50 0.1 47958 4756 4.777739 3.57E-11 5.67E-13

same dynamics when the time step is small enough.
The results in Table 4 manifest that the second-order flow method also achieves a compelling

advantage over the gradient flow method when computing the rotating BEC ground state. First,
GFLM-BF fails to reach the convergence condition in all cases within 500000 iterations, whereas
DSFDN-SI with the same time step size τ = 0.01 can reach the convergence condition before the
threshold, and the numerical ground state energy computed by DSFDN-SI is consistent with the
result in [6, 57]. Moreover, since a larger time step size is available for DSFDN-SI, the advantage
of its convergence rate is more promising when τ = 0.1. Lastly, for the case where η is constant,
the result of its convergence rate is poor than that of η = α/t.

Example 5.5. In this example, we explore the effect of DSFAL-SI computing rotating BEC ground
state with setting (ii) in Example 5.4. Different from the (non-rotating) case in 1D in Example 5.3,
the rotational term, especially with high rotating speed, makes the problem more difficult to solve in
this case. A larger scaling factor usually results in less robustness of the computational algorithm.
We take the constant b in (3.19) as b = 0.8 for Ω = 0.9 and b = 1 for the rest cases in this example.

To compare with DSFDN-SI, we use the same initial value and time step for DSFAL-SI. Here
we uniformly take α = 200, and test different augmentation coefficient σ = 50, 100, and 200. The
optimal results among which is shown in Table 5. Note that the converged energies computed by
DSFAL-SI are the same as that of DSFDN-SI, with a comparable convergence rate. However, the
evolution process of the two methods from the initial value to the converged solution is significantly
different. Fig. 9(a) depicts the fictitious time evolution of the density |φ|2 computed by these two
methods for the case Ω = 0.6 (Note that we intercepted the figures obtained from the computational
domain, to exhibit the evolution process more clearly). It can be seen that throughout the evolution
process computed by DSFDN-SI, the contour map of density |φ|2 always presents a relatively regular
image with a relatively fixed size of the bright color (value is larger than 0) area. However, for
DSFAL-SI that does not need to satisfy the constraint during the evolution, the contour maps of
|φ|2 have very irregular shapes in the early stages and tend to be regular gradually after a certain
time. Eventually, both methods converge to the same state. Fig. 9(b) shows the energy changing
during the evolution. The energy computed by DSFDN-SI decreases steadily as the fictitious time
progresses, while the energy computed by DSFAL-SI increases rapidly at the beginning and then
immediately decreases to the same level as DSFDN-SI (see Table 4).

5.3. 2D problems with fast rotation

In this subsection, we apply the DSFDN-SI scheme to rotating BECs with strong interaction
and high-speed rotation, which are more related to practical physical problems. A difficulty of
this kind of problems is that it is not only highly nonlinear but also highly non-convex, which
usually requires expensive computational costs. We compare the ground state energies computed
by DSFDN-SI with those computed by the regularized Newton method (RNM) in [57]. In addition,
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(a) Time evolution of the density |φ|2 by DSFAL-SI (top row) and DSFDN-SI (bottom row).
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(b) GP energy changing during the time evolution of DSFAL-SI and DSFDN-SI. In axis labels, E(t) represents the
value of GP energy at time t, and Eg represents the value of the lowest energy during the evolution of DSFDN-SI.

Figure 9: Evolution of DSFAL-SI and DSFDN-SI in Example 5.5 when Ω = 0.6.

the methods based on gradient flow are not considered here because they are too costly for these
examples, which may take several days.

Example 5.6. In this example, we still take V (x) as the harmonic potential (5.1) as Example 5.4
but with a larger value of β, which increases the nonlinearity of the problem. Here we fix β = 1000,
set the computational domain as [−12, 12]2, and vary Ω from 0.5 to 0.95. It is worth noting that for
the rotating BEC with harmonic potential, the ground state exists when the angular velocity satisfies
|Ω| < min{γx, γy} = 1 [17], thus Ω = 0.95 is a considerably high angular rotation speed for this case.
The result from [57] is invoked for comparison, and the cascadic multigrid method (see Remark 4.6)
used in [57] is adopted in this example, beginning with the coarsest grid (24 + 1) × (24 + 1) and
ending with the finest grid (28 +1)× (28 +1). The tolerance parameters are set as εv = εr = 10−10

for the finest grid and εv = εr = 10−6 for the rest coarser grids. Table 6 lists the converged energy
computed by DSFDN-SI with the corresponding CPU time consumed and the parameter selection
for various initial data in (5.7) and different Ω. The one with the lowest energy among results with
different initial values for each given Ω is marked by a “⋆” sign. Fig. 10 shows the contour plots
|φ(x)|2 of the convergent solution with lowest energy. It is observed from Fig. 10 that the vortices
exhibit a lattice structure at high rotational speeds, forming the so-called Abrikosov lattice (see,
e.g., [12, 30, 36]).
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Compared with result provided in [57, Table 7], our results show that when Ω = 0.5, 0.6, 0.7
and 0.8, the lowest converged energies computed by DSFDN-SI are consistent with that obtained
by RNM [57], and when Ω = 0.9 and 0.95, we can get a convergent solution with lower energy via
DSFDN-SI.

Table 6: Converged GP energy obtained numerically by DSFDN-SI combined with a multigrid technique using different
initial values for β = 1000 and different Ω in Example 5.6 (with lowest energy for each Ω marked by “⋆”).

Ω 0.5 0.6 0.7 0.8 0.9 0.95

(a) 11.0954⋆ 10.4464 9.5289 8.2610 6.3608 4.8822⋆

(b) 11.1369 10.4392 9.5289 8.2633 6.3617 4.8822

(b) 11.1054 10.4392 9.5289 8.2628 6.3607 4.8822

(c) 11.1054 10.4392 9.5301 8.2610 6.3607 4.8822

(c) 11.1054 10.4392 9.5283 8.2637 6.3607 4.8822

(d) 11.1054 10.4392 9.5301 8.2637 6.3607 4.8822

(d) 11.1054 10.4392⋆ 9.5283⋆ 8.2610⋆ 6.3601⋆ 4.8822
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Figure 10: Contour plots of |φg(x)|
2 corresponding to the lowest energy levels (with “⋆” sign) listed in Table 6.

Example 5.7. In this example, we take V (x) as the harmonic-plus-quartic potential (5.3) with
γx = γy = 1, θ = 1.2 and κ = 0.3. The computational domain is set as D = [−12, 12]2, and the
tolerance parameters are chosen as εr = εv = 10−7. We uniformly take φa(x) (5.7a) as the initial
value in this example. First, we consider cases tested in [57] that β = 1000 with different Ω = 1.0,
2.0, 2.5 and 5.0, then we compute cases β = 10000 with Ω = 4.0 and 5.0. Spatial mesh size h,
time step τ , damping parameter α, convergent energy, the number of iterations and CPU time
consumed are listed in Table 7. Moreover, Fig. 11 shows the contour plot of the density function
|φ|2 of convergent solutions for all these six cases.
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Table 7: Numerical results computed by DSFDN-SI with different parameters for strong interacting and fast rotating
BECs in Example 5.7.

β 1000 10000

Ω 1 2 2.5 5 4 5

h 24/28 24/28 24/28 24/29 24/29 24/29

τ 0.1 0.1 0.03 0.03 0.03 0.03

α 100 100 40 40 40 40

Iter 294749 141487 48764 30037 101535 289436

CPU(s) 6522 3207 1115 3211 11472 34506

Energy 12.4820 −2.3432 −21.7770 −513.7313 −167.2832 −476.5897
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Figure 11: Corresponding contour plots of the density function |φg(x)|
2 of Table 7

From Fig. 11, it can be observed that the computed solutions are all vortex-symmetric, and a
giant hole appeared in the middle for high rotational speed cases. This phenomenon is in line with
the characteristics of the ground sate of fast rotating BECs with harmonic-plus-quartic potential as
observed in existing experiments [35] and numerical simulations [2], and the spatial division applied
here is sufficient to visualize the vortices. Meanwhile, the CPU time consumed in these six cases
is acceptable, whereas there were few reports of such problems using gradient flow methods due to
the high computational cost. Additionally, comparing our results for β = 1000 with the results in
[57, Table 9], it shows that for the case of Ω = 1.0, the convergent energy computed by DSFDN-SI
is consistent with the one obtained by RNM, and for Ω = 2.0, 2.5 and 5.0, lower energy solutions
can be obtained using DSFDN-SI compared to RNM. This result and the one in Example 5.6 both
demonstrate the ability of the second-order flow methods for computing lower-energy solutions of
fast rotating BECs.
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6. Concluding remarks

This paper proposed two second-order damped hyperbolic flows to approach the ground states
of rotating Bose-Einstein condensates (BECs), namely the damped second-order flow with discrete
normalization (DSFDN) and the damped second-order flow based on augmented Lagrangian (DS-
FAL). The DSFDN extends the framework of the popular normalized gradient flow methods in
the literature to second-order flows and redesigns the Lagrange multiplier to always keep track the
normalization constraint in the continuous level. The DSFAL is generated from the augmented
Langrangian framework that does not need to satisfy the constraint at every moment but only at
the end of convergence. Both methods have their advantages. The DSFDN method is easier to
implement for the problems with one normalization constraint, such as the single-component BEC
under the normalization or mass constraint focused in this paper. However, it is not easy to directly
generalize the idea to general multi-component BEC systems with multiple constraints, e.g., the
high-spin BEC under the two constraints on the total mass and magnetization. In that regard,
DSFAL seems to be more flexible to problems with multiple constraints, though it has more param-
eters to tune. Nevertheless, both proposed flows lead to novel and interesting topics on second-order
hyperbolic type partial differential equations (PDEs) or systems. Theoretical and numerical inves-
tigation of these PDEs would give us a deeper understanding, while we have concentrated on the
numerical simulations and their applications in computing the ground states of rotating BECs via
numerically discretizing the PDE systems. Detailed discretization methods are presented, which
generate a series of new algorithms. Extensive one- and two-dimensional numerical examples show
that the proposed second-order flow methods are capable of accurately and efficiently computing
the ground states of non-rotating and rotating BECs. In particular, the second-order flow methods
can achieve better performance in terms of convergence rate and robustness in comparison with
their first-order counterparts, i.e., normalized gradient flows. It is not surprising that the DSFDN
and the DSFAL often have quite different behaviors during the convergence process, even though
they eventually converge to the same state in our experiments. We have observed that numerically
the DSFDN-SI, a stabilized semi-implicit discretization of the DSFDN, is an efficient algorithm
for dealing with strongly nonlinear and non-convex problems. Comparing the results of existing
numerical algorithms based on Newton’s method in the literature manifests that the second-order
flow method can compute solutions with lower energy.

We believe that the current paper initializes an interesting research topic for further investiga-
tion, as the study here is mostly algorithmically and experimentally oriented, and many theoretical
questions are open. It would be worth having analysts’ efforts on the well-posedness, regularity of
solutions of the proposed second-order flows, and also the asymptotic behavior of their trajectories.
On the other hand, the convergence and convergence rates of second-order flows for such constrained
non-convex minimization problems are also of high interests, both theoretically and numerically.

We also find that our current work might have connections to the so-called phenomenological
damping (PD) [26] of which the original idea is traced back to Pitaevskii in 1958. The mechanism
of damping appeared to be the common characteristic of both methods. The difference is that our
work is based on some artificial mechanical dynamics from optimization point of view while PD
was directly rooted in the GPE based on quantum mechanics. It is not clear how PD performs
numerically in comparison with gradient flow type methods or our second-order flow approaches. It
would be interesting to have some deeper understanding on these two types of damping dynamics
reflecting different perspectives.
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Appendix A. Normalized gradient flow approaches

In this section, we describe normalized gradient flow methods for computing the ground state of
rotating BECs defined in (1.3). In particular, we extend the GFLM approach proposed in [46, 21]
to the rotating BEC model and present its typical temporal discretizations.

Appendix A.1. Brief review of conventional normalized gradient flows in rotational frame

The basic idea of the GFDN is to apply the gradient flow to an unconstrained minimization for
the GP energy functional E(φ) (1.1) and then pull the solution back to the normalization constraint
manifold S. More precisely, setting tn = nτ for n = 0, 1, . . . with τ > 0 a time step length, the
GFDN for a rotating BEC reads [12, 14, 17, 58]





φ̇ = −δE(φ)

δφ
=

1

2
∆φ− V φ− β|φ|2φ+ΩLzφ, x ∈ Rd, t ∈ [tn, tn+1),

φ(x, tn+1) := φ(x, t+n+1) =
φ(x, t−n+1)

‖φ(·, t−n+1)‖
, x ∈ Rd, n ≥ 0,

φ(x, 0) = φ0(x), x ∈ Rd,

(A.1)

where φ(x, t±n ) = limt→t±n
φ(x, t) and φ0 is an initial guess for the ground state satisfying the

normalization condition, i.e., ‖φ0‖ = 1. In fact, the GFDN (A.1) can be viewed as a first-order
splitting for the following CNGF [14, 17]:




φ̇ =

1

2
∆φ− V φ− β|φ|2φ+ΩLzφ+ µφ(t)φ, x ∈ Rd, t ≥ 0,

φ(x, 0) = φ0(x), x ∈ Rd,
(A.2)

with ‖φ0‖ = 1 and µφ(t) =
1

‖φ(·,t)‖2

∫
Rd

(
1
2 |∇φ|2 + V |φ|2 + β|φ|4 − ΩφLzφ

)
dx. It is proved that the

CNGF (A.2) conserves normalization-constraint and is energy-diminishing [17], i.e.,

‖φ(·, t)‖2 ≡ ‖φ0‖2 = 1,
d

dt
E(φ(·, t)) = −2‖φ̇(·, t)‖2, ∀t ≥ 0. (A.3)

Formally, as t → +∞, the CNGF (A.2) will converge to the ground state provided that the initial
data φ0 is properly selected [17].

By a similar discussion in [46] for non-rotating BEC case, one can see that the GFDN (A.1)
suffers from the inaccuracy for finite time step τ > 0 due to the O(τ) operator-splitting error.
Although the temporal error of the GFDN (A.1) could be eliminated by some special discretizations
such as the linearized backward Euler scheme in single-component case [46], the limitation of the
further discretization for the GFDN is inconvenient in practice. We refer to [46] for more details.
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Appendix A.2. Normalized gradient flow with Lagrange multiplier for rotating BECs

Following the work in [46, 21], we propose the GFLM as a modified GFDN to compute the
ground state of a rotating BEC as





φ̇ =
1

2
∆φ− V φ− β|φ|2φ+ΩLzφ+ µφ(tn)φ, x ∈ Rd, t ∈ [tn, tn+1),

φ(x, tn+1) := φ(x, t+n+1) =
φ(x, t−n+1)

‖φ(·, t−n+1)‖
, x ∈ Rd, n ≥ 0,

φ(x, 0) = φ0(x), x ∈ Rd,

(A.4)

with ‖φ0‖ = 1 and µφ(tn) = µ(φ(·, tn)) = E(φ(·, tn)) + β
2

∫
Rd |φ(x, tn)|4dx. Apparently, the only

difference between the GFLM (A.4) and the GFDN (A.1) is that the former contains an additional
Lagrange multiplier term µφ(tn)φ in the gradient flow part. On the other hand, the GFLM (A.4)
can also be viewed as an approximation of the CNGF (A.2).

Thanks to the introduction of the Lagrange multiplier term in (A.4), the temporal discretization
for the GFLM (A.4) is very flexible. Setting φ0(x) = φ0(x), we present the following two simple
temporal discretization schemes for the GFLM (A.4):

• the forward Euler scheme (GFLM-FE),

φ̃n+1 − φn

τ
=

(
1

2
∆− V − β|φn|2 +ΩLz + µn

)
φn, (A.5)

• the backward-forward Euler scheme (GFLM-BF),

φ̃n+1 − φn

τ
=

(
1

2
∆− ϑn

)
φ̃n+1 +

(
ϑn − V − β|φn|2 +ΩLz + µn

)
φn, (A.6)

both followed by a normalization step as φn+1 = φ̃n+1/‖φ̃n+1‖, n = 0, 1, . . .. Here, µn = µ(φn) =
E(φn) + β

2

∫
Rd |φn|4dx and ϑn ≥ 0 serves as a stabilization factor which can be properly designed

to such that the time step τ > 0 can be chosen as large as possible [12, 14, 46].
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