
ar
X

iv
:c

s/
00

09
01

0v
2

 [c
s.

D
S

]
10

 O
ct

 2
00

0

Computing Crossing Numbers in Quadratic Time

Martin Grohe

University of Illinois at Chicago

October 31, 2018

Abstract

We show that for every fixedk ≥ 0 there is a quadratic time algorithm that decides whether a given graph has
crossing number at mostk and, if this is the case, computes a drawing of the graph in theplane with at mostk
crossings.

1. Introduction

Hopcroft and Tarjan [13] showed in 1974 that planarity of graphs can be decided in linear time. It is natural to relax
planarity by admitting a small number of edge-crossings in adrawing of the graph. Thecrossing numberof a graph
is the minimum number of edge crossings needed in a drawing ofthe graph in the plane. Not surprisingly, it is NP-
complete to decide, given a graphG and ak, whether the crossing number ofG is at mostk [12]. On the other hand,
for everyfixedk there is a simple polynomial time algorithm deciding whether a given graphG has crossing number
at mostk: It guessesl ≤ k pairs of edges that cross1 and tests if the graph obtained fromG by adding a new vertex
at each of these edge crossings is planar. The running time ofthis algorithm isnΘ(k). Downey and Fellows [6] raised
the question if the crossing-number problem isfixed parameter-tractable, that is, if there is a constantc ≥ 1 such
that for every fixedk the problem can be solved in timeO(nc). We answer this question positively withc = 2. In
other words, we show that for every fixedk there is a quadratic time algorithm deciding whether a givengraphG has
crossing number at mostk. Moreover, we show that if this is the case, a drawing ofG in the plane with at mostk
crossings can also be computed in quadratic time.

It is interesting to compare our result to similar results for computing thegenusof a graph. (The genus of a graph
G is the minimum taken over the genus of all surfacesS such thatG can be embedded intoS.) As for the crossing
number, it is NP-complete to decide if the genus of a given graph is less than or equal to a givenk [17]. For a fixed
k, at first sight the genus problem looks much harder. It is by nomeans obvious how to solve it in polynomial time;
this has been proved possible by Filotti, Miller, and Reif [10]. In 1996, Mohar [14] proved that for everyk there is
actually a linear time algorithm deciding whether the genusof a given graph isk. However, the fact that the genus
problem is fixed-parameter tractable was known earlier as a direct consequence of a strong general theorem due to
Robertson and Seymour [16] stating that all minor closed classes of graphs are recognizable in cubic time. It is easy to
see that the class of graphs of genus at mostk is closed under taking minors, but unfortunately the class of all graphs
of crossing number at mostk is not. So in general Robertson and Seymour’s theorem cannotbe applied to compute
crossing numbers. An exception is the case of graphs of degree at most 3; Fellows and Langston [8] observed that
for such graphs Robertson and Seymour’s result immediatelyyields a cubic time algorithm for computing crossing
numbers.2

Although we cannot apply Robertson and Seymour’s result directly, the overall strategy of our algorithm is inspired
by their ideas: The algorithm first iteratively reduces the size of the input graph until it reaches a graph of bounded tree-
width, and then solves the problem on this graph. For the reduction step, we use Robertson and Seymour’s Excluded
Grid Theorem [15] together with a nice observation due to Thomassen [18] that in a graph of bounded genus (and
thus in a graph of bounded crossing number) every large grid contains a subgrid that, in some precise sense, lies “flat”

Author’s address: Martin Grohe, Department of Mathematics, Statistics, and Computer Science, University of Illinoisat Chicago, 851 S. Mor-
gan St. (M/C 249), Chicago, IL 60607-7045, USA. Email: grohe@math.uic.edu.

1This can be implemented by exhaustive search of the space ofm2k k-tuples of edge pairs, wherem denotes the number of edges of the input
graph.

2This is simply because for graphs of degree at most 3 the minorrelation and the topological subgraph relation coincide.

1

http://arxiv.org/abs/cs/0009010v2

in the graph. Such a flat grid does not essentially contributeto the crossing number and can therefore be contracted.
For the remaining problem on graphs of bounded tree-width weapply a theorem due to Courcelle [3] stating that
all properties of graphs that are expressible in monadic second-order logic are decidable in linear time on graphs of
bounded tree-width.

Let me remark that the hidden constant in the quadratic upperbound for the running time of our algorithm heavily
depends onk. As a matter of fact, the running time isO(f(k) · n2), wheref is a doubly exponential function. Thus
our algorithm is mainly of theoretical interest.

2. Preliminaries

Graphs in this paper are undirected and loop-free, but they may have multiple edges.3 The vertex set of a graph
G is denoted byV G, the edge set byEG. For graphsG andH we letG ∪ H := (V G ∪ V H , EG ∪ EH) and
G \H :=

(

V G \ V H , {e ∈ EG \ EH | both endpoints ofe are contained inV G \ V H}
)

.

2.1. Topological Embeddings. A topological embeddingof a graphG into a graphH is a mappingh that associates
a vertexh(v) ∈ V H with everyv ∈ V G and a pathh(e) in H with everye ∈ EG in such a way that:

– For distinct verticesv, w ∈ V G, the verticesh(v) andh(w) are distinct.

– For distinct edgese, f ∈ EG, the pathsh(e) andh(f) are internally disjoint (that is, they have at most their
endpoints in common).

– For every edgee ∈ EG with endpointsv andw, the two endpoints of the pathh(e) areh(v) andh(w), and
h(u) 6∈ V h(e) for all u ∈ V G \ {v, w}.

We leth(G) :=
(

h(V G), ∅
)

∪
⋃

e∈EG h(e).

2.2. Drawings and Crossing Numbers. A drawingof a graphG is a mapping∆ that associates with every vertex
v ∈ V G a point∆(v) ∈ R

2 and with every edgee ∈ EG a simple curve∆(e) in R
2 in such a way that:

– For distinct verticesv, w ∈ V G, the points∆(v) and∆(w) are distinct.

– For distinct edgese, f ∈ EG, the curves∆(e) and∆(f) have at most one interior point in common (and
possibly their endpoints).

– For every edgee ∈ EG with endpointsv andw, the two endpoints of the curve∆(e) are∆(v) and∆(w), and
∆(u) 6∈ ∆(e) for all u ∈ V G \ {v, w}.

– At most two edges intersect in one point. More precisely,|{e ∈ EG | x ∈ ∆(e)}| ≤ 2 for all x ∈ R
2 \∆(V G).

We let∆(G) := ∆(V G) ∪
⋃

e∈EG ∆(e).
An x ∈ R

2 \∆(V G) with |{e ∈ EG | x ∈ ∆(e)}| = 2 is called acrossingof ∆. Thecrossing numberof ∆ is the
number of crossings of∆. Thecrossing numberofG is the minimum taken over the crossing numbers of all drawings
of G. A drawing or graph of crossing number 0 is calledplanar.

2.3. Hexagonal Grids. Forr ≥ 1, we letHr be the hexagonal grid of radiusr. Instead of giving a formal definition,
we refer the reader to Figure 1 to see what this means. Theprincipal cyclesC1, . . . , Cr of Hr are the the concentric
cycles, numbered from the interior to the exterior (see Figure 2).

2.4. Flat Grids in a Graph. For graphsH ⊆ G, anH-component (ofG) is either a connected componentC of
G \H together with all edges connectingC with H and their endpoints inH or an edge inEG \EH whose endpoints
are both inH together with its endpoints. LetG be a graph andh : Hr → G a topological embedding. Theinterior
of h(Hr) is the subgraphh(Hr \ Cr) (remember thatCr is the outermost principal cycle ofHr). Theattachments of
h(Hr) are thoseh(Hr)-components that have a non-empty intersection with the interior of h(Hr). The topological
embeddingh is flat if the union ofh(Hr) with all its attachments is planar.

We shall use the following theorem due to Thomassen [18]. Actually, Thomassen stated the result for thegenus
of a graph rather than its crossing number. However, it is easy to see that the crossing number of a graph is an upper
bound for its genus.

3Note that loops are completely irrelevant for the crossing number, whereas multiple edges are not.

2

Figure 1. The hexagonal gridsH1, H2, H3

C1CC3 2

Figure 2. The principal cycles ofH3

Theorem 2.1 (Thomassen [18]). For all k, r ≥ 1 there is ans ≥ 1 such that the following holds: IfG is a graph of
crossing number at mostk andh : Hs → G a topological embedding, then there is a subgridHr ⊆ Hs such that the
restrictionh|Hr

of h toHr is flat.

2.5. Tree-Width. We assume that reader is familiar with the notiontree-width (of a graph). It is no big problem if not;
we never really work with tree-width, but just take it as a black box in Theorems 2.2–2.4. Robertson and Seymour’s
deepExcluded Grid Theorem[15] states that every graph of sufficiently large tree-width contains the homeomorphic
image of a large grid. The following is an algorithmic version of this theorem.

Theorem 2.2 (Robertson, Seymour [16], Bodlaender [1]). Let r ≥ 1. Then there is aw ≥ 1 and a linear time
algorithm that, given a graphG, either (correctly) recognizes that the tree-width ofG is at mostw or computes a
topological embeddingh : Hr → G.

Actually, in [16] Robertson and Seymour only give a quadratic time algorithm, but they point out that their algo-
rithm can be improved to linear time using Bodlaender’s [1] linear time algorithm for computing tree-decompositions.
Let me remark that, as far as I can see, this algorithm is not merely a trivial modification of Robertson and Seymour’s
algorithm obtained by “plugging in” Bodlaender’s tree-decomposition algorithm, but it requires to look into the details
of Bodlaender’s algorithm and extend it in a suitable way.

2.6. Courcelle’s Theorem. Courcelle’s theorem states that properties of graphs definable in Monadic Second-
Order Logic MSOcan be checked in linear time. In this logical context we consider graphs as relational structures of
vocabulary{E, V, I}, whereV andE are unary relation symbols interpreted as the vertex set andedge set, respectively,
andI is a binary relation symbol interpreted by the incidence relation of a graph. To simplify the notation, for a graph
G we letUG := V G ∪ EG and callUG theuniverseof G.

I assume that the reader is familiar with the definition of MSO. However, for those who are not I have included it
in Appendix A.

3

Theorem 2.3 (Courcelle [3]). Let w ≥ 1 and letϕ(x1, . . . , xk, X1, . . . , Xl) be an MSO-formula. Then there is
a linear time algorithm that, given a graphG and a1, . . . , ak ∈ UG, A1, . . . , Al ⊆ UG, decides whetherG |=
ϕ(a1, . . . , ak, A1, . . . , Al).

We shall also use the following strengthening of Courcelle’s theorem, a proof of which can be found in [11]:

Theorem 2.4. Let w ≥ 1 and letϕ(x1, . . . , xk, X1, . . . , Xl, y1, . . . , ym, Y1, . . . , Yn) be an MSO-formula. Then
there is a linear time algorithm that, given a graphG andb1, . . . , bm ∈ UG,B1, . . . , Bn ⊆ UG, decides if there exist
a1, . . . , ak ∈ UG, A1, . . . , Al ⊆ UG such that

G |= ϕ(a1, . . . , ak, A1, . . . , Al, b1, . . . , bm, B1, . . . , Bn),

and, if this is the case, computes such elementsa1, . . . , ak and setsA1, . . . , Al.

3. The Algorithm

For anl ≥ 1, a graphG, and a subsetF ⊆ EG of forbidden edges, an l-good drawing ofG with respect toF is a
drawing∆ ofG of crossing number at mostl such that no forbidden edges are involved in any crossings, i.e. for every
crossingx ∈ ∆(e) ∩∆(f) of ∆ we havee, f ∈ EG \ F .

We fix a k ≥ 1 for the whole section. We shall describe an algorithm that solves the followinggeneralized
k-crossing number problemin quadratic time:

Input: GraphG and subsetF ⊆ EG.
Problem: Decide ifG has ak-good drawing with respect toF .

Later, we shall extend our algorithm in such a way that it actually computes ak-good drawing if there exists one.
Our algorithm works in two phases. In the first, it iteratively reduces the size of the input graph until it obtains

a graph whose tree-width is bounded by a constant only depending on k. Then, in the second phase, it solves the
problem on this graph of bounded tree-width.

Phase I. We letr := 2k + 2 and chooses sufficiently large such that for every graphG of crossing number at most
k and every topological embeddingh : Hs → G there is a subgridHr ⊆ Hs such that the restrictionh|Hr

of h toHr

is flat. Such ans exists by Theorem 2.1. Then we choosew with respect tos according to Theorem 2.2 such that we
have a linear time algorithm that, given a graph of tree-width at leastw, finds a topological embeddingh : Hs → G.
We keepr, s, w fixed for the rest of the section.

Lemma 3.1. There is a linear time algorithm that, given a graphG, either recognizes that the crossing number of
G is greater thank, or recognizes that the tree-width ofG is at mostw, or computes a flat topological embedding
h : Hr → G.

Proof: We first apply the algorithm of Theorem 2.2. If it recognizes that the tree-width of the input graphG is at most
w, we are done. Otherwise, it computes a topological embedding h : Hs → G. By our choice ofs, we know that
either the crossing number ofG is greater thank or there is a subgridHr ⊆ Hs such that the restriction ofh toHr is
flat.

For eachHr ⊆ Hs we can decide whetherh|Hr
is flat by a planarity test, which is possible in linear time [13].

Our algorithm tests whetherh|Hr
is flat for allHr ⊆ Hs. Either it finds a flath|Hr

, or the crossing number ofG is
greater thank.4

Sinces is a fixed constant, the overall running time is linear. ✷

LetG be a graph andh : Hr → G a flat topological embedding. For2 ≤ i ≤ r, we letHi be the subgrid ofHr

bounded by theith principal cycleCi. We letKi be the subgraph ofG consisting ofh(Hi) and all attachments of
h(Hr) intersecting the interiorh(Hi \ Ci) of h(Hi). Moreover, we letFi be the set of all edges ofKi that have at
least one endpoint onh(Ci). Using the fact thath is flat, it is easy to see that the setsFi, for 2 ≤ i ≤ r are disjoint.

4A look at the proof of Thomassens’s theorem reveals that we donot have to test allHr ⊆ Hs for flatness, but only a number that is linear ink.

4

Suppose now that∆ is ak-good drawing ofG of minimum crossing number. Recall thatr = 2k + 2. By the
pigeonhole-principle there is at least onei, 2 ≤ i ≤ r such that none of the edges inFi is involved in any crossing of
∆. We leti0, 2 ≤ i ≤ r be minimum with this property.

LetC := h(Ci0),K := Ki0 andI := K \ C. ThenK andI are both connected planar graphs. Note furthermore
that∆(C) is a simple closed curve in the planeR2. Thus∆(I) must be entirely contained in one connected component
of R2 \∆(C), say, in the interior.

I claim that the restriction of∆ to K is a planar drawing. Suppose for contradiction that this is not the case.
Consider any planar drawingΠ ofK. ThenΠ(C) is a simple closed curve in the plane, and without loss of generality
we can assume thatΠ(I) is entirely contained in the interior ofR2 \ Π(C). Now we define a new drawing∆′ of G
that is identical with∆ onG \ I and homeomorphic toΠ onK. Since none of the edges inFi is involved in any
crossing of∆, this can be done in such a way that none of the edges inFi is involved in any crossing of∆′. But then
the number of crossings of∆′ is smaller than that of∆, because the restricion of∆′ toK is planar. This contradicts
the minimality of the crossing number of∆.

Hence the restriction of∆ toK is planar. In particular, this means that none of the edges ofF2 is involved in any
crossing of∆. By the minimality ofi0, this impliesi0 = 2. Thus, surprisingly,i0 is independent of the drawing∆.

LetG′ be the graph obtained fromG by contracting the connected subgraphI to a single vertexvI (see Figure 3).5

Figure 3. The transformation from a graphG toG′

Let F ′ be the union ofF with the set of all edges ofh(C) and all edges incident with the new vertexvI . Then
G has ak-good drawing with respect toF if, and only if,G′ has ak-good drawing with respect toF ′. The forward
direction of this claim is obvious by the construction ofG′ andF ′, and for the backward direction we observe that
everyk-good drawing∆′ of G′ with respect toF ′ can be turned into ak-good drawing ofG with respect toF by
embedding the planar graphI into a small neighborhood of∆′(vI).

Clearly, givenG,F andh, the graphG′ and the edge-setF ′ can be computed in linear time. Moreover|V G′

| <
|V G|. Combining this with Lemma 3.1, we obtain:

Lemma 3.2. There is a linear time algorithm that, given a graphG, either recognizes that the crossing number ofG

is greater thank or recognizes that the tree-width ofG is at mostw or computes a graphG′ and an edge setF ′ ⊆ EG′

with |V G′

| < |V G| such thatG has ak-good drawing with respect toF if, and only if,G′ has ak-good drawing with
respect toF ′.

Iterating the algorithm of the lemma, we obtain:

Corollary 3.3. There is a quadratic time algorithm that, given a graphG, either recognizes that the crossing number
ofG is greater thank or computes a graphG′ and an edge setF ′ ⊆ EG′

such that the tree-width ofG′ is at mostw
andG has ak-good drawing with respect toF if, and only if,G′ has ak-good drawing with respect toF ′.

Phase II. If the algorithm has not found out that the graph has crossingnumber greater thank in Phase I, it has
produced a graphG′ of tree-width at mostw and a setF ′ ⊆ EG′

such thatG has ak-good drawing with respect toF
5In other words,G′ is obtained fromG by deleting all vertices ofI, deleting all edges with both endpoints inI, adding a new vertexvI , and

replacing, for all edges with one endpoint inI, this endpoint byvI .

5

if, and only if,G′ has ak-good drawing with respect toF ′. In Phase II, the algorithm has to decide whetherG′ has a
k-good drawing with respect toF ′. Using Courcelle’s Theorem 2.3, we prove that this can be done in linear time.

To this end, we shall find an MSO-formulaϕ(X) such that for every graphG and every setF ⊆ EG we have
G |= ϕ(F) if, and only if,G has ak-good drawing with respect toF . We rely on the well-known fact that there is an
MSO-formulaϕplanar saying that a graph is planar. (Actually, this is quite easy to see:ϕplanar just says thatG neither
containsK5 norK3,3 as a topological subgraph. Also see [5].)

For a graphG and distinct edgese1, e2 ∈ EG we letGe1×e2 be the graph obtained fromG by deleting the edges
e1 ande2 and adding a new vertexx and four edges connectingx with the endpoints of the edges ofe1 ande2 in G
(see Figure 4). Observe that for everyl ≥ 1 a graphG has anl-good drawing with respect to an edge setF ⊆ EG if,

e1

e2

x

Figure 4. A graphG with selected edgese1, e2 and the resultingGe1×e2

and only if, there are distinct edgese1, e2 ∈ EG \ F such thatGe1×e2 has an(l− 1)-good drawing with respect toF .
A standard technique from logic, the method of syntactical interpretations, (easily) yields the following lemma:6

Lemma 3.4. For every MSO-formulaϕ(Y) there exists an MSO-formulaϕ∗(x1, x2, Y) such that for all graphsG,
edge setsF ⊆ EG and distinct edgese1, e2 ∈ EG \ F we have:

G |= ϕ∗(e1, e2, F) ⇐⇒ Ge1×e2 |= ϕ(F).

Using this lemma, we inductively define, for everyl ≥ 1, formulasϕl(Y) andψl(x1, x2, Y) such that for every
graphG and edge setF ⊆ EG we have

G |= ϕl(F) ⇐⇒ G has anl-good drawing with respect toF ,

and for allG, F ⊆ EG, ande1, e2 ∈ EG \ F we have

G |= ψl(e1, e2, F) ⇐⇒ Ge1×e2 has an(l − 1)-good drawing with respect toF .

We let

ψ1(x1, x2, Y) := ϕ∗

planar(x1, x2)

and, forl ≥ 1,

ϕl(Y) :=∃x1∃x2
(

x1 6= x2 ∧ Ex1 ∧ Ex2 ∧ ¬Y x1 ∧ ¬Y x2 ∧ ψl(x1, x2, Y)
)

,

ψl+1(x1, x2, Y) :=ϕ∗

l (x1, x2, Y).

This completes our proof.

Computing a Good Drawing. So far we have only proved that there is a quadratic time algorithm deciding if a graph
G has a good drawing with respect to a setF ⊆ EG.

It is not hard to modify the algorithm so that it actually computes a drawing: For Phase I, we observe that if we
have a good drawing ofG′ with respect toF ′ then we can easily construct a good drawing ofG with respect toF . So
we only have to worry about Phase II.

6For an introduction to the technique we refer the reader to [7], for the particular situation of MSO on graphs to [2, 4].

6

By induction onl, for everyl ≥ 0 we define a linear-time procedure DRAWl that, given a graphG of tree-width
at mostw and a subsetF ⊆ EG, computes anl-good drawing ofG with respect toF (if there exists one). DRAW0
just has to compute a planar drawing ofG.

For l ≥ 1, we apply Theorem 2.4 to the MSO-formula

χl(x1, x2, Y) := x1 6= x2 ∧Ex1 ∧ Ex2 ∧ ¬Y x1 ∧ ¬Y x2 ∧ ψl(x1, x2, Y).

It yields a linear time algorithm that, given a graphG and anF ⊆ EG, computes two edgese1, e2 ∈ EG \ F such
thatG |= χl(e1, e2, F) (if such edges exist). It follows immediately from the definition of ψl thatG |= χl(e1, e2, F)
if, and only if,Ge1×e2 has anl-good drawing with respect toF .

Given G andF , the procedure DRAWl applies this linear-time algorithm to computee1, e2 such thatG |=
χl(e1, e2, F). Then it applies DRAWl−1 to the graphGe1×e2 to compute an(l − 1)-good drawing of a graphGe1×e2

with respect toF . It modifies this drawing in a straightforward way to obtain an l-good drawing ofG with respect to
F .

Avoiding Logic. For those readers who are not so fond of logic, let me briefly sketch how the use of Courcelle’s
Theorem can be avoided. We have to find an algorithm that, given a graphG of tree-width at mostw and a set
F ⊆ EG, decides whetherG has a good drawing with respect toF .

Let l ≥ 1. For a graphG and pairwise distinct edgese1, . . . , e2l ∈ EG we let

G×ē :=
(

· · ·
(

(Ge1×e2)e3×e4
)

· · ·
)el−1×el

,

that is, the graph obtained fromG by crossinge1 with e2, e3 with e4, et cetera. Observe that, for every graphG, there
exist anl ≤ k and pairwise distinct edgese1, . . . , e2l ∈ EG such thatG×ē is planar if, and only if,G has a drawing
with at mostk crossings such that every edge ofG is involved in at most one crossing of this drawing. This is not the
same as saying that the crossing number ofG is at mostk.

However, there is a simple trick that makes it possible to work with G×ē anyway: For every graphG we let G̃
be the graph obtained fromG by subdividing every edge(k − 1)-times, that is, by replacing every edge by a path of
lengthk. ForF ⊆ EG, we letF̃ be the set of all edges of̃G that appear in a subdivision of an edge inF . Then clearly,
G has ak-good drawing with respect toF if, and only if, G̃ has ak-good drawing with respect tõF . The crucial
observation is that̃G has ak-good drawing with respect tõF if, and only if, there exists anl ≤ k and pairwise distinct
edgese1, . . . , e2l ∈ EG̃ \ F̃ such thatG̃×ē is planar. Note, furthermore, that the pair(G̃, F̃) can be constructed from
(G,F) in linear time.

Thus it suffices to find for everyl ≥ 1 a linear time algorithm that, given a graphG of tree-width at mostw and a
setF ⊆ EG, computes pairwise distinct edgese1, . . . , e2l ∈ EG \ F such thatG×ē is planar (if such edges exist).

Our algorithm first computes a tree-decomposition ofG of width at mostw using Bodlaender’s linear time algo-
rithm [1]. Then by the usual dynamic programming technique on tree-decompositions of graphs it computes edges
e1, . . . , e2l ∈ EG \ F such that the graphG×ē neither containsK3,3 norK5 as a topological subgraph. By Kura-
towski’s Theorem, this is equivalent toG×ē being planar.

The advantage of our approach using definability in monadic second-order logic is that we have a precise proof
without working out the tedious details of what is sloppily described as the “usual dynamic programming technique”
above.

Uniformity. Inspection of our proofs and the proofs of the results we usedshows that actually there isonealgorithm
that, given a graphG with n vertices and a non-negative integerk, decides whether the crossing number ofG is at
mostk in timeO(f(k) · n2) for a suitable functionf . Furthermore, it can be proved thatf can be chosen to be of the

form 22
p(k)

for a polynomialp.

4. Conclusions

We have proved that for everyk ≥ 0 there is a quadratic time algorithm deciding whether a givengraph has crossing
number at mostk. The running time of our algorithm in terms ofk is enormous, which makes the algorithm useless
for practical purposes. This is partly due to the fact that the algorithm heavily relies on graph minor theory.

However, knowing the crossing number problem to be fixed-parameter tractable may help to find better algorithms
that are practically applicable for small values ofk. This has happened in a similar situation for the vertex cover

7

problem. The first proof [8] that vertex cover is fixed-parameter tractable used Robertson and Seymour’s theorem
that classes of graphs closed under taking minors are recognizable in cubic time. Starting from there, much better
algorithms have been developed; by now, vertex cover can be (practically) solved for a quite reasonable problem size
(see [9] for a state-of-the-art algorithm).

References

[1] H.L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.SIAM Journal on
Computing, 25:1305–1317, 1996.

[2] S.S. Cosmadakis. Logical reducibility and monadic NP. In Proceedings of the 34th Annual IEEE Symposium on
Foundations of Computer Science, pages 52–61, 1993.

[3] B. Courcelle. Graph rewriting: An algebraic and logic approach. In J. van Leeuwen, editor,Handbook of
Theoretical Computer Science, volume 2, pages 194–242. Elsevier Science Publishers, 1990.

[4] B. Courcelle. The expression of graph properties and graph transformations in monadic second-order logic. In
G. Rozenberg, editor,Handbook of graph grammars and computing by graph transformations, Vol. 1 : Founda-
tions, chapter 5, pages 313–400. World Scientific (New-Jersey, London), 1997.

[5] B. Courcelle. The monadic second-order logic of graphs XII: Planar graphs and planar maps.Theoretical
Computer Science, 237:1–32, 2000.

[6] R.G. Downey and M.R. Fellows.Parameterized Complexity. Springer-Verlag, 1999.

[7] H.-D. Ebbinghaus, J. Flum, and W. Thomas.Mathematical Logic. Springer-Verlag, 2nd edition, 1994.

[8] M.R. Fellows and M.A. Langston. Nonconstructive tools for proving polynomial-time decidability.Journal of
the ACM, 35, 1988.

[9] M.R. Fellows and U. Stege. An improved fixed-parameter-tractable algorithm for vertex cover. Technical Report
318, Department of Computer Science, ETH Zurich, 1999.

[10] L.S. Filotti, G.L. Miller, and J. Reif. On determining the genus of a graph inO(vO(g)) steps. InProceedings of
the 11th ACM Symposium on Theory of Computing, pages 27–37, 1979.

[11] J. Flum, M. Frick, and M. Grohe. Query evaluation via tree-decompositions. In Jan van den Bussche and Victor
Vianu, editors,Proceedings of the 8th International Conference on Database Theory, Lecture Notes in Computer
Science. Springer Verlag, 2001. To appear.

[12] M.R. Garey and D.S. Johnson. The NP-completeness column: An ongoing guide.Journal of Algorithms, 3:89–
99, 1982.

[13] J. E. Hopcroft and R. Tarjan. Efficient planarity testing. Journal of the ACM, 21:549–568, 1974.

[14] B. Mohar. Embedding graphs in an arbitrary surface in linear time. InProceedings of the 28th ACM Symposium
on Theory of Computing, pages 392–397, 1996.

[15] N. Robertson and P.D. Seymour. Graph minors V. Excluding a planar graph.Journal of Combinatorial Theory,
Series B, 41:92–114, 1986.

[16] N. Robertson and P.D. Seymour. Graph minors XIII. The disjoint paths problem.Journal of Combinatorial
Theory, Series B, 63:65–110, 1995.

[17] C. Thomassen. The graph genus problem is NP-complete.Journal of Algorithms, 10:458–576, 1988.

[18] C. Thomassen. A simpler proof of the excluded minor theorem for higher surfaces.Journal of Combinatorial
Theory, Series B, 70:306–311, 1997.

8

Appendix A: Monadic Second Order Logic

We first explain the syntax of MSO: We have an infinite supply ofindividual variables, denoted byx, y, z, x1 et
cetera, and also an infinite supply of set variables, denotedbyX,Y , et cetera.Atomic MSO-formulas (over graphs)
are formulas of the formV x, Ex, Ixy, andXx, wherex, y are individual variables andX is a set variable. The class
of MSO-formulas is defined by the following rules:

– Atomic MSO-formulas are MSO-formulas.

– If ϕ is an MSO-formula, then so is¬ϕ.

– If ϕ andψ are MSO-formulas, then so areϕ ∧ ψ, ϕ ∨ ψ, andϕ→ ψ.

– If ϕ is an MSO-formula andv is a variable (either an individual variable or a set variable), then∃vϕ and∀vϕ
are MSO-formulas.

Recall thatUG = V G ∪EG. A G-assignmentis a mappingα that associates an element ofUG with every individual
variable and a subset ofUG with every set variable. We inductively define what it means that a graphG together with
an assignmentα satisfiesan MSO-formulaϕ (we write(G,α) |= ϕ):

– (G,α) |= V x ⇐⇒ α(x) ∈ V G,
(G,α) |= Ex ⇐⇒ α(x) ∈ EG,
(G,α) |= Ixy ⇐⇒

(

α(x) ∈ V G, α(y) ∈ EG, α(x) endpoint ofα(y)
)

,
(G,α) |= Xx ⇐⇒ α(x) ∈ α(X),

– (G,α) |= ¬ϕ ⇐⇒ (G,α) 6|= ϕ,

– (G,α) |= ϕ ∧ ψ ⇐⇒
(

(G,α) |= ϕ and(G,α) |= ψ
)

,
and similarly for∨, meaning “or”, and→, meaning “implies”.

– (G,α) |= ∃xϕ ⇐⇒ there exists ana ∈ UG such that(G,αx
a
) |= ϕ, whereαx

a
denotes the assignment with

αx
a
(x) = a andαx

a
(v) = α(v) for all v 6= x,

and similarly for∀x meaning “for alla ∈ UG”,

– (G,α) |= ∃Xϕ ⇐⇒ there exists anA ⊆ UG such that(G,αX
A
) |= ϕ,

and similarly for∀X meaning “for allA ⊆ UG”.

It is easy to see that the relation(G,α) |= ϕ only depends on the values ofα at thefree variablesof ϕ, i.e. those
variablesv not occurring in the scope of a quantifier∃v or ∀v. We writeϕ(x1, . . . , xk, X1, . . . , Xl) to denote that
the free individual variables ofϕ are amongx1, . . . , xk and the free set variables are amongX1, . . . , Xl. Then for a
graphG anda1, . . . , ak ∈ UG, A1, . . . , Al ⊆ UG we writeG |= ϕ(a1, . . . , ak, A1, . . . , Al) if for every assignment
α with α(xi) = ai andα(Xj) = Aj we have(G,α) |= ϕ. A sentenceis a formula without free variables.

For example, for the sentence

ϕ := ∃X∃Y
(

∀x
(

V x→ (Xx ∨ Y x)
)

∧∀x∀y
(

(

x 6= y ∧ ∃z(Ez ∧ Ixz ∧ Iyz)
)

→ ¬
(

(Xx ∧Xy) ∨ (Y x ∧ Y y)
)

))

we haveG |= ϕ if, and only if,G is 2-colorable.

9

