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Decoding Turbo-Like Codes via Linear Programming

Jon Feldman David R. Karger�

MIT Laboratory for Computer Science
Cambridge, MA, 02139

fjonfeld,kargerg@theory.lcs.mit.edu

Abstract

We introduce a novel algorithm for decoding turbo-like
codes based on linear programming. We prove that for
the case of Repeat-Accumulate (RA) codes, under the bi-
nary symmetric channel with a certain constant threshold
bound on the noise, the error probability of our algorithm
is bounded by an inverse polynomial in the code length.

Our linear program (LP) minimizes the distance between
the received bits and binary variables representing the code
bits. Our LP is based on a representation of the code where
code words are paths through a graph. Consequently, the
LP bears a strong resemblance to the min-cost flow LP. The
error bounds are based on an analysis of the probability,
over the random noise of the channel, that the optimum so-
lution to the LP is the path corresponding to the original
transmitted code word.

1 Introduction

The introduction of turbo codes [3] revolutionized the
field of coding theory by achieving an error probability or-
ders of magnitude smaller than any other code code at the
time. Since then, volumes of research has focused on de-
sign, implementation, and analysis of turbo codes and their
variants and generalizations [17].

One of the main goals of this research has been to explain
the somewhat mysterious good performance of turbo codes
and turbo-like codes. Even though the distances of turbo-
like codes are generally bad [10, 2, 5], when decoded using
an iterative decoder, they seem to achieve very good error
rates [6]. The drawback to an iterative decoder is that it not

�Research supported by NSF contract CCR-9624239 and a David and
Lucille Packard Foundation Fellowship.

guaranteed to converge, nor does it have any guarantee on
the quality of its output.

Some progress has been made assuming optimal
maximum-likelihood (ML) decoding, for which no
polynomial-time algorithm is known. It is known [6] that
if the noise in the channel is under a certain constant thresh-
old, ML decoding of randomly generated turbo codes has
an error probability bounded by an inverse polynomial in
the code length, as the code length goes to infinity. The first
such result by Divsalar and McEliece[6] was for a type of
turbo-like code called a repeat-accumulate (RA) code.

There are several drawbacks to these results. The fact
that they do not apply to a specific constructible code forces
the designer of the code to choose a random one, and thus
be uncertain about its quality. Additionally, in many cases
the asymptotic nature of the bound requires a large block
length, whereas small fixed code lengths are desirable in
practice to reduce latency in transmission. Most impor-
tantly, however, the given error probability is proven only
under ML decoding, for which no efficient algorithm is
known.

Our Results. In this paper we introduce a novel approach
to decoding any turbo-like1 code based on linear program-
ming. We prove that for the case of Repeat-Accumulate
(RA) codes, with a certain constant threshold bound on the
noise in the channel, the error probability of our algorithm
is bounded by an inverse polynomial in the code length.
We improve upon previous results in three important re-
spects. Our analysis holds for (i) a provably polynomial-
time decoding algorithm, (ii) a specific, deterministically
constructible code, and (iii), any code length.

More precisely, we show that for a particular RA code

1We note that our definition for turbo-like codes is along the lines of [6],
where the class includes any serial or parallel concatenated convolutional
code.
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with rate 1=2� o(1) and length n, our LP solves to the cor-
rect solution with probability 2n��, for any � > 0, as long
as p < 2�4(�+(log 24)=2), where each code bit is flipped by
the channel with probability p. As � ! 0, the threshold
on p approaches � 2�9:17. For lower rate RA codes, our
bound on error rate is trivially applicable by simply decod-
ing an embedded rate-1=2 RA code; however, we expect
that a more general analysis will yield better bounds.

When applied to any turbo-like code, our decoder has
the desirable property that when it outputs a code word, it
is guaranteed to be the maximum-likelihood code word. As
far as the authors are aware, no other efficient algorithm
for decoding turbo-like codes is known to have this ML-
certificate property. Additionally, the key structural theo-
rem used to prove the error bound for RA codes easily gen-
eralizes to other turbo-like codes, and provides a good basis
for proving better error bounds.

Previous Work. A breakthrough in the analysis of turbo
codes came when McEliece, MacKay and Cheng[12]
showed how the classic iterative decoding method for turbo
codes is an instance of Pearl’s belief propagation (BP) al-
gorithm, a standard tool used in the artificial intelligence
community. Now most work in the areas of turbo codes
and low-density parity check (LDPC) codes is interpreted
in this context (Richardson, Shokrollahi and Urbanke[13],
for example).

The convergence of BP algorithms becomes difficult
to prove when the underlying “belief network” contains
cycles, as is the case for turbo codes. However, a lot
of progress has been made by analyzing average codes
(or “code ensembles”), giving various tradeoffs involving
rate, probability thresholds, and iterations of the BP algo-
rithm [14].

In follow-up work (with Wainwright [8]), we have shown
that the the recent iterative tree-reweighted max-product
(TRMP) algorithm for MAP estimation of graphical models
of Wainwright, Jaakkola and Willsky [18], when applied to
the problem of decoding turbo-like codes, has a fixed point
equivalent to the solution of the LP we present here. Thus
we have begun to connect our LP-based decoder with the
world of iterative decoders.

The minimum distance of a code is the minimum Ham-
ming distance between any two code words. The minimum
distance of turbo-like codes has received some attention re-
cently [10, 2, 5]. Most of the work has focused on the neg-
ative side, showing that the minimum distance of a turbo-
like code is sub-linear. Kahale and Urbanke [10] give high-
probability upper and lower bounds on the minimum dis-
tance of a random interleaver, as the block length goes to
infinity, for any parallel or serially concatenated convolu-
tional code. Bazzi, Mahdian, Miller and Spielman [2] give
similar upper bounds over all interleavers for some of the

same types of codes. They also give a construction of a rate-
1=2 RA code and show its minimum distance is 
(logn).
We will discuss this code in more detail later in the paper.

Coding Theory Background. An error-correcting code
is used to build redundancy into a data stream for transmis-
sion over an unreliable channel. The sending party takes
a binary vector x of length k (the information word), ap-
plies an encoder (a function E : f0; 1gk ! f0; 1gn), to
obtain a code word of n bits, n > k (the parameter n is re-
ferred to as the code length or block length), and transmits
the code word y = E(x) over the channel. The rate of the
code is k=n. The code word is then subject to an unreli-
able channel that can be modeled in several ways. Here we
will use the binary symmetric channel (BSC), where each
bit of the code word is flipped independently with proba-
bility p (called the crossover probability). Our results in
this paper also hold for the average white Gaussian noise
(AWGN) channel, where the channel adds an independent
random Gaussian variable to each transmitted bit; for clar-
ity, we discuss only the BSC.

The receiving party gets the corrupted code word v of
length n, and must try to recover the original information
word x using a decoder. The decoder is simply a function
D : f0; 1gn ! f0; 1gk. The word error probability Pw of
the decoder is the probability, over the random coin flips of
the channel, thatD(v) 6= x. The maximum-likelihood (ML)
information word x is the one that maximizes Pr[E(x) was
sent j v was received ]. Using Bayes’ rule, and the con-
ventional assumption that all information words have equal
probability, this is the same information word x that maxi-
mizes Pr [v was received j E(x) was sent ]. Thus, under the
BSC, x is the information word that minimizes the Ham-
ming distance between D(x) and v. Note that the ML in-
formation word is not necessarily the original encoded in-
formation word. An ML decoder is one that always finds
the ML information word.

The purpose of an error-correcting code is to be robust
against noise, so the word error probability Pw is the metric
that should be used to measure the quality of a code. Codes
are often measured for quality in terms of their minimum
distance d. This is the minimum, over all pairs of valid
code words, of the Hamming distance between the pair. It
is not hard to see that an ML decoder will always correct
up to dd=2e � 1 errors in the channel, so a large minimum
distance is desirable. However, the minimum distance is a
“worst-case” measure, so considering it as the only measure
of quality ignores other important attributes of the code that
affect the word error probability. In fact, turbo codes are a
perfect example of codes whose minimum distance is con-
sidered bad, but whose word error probability is good.

We will use the definitions given here for k; n; x; y; v
and p throughout the paper. For more background on error-
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correcting codes, we refer the reader to textbooks written
on the subject [19, 11].

Our Techniques. We show that the problem of finding
the ML code word (referred to as ML decoding) can be
solved by finding an optimal integral point inside a poly-
tope with linear constraints. Binary variables represent the
information word x, and the objective function is to mini-
mize Pr[v was received j x was sent ], where v is the cor-
rupted code word received from the channel. We relax the
integral constraints to obtain a linear program (LP). The al-
gorithm solves the LP, and if the solution is integral, outputs
the information word, which it knows is the ML information
word. If the solution is not integral, the algorithm outputs
“error.” This approach guarantees the ML-certificate prop-
erty discussed earlier.

In the setting of decoding algorithms, the rounding
scheme for an LP relaxation is not as important as it is in
other more conventional optimization problems. Because
the LP is only guaranteed to output the ML information
word if it finds an integral solution, even if we provide a
rounding scheme with a provably small approximation ra-
tio, it does not help bound the probability that the decoder
returns the ML information word.

Therefore, instead of analyzing the approximation ratio
as is normally done, we assume that the algorithm is always
wrong when the solution is fractional, and bound the prob-
ability that the LP returns the real information word that
was transmitted (not the ML word). By doing so, not only
do we bound the error probability of our polynomial-time
algorithm, we also bound the error probability of ML de-
coding; this is because whenever our LP finds the correct
solution, this solution must also be the optimal point in the
integral polytope, and an ML decoder would have found it
as well.

Our LP can be used to decode any set of concatenated
codes, with interleavers between them. However, the LP
has polynomial size only if the component codes can be
expressed using a polynomial-sized “trellis.” The simplest
such codes are the class of convolutional codes (see [19]).
Thus we say that the LP decoder is a decoder intended for
“turbo-like” [6] codes: serial or parallel concatenated con-
volutional codes.

Outline. In Section 2, we define repeat-accumulate (RA)
codes, and present our linear program as applied to RA
codes. In Section 3 we state our main structural theorem
(proven in Section 4), and show our bound on the probabil-
ity that the LP returns the original information word. We
discuss the generalization of the linear program to any set
of concatenated codes in Section 5. In Section 6 we give
several interesting open questions that arise from this work.

...
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Figure 1. The trellis for an accumulator, used in RA
codes. The dashed-line switch-edges correspond to infor-
mation bit 1, the solid-line remain-edges to information bit
0. The edges are labeled with their associated output code
bit.

2 Repeat-Accumulate Codes

Repeat-Accumulate codes are perhaps the simplest non-
trivial example of a turbo-like code. They were introduced
by Divsalar and McEliece [6] in order to show the first
bounds for error probabilities under ML decoding. Their
simple structure and highly efficient encoding scheme make
them both practical and simpler to analyze than other more
complex turbo-like codes. They have also been shown ex-
perimentally to have excellent error-correcting ability under
iterative decoding [6], on par with classic turbo codes.

Encoding. The encoder for an RA code takes the input
word, repeats every bit ` times, then sends it through an
interleaver (known permutation), and then through an ac-
cumulator. The accumulator maintains a partial sum mod
2 of the input seen so far, and outputs the new sum at each
step.

More formally, an RA(`) code of length n = `k has an
interleaver (permutation) � : f0; : : : ; n�1g ! f0; : : : ; n�
1g. The encoder is given an information word x of length k.
Let x0 be the length-n repeated and permuted information
word, i.e., for all t 2 f0; : : : ; n� 1g, x0t = xb��1(t)=`c. The
RA encoder outputs a code word y of length n, where for
all j 2 f0; : : : ; n� 1g, yj =

Pj
t=0 x

0
i mod 2.

For all i 2 f0; : : : ; k � 1g, let Xi be the set of indices to
which information bit xi was repeated and permuted, i.e.,
Xi = f�(`i); �(`i + 1); : : : ; �(`i + ` � 1)g. Let X =
fXi : i 2 f0; : : : ; k � 1gg. To keep the proofs in this paper
simpler, we assume that the input contains an even number
of 1s. This can be achieved by padding the information
sequence with an extra parity bit. Thus the rate of this code
is (k � 1)=`k, or 1=`� o(1). The o(1) can be avoided by a
more technical proof, which we leave out for clarity.

The Accumulator Trellis. A trellis is a simple layered
graph that models the actions of a finite-state encoder over
time, as it encodes a binary string passed to it. The trellis is
the basis for the classic Viterbi decoding algorithm [16, 9].
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Figure 1 shows the trellis T for an accumulator.
To derive the trellis, we view the accumulator as a simple

finite state machine, receiving the n-bit binary input string
x0 one bit at a time. The accumulator has two possible states
per time step, depending on the parity of the input bits seen
so far. We refer to the two states of the accumulator as 0 and
1; state 0 represents even parity, 1 represents odd parity. We
use fs00; : : : ; s

0
ng and fs11; : : : ; s

1
n�1g to refer to the sets of

even and odd parity nodes, respectively.
An encoder using this trellis begins in state s00. At each

time step, if it receives a 1 as input, it follows the dashed-
line transition to the next layer of nodes, switching states.
We call this a switch-edge. If it receives a 0, it follows the
solid-line transition to the next layer of nodes, staying in
the same state (see Figure 1). We call this type of edge a
remain-edge. The labels on the transition edges represent
the code bit output by the encoder taking that transition;
label 0 for edges entering state 0, label 1 for edges entering
state 1.

A path from s00 across the trellis to s0n corresponds to an
entire n-bit input string. Since the accumulator begins and
ends in state 0 (the input string has even parity by assump-
tion), we do not need the states s10 and s1n. Looking at the
edge labels on the path, one can read off the code word cor-
responding to that input string. Let Px be the path taken by
the encoder through the trellis T while encoding x0.

We will refer to the group of four edges at one time step
of the trellis as a segment. Define the cost c[e] of an edge
e in the trellis at segment t to be the Hamming distance
between its label and the received bit vt. The cost of a path
is the sum of the costs of the edges on the path.

Decoding with the Trellis. Assume for the moment that
the accumulator was the entire encoder (i.e., the information
bits were fed directly into the accumulator without repeat-
ing and permuting). Then, all paths through the trellis from
s00 to s0n represent valid information words, and the labels
along the path represent valid code words. Furthermore, the
cost of the path is the Hamming distance between the code
word and the received word. A simple shortest-path compu-
tation thus yields the ML information word. The decoding
algorithm we just described is exactly the Viterbi algorithm
[16, 9, 19].

However, if we tried to apply the Viterbi algorithm to RA
codes, we would run into problems. For example, suppose
` = 2, and let xi = 1 be some arbitrary information bit,
where Xi = ft; t̂g. Since xi is input into the accumulator at
time t and time t̂, any path through the trellis T that repre-
sents a valid encoding would use a switch-edge at time step
t, and at time step t̂. In general, any path representing a
valid encoding would do the same thing (as in switch levels
or remain on the same level) at every time step t 2 Xi. We
say a path is agreeable for xi if it has this property for xi.

An agreeable path is a path that is agreeable for all xi. Any
path that is not agreeable does not represent a valid encod-
ing, and thus finding the lowest cost path is not guaranteed
to return a valid encoder path.

What we would like to find is the lowest cost agreeable
path from s00 to s0n. We give a simple integer program based
on min-cost flow that solves this problem.

RALP: Repeat-Accumulate Linear Program. For each
node s in the trellis, define Æ(s) to be the set of outgoing
edges from s, and 
(s) to be the set of incoming edges.
Our integer program contains variables f(e) 2 f0; 1g for
every edge e in the trellis, and free variables zi for every
information bit xi, i 2 f0; : : : ; n � 1g. The relaxation
RALP of the integer program simply relaxes the flow
variables such that 0 6 f(e) 6 1. RALP is defined as
follows:

RALP: min
P
e2T

c[e]f(e) s:t:

P
e2
(s0

n
)

f(e) = 1 (1)

P
e2
(s)

f(e) =
P

e2Æ(s)

f(e) 8 s 2 T n fs00; s
0
ng (2)

f(s0t ; s
1
t+1) + f(s1t ; s

0
t+1) = zi 8Xi 2 X ; t 2 Xi (3)

0 6 f(e) 6 1 8 e 2 T

RALP is very close to being a simple min-cost flow LP:
Equation (1) gives a demand of one unit of flow at the sink
node s0n, and equation (2) is a flow conservation constraint
at each node. Unique to RALP are the agreeability con-
straints (3). These constraints say that a feasible flow must
have, for all Xi 2 X , the same amount zi of total flow on
switch-edges at every segment t 2 Xi. Note that these con-
straints also imply a total flow of 1� zi on remain-edges at
every segment t 2 Xi. We will refer to the flow values f of
a feasible solution (f; z) to RALP as an agreeable flow. The
free variables zi do not play a role in the objective function,
but rather enforce constraints among the flow values.

Using RALP as a decoder. A decoding algorithm based
on RALP is as follows. Run an LP-solver to find the opti-
mal solution (f�; z) to RALP, setting the costs on the edges
according to the received word v. If f� is integral, output z
as the decoded information word x. If not, output “error.”
We will refer to this algorithm as the RALP decoder.

All integral solutions to RALP represent agreeable paths,
and thus valid encodings of some information word. This
implies that if the optimal solution f� to RALP is in fact in-
tegral, then f� is the lowest cost agreeable path, and z rep-
resents the ML code word. Thus the RALP decoder has the
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ML certificate property: whenever it outputs an information
word, it is guaranteed to be the ML information word. No
standard iterative decoding techniques are known to have
this property.

3 A Coding Theorem for RA(2) Codes

In this section we state our main structural theorem
(proven in section 4). We then show how this theorem sug-
gests a design for an interleaver for RA(2) codes, and prove
an inverse polynomial upper bound on the RALP decoder’s
word error probability when we use this interleaver.

Our main structural theorem states that the RALP de-
coder succeeds (returns the original information word) if
and only if a particular graph does not contain a certain
negative-cost subgraph, generalizing the role of a negative-
cost cycle in min-cost flow. The graph has a structure that
depends on the interleaver � and weights that depend on the
errors made by the channel. We note that an analogous the-
orem holds for any RA(`) code, or any turbo-like code for
that matter. This is discussed further in Section 5.

For the remainder of this section we deal exclusively
with RA(2) codes. This means that each set Xi 2 X has
two elements, and the agreeability constraints may be ex-
pressed as, 8Xi 2 X , Xi = ft; t̂g,

zi = f(s0t ; s
1
t+1)+f(s

1
t ; s

0
t+1) = f(s0

t̂
; s1

t̂+1
)+f(s1

t̂
; s0

t̂+1
):

The Promenade. Let G = (VG; EG) be a weighted undi-
rected graph with n nodes (g0; : : : ; gn�1) connected in a
line, where the cost c[gt; gt+1] of edge (gt; gt+1) is�1 if the
tth bit of the transmitted code word is flipped by the channel
(vt 6= yt), and +1 otherwise. Call these edges the Hamil-
tonian edges, since they make a Hamiltonian path. Note
that these costs are not known to the decoder, since they de-
pend on the transmitted code word. For each ft; t̂g 2 X ,
add an edge between node gt and node gt̂ with cost 0. Call
these edges the matching edges. Note that G is a line plus a
matching.

Define a promenade to be a circuit in G that begins and
ends in the same node, and may repeat edges as long as it
does not travel along the same edge twice in a row. The
cost of a promenade is the total cost of the edges visited
during the path, including repeats (i.e., repeats are not free).
Formally, a promenade is a path M = (p0; p1; : : : ; pjMj =
p0) in G that begins and ends at the same node p0, where
for all i 2 f0; : : : ; jM j � 1g, pi 6= pi+2 mod jMj. The cost

of a promenade M is c[M ] =
PjMj�1

i=0 c[pi; pi+1]. We are
now ready to state our main structural theorem.

Theorem 1 The RALP decoder succeeds if all promenades
in G have positive cost. The RALP decoder fails if there is
a promenade in G with negative cost.

When there is a zero-cost promenade, the RALP decoder
may or may not decode correctly (this is a degenerate case
when the LP has multiple integral optima). We will prove
Theorem 1 in Section 4, but first we show what it suggests
about interleaver design, and how it can used to prove a
bound on the probability of error of our algorithm.

Recall that every Hamiltonian edge of G has cost �1
with some small constant probability p, so promenades with
many edges are less likely to have a total negaitve cost (at
least every other edge of a promenade is Hamiltonian). The
girth of a graph is the length of its shortest simple cycle. It
is not hard to see that every promenade contains at least one
simple cycle, and so graphs with high girth will have prom-
enades with many edges. This suggests that what we want
out of an interleaver, if we are to use the RALP decoder, is
one that produces a graph G with high girth.

We use a result of Erdös and Sachs [7] and Sauer [15]
(see also [4]) to make a graph that is a line plus a matching,
and has high girth. Their construction allows us, in cubic
time, to start with an n-node cycle and build a 3-regular
graph G with girth blognc that contains the original cycle.
We remove an edge from the original cycle to obtain a line
plus a matching with girth at least as high. To derive the
interleaver, we simply examine the edges added by the con-
struction. We will refer to this interleaver as �E . This is
the same construction used by Bazzi et al. [2] to show a
1=2 logn lower bound on the minimum distance of an RA
code using this interleaver.

Theorem 2 [2] The rate 1/2 - o(1) RA code with block
length n, using �E as an interleaver, has minimum distance
of at least 1

2 logn.

Error Bound. We would like to bound the probability that
G contains a promenade with cost less than or equal to zero,
thus bounding the probability that the RALP decoder fails.
However, there are many promenades in G, so even a tight
bound on the probability that a particular one is negative
is insufficient. Furthermore, the fact that promenades may
repeat edges creates dependencies that interfere with using
standard Chernoff bound analysis. Consequently, we need
to find a simpler structure that is present when there is a
promenade with cost less than or equal to zero. In the fol-
lowing, a simple path or cycle means a path or cycle that
does not repeat edges. For clarity (to avoid floors and ceil-
ings), we will assume n is a power of 8, though our argu-
ments do not rely on this assumption.

Lemma 3 If n > 24, and there exists a promenade M in
G, c[M ] 6 0, then there exists a simple path or cycle Y in
G, c[Y ] 6 0, that contains 1

2 logn Hamiltonian edges.

Proof: Let M = (p0; p1; : : : ; pjMj�1; pjMj = p0) be a
promenade in G, c[M ] 6 0. Since M contains a cycle,
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jM j > logn. Contract every matching edge in M to obain
a tour H = (h0; h1; : : : ; hjHj = h0g. No two matching
edges share an endpoint, so at worst every other edge of the
tour is a matching edge. Thus, jH j > 1

2 jM j > 1
2 logn. Let

c[H ] =
PjHj�1

i=0 c[hi; hi+1]. We know that hi 6= hi+2,
0 6 i < jH j (operations on indices of h 2 H are
performed mod jH j); if this was not the case, then there
would be a cycle in G of length 3, violating our assump-
tion that n > 24, since the girth of G is at least logn.
Let Hi = (hi; : : : ; hi+ 1

2
logn) be the subsequence of H

whose edge set contains 1
2 logn edges, and let c[Hi] =Pi+ 1

2
logn�1

j=i c[hj ; hj+1]. We know thatHi has no repeated
edges (i.e., it is a simple path or a simple cycle); if it were
not, then if we added the matching edges back into H we
would get a path in G with at most logn edges that repeated
an edge, which would imply a cycle in G of length less than
logn.

Since all matching edges have zero cost, c[M ] = c[H ].
Note that c[H ] = (

PjHj�1
i=0 c[Hi])=(

1
2 logn), since every

edge of H is counted in the sum exactly ( 12 logn) times.
Since c[H ] = c[M ] 6 0, at least one simple path or cycle
Hi� must have c[Hi� ] 6 0. Set Y to be the simple path or
cycle in G obtained by expanding the zero-cost matching
edges in the path or cycle Hi� .

Theorem 1, along with the above construction of G and
a union bound over the paths of length 1

2 log n of G, gives
us an analytical bound on the probability of error when de-
coding with the RALP decoder:

Theorem 4 For any � > 0, the rate 1=2 � o(1) RA code
with block length n using �E as an interleaver decoded with
the RALP decoder under the binary symmetric channel with
crossover probability p < 2�4(�+(log 24)=2) has a word er-
ror probability Pw of at most n��.

Proof: By Theorem 1, and Lemma 3, the RALP decoder
succeeds if all simple paths or cycles in G with 1

2 logn
Hamiltonian edges have positive cost. We claim that there
are at most n � 3

1

2
logn different simple paths that have

1
2 logn Hamiltonian edges. To see this, consider building
a path by choosing a node, and building a simple path from
that node. At each point, there are at most three choices for
the next Hamiltonian edge.

The remainder of the proof is a union bound over the
paths of G with 1

2 logn Hamiltonian edges. Let Y be a par-
ticular path with 1

2 logn Hamiltonian edges. Each Hamilto-
nian edge has cost �1 or +1, so at least half of the Hamil-
tonian edges must have cost �1 in order for c[Y ] 6 0. Each
Hamiltonian edge had cost �1 with probability p, so the

probability that c[Y ] 6 0 is at most
� 1
2
logn

1

4
logn

�
p
1

4
log n. By the

union bound,

Pw 6 n3
1

2
logn

� 1
2 logn
1
4 logn

�
p
1

4
log n

6 n1+
1

2
log 3n

1

2 2�(�+ 1

2
log 24) logn

6 n1+
1

2
log 3+ 1

2
�(�+ 1

2
log 24)

6 n��

4 Proof of Theorem 1

Theorem 1 The RALP decoder succeeds if all promenades
in G have positive cost. The RALP decoder fails if there is
a promenade in G with negative cost.

In this section we prove Theorem 1. We assume a work-
ing knowledge of the min-cost flow problem, specifically
the notions of a residual graph, a circulation and a path de-
composition [1].

Let f0 be the unit flow along the path Px taken by the en-
coder. The RALP decoder will succeed if f0 is the unique
optimal solution to RALP. The RALP decoder will fail if f0

is not an optimal solution to RALP. To prove the theorem,
we will first establish conditions under which f0 is optimal
that are very similar to the conditions under which a normal
flow is optimal; specifically, we will show that f0 is opti-
mal if and only if the residual graph Tf0 does not contain a
certain negative-cost subgraph. We will then show a cost-
preserving correspondence between these subgraphs in Tf0
and promenades in G, the Hamiltonian line graph on which
Theorem 1 is based.

Agreeable Circulations. Suppose that f is some feasible
flow for a normal min-cost flow problem (without agree-
ability constraints) on an arbitrary graph R. Let c[f ] be the
cost of f , and Rf be the residual graph of f . A solution f is
optimal iff Rf does not contain a negative-cost circulation.

Now consider the agreeable flow problem (RALP) on the
trellis T , and the solution f0 to RALP. Define the residual
graph Tf0 in the same manner as in normal min-cost flow.
Now consider some other feasible agreeable flow f 0 6= f0

in T . The circulation f 0 � f0 in Tf0 has cost c[f 0]� c[f0].
Since both f0 and f 0 obey the agreeability constraints, the
circulation f 0 � f also obeys the agreeability constraints.
We call such a circulation an agreeable circulation.

Lemma 5 The RALP decoder succeeds if all agreeable cir-
culations in Tf0 have positive cost.

Proof: Suppose the RALP decoder fails, then f0 is not the
unique optimal solution to RALP. Let f� 6= f0 be some
optimal solution to RALP. Consider the circulation f 0 =
f��f0. Since c[f 0] = c[f�]� c[f0], and c[f�] 6 c[f0], we
know that c[f 0] 6 0. It is clear that the sum or difference of
two agreeable flows is agreeable, so f 0 is agreeable.

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02) 
0272-5428/02 $17.00 © 2002 IEEE Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on February 08,2024 at 00:56:39 UTC from IEEE Xplore.  Restrictions apply. 



s05

s16 s17

s08

s09

: : : : : :

Seg. � = 5 Seg. � = 8

Figure 2. An example of a cycle w(� = 5; � = 8) in the
residual graph Tf0 . The cycle (in bold) contains a subpath
(straight bold lines) backwards along residual edges of Px,
where Px = (: : : ; s05; s

1

6; s
1

7; s
0

8; s
0

9; : : : ). It also contains
the complimentary forwards path from s05 to s09 (curved bold
lines).

Lemma 6 The RALP decoder fails if there exists an agree-
able circulation in Tf0 with negative cost.

Proof: Let f 0 be the circulation in Tf0 with negative cost.
Let f� = f0 + f 0. Since c[f 0] < 0, c[f�] < c[f0]. By a
similar argument as in Lemma 5, f� is an agreeable flow.
Since f� is a feasible solution to RALP with cost less than
f0, f0 is not optimal, thus the RALP decoder fails.

Agreeable Circulations and Promenades. In the remain-
der of the proof, we show a correspondence between agree-
able circulations in Tf0 and promenades in G. We first de-
fine a special class of cycles in Tf0 and show that the cost
of a cycle cycle in this class is the same as that of a cor-
responding subpath in G. Then we show that every simple
cycle in Tf0 is from this class. We conclude the proof by
arguing that agreeable circulations always contain sets of
these cycles that correspond to promenades in G with the
same cost.

Let g(�; �), � < � , be the path (g� ; g�+1; : : : ; g� ) of
Hamiltonian edges in G. Now let w(�; �), � < � , be a cer-
tain cycle in Tf0 , as depicted in Figure 2. We definew(�; �)
formally as follows. Let (�[0] = 0; �[1]; : : : ; �[n] = 0)
be the sequence of states of the accumulator when encod-
ing x (note that yt = �[t + 1]). For example, in Figure 2,
�[�] = 0; �[�+1] = 1; �[�+2] = 1; �[� ] = 0; �[� +1] =

1. We have that Px = (s
�[0]
0 ; s

�[1]
1 ; : : : ; s

�[n�1]
n�1 ; s

�[n]
n ),

the path in T taken by the encoder. In Tf0 , all edges
along Px have a unit residual capacity going backwards
towards s00, since f0 is the unit flow across path Px.
The cycle w(�; �) in T consists of the backward subpath
(s
�[�+1]
(�+1) ; s

�[� ]
� ; : : : ; s

�[�+1]
(�+1) ; s

�[�]
� ), and the forward subpath

(s
�[�]
� ; s

1��[�+1]
�+1 ; : : : ; s

1��[� ]
� ; s

�[�+1]
�+1 ).

For � > �, we let g(�; �) = g(�; �) and w(�; �) =
w(�; �). We will also use the notation �w to represent a
circulation in Tf that sends � units of flow around a residual
cycle w. For a set W of cycles w in Tf0 , we say that �W is
the circulation

P
w2W �w.

Claim 7 c[g(�; �)] = c[w(�; �)], 0 6 � < � < n.

Proof: The cost of the cycle w(�; �) is the sum of the costs
of its residual edges:

c[w(�; �)] = c[s�[�]� ; s
1��[�+1]
�+1 ]

+

��1X
t=�+1

c[s
1��[t]
t ; s

1��[t+1]
t+1 ]

+ c[s1��[� ]� ; s
�[�+1]
�+1 ]

�

�X
t=�

c[s
�[t]
t ; s

�[t+1]
t+1 ]

Let e be the indicator vector for errors occurring in the chan-
nel. In other words, for all t, 0 6 t < n, let et = 1 if yt 6=
vt, and et = 0 otherwise. Note that every edge ( � ; s�[t+1]

t+1 )

in T entering a node onPx has c[ � ; s�[t+1]
t+1 ] = et. Similarly,

every edge ( � ; s
1��[t+1]
t+1 ) has c[ � ; s1��[t+1]

t+1 ] = 1� et.
Thus we may conclude

c[w(�; �)] = (1� e�) +

 
��1X

t=�+1

1� et

!
+ e� �

�X
t=�

et

=

��1X
t=�

1� 2et

= c[g(�; �)]: (4)

Equation (4) follows from the definition of G.

Claim 8 For every simple cycle C in Tf0 , C = w(�; �) for
some 0 6 � < � < n.

Proof: Let s�� be the node on the cycle C that is the “clos-
est” to s0n, i.e., � is maximum among all nodes on C. The
node s�� must be on Px; otherwise, the outgoing edge from
s�� on the cycle C would go forwards in the trellis to some
node s��+1. Follow C backwards along Px until it diverges
from Px at some node s
� . The only remaining simple path
from s
� to s�� (that does not reuse an edge) is forward in the
trellis along the edges that complete the cycle w(�; �).

Lemma 9 If there is a promenade in G with negative cost,
there is an agreeable circulation in Tf0 with negative cost.

Proof: Let M be a promenade in G with negative cost. Let
1=� be the maximum number of occurrences of any sin-
gle Hamiltonian edge in M . If the matching edges along
M are removed, what remains is a multiset of subpaths
of the Hamiltonian path of G, of the form g(�; �). Let
U = fg(�0; �0); : : : ; g(�jUj; �jUj)g be this set of subpaths,
ordered by their occurrence during a traversal of M . In
other words, one may traverse M by following the path
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g(�0; �0), matching edge (g�0 ; g�1), path g(�1; �1), : : : ,
path g(�jUj; �jUj), and finally matching edge (g�jUj ; g�0)

Let W = fw(�0; �0); : : : ; w(�jUj; �jUj)g be the set of
corresponding cycles in Tf0 . No edge in �W has more than
one unit of flow sent across it (by the definition of �), so
�W is a feasible circulation in Tf0 .

Since all the matching edges of G have zero cost, and M
has negative cost, we have c[M ] =

PjUj
j=0 c[g(�j ; �j)] < 0.

Therefore by Claim 7,
PjWj

j=0 c[w(�j ; �j)] < 0. It follows
that c[�W ] < 0.

It remains to show that �W is agreeable. Consider the
first cycle in W , namely w(�0; �0). As Figure 2 shows,
the only agreeability constraints violated by sending flow
around this cycle are at trellis segments �0 and �0; all seg-
ments in-between have the same amount of flow on switch-
edges as they did before.

Assume wlog that Px has a remain-edge at segment �0,
so �w(�0; �0) increases the flow on switch-edges by � at
segment �0. Since (g�0 ; g�1) is a matching edge (by def-
inition of U), f�0; �1g 2 X . Therefore Px must obey
the agreeability constraint at segments �0 and �1; in other
words, it must also have a remain-edge at segment �1.
It follows that �w(�1; �1) increases the flow on switch-
edges by � at segment �1. Therefore the agreeability con-
straint for information bit xi is preserved by the circulation
w(�0; �0) + w(�1; �1), and the only violated agreeability
constraints are at segments �0 and �1. A symmetric argu-
ment holds if Px has a switch-edge at segment �0.

By repeatedly applying the same argument along W , we
may conclude that the circulation �W only violates agree-
ability constraints at �0 and �jWj. Since f�0; �jWjg 2 X ,
we have that �W does not violate any agreeability con-
straints.

Lemma 10 If all promenades in G have positive cost, all
agreeable circulations in Tf0 have positive cost.

Proof: Suppose f 0 is an agreeable circulation in Tf0 where
c[f 0] < 0. Let � be the gcd of all the values of flow on edges
of f 0. Consider the cycle decomposition of f 0 where every
cycle has � units of flow around it. Let W be the collection
of cycles in this decomposition. By claim 8, every cycle
in Tf0 is of the form w(�; �). For all t, 0 6 t < n, let
Bt = fw(�; �) 2 W : � = t or � = tg.

For some set A of cycles w(�; �), we use the notation
f 2 A to denote the flow �w(�; �) for some arbitrary cycle
w(�; �) 2 A.

Consider some Xi = ft; t̂g. Let zt = f 0(s0t ; s
1
t+1) +

f 0(s1t ; s
0
t+1). Because each cycle w(�; �) 2 W only af-

fects the agreeability constraints at segments � and � , zt =P
f2Bt

�f(s0t ; s
1
t+1) + �f(s1t ; s

0
t+1). If xi = 0, then for all

f 2 Bt, f has � units of flow on one of the edges (s0t ; s
1
t+1)

or (s0t ; s
1
t+1), and zero units on the other one. Thus f will

add � to zt in the above sum. If xi = 1, then f has �� flow
on either (s0t ; s

1
t+1) or (s0t ; s

1
t+1), and contributes �� to the

sum. Therefore,

zt =

�
�jBtj if xi = 0
��jBtj if xi = 1

Define zt̂ similarly. By the same logic,

zt̂ =

�
�jBt̂j if xi = 0
��jBt̂j if xi = 1

Since f 0 is agreeable, zt = zt̂. Thus we may conclude
that jBtj = jBt̂j. For all ft; t̂g 2 X , create a one-to-one
correspondence between the members ofBt andBt̂ (we can
do this because the sets are the same size).

Create an auxiliary multigraphH with a node v[w(�; �)]
for each w(�; �) 2 W . Add edges according to the corre-
spondence we just created for each ft; t̂g 2 X . Note that if
w(t; t̂) 2 W , it would be in bothBt andBt̂. In this case, the
correspondence may assign v[w(t; t̂)] to itself; we represent
this by a self-loop on v[w(t; t̂)].

Each w(�; �) 2 W is in exactly two sets: B� and
B� . Therefore, H is 2-regular, a collection Y of simple
cycles (where a node with a self-loop is considered a cy-
cle). For a cycle Y 2 Y , let WY = fw(�; �) 2 W :
v[w(�; �)] 2 Y g. The set fWY : Y 2 Yg consti-
tutes a partition of W into subsets, so f 0 =

P
f2W f =P

Y 2Y

P
f2WY

f . Since c[f 0] < 0, there must be some
Y � 2 Y such that

P
f2WY �

c[f ] < 0. It follows thatP
w(�;�)2WY �

c[w(�; �)] < 0.
We build a promenade M in G by following the cycle

Y . We begin with an arbitrary node v[w(�0; �0)], and add
the edges of the path g(�0; �0) to M . We then follow an
edge in H to a node v[w(�1; �1)], where f�0; �1g 2 X ,
by definition of H . When we follow this edge, we add the
matching edge (�0; �1) to M , then the path g(�1; �1). We
continue this way until we complete the cycle Y , and thus
close the promenade M .

Let U be the set of subpaths g(�; �) we added toM while
following Y . Matching edges have zero cost, so c[M ] =P

g(�;�)2U c[g(�; �)]. Since
P

w(�;�)2WY �
c[w(�; �)] < 0,

we have c[M ] =
P

g(�;�)2U c[g(�; �)] < 0 by Claim 7.
Thus M is a negative-cost promenade, and we have a con-
tradiction.

Theorem 1 is implied by Lemmas 5, 6, 9 and 10.

5 Generalization to Concatenated Codes

In this section we give a generic LP to decode a repetition
code concatenated with any other inner rate-1 code, with an
interleaver between them. The LP can be generalized fur-
ther to apply to any set of parallel or serially concatenated
codes of any rate, connected by interleavers. We defer this
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general form to a later version, though it is not difficult to
derive.

We model the inner code using a simple graph (trellis)
that represents each input string by a path from a start node
to an end node. Any rate-1 binary code can be modeled
this way, though for some codes, the trellis could require
exponential size. So, the LP is only of polynomial size if
the code can be described by a polynomial-sized trellis. Any
convolutional code (see [19]) has a simple linear-size trellis.

Let trellis T be a directed graph with the following prop-
erties: (i) There is a specified start node s0. For all other
nodes s in T , all paths from s0 to s have equal length. Let
Lt be the set of nodes distance t from s0. (ii) Nodes in Ln
have no outgoing edges. All other nodes have two outgoing
edges: an “input-0” edge, and an “input-1” edge. Let St be
the set of input-1 edges leaving nodes in Lt. (iii) Each edge
is labeled with a code bit 0 or 1.

Let � be a permutation �j : f0; : : : ; n � 1g !
f0; : : : ; n � 1g. The code (T; �) encodes an information
word x of length k as follows. (i) Let x0 be a binary string
of length n, where x0t = xb��1(t)=`c. (ii) From the start
node s0 of T , follow a path in T using bits from x0: on step
t of the path, follow the “input-0” edge if x0t = 0, and fol-
low the “input-1” edge if x0t = 1. Concatenate the labels on
the edges of the path to obtain a code word y of length n.

We define the linear program TCLP as follows. As in
RALP, we have a flow varaible f(e) for each edge in the
trellis T . We also have free variables zi for each information
bit xi. The cost c[e] of an edge e entering a node from Lt
is the Hamming distance between the label on the edge and
the received bit vt. For each node s in T , define Æ(s) to be
the set of outgoing edges from s, and 
(s) to be the set of
incoming edges. For all i 2 f0; : : : ; k � 1g, let Xi be the
set of indicies to which information bit xi was repeated and
permuted, i.e., Xi = f�(`i); �(`i+1); : : : ; �(`i+ `� 1)g.
Let X = fXi : i 2 f0; : : : ; k � 1gg.

TCLP: min
P
e2T

c[e]f(e) s:t:

P
e2Æ(s0)

f(e) = 1

P
e2
(s)

f(e) =
P

e2Æ(s)

f(e) 8 s 2 T; s 6= s0; s =2 Ln

P
e2St

f(e) = zi 8Xi 2 X ; t 2 Xi

0 6 f(e) 6 1 8 e 2 T

A decoder based on TCLP has the ML certificate prop-
erty for the same reasons the RALP decoder did. It is also
not hard to derive a generalized “promenade” structure for

TCLP, and prove a theorem analogous to Theorem 1 for this
class of codes. The challenge then is to prove that for some
interleaver, it is unlikely that there will be a “promenade”
with cost less than or equal to zero. It would be interesting
to see a general construction to derive interleavers for this
class of codes.

6 Future Work

Improving the Running Time The obvious drawback of
our approach to decoding is the complexity of solving a lin-
ear program. Even though interior point methods run in
polynomial-time (and the simplex algorithm often faster),
most applications of error-correcting codes require a more
efficient decoding algorithm. There are two possible solu-
tions to this problem, and both have some important unan-
swered questions.

The first option is to try and solve RALP or TCLP com-
binatorially. For the case of RA(2) codes, the resulting
agreeable flow problem can be reduced to an instance of
normal min-cost flow, and thus yields a more efficient com-
binatorial algorithm. We leave the details for a later version.
It is an interesting open question as to whether combinato-
rial solutions exist for RA(`), ` > 3, or other codes.

The agreeable flow problem has a more general formu-
lation that could apply to areas outside of coding theory.
We define the min-cost agreeable flow problem as follows:

Min-Cost Agreeable Flow: Given a directed network
G = (V;E), a source s 2 V and a sink t 2 V
with a demand �, capacities u : E ! R

+ and costs
c : E ! R on the edges, and a sequence of edge sets
A = fA1; Â1; A2; Â2; : : : ; Am; Âmg, find a minimum-cost
�-unit flow f from s to t, where 8(Ai; Âi), the total flow
going through arcs in Ai is equal to the total flow going
through arcs in Âi.

Any LP with a constraint matrix made up of f+1;�1g
can be expressed using only the agreeability constraints of
the above formulation, so we would not expect to be able
to solve Min-Cost Agreeable Flow combinatorially in its
full generality. However, the specialized structure of RALP
or TCLP may allow a combinatorial solution. In general,
it is an interesting question to determine how the min-cost
agreeable flow problem must be restricted in order to make
it solvable combinatorially.

The second option for improving efficiency is to use an
iterative decoder. We showed (with Wainwright [8]) that
the iterative TRMP algorithm of Wainwright, Jaakkola and
Willsky [18], when applied to the problem of decoding
turbo-like codes, outputs exactly the solution to TCLP. We
have done some testing of this algorithm applied to various
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codes, and it seems to converge reasonably well. However,
it is not known whether this algorithm converges in general,
or how long it takes to converge when it does.

Improving the Error Bounds. The RA code with rate
1=2� o(1) that we were able to analyze completely is not
the best code experimentally in the literature. We are cur-
rently trying to understand the combinatorics behind more
complicated codes such as a rate 1/3 RA code, and the clas-
sic turbo code (parallel concatenated convolutional code).
In order to provide better bounds for these codes, we need
to prove that negative-cost “promenade”-like subgraphs are
unlikely. Theorem 1 suggested a design for an interleaver
for the rate 1=2 � o(1) RA code. It would be interesting
to see if other design suggestions can be derived for more
complex turbo-like codes.

Interpreting Iterative Decoders as Optimization Algo-
rithms. We have already begun the work of connecting the
world of iterative decoders to our LP decoder [8]. However,
preliminary testing suggests that BP algorithms outperform
our LP decoder. The reason for this difference is not well
understood. If we were able to interpret standard BP de-
coders as global optimization routines, perhaps we would
be able to bound their error rate using the same techniques.

Using the Polytope for ML Decoding. We observed
through experimentation that the integrality gap of TCLP
applied to RA codes was usually very good, and so the so-
lution to TCLP provided a good lower bound for use in a
branch-and-bound search for the ML code word. Although
not guaranteed to run in polynomial time, our branch-and-
bound search finished much sooner than a naive ML decod-
ing algorithm would have. More details of these experi-
ments will appear in a later version.

More applications of LP-based decoding. Our analysis
of the error probability is over the random coin flips of the
channel; in the context of TCLP, this translates to the proba-
bility, in a fixed polytope, over a random direction of the ob-
jective function, that the LP solution was integral. It would
be interesting to write LPs for other codes (such as low-
density parity check codes or expander-based codes) and
apply the same sort of analysis. Perhaps this sort of analy-
sis could have other applications outside of coding theory.
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