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Abstract

Bryant [5] has shown that any OBDD for the function MULn−1,n, i.e. the middle bit
of the n-bit multiplication, requires at least 2n/8 nodes. In this paper a stronger lower
bound of essentially 2n/2/61 is proven by a new technique, using a universal family
of hash functions. As a consequence, one cannot hope anymore to verify e.g. 128-bit
multiplication circuits using OBDD-techniques because the representation of the
middle bit of such a multiplier requires more than 3 · 1017 OBDD-nodes. Further,
a first non-trivial upper bound of 7/3 · 24n/3 for the OBDD-size of MULn−1,n is
provided.
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1 Introduction and Results

Ordered Binary Decision Diagrams (short: OBDDs) belong to the most impor-
tant data structures for representing boolean functions. Efficient algorithms
on OBDDs are known for all important operations, as e.g. synthesis operation,
equivalence test, satisfiability test or minimization. Therefore, OBDDs have
found a wide variety of applications, especially in the areas of model checking
and circuit verification.
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Definition 1 Let Xn = {x1, . . . , xn} be a set of Boolean variables.

(1) A variable ordering on Xn is a bijection π : {1, . . . , n} → Xn, leading to
the ordered list π(1), . . . , π(n) of the variables.

(2) A π-OBDD on Xn for a variable ordering π is a directed acyclic graph
with one root and two sinks satisfying the following properties: One sink
is labeled with 0, the other with 1. Each inner node is labeled by a variable
in Xn and has two outgoing edges, one labeled by 0, the other by 1. If
an edge leads from a node labeled by xi to a node labeled by xj , then
π−1(xi) < π−1(xj). This means that any path on the graph passes the
nodes in an order respecting the variable ordering π.

(3) The computation path of an input a = (a1, . . . , an) ∈ {0, 1}n is the path
starting at the root and leaving any xi node over the edge labeled by the
value of ai. The OBDD represents a function f : {0, 1}n → {0, 1} if for
any a ∈ {0, 1}n the sink reached by the computation path of a is labeled
with f(a).

(4) The size of a π-OBDD is the number of its nodes. The π-OBDD-size of
a Boolean function f (short: π-OBDD(f)) is the size of the minimum
π-OBDD computing f . Finally, the OBDD-size of f (short: OBDD(f))
is the minimum of π-OBDD(f) for all variable orderings π.

For an in-depth discussion of OBDDs and their operations we refer to [14].

OBDDs can be used, e.g. for circuit verification as follows. If one wants to test
a circuit for a function f against its specification (function g), one can use
syntheses operations in order to obtain π-OBDDs for f and g and then check
whether f and g are equal by using the equivalence test. The minimization
algorithm is used to ensure that the OBDDs obtained during such a procedure
are as small as possible.

Although each single operation used in a such a verification procedure is pos-
sible in polynomial (i.e. quadratic or even better) time with respect to the
sizes of the corresponding input OBDDs, the total procedure may be infeasi-
ble because the sizes of the involved OBDDs may grow almost quadratically
with each synthesis operation.

It is not surprising that a lot of research effort has been spent in trying to
verify multiplier circuits using OBDDs. However, it took until 1998 until it
was possible to compute an OBDD for the 16-bit multiplication circuit c6288,
one of the most important ISCAS (International Symposium on Circuits and
Systems) benchmark circuits [18]. The resulting OBDD consisted of more than
40 million nodes, the largest OBDD obtained during the synthesis operations
even had 110 million nodes and the maximum memory requirement was 3,803
megabyte. According to the author’s knowledge, nobody could successfully
compute an OBDD for a larger multiplier circuit, yet.
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These experiences do not necessarily mean that there are no small OBDDs
for e.g. 16- or 32-bit multiplier circuits, because the size of a π-OBDD can
be quite sensitive to the chosen variable ordering π, and finding a variable
ordering leading to small or even minimal π-OBDDs is a hard problem (see
[1,4,12]). Therefore, it is necessary to prove large lower bounds for the OBDD-
size of integer multiplication in order to be sure that verification of multipliers
using OBDDs is infeasible.

There is also a more theoretical motivation for the investigation of the OBDD-
size of multiplication. It can be easily seen that almost all functions require
an exponential number of elements in any realization by networks using only
primitive elements. But this would not be disturbing as long as for all practical
relevant families of functions small representations of a certain kind exist.
Therefore, one is interested in finding exponential lower bounds for the size
of OBDDs (and other representation types) computing important and natural
families of functions.

Definition 2 The Boolean function MULk,n : {0, 1}2n → {0, 1} computes the
bit zk of the product (z2n−1 . . . z0) of two integers (yn−1 . . . y0) and (xn−1 . . . x0).

The first step towards bounding the size of OBDDs for integer multiplication
was done by Bryant in 1986 [4]. He showed that for any variable ordering
π, there exists an index k, such that the π-OBDD-size for MULk,n is at least
2n/8. This result, though, would still allow the possibility that one might obtain
polynomial size OBDDs for all functions MULk,n by choosing different variable
orderings for different output bits. In 1991, Bryant found that computing the
middle bit of multiplication (that is MULn−1,n) requires a π-OBDD containing
2n/8 nodes for any variable ordering π [5].

Although this proves the exponential size of OBDDs for multiplication, the
bound is - as stated e.g. by Bollig and Wegener in [2] - not satisfactory. This is
because Bryant’s bound would still allow the possibility that one can construct
64-bit multipliers represented by OBDDs containing only 256 nodes while on
the other hand it is widely conjectured that OBDDs computing MULn−1,n

have a size of at least 2n. This would mean that such a multiplier could not
even be realized with millions of nodes. Since one would like to use OBDDs for
realistic applications one is interested in either finding such small constructions
or a better lower bound. The following result, which will be proven in the next
section, provides the second alternative:

Theorem 3 The OBDD-size of MULn−1,n is at least 2⌊n/2⌋/61 − 4.

This bound shows that any OBDD for 64-bit multiplication must be con-
structed of more than 70 million nodes and therefore the representation of
64-bit multipliers using OBDDs requires a huge amount of resources. The ver-
ification of 128-bit multipliers is infeasible because more than 3 · 1017 OBDD-
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nodes would be necessary.

The technique leading to this result is new. It relies on a universal family of
hash functions [16] and makes use of a new lemma showing how such functions
distribute two arbitrary sets over the range. Universal hashing is introduced
in the next section. We remark, that following the conference version [17] of
this paper, quite some progress has been made in proving lower bounds for the
BDD-size of MULn−1,n. E.g., in [2] a lower bound of Ω(2n/4) was proven for
read-once branching programs (improving the earlier 2Ω(

√
n) bound of Ponzio

[10]) and in [11] super-linear time-space-tradeoffs were shown for even less
restricted BDD-models. However, all these results extend the main proof-idea
of this paper, which builds on universal hashing. Furthermore, the result for
OBDDs presented here is the only one which achieves such a large constant
factors (in the exponent and the coefficient) that it has relevance for the
verification of multiplier circuits of realistic bit-length.

Since it is generally believed that the true bound on the OBDD-size for
MULn−1,n is still larger than 2n/2, it is of interest to have an upper bound,
too. Note that for any Boolean function on m variables, there exists an OBDD
of size

(

2 + o(1)
)

2m/m [3], so a trivial upper bound for OBDD(MULn−1,n) is

roughly 22n/n. The following upper bound, proved in Section 3, is the first
non-trivial one.

Theorem 4 The OBDD-size for MULn−1,n is at most 7/3 · 24n/3.

The bound shows that the middle bit of a 16-bit multiplication can be repre-
sented by an OBDD containing less than 6.2 million nodes. Constructions of
OBDDs satisfying this bound can be derived from the proof.

2 The Lower Bound

We first describe a general technique to prove lower bounds for the OBDD-size
of boolean functions. The technique is principally well known (see e.g. [13]) but
we formulate it here in a way which suits our needs best. For a1, . . . , ai ∈ {0, 1},
1 ≤ i ≤ n, denote by f|a1,...,ai

the subfunction of f that computes f(x1, . . . , xn),
where for 1 ≤ j ≤ i the j-th input-variable according to π (that is π(j)) is
fixed by the constant aj.

Lemma 5 Let f : {0, 1}n → {0, 1} and π be a variable ordering on Xn =
{x1, . . . , xn} and k ∈ {1, . . . , n}. Further let T ⊆ Xn contain the first k vari-

ables w.r.t. π, i.e. T = {π(i) | 1 ≤ i ≤ k} and let sk be the number of different

subfunctions f|a1,...,ak
where a1, . . . , ak ∈ {0, 1}. Then π-OBDD(f) ≥ 2 · sk −1.
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Proof: Let G be an arbitrary π-OBDD for f and assume w.l.o.g. that π(i) =
xi for 1 ≤ i ≤ n. Hence, the variables appear on any computation path in
the order x1, . . . , xn and T = {x1, . . . , xk}. For any a = (a1, . . . , ak) ∈ {0, 1}k

let va be the unique vertex reached by the computation paths starting with
a right after the variable xk has been tested. Denote by V the set of all va

with a ∈ {0, 1}k. Obviously, any directed path leading from a vertex va ∈ V
to a sink contains only xi-nodes with i > k. Therefore, any assignment b =
(bk+1, . . . , bn) ∈ {0, 1}n−k to these variables defines a unique path from va to
a sink.

Consider now two different assignments a, a′ ∈ {0, 1}k. If va = va′ then f|a =

f|a′ because for all b ∈ {0, 1}n−k the computation paths of ab and a′b reach
the same sink. Therefore |V | ≥ sk. Moreover, no vertex va ∈ V lies on the
path from the source to a vertex va′ ∈ V − {va} because then its label would
be a variable xi with i ≤ k. Hence, we can embed a tree in the subgraph of
G consisting only of the paths from the root to the vertices in V such that
each vertex of the tree has at most 2 children. Since this tree has |V | leafs it
consists of at least 2|V |−1 vertices. Therefore, G has at least 2|V |−1 ≥ 2sk−1
nodes. 2

Before we start proving the lower bound for the OBDD-size of MULn−1,n we
shall sketch the main idea. Let for a ∈ {0, 1}n the function MULa

k,n : {0, 1}n →
{0, 1} be defined by MULa

k,n(x) = MULk,n(a, x). Similar as in Bryant’s proof
we will show that for any given variable ordering π there exists an integer a
for which the π-OBDD-size of MULa

n−1,n is large. However, Bryant chose this
integer a in such a way that only two bits, ai and aj, were 1 and all other bits
were 0. This way, the product a · x simplified to the sum ai · 2i · x + aj · 2j · x
and lower bounds for the OBDD-size of computing such sums can be obtained
easily, depending on the variable ordering.

However, our goal is to allow more choices for the integer a and we need
another way to write a · x as the sum of two integers. Consider the set T of
the the first n/2 variables with respect to π and let B be the remaining n/2
variables. We construct two sets M and N of integers in {0, . . . , 2n − 1} in
such a way that M contains the integers p for which all variables in T are
fixed to 0 and N contains the integers q for which all variables in B are fixed
to 0. Clearly, any integer x in {0, . . . , 2n − 1} can be uniquely expressed as
q + p for some p ∈ M and some q ∈ N . Furthermore, q is uniquely determined
by the variables in T and thus determines a unique subfunction g|q, where
g = MULa

n−1,n for an appropriately chosen integer a. According to Lemma 5
it suffices to show that for many different q ∈ N the subfunctions g|q are
different. We do this by determining a constant a and two subsets M ′ ⊆ M
and N ′ ⊆ N with the following property: For any distinct q, q′ in N ′, there
exists p ∈ M ′ such that a(p + q) and a(p + q′) differ in the n-th bit. Since q
and q′ are determined only by the top variables and p is determined by the
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bottom variables, it follows that the 2n/2 assignments of constants to the top
variables yield at least |N ′| different subfunctions.

The difficult part is to find the constant a and the sets M ′ and N ′ with the
abovely described property. We consider the functions fa : {0, . . . , 2n − 1} →
{0, 1}k for some appropriately chosen k, which maps an n-bit integer to the
k-bits (yn−1 . . . yn−k), where (y2n−1 . . . y0) is the binary representation of the
product y = a · x. We then use the fact that the middle bit of the product
a(p + q) equals in most cases the k-th bit of fa(p) + fa(q). Hence, if fa(q)
and fa(q

′) are different k-bit integers and if we have very many different k-bit
values fa(p) with p ∈ M ′, then we should be able to find such a p ∈ N ′ such
that fa(p)+ fa(q) and fa(p)+ fa(q

′) differ in the k-th bit. Then it follows that
the subfunctions of MULa

n−1,n induced by q and q′ are different, too.

In order to find very many different subfunctions we have to prove that for
some integer a there are very many different function values fa(p) with p ∈ M
and very many function values fa(q) with q ∈ N . And that is where universal
hashing comes into play.

2.1 Universal Hashing

The concept of universal hashing was introduced by Carter and Wegman in
1979 [6]. While one of its original purposes was to use randomization in hashing
schemes instead of relying on the distribution of the inputs, it has found over
the years a large variety of applications in areas of all different kinds. Universal
hash families are usually defined by the following notation: Let H be a family
of hash functions U → R. U and R are called universe and range, respectively.
For arbitrary x, x′ ∈ U and h ∈ H, we define

δh(x, x′) =







1 if x 6= x′ and h(x) = h(x′)

0 otherwise.

If one or more of h, x and x′ are replaced in δh(x, x′) by sets, then the sum is
taken over the elements from these sets. E.g., for H ⊆ H, V ⊆ U and x ∈ U ,
δH(x, V ) means

∑

h∈H

∑

x′∈V

δh(x, x′).
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Definition 6 A family H of hash functions U → R is universal, if for any
two distinct x, x′ ∈ U

δH(x, x′) ≤ |H|
|R| .

A stronger definition of so-called strongly universal hash families was given in
[15]. Among the many applications, there were also interesting results concern-
ing general branching programs. Mansour, Nisan and Tiwari [9] investigated
the computational complexity of strongly universal hashing, and gave a lower
bound for the time-space tradeoff of branching programs computing the func-
tions of such families. For OBDDs, though, it is not possible to show a general
exponential lower bound for universal hash families. E.g., the convolution of
two bit strings can be viewed as a strongly universal hash family [9], but it
can be easily seen that for any output bit of the convolution, there exists a
variable ordering π yielding a linear π-OBDD-size.

The property of universal hash families we will use here, can be described
in the following way: If there are two large enough subsets of the universe
given, then there exists a hash function under which the function values of the
elements from each set cover a large fraction of the range.

For a function h : U → R and a subset M ⊆ U , define h(M) to be the image
of M under h, i.e.

h(M) := {y ∈ R | ∃x ∈ M : h(x) = y}.

Lemma 7 Let H be a universal family of hash functions U → R and 0 ≤ ǫ <
1. Then for arbitrary M, N ⊆ U with

|M |, |N | > 2
(

|R| − 1
) ǫ

1 − ǫ
,

there exists a hash function h ∈ H such that h(M) and h(N) contain more

than ǫ|R| elements each.

Proof: Let r = |R| and assume w.l.o.g. that M and N both have the same
cardinality m, where m > 2 · (r − 1) · ǫ/(1 − ǫ). For h ∈ H let the random
variable Xh be the sum of δh(M, M) and δh(N, N). Using the assumption that
H is universal, we obtain for a randomly chosen function h ∈ H an upper
bound for the expectation of Xh:

E
h∈H

[Xh] =
∑

x,x′∈M
x 6=x′

E
h∈H

[δh(x, x′)] +
∑

y,y′∈N
y 6=y′

E
h∈H

[δh(y, y′)]

≤ |M |
(

|M | − 1
)1

r
+ |N |

(

|N | − 1
)1

r
=

2

r
m(m − 1).
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This means by the probabilistic method that there exists h0 ∈ H with

Xh0
≤ 2

r
m(m − 1). (1)

In order to prove that this h0 fulfills the claim, we assume that h0(M) con-
tains at most ǫr elements. By summing over the ordered pairs of elements in
h0

−1(y) ∩ M for each y ∈ h0(M), we get

δh0
(M, M) =

∑

y∈h0(M)

∣

∣

∣h0
−1(y) ∩ M

∣

∣

∣

(

∣

∣

∣h0
−1(y) ∩ M

∣

∣

∣− 1
)

=
∑

y∈h0(M)

(

∣

∣

∣h0
−1(y) ∩ M

∣

∣

∣

2 −
∣

∣

∣h0
−1(y) ∩ M

∣

∣

∣

)

=−m +
∑

y∈h0(M)

∣

∣

∣h0
−1(y) ∩ M

∣

∣

∣

2
.

Clearly, this sum is minimal, if each h0
−1(y) ∩ M contains the same number

of m/(ǫr) elements. Therefore,

δh0
(M, M) ≥ −m + ǫr

(

m

ǫr

)2

= m
(

m

ǫr
− 1

)

.

For N , we obtain with analogous arguments that δh0
(N, N) ≥ m(m/r − 1).

Therefore, we have the following lower bound on Xh0
:

Xh0
≥ m

(

m

ǫr
+

m

r
− 2

)

.

Plugging in the upper bound of (1) yields

2 − 2

r
≥ m

ǫr
+

m

r
− 2

r
· m = m ·

(

1

ǫr
− 1

r

)

= m · 1 − ǫ

ǫr

and thus

m ≤
(

2 − 2

r

)

· ǫr

1 − ǫ
= 2(r − 1) · ǫ

1 − ǫ
.

But this contradicts the assumption on m. 2

We now consider hash functions, which map the n-bit universe U := {0, . . . , 2n − 1}
to the k-bit range Rk :=

{

0, . . . , 2k − 1
}

. For a, b ∈ U let

hk
a,b : U → Rk, x 7→

(

(ax + b) mod 2n
)

div 2n−k,

where “div” is the integer division without remainder (i.e. x div y = ⌊x/y⌋). In
a bitwise view, the result of the modulo operation x mod 2n is represented by
the n least significant bits of x. On the other hand, the division x div 2n−k can

8



be viewed as shifting x by n − k bit-positions to the right. In other words, if
the value of the linear function ax+b is represented by (y2n−1 . . . y0), then hk

a,b

is the integer, which is represented by the k bits (yn−1 . . . yn−k). The following
result has been established in [16] following the investigation of similar hash
classes in [7,8].

Theorem 8 Let 1 ≤ k ≤ n. Then there exist sets A ⊆ U and B ⊆
{

0, . . . , 2n−k − 1
}

such that the family of hash functions hk
a,b with a ∈ A and

b ∈ B is universal.

In order to make the paper self-contained, we prove this theorem. We first
investigate the division more closely. Let gb be the mapping U 7→ Rk, x 7→
(

(x + b) mod 2n
)

div 2n−k.

Claim 9 Let x1, x2 be arbitrary elements from U and d = (x2 − x1) mod 2n.

Then for a randomly chosen b ∈
{

0, . . . , 2n−k − 1
}

the probability that gb(x1)

equals gb(x2) is exactly



















1 − d/2n−k if d ∈
{

0, . . . , 2n−k − 1
}

,

0 if d ∈
{

2n−k, . . . , 2n − 2n−k − 1
}

and

1 − (2n − d)/2n−k if d ∈
{

2n − 2n−k, . . . , 2n − 1
}

.

Proof: Assume first that 2n−k ≤ d < 2n−2n−k. Then either x2 ≤ x1−2n−k or
x2 ≥ x1+2n−k. In any case, gb(x1) and gb(x2) obviously have different function
values.

Consider now the case in which 0 ≤ d < 2n−k, and let λ = x1 div 2n−k

and τ = x1 mod2n−k. If b ∈
{

0, . . . , 2n−k − 1
}

then gb(x1) equals λ if

b + τ < 2n−k and otherwise equals (λ + 1) mod 2k. Since x2 may be writ-

ten as
(

2n−kλ + τ + d
)

mod2n, gb(x2) equals λ if b + τ + d < 2n−k and

equals (λ + 1) mod 2k if 2n−k ≤ b + τ + d < 2n−k+1. Otherwise gb(x2) equals
(λ + 2) mod 2k. Therefore, gb(x1) = gb(x2) if and only if

0 ≤ b < 2n−k − τ − d or 2n−k − τ ≤ b < 2n−k+1 − τ − d.

It can be easily verified that there are exactly 2n−k − d values 0 ≤ b < 2n−k

which satisfy this condition.

For the last case in which 2n − 2n−k ≤ d < 2n, we consider d′ =
(x1 − x2) mod 2n instead of d. By observing that d′ equals 2n − d which

is in
{

0, . . . , 2n−k − 1
}

, the claim easily follows from the former case. 2

Proof of Theorem 8: Let A be the set of odd numbers in U and B =
{

0, . . . , 2n−k − 1
}

. We show that the family HA,B consisting of the functions

hk
a,b with a ∈ A and b ∈ B forms a universal family of hash functions (note
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that as stated in [16] a significant smaller subset B suffices, requiring though
a much more involved proof).

Consider two distinct elements x1 < x2 in U and δ = x2 − x1. Obviously, we
can write δ as r2s for some odd r < 2n−s. Then

(ax2 − ax1) mod 2n = (ar2s) mod 2n =
(

(ar) mod 2n−s
)

· 2s. (2)

Now let a be chosen randomly from A. Then a mod2n−s is uniformly dis-
tributed over the odd numbers {1, 3, . . . , 2n−s − 1}. Since these numbers form
a group with respect to the multiplication modulo 2n−s, (ar) mod 2n−s is uni-
formly distributed over this group. This means by equation (2) that (ax2 −
ax1) mod 2n is uniformly distributed over

M =
{

1 · 2s, 3 · 2s, . . . ,
(

2n−s − 1
)

· 2s
}

.

Note that ha,b(x) = gb

(

(ax) mod 2n
)

. For randomly chosen a ∈ A and b ∈ B
it follows from Claim 9, that

p := Prob
(

ha,b(x1) = ha,b(x2)
)

=
1

|M | ·




∑

d∈M1

(

1 − d

2n−k

)

+
∑

d∈M2

(

1 − 2n − d

2n−k

)



,

where M1 = M ∩
{

0, . . . , 2n−k − 1
}

and M2 = M ∩
{

2n − 2n−k, . . . , 2n − 1
}

.
Since the set M2 consists of the numbers 2n − d with d ∈ M1, we obtain

p =
2

|M | ·
∑

d∈M1

(

1 − d

2n−k

)

.

M1 is the set
{

1 · 2s, 3 · 2s, . . . , (2n−k−s − 1) · 2s
}

, which is the empty set, if
s ≥ n − k. In this case, p equals 0. If s < n − k, then

p =
2

|M |

(

|M1| −
2s

2n−k

(

1 + 3 + · · ·+ (2n−k−s − 1)
)

)

=
2

2n−s−1

(

2n−k−s−1 − 2s−n+k ·
(

2n−k−s
)2

/4
)

=
2

2n−s−1

(

2n−k−s−1 − 2n−k−s−2
)

= 2−k =
1

|Rk|
.

This shows that δH(x1, x2) (which equals |H|p by definition) is bounded above
by |H|/|Rk|. 2
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2.2 Proof of the Main Theorem

Since the functions hk
a,b are evaluated not only by a multiplication, but also by

an addition, we cannot use Lemma 7 for the proof of the lower bound and the
OBDD-size of MULa

n−1,n directly. Let fk
a := ha,0 be the functions that can be

evaluated without addition. The following lemma gives a result similar to that
of Lemma 7. Note that as stated in [8], the hash functions fk

a form an almost

universal hash class (which means that in Definition 6 |H|/|R| is replaced by
c|H|/|R| for some constant c > 1). This property alone, though, seems not to
be sufficient to prove a result as strong as the one given below.

Lemma 10 Let 1/2 ≤ ǫ < 1 and let M and N be subsets of {0, . . . , 2n − 1},
each of them containing more than 2 ·(2k+1−1) ·ǫ/(1−ǫ) elements. Then there

exists an integer a ∈ {0, . . . , 2n − 1}, such that fk
a (M) and fk

a (N) contain at

least (2ǫ − 1)2k elements each.

Proof: By Lemma 7 and Theorem 8, there exist a ∈ {0, . . . , 2n − 1} and

b ∈
{

0, . . . , 2n−k−1 − 1
}

such that hk+1
a,b (M) and hk+1

a,b (N) contain more than

ǫ|Rk+1| = ǫ2k+1 elements each. Let these a, b be fixed and let f = fk
a . We show

that f(M) contains at least (2ǫ− 1)2k elements; the claim then follows for N
with the same argument.

Let M ′ ⊆ M with |M ′| = ǫ2k+1, such that all x ∈ M ′ have distinct function
values under hk+1

a,b . Since Rk+1 contains exactly 2k even elements, there are
at least |M ′| − 2k elements in M ′, which have an odd function value under
hk+1

a,b . Let M ′′ be a subset of M ′ containing exactly ǫ2k+1 − 2k = 2k(2ǫ − 1)
elements with an odd function value. To prove the claim, it suffices to show
that for any two distinct x, x′ ∈ M ′′ we have f(x) 6= f(x′). Let hk+1

a,b (x) = z

and hk+1
a,b (x′) = z′. Then

z · 2n−k−1 ≤ (a · x + b) mod 2n < (z + 1) · 2n−k−1.

Note that z 6= 0 because it is odd. Since by definition 0 ≤ b < 2n−k−1, it
follows that

(z − 1) · 2n−k−1 ≤ (a · x) mod 2n < (z + 1) · 2n−k−1.

Further, by z being odd, (z−1)/2 equals ⌊z/2⌋ and (z+1)/2 equals ⌊z/2⌋+1.
Therefore, the above inequalities imply

⌊z/2⌋ · 2n−k ≤ (a · x) mod 2n < (⌊z/2⌋ + 1) · 2n−k.

This means that f(x) = ⌊z/2⌋, and with the same argument also f(x′) =
⌊z′/2⌋. But because z and z′ are both odd and different, clearly ⌊z/2⌋ and
⌊z′/2⌋ are different, too. So, we obtain the desired result f(x) 6= f(x′). 2
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We are now ready to prove that for any variable ordering π there is an integer
a such that the OBDD-size of MULa

n−1,n is large (recall that MULa
n−1,n(x) =

MULn−1,n(a, x)). In order to do so, we need some more notation. Let x be an
integer represented in a bitwise notation as (xn−1 . . . x0). Then we write [x]k
for the (k + 1)-th bit xk.

Theorem 11 Let π be an arbitrary variable ordering on Xn. Then there exists

an integer a ∈ {0, . . . , 2n − 1} such that any π-OBDD for MULa
n−1,n consists

of at least 2⌊n/2⌋/121 − 1 nodes.

Proof: Let w.l.o.g. n be even and let the input variables for the π-OBDD be
xn−1, . . . , x0. Consider the set T of the the first n/2 variables with respect to
π and let B be the remaining n/2 variables. We now construct two sets M and
N of integers in {0, . . . , 2n − 1} as follows: M contains all integers which can
be represented by (xn−1 . . . x0) if the variables from T are fixed to 0, and N
contains all integers which can be represented by (xn−1 . . . x0) if the variables
from B are fixed to 0. Note that any integer in {0, . . . , 2n − 1} can be uniquely
expressed as p + q for p ∈ M and q ∈ N .

Our goal is to find an appropriate constant a and two subsets M ′ ⊆ M and
N ′ ⊆ N with the following property: For any distinct q, q′ in N ′, there exists
p ∈ M ′ such that a(p + q) and a(p + q′) differ in the n-th bit. More formally,

∀q, q′ ∈ N ′, q 6= q′ ∃p ∈ M ′ :
[

a(p + q)
]

n−1
6=

[

a(p + q′)
]

n−1
. (3)

Since q and q′ are determined only by the top variables and p is determined by
the bottom variables, it follows that the 2n/2 assignments of constants to the
top variables yield at least |N ′| different subfunctions. Therefore, we conclude
from Lemma 5 that any π-OBDD for MULa

n−1,n has size at least 2N ′ − 1.

It remains to bound N ′. Let ǫ = 16/17 and k = n/2 − 6. Then

|M | = |N | = 2n/2 = 2 · 2k+1 · 16 > 2 ·
(

2k+1 − 1
)

· ǫ

1 − ǫ
.

By Lemma 10, there exists a ∈ {0, . . . , 2n − 1} such that fk
a (M) and fk

a (N)
contain at least (2ǫ − 1)2k = 15/17 · 2k elements each. We fix this a, define
f = fk

a and continue to determine appropriate M ′ and N ′.

As an intermediate step, we choose M∗ and N∗ to be minimal subsets of M
and N , respectively, such that f(M∗) and f(N∗) contain exactly 13/17 · 2k−1

even elements. Such sets exist, since at most 2k−1 of the 2k possible function
values are odd, and thus at least 15/17·2k−2k−1 = 13/17·2k−1 of the elements
in M and N , respectively, have distinct and even function values under f . Note
that because we required M∗ and N∗ to be minimal, f is injective on M∗ and
N∗.

12



The following observation is crucial for the rest of the proof: For any p ∈ M∗

and any q ∈ N∗, the k-th bit of f(p) + f(q) has the same value as the n-th
bit of a(p + q). Or formally

[f(p) + f(q)]k−1 = [a(p + q)]n−1. (4)

The reason for this is that the least significant bits of f(p) and f(q) are both
zero (since these values are even). Recalling that the division executed by f
is in fact a right-shift by n − k bits, we obtain [a · p]n−k = [a · q]n−k = 0.
Therefore, the bits of ap + aq with higher index than n − k are not influ-
enced by a carry bit resulting from the addition of the less significant bits
(

[a · p]n−k . . . [a · p]0
)

+
(

[a · q]n−k . . . [a · q]0
)

. This means that f(p)+ f(q) has

in all bits (except possibly the least significant one) the same value as a(p+ q)
in the bits with indices n − 1, . . . , n − k, and equation (4) is true.

In order to satisfy property (3) it is sufficient by the above arguments that
the sets M ′ and N ′ are subsets of M∗ and N∗ and that the following holds:

∀q, q′ ∈ N ′, q 6= q′ ∃p ∈ M ′ : [f(p) + f(q)]k−1 6= [f(p) + f(q′)]k−1. (5)

We let M ′ = M∗ and

N ′ =
{

q ∈ N∗
∣

∣

∣ ∃p ∈ M ′ : f(q) = 2k − f(p)
}

. (6)

In order to prove claim (5), let q and q′ be arbitrary distinct elements from
N ′. Since q and q′ are in N∗ and therefore have distinct function values under
f , we may assume w.l.o.g. that

0 <
(

f(q′) − f(q)
)

mod 2k ≤ 2k−1 (7)

(otherwise we achieve this by exchanging q and q′). By construction, there
exists a p ∈ M ′ with f(p) + f(q) = 2k. For this p, obviously the k-th bit
of f(p) + f(q), that is [f(p) + f(q)]k−1, equals 0. But on the other hand, by

inequations (7), the value of
(

f(p) + f(q′)
)

mod 2k is in
{

2k−1, . . . , 2k − 1
}

.

This means that the k-th bit of f(p) + f(q′) equals 1, and thus claim (5) is
proven.

So far, we have constructed subsets M ′ ⊆ M and N ′ ⊆ N , which satisfy
claim (3), implying by our arguments a lower bound on the π-OBDD-size of
2|N ′|+ 1. All that is left to do, is to give an appropriate lower bound on |N ′|.
Recall the definition of N ′ in (6), and that f(M ′) = f(M∗) and f(N∗) contain
13/17 · 2k−1 even elements each. Because for any even f(p) also 2k − f(p) is

even, the set L :=
{

2k − f(p)
∣

∣

∣ p ∈ M ′
}

contains 13/17 · 2k−1 even elements,

too. We now let K be the set of 2k−1 even elements in
{

0, . . . , 2k − 1
}

. Since
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f(N∗) ⊆ K, L ⊆ K, and f is injective on N ′, we have

|N ′| = |f(N ′)| = |f(N∗) ∩ L| ≥ |(f(N∗)| + |L| − |K|

=
26

17
· 2k−1 − 2k−1 =

9

17
· 2k−1.

By the choice of k we obtain that 2|N ′| − 1 (and thus also the size of the
π-OBDD) is bounded below by

2 · 9

17
· 2k−1 − 1 =

9

17
· 2n/2−6 − 1 >

2n/2

121
− 1 2

This theorem shows the general result for MULn−1,n of Theorem 3 by the fol-
lowing straightforward observation: If for some constant B and some variable
ordering π there exists an integer a for which the π-OBDD-size of MULa

n−1,n

is at least B+1, then the π-OBDD-size of MULn−1,n is at least 2B. This is be-
cause in any OBDD computing MULn−1,n(x, y) either the input x or the input
y may be fixed to the constant a. In both cases the resulting OBDD contains
at least B − 1 inner nodes, not counting those for variables fixed to constants
(since they may be deleted without changing the function). According to the
last theorem the OBDD for MULn−1,n has a size of at least 2 · (2⌊n/2⌋/121−2),
which proves the main result (Theorem 3).

By a straightforward reduction, one can easily obtain lower bounds on the
OBDD-size of the other output bits of integer multiplication. A simple proof
(see [5], Corollary 1) shows for 0 ≤ i ≤ 2n − 1 that any OBDD computing
MULi,n can be converted into a smaller OBDD computing MULj−1,j, where
j = min {i + 1, 2n − i − 1}.

Corollary 12 Let 0 ≤ i ≤ 2n − 1. The OBDD-size of MULi,n is at least

min
{

2⌊(i+1)/2⌋, 2n−⌈(i+1)/2⌉
}

61
− 4.

3 Upper Bounds

Bryant’s proof as well as ours on the lower bounds for the OBDD-size of
MULn−1,n have both in common that they rely only on the existence of a
constant factor a for each variable ordering π, for which MULa

n−1,n leads to a
large π-OBDD representation. If one would want to improve our lower bound,
then there might be two possibilities. One could either try to consider multiple
values for a or improve the lower bound for the π-OBDD-size of MULa

n−1,n

for an appropriately chosen constant a. We now show that at least the latter
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approach cannot yield significant better lower bounds because Theorem 11 is
optimal up to a small constant factor:

Theorem 13 There is a variable ordering π such that for any integer a ∈
{0, . . . , 2n − 1} the π-OBDD-size of MULa

n−1,n is less than 3 · 2n/2.

In the remainder of this section we prove the upper bounds of the Theo-
rems 4 and 13. Generally, an upper bound on the π-OBDD-size of a boolean
function f can be proved as follows: One describes an algorithm which queries
the variables in the order determined by the variable ordering π. In the ith
step the variable π(i) is queried and after the query the algorithm stores a
state-value qi which depends only on the previous stored value and the re-
sult of the variable query. Each possible stored state-value qi of the algorithm
corresponds to a node labeld with the variable π(i + 1) and thus the sum of
the number of possible state-values qi over all 0 ≤ i ≤ n is the number of
OBDD-nodes (q0 is the unique starting state corresponding to the root of the
OBDD and the two possible final state values qn+1 ∈ {0, 1} correspond to the
sinks of the OBDD). It is obvious how to construct the OBDD corresponding
to such an algorithm.

Proof of Theorem 13: Let π be the variable ordering with π(i) = xi−1, 1 ≤
i ≤ n, and let m = ⌊n/2⌋. In the first half of the steps the algorithm queries
the variables x0, . . . , xm−1 and stores in its state the value of all previously
queried variables. Therefore, 2i state-values are necessary after the ith step
and the first m + 1 levels of the π-OBDD form a complete binary tree whose
leafs are 2m nodes labeled with xm.

Let for 0 ≤ k ≤ n

sk =

(

a ·
k−1
∑

i=0

2i · xi

)

div 2k and s′k = sk mod 2n−k.

Obviously, s′m is uniquely determined by x0, . . . , xm−1 and each of the 2m

OBDD-nodes marked with xm can be uniquely associated with the correspond-
ing s′m-value. In other words, after the mth step the algorithm stores the value
s′m. We now show that for k = m, . . . , n − 2 the value s′k+1 is uniquely de-
termined by s′k and the value of xk. Hence, our algorithm can successively
compute s′m+1, . . . , s

′
n−1 by querying the variables xm, . . . , xn−2. We will also

see that MULa
n−1,n(x) is uniquely determined by s′n−1 and the value of xn−1.

Hence, once s′n−1 is computed, the algorithm can determine the correct result
by querying xn−1. Note that (r+q ·2k) div 2k = r div 2k +q for any two integers
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q, r. Hence,

sk+1 =

(

(

a ·
k
∑

i=0

2i · xi

)

div 2k+1

)

=

(

(

a · 2k · xk + a ·
k−1
∑

i=0

2i · xi

)

div 2k

)

div 2 = (a · xk + sk) div 2.

Hence,

s′k+1 = sk+1 mod 2n−k−1 =
(

(a · xk + sk mod 2n−k) div 2
)

mod 2n−k−1

=
(

(a · xk + s′k) div 2
)

mod 2n−k−1. (8)

This shows that s′k+1 is uniquely determined by s′k and xk. Analogously it
follows that

MULa
n−1,n(x) =

(

(

a
n−1
∑

i=0

2ixi

)

div 2n−1

)

mod 2 = (a · xn−1 + s′n−1) mod 2.

(9)
is uniquely determined by s′n−1 and xn−1.

It remains to bound the size of the OBDD defined by this algorithm. The
first m + 1 levels (i.e. the nodes labeled with x0, . . . , xm) form a complete
binary tree and thus consist of 2m+1 − 1 nodes. The number of xk-nodes with
k > m is the number of possible values for s′k. Using s′k ∈

{

0, . . . , 2n−k − 1
}

for
k = m + 1, . . . , n − 1 and counting also the two sinks we obtain the following
upper bound on the π-OBDD-size of MULa

n−1,n:

2m+1 + 1 +
n−1
∑

k=m+1

2n−k = 2m+1 + 1 +
n−m−1
∑

i=1

2i = 2m+1 + 2n−m − 1.

Since m = ⌊n/2⌋, this simplifies for even n to 2n/2+1 + 2n/2 − 1 = 3 · 2n/2 − 1
and for odd n to

2⌊n/2⌋+1 +2⌈n/2⌉−1 = 2 ·2(n+1)/2 −1 = 2 ·
√

2 ·2n/2 −1 < 3 ·2n/2 −1. 2

We can use the upper bound of Theorem 13 directly in order to obtain an
O(23n/2) upper bound on the OBDD-size of MULn−1,n: The corresponding al-
gorithm just queries one factor y completely and then computes MULy

n−1,n(x)
for the other factor x. The naive approach requires that the values of all y-
variables are kept in memory once they are known. However, it is easy to see
that after querying the k least significant bits of x, the algorithm can “forget”
the value of the k most significant bits of y. This yields a more space-efficient
algorithm and an upper bound of O(24n/3) on the OBDD-size of MULn−1,n.
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Proof of Theorem 4: Let X = {x0, . . . , xn−1}, Y = {y0, . . . , yn−1} and let
π be the variable ordering of X ∪ Y with

(

π(1), . . . , π(2n)
)

= (y0, . . . , yn−1, x0, . . . , xn−1).

Similar as in the proof of Theorem 13 we describe an algorithm which queries
all bits in the order defined by π and which stores after each query a value
which corresponds to a node of an OBDD.

Let m = ⌈n/3⌉− 1. First, the algorithm queries the variables y0, . . ., yn−1, x0,
. . ., xm−1 and stores the values of all queried variables. I.e., the upper part of
the OBDD is a complete binary tree whose 2n+m leafs are the OBDD-nodes
labeled with ym. Let now sk and s′k be defined as in the proof of Theorem 13,
i.e.

sk =

(

y ·
k−1
∑

i=0

2i · xi

)

div 2k and s′k = sk mod 2n−k.

In the proof of Theorem 13 we have already shown that s′k+1 is uniquely
determined by s′k, y and xk. This followed right from (8) which states that

s′k+1 =
(

(y · xk + s′k) div 2
)

mod 2n−k−1.

However, since the term on the right hand side is taken modulo 2n−k−1, we
could have taken y modulo 2n−k beforehand. This shows that s′k+1 is indepen-
dent from the bits yn−k, . . . , yn−1. Hence, s′k+1 is in fact uniquely determined
by s′k and the values of the variables y0, . . . , yn−k−1 and xk. Similarly, it can
be seen from (9), that MULn−1,n(x, y) is uniquely determined by s′n−1, y0 and
xn−1.

Therefore, before querying xk, 0 ≤ k ≤ n − 2, it suffices for our algorithm
to store the value of s′k as well as the values of y0, . . . , yn−k−1 in order to
compute s′k+1 by the next query xk. Then, once xk is queried, the algorithm
can “forget” yn−k−1. Before the last query (i.e. the xn−1-query), s′n−1 as well
as y0 are stored. Then MULn−1,n(x, y) is uniquely determined by the outcome
of the last variable query.

It remains to bound the size of the OBDD defined by this algorithm by bound-
ing the number of possible states after each step of the algorithm. For s′k there
are 2n−k possible values and (y0, . . . , yn−k−1) can take 2n−k values, too. Hence,
for k ≥ m+1, 22n−2k xk-vertices are sufficient for the OBDD. Adding the two
sinks as well as the complete binary tree of size 2n+m+1 − 1 for the y-vertices
and the xk-vertices with k ≤ m, we obtain an OBDD-size of

2n+m+1 + 1 +
n−1
∑

k=m+1

22n−2k = 2n+m+1 + 1 + 4 ·
n−m−2
∑

i=0

22i

= 2n+m+1 + 1 + 4 · 4n−m−1 − 1

3
< 2n+m+1 +

4n−m

3
.
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Since m = ⌈n/3⌉ − 1, we have m = (n + τ)/3 − 1 for some τ ∈ {0, 1, 2}. This
yields an upper bound of

2(4/3)n+τ/3 +
4(2/3)n−τ/3+1

3
= 2(4/3)n ·

(

2τ/3 +
41−τ/3

3

)

.

A simple case distinction shows that the term in parentheses is maximal for
τ = 0 and thus is bounded by 7/3. Therefore, the OBDD constructed here has
at most (7/3) · 2(4/3)n vertices. 2
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