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Abstract

In this paper we investigate the problem of determiningconfluentflows with minimum congestion.
A flow of a given commodity is said to be confluent if at any node all the flow of the commodity departs
along a single edge. Confluent flows appear in a variety of application areas ranging from wireless
communications to evacuations; in fact, most flows in the Internet are confluent since Internet routing is
destination based.

We consider the single commodity confluent flow problem, in which we are given ann-node directed
network G, a sink t and supplies at each node, and the goal is to find a confluent flowthat routes
all the supplies to the sink while minimizing the maximum edge congestion. Our main result is an
approximation algorithm, based on randomized rounding, for the special case when all the supplies
are uniform; the algorithm finds a confluent flow with edge congestionO(C2 log3 n) whereC is the
node congestion of an optimal splittable flow. This implies an Õ(

√
n) approximation algorithm for the

problem. Our result relies on the analysis of a natural probabilistic process defined on directed acyclic
graphs, that may be of independent interest.

For tree networks, we present an optimal polynomial-time algorithm for a multi-sink generalization
of the above confluent flow problem. We show that it is NP-hard to approximate the congestion of the
optimal confluent flow for general networks to within a factorof 4/3. We also establish a lower bound
on the gap between confluent and splittable flows, and consider multicommodity and fractional versions
of confluent flow problems.
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1 Introduction
Consider the following three scenarios.Scenario 1: It is 5:30 AM on a bleak Saturday morning when a
major fire engulfs a big hotel. The hotel guests and employeesflee through the corridors and passageways
as they follow the exit signs in their haste to get out. The streams of fleeing people meet and merge as
they race towards the different emergency exits from which they pour out.Scenario 2:Content delivery
networks (CDNs) employ vast deployments of servers distributed throughout the world. For many appli-
cations ranging from distributing rich-media content to collecting billing data, CDNs often organize their
deployment of servers in the form of a rooted tree (typicallyrooted at the Network Operations Center) with
each node forwarding data from its children to its parent andvice versa. ForScenario 3, we turn to the
wireless domain. As 802.11 networks get increasingly deployed (through airports and coffee shops) many
start-ups are looking into setting up ad-hoc networks of Wi-Fi access points that act as forwarding agents
back to the wired access point that connects to the Internet.An architecture that is commonly considered is
for the ad-hoc network to be organized as a tree (rooted at thewired access point) with each Wi-Fi access
point merge-forwarding the traffic from its children to its parent.

A common thread running through each of these scenarios is that all flows of a given commodity (be
they people or CDN data or wireless packets) areconfluent. A flow (of a given commodity) is said to be
confluent1 if all the flow (of this commodity) arriving at a node departs from the node along a single edge.

Confluent follows arise naturally in other applications as well. The biggest application, by far, is the
Internet. Most flows on the Internet today are confluent because Internet routing is destination-based.
Destination-based routing owes its widespread use and popularity to the fact that it saves memory on routers;
requiring only one entry per node in a routing table, it leadsto linear storage. Routing on the Internet is dic-
tated by BGP which selects a shortest-path tree for each nodeat the Autonomous System level. BGP routing
is destination-based. A major shortcoming of shortest-paths routing, however, is that it ignores congestion
since the shortest paths are usually calculated independently for each source-destination pair.

In this paper, we study a number of optimization problems concerning confluent flows. Our primary
interest is in finding confluent flows that minimize the maximum congestion in the network, thecongestion
of an edge (resp., node) being defined by the total amount of flow going through the edge (resp., node). We
distinguish between the single commodity and multi-commodity variants. The bulk of this paper concerns
thesingle commodity confluent flow problem, which is defined as follows. We are given a directed network,
a distinguished sink, and supplies associated with each source. Our goal is to determine a confluent flow
(that is a tree rooted at and directed toward the sink) such that the maximum congestion of any edge is
minimized.

The maximum congestion of a confluent flow directed toward a single sink occurs at one of the edges
incident into the sink. Thus, one can reduce the confluent flowproblem into the following multi-sink prob-
lem. We are given a set of sinkst1 throughtk and supplies at each node. We would like to determine a
confluent flow that routes all the node supplies to the sinks such that the maximum flow arriving at any
sink is minimized. We refer to this problem as thesingle commodity multi-sink confluent flow problem. In
addition to being a useful reformulation, the multi-sink problem itself naturally captures several applications
such as the evacuation scenario mentioned at the outset of this paper. Furthermore, while the single sink
and multi-sink variants of the single commodity problem areequivalent for general networks, the multi-sink
version is more general when considering certain special classes of networks (e.g., trees, meshes).

1.1 Our results
In this paper, we investigate the optimization and approximability of confluent flow problems.

1The term “confluent flow” was suggested to us by Jon Kleinberg;a similar notion of confluence also arose in some extensions
that Kleinberg, Rabani, and Tardos were considering of their fair routing and load balancing algorithms [18].
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• Our main result is for the single commodity problem for arbitrary networks with uniform supply at
each node. We present an approximation algorithm, based on asimple randomized rounding, that
determines a confluent flow with edge congestionO(C2 log3 n), whereC is the node congestion of
an optimal splittable flow. This implies añO(

√
n)-approximation algorithm for the single commodity

flow problem, wheren is the number of nodes in the network. We complement the preceding result
by showing that the there exists an instance for which the randomized rounding algorithm incurs an
Ω(n1/4) approximation ratio with probability1−ε, whereε > 0 can be made arbitrarily small. These
results, which appear in Section 4, apply to both the single sink and multi-sink variants.

• We show that it is NP-hard to approximate the edge (or node) congestion of the optimal confluent
flow in general directed networks to within a factor of 4/3, even for the uniform-supply case. We also
show that there exists an instance for which the optimal splittable flow has constant edge and node
congestion, while the best confluent flow hasΩ(log n) node congestion. These results may be found
in Section 2.

• We provide optimal polynomial-time algorithms for the multi-sink single commodity problem (with
arbitrary supplies) for both undirected and directed trees. The algorithms are described in Section 3.

• We also study the capacitated multicommodity variants of confluent flows. Our results, which appear
in Section 5, include a proof that the randomized rounding procedure of Raghavan-Thompson [28]
gives anO(log n) approximation for the multicommodity confluent flow problem, assuming the edge
capacities are sufficiently large.

From a technical standpoint, perhaps the most challenging part of this work is the analysis of the randomized
algorithm for single commodity confluent flow. Our result relies on the analysis of a natural probabilistic
process defined on directed acyclic graphs, that may be of independent interest. While the particular process
we study is closely related to branching processes and martingales, the bounds derived from existing general
results in this area do not suffice for our purposes. Through acareful calculation of higher moments, we are
able to derive useful bounds on the tail of the distribution of relevant random variables.

1.2 Related work
A natural question to ask is how the congestion of the best confluent flow compares with that of the best
splittable or unsplittable flow, both of which are natural relaxations of confluent flows. Splittable flows
for the single commodity case are characterized by the well-known max-flow min-cut theorem of Ford and
Fulkerson [10, 11]. The unsplittable flow problem, which requires that the supply from every source is
routed along a single path, may be approximated to within a constant factor using the algorithms of [7, 19].
The relationship between the congestion of confluent and unsplittable flows is addressed in [24], in which
anΩ(n) separation is established. Our results for confluent flow indicate that the optimal node congestion
of (un)splittable flow is a better lower bound on the congestion of confluent flows. (See Section 2.)

To the best of our knowledge, the study of [24] is the first to explicitly discuss the effect of confluence on
congestion in the context of IP routing. A recent study [30] explores the use of confluent flow-based routing
(referred to as hop-by-hop routing) for premium traffic in the differentiated services framework of QoS
routing. Both the studies [24] and [30] present heuristic solutions for various problems related to IP routing;
these solutions, however, do not achieve non-trivial approximation factors. In [14, 21] confluent flows are
also considered in a model where the demands are not associated with individual source-sink pairs; instead
with sources or sinks, as a whole. Furthermore, the objective function being optimized is the total cost of
edges used, not the maximum congestion. Also related is the work of [17], which raises the problem of
finding a subtree of a given network that can route a given set of multicommodity flow pairs with minimum
congestion.
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Our results for the multicommodity version of confluent flow problems are straightforward generaliza-
tions of the rounding algorithm due to Raghavan and Thompson[28] for multicommodity flows. Through
a simple decomposition of fractional confluent flows, we are also able to show that many of the existing
results for concurrent fractional multicommodity flows (e.g., [22, 3, 23]) directly translate to corresponding
results for concurrent fractional confluent flows.

The probabilistic process that we study in our analysis of the randomized rounding algorithm for general
graphs, when restricted to trees, is similar to a random experiment analyzed for the group Steiner and
Steiner covering problems [13, 20]. The measure of interestin our study is however complementary to
that of [13, 20]. Our probabilistic process for trees can also be presented as a branching process ( [9,
Chapter XII], [2]) with different probabilities associated with each branch. Viewed in this context, our
analysis bounds the upper tail of the distribution of the total progeny within a given number of generations.
Bounds on progeny in supercritical branching processes aregiven in [16] and a related branching process is
also analyzed in [8].

2 Preliminaries and hardness results
In this section, we formally define the single commodity confluent flow problem. We defer to Section 5 for
the definition of the multicommodity and fractional versions. LetG = (V,E) be a directed network.

Definition 2.1 Let S ⊆ V be a set of sources andt ∈ V be a distinguished sink. We say that a flowf
from S to t is confluentif for every nodeu, there exists at most one edge(u, v) that has positive flow (i.e.,
f(u, v) > 0).

In this paper, we seek confluent flows that have low congestion. One can consider two notions of
congestion:node congestionand edge congestion. For a flowf , let the in-flowf in(v) (resp., out-flow
fout(v)) of a nodev be

∑
(u,v)∈E f(u, v) (resp.,

∑
(v,u)∈E f(v, u)). Let sup(v) denote the supply of node

v. Note that for any nodev, other than a sink node, we havef in(v) + sup(v) = fout(v). We define
the congestionof nodev as the larger of the in-flow and out-flow of the node and denote it by f(v) for
notational convenience. For a given flowf , the node congestionNC(f) equalsmaxv∈V −{t} f(v), while
the edge congestionEC(f) equalsmaxe∈E f(e). (Note that the node congestion for a single commodity
flow is given by the maximum congestion among the nodes,excluding the sink; the sink has the same
congestion, regardless of the particular flow.)

Observation 1 The edge congestion of a confluent flow is identical to its node-congestion.

Proof: The edge congestion of a confluent flow is the flow on one of the edges incident into the sinkt, say
(u, t), and the node congestion is the flow throughu, which is identical tof(u, t).

Basic separation results. A major focus of this paper is the problem of finding a single commodity confluent
flow that minimizes edge congestion. As mentioned in Section1.2, Lorenz et al [24] present an instance
(see Figure 1(a)) for which the edge congestion of an optimalconfluent flow isΩ(n) times that of an optimal
(un)splittable flow; their separation result holds even forthe case when all nodes have unit supply. (Note that
the integrality theorem for maximum flow implies that the congestions of the best unsplittable and splittable
flows are equal.) We claim that thenode congestionof the optimal splittable flow is a better lower bound on
the edge (or node) congestion of the optimal confluent flow. Indeed, our result of Section 4 shows that this
gap isÕ(

√
n) when every node has uniform supply.

In the following, we establish a lower bound ofΩ(log n) on the separation between (un)splittable and
confluent flows, with respect to node congestion. Consider the instance of Figure 1(b). We have ak level
complete binary tree, all the leaves of which are connected to a sink. Each node has unit supply. One
splittable flow is given as follows. The supply from each nodegoes out on an arbitrary outgoing edge. Any
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(a) (b)
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Figure 1: (a) An instance (due to [24]) which shows anΩ(n) gap between confluent and (un)splittable
flows, with respect to edge congestion. (b) An instance whichshows anΩ(log n) gap between confluent
and (un)splittable flows, with respect to node congestion. In each figure, all nodes offer unit supply and the
dark node is the sink.

flow coming into a node (at most 1 unit) is routed out on the edgenot used by the supply at the node. This
solution has edge congestion1 and node congestion2. But for any confluent flow, all supplies along path
used by the supply at the root need to be routed through the same leaf. Since this path has lengthk = log(n),
the edge and node congestions are at leastlog(n).
Hardness of approximation. We show that it is NP-hard to approximate the congestion of an optimal
confluent flow to a factor better than4/3, even for the special case when every node has unit supply. The
reduction is from 2DIRPATH problem, which is shown to be NP-hard in [12] and defined as follows: Given
ann-node directed graphG and two node pairss1, t1 ands2, t2, find node-disjoint directed paths froms1

to t1 ands2 to t2. We reduce this problem instance to an instance of the confluent flow problem as follows.
We add a sinkt with directed edges fromt1 andt2 to t. We add a third nodev with arcs fromv to t and
from all other nodes tov. We now add the following additional nodes and edges: (i)n2 nodes, each with
an edge intos1; (ii) n2 nodes, each with an edge intot2; (iii) 2n2 nodes, each with an edge tos2; (iv) 2n2

nodes, each with an edge intot1; and (v)3n2 nodes, each with an edge intov. Each node in the network has
unit supply. It is easy to see that there exists a confluent flowwith congestion at most3n2 + o(n2) iff there
exist node disjoint directed paths in the original graph; otherwise, the congestion is at least4n2. Hence, the
congestion of confluent flows is not approximable to better than4/3 in polynomial time unless 2DIRPATH
is solvable in polynomial time.

Multi-sink problem . As discussed in Section 1, we solve the single commodity confluent flow problem by
considering a more general multi-sink version of the problem, which is what we address in Sections 3 and 4.
Given a setS of sources with supplies and a setT of sinks, a multi-sink confluent flow routes each supply
to any sink such that the total flow is node-confluent. The congestion of a multi-sink confluent flow is the
maximum congestion among all sinks of the network.

3 Multi-sink confluent flow for trees
Given an undirected treeT = (V,E) with n nodes, each nodev with nonnegative integer supplysup(v) and
k sinkst1,. . . ,tk, we would like to construct a multi-sink confluent flow from the sources to the sinks. By
definition, the flow satisfies the following conditions: (i) all the supplies are routed to the sinks; (ii) the flow
routing the supplies to a particular sink is confluent; (iii)the confluent flows to each sink are node-disjoint.
The goal is to minimize the maximum congestion, which is simply the maximum total supply routed to any
sink. Since the underlying network is a tree, our problem is equivalent to partitioningT into a set of subtrees
such that there is at least one sink in each subtree and the maximal of the total supply, among all subtrees, is
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minimized. In this section, we present an optimal polynomial time algorithm for this problem.
Our algorithm, defined in Figure 3, consists of a binary search on the optimal congestionC in the

range[0,
∑

v∈V sup(v)] and uses a subroutine for finding whether there exists a multi-sink confluent flow
with node congestionC; the subroutine also returns a flow with the desired property, should it exist. The
intuition is simple: assign sources to the nearby sinks while they are not overloaded yet, and do this greedily.
General idea of the algorithm for trees. Given a objective congestionC, the algorithm needs to find
whether it is achievable. It repeatedly looks at the leaves and tries to decide the relationship of at least one
leaf and its parent, whether they should be in the same subtree or they should be separated, in each round.
Four scenarios are considered, at least one of which necessarily happens. (1) If a sink leafv has a sink
parent, thenv is useless other than taking case of its own supply, thus can be removed. (2) For a non-sink
leaf, it has to be in the same subtree as its parent in order to route its supply to any sink. (3) If several sink
leaves has the same parent, then only one of them is useful forother supplies; therefore we keep the least
heavily loaded one and remove the others. (4) If a sink leaf has a non-sink parent with degree 2, then the
supply of the parent had better be taken care of by this sink leaf, i.e., they should be in the same subtree, if
possible. Note that in the algorithm, a REMOVELEAF operation decides to separate the leaf and its parent; a
MOVELEAF operation decides to group the leaf and its parent. Figure 2 gives a complete example showing
how the algorithm deals with the four cases.
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Figure 2: A complete example showing how the algorithm HASCONGESTION? deals with the four cases.
(a) The given tree.C = 4. (b) Case 1: sinkw is removed. (c) Case 2: sourcex is moved toy. (d) Case 3:
sinku is removed. (e) Case 4: sinkv is removed. (f) The subtrees output by the algorithm, which facilitates
a confluent flow with congestion at mostC = 4.

It suffices to prove the correctness of HASCONGESTION?. Since the algorithm removes one leaf in every
iteration and does not add any edges, the given network remains a tree. We next claim that the algorithm
terminates. For this, we show that as long as the tree has at least two nodes, there exists at least one leaf
satisfying one of the four conditions listed in the algorithm. A tree with at least two nodes has at least two
leaves. If any of the leaves is a source-node or a transit-node (case 1 or 2), then our claim holds. Suppose
all of the leaves are sink-nodes. If any of the (at least two) sink-node leaves has a sink-node parent (case 1),
then again one of the conditions applies. Otherwise, one of the conditions holds if any two of the sink-nodes
are siblings (case 3). Eliminating all of these possibilities leaves us with a tree with at least 4 nodes. Thus,
all that remains to be shown is that when none of the above cases apply, there exists a leaf with a parent of
degree exactly2 (case 4). The following simple lemma establishes this claim.

Lemma 3.1 If every leaf of a tree with at least 4 vertices has no sibling,then there exist at least two parents
with degree 2.

Proof: Since a tree has at least 2 leaves, it has at least 2 parents. Ifthey both have degree 2, we are done.
Suppose parentv has degree 3. We travel along the internal vertices, starting fromv. When an internal node:
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Definitions.

• Types of nodes:A sink-nodeis a node that con-
tains a sink; asource-nodeis a node that con-
tains a source but no sinks; atransit-nodeis a
node that is neither a source-node not a sink-
node.

• Parent and siblings: For a leafv, we define
theparentof v, p(v), to be the unique node ad-
jacent tov and the siblings ofv to be the leaves
adjacent to the parent ofv.

• Load: The load of a sink-node is the total sup-
ply of the sources located at the node.

TreeAlg(T ): Perform binary search to determine the
smallestC in [0,

∑
v∈V sup(v)] for which the subrou-

tine HASCONGESTION?(T , C) returns YES. Remov-
ing the edges marked by REMOVELEAF yields the de-
sired confluent flow.

REMOVELEAF(v): Remove leafv from the tree; ifv
is a sink-node, then mark the edge(v, p(v)).

MOVELEAF(v): Move all sinks inv and any supply to
p(v), and removev.

HASCONGESTION?(T , C): Repeat the following
steps.

• If T has exactly one node, then return NO if the
node is a source-node, and YES otherwise.

• Find a leaf of one of the following types and execute
the corresponding operation.

1. sink-node with a sink-node parent or transit-
node: REMOVELEAF(v).

2. source-node: Ifsup(v) + sup(p(v)) ≤ C, then
MOVELEAF(v); otherwise, return NO.

3. sink-node with a non-sink-node parent and
some sink-node siblings: REMOVELEAF(w)
for every sink-node leafw adjacent top(v) ex-
cept the one with minimum load.

4. sink-node with a non-sink-node parent of de-
gree exactly 2: ifsup(v) + sup(p(v)) >
C, then do REMOVELEAF(v); otherwise, do
MOVELEAF(v).

Figure 3: The algorithm for trees.

(i). has degree 2 and is a parent, stop.

(ii). has degree 2 and is not a parent, continue on its unvisited neighbor.

(iii). has degree 3, continue on its unvisited non-leaf neighbor since it has at most one leaf neighbor.

Since it is a tree, the travel eventually stops and it stops oncase (i). So we get one parent with degree 2. The
travel has two options when starting atv. So there are at least 2 parents with degree 2.

Lemma 3.2 The algorithmHASCONGESTION?(T , C) returnsYES iff treeT admits a multi-sink confluent
flow of congestion at mostC.

Proof: It is sufficient to analyze a single iteration and show that iftreeT− is changed intoT+, T+ has a
YES answer iffT− has a YES answer. Suppose thatT− has a YES answer with a solution as partitionP ,
and the iteration identifies a leafv satisfying one of the desired conditions and executes the corresponding
operation. Let us consider the various cases forv:

• Transit-node leaf: No subtree inP needs to containv. And any solution forT+ is valid forT−.

• Sink-node leaf with a sink-node parent: The nodesv andp(v) need not in the same subtree inP , since
they are both sinks. This solution is also valid inT+. For the reverse direction, any valid solution for
T+, together withv as a separate tree, is valid forT−.

• Source-node leaf: InP , v must be in the same subtree as its parent. SoP , with v and its parent
merged, is feasible inT+. For the reverse direction, any valid solution forT+, with the change that
the nodev is attached to its original parent, is also valid forT−.
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• Sink-node leaf with non-sink-node parent and sink-node siblings: If in P , the parent is disjoint with
all these sink-node leaves, thenP is feasible inT+. If in P , the parent is joint with some of them, then
another partitionP ′ with all of them except the minimum-load one separated is also a YES solution to
T−. P ′ is feasible inT+. Similarly, any valid solution forT+ is also valid forT−, after the addition
of more subtrees, each consisting of one of the removed sink-nodes.

• Sink-node leaf with non-sink node parent of degree 2: We consider two cases. First, if REMOVELEAF

is done, thenv andp(v) cannot be in the same subtree inP ; soP is feasible inT+. Otherwise, ifv
andp(v) are in the same subtree inP , thenP is feasible inT+. If they are separated, then we can cut
the parent from its subtree and join it withv. The cut subtree still has a sink (since the parent is not a
sink). The resulting partition is also a YES solution toT− and is feasible inT+.

We now argue the other direction. SupposeP ′ is a valid solution forT+. If the operation in the
iteration is REMOVELEAF, thenP ′, with one more subtree consisting ofv alone, is a valid solution
for T−. Otherwise,P ′, with v attached to its original parent, is a valid solution forT−.

The algorithm HASCONGESTION? can be modified to apply to directed trees. For a source-nodeleaf
v, call its parent atrue parentif the lone adjacent edge is going out ofv, and afalse parentotherwise.
For a sink-node leafv, call its parent atrue parentif the lone adjacent edge is coming intov, and afalse
parentotherwise. As in HASCONGESTION? we seek a leaf that satisfies one of four conditions. Case 1 is
the same as before. For case 2: we execute MOVELEAF only if the source-node leaf has a true parent and
sup(v) + sup(p(v)) is at mostC; otherwise, we return NO. Case 3 is the same as before. Finally, in case 4,
we perform the same operations as for undirected trees if thesink-node leaf has a true parent; otherwise, we
remove the leaf.

4 Multi-sink confluent flow for general networks
In this section, we present a simple randomized rounding algorithm for finding a multi-sink confluent flow
in a given directed network. We analyze the algorithm for thecase when every node has unit supply. Lett1
throughtk denote thek sinks.

We first compute, using a standard maximum flow algorithm, a (splittable) flowf from the sources to
the sinkst1 throughtk such that the flow minimizes the maximum congestion among thesinks. This can
be done by performing binary search on the congestion value,thus requiringO(log n) invocations of the
maximum flow algorithm. We can assume, without loss of generality, that the edges used in the flowf
constitute a directed acyclic graph, by removing cycles without increasing the congestion on any node.

We now round the flowf to obtain a confluent flow, which, by definition, is a forest of node-disjoint
trees, each tree rooted at and directed toward a distinctti. The rounding procedure is simple. Recall thatf(e)
denotes the flow on edgee andfout(v) denotes the flow out of nodev. Each nodev in V −{ti : 1 ≤ i ≤ k}
independently selects exactly one of its outgoing edges, with the probability equal tof(e)/f(v). (Note that
the sum of the probabilities for all the outgoing edges of a node is 1.) The selected edges, together with the
nodes inV , form a forest, each tree in the forest is an arborescence directed toward a distinct rootti. Let Ti

denote the tree rooted at nodeti. It is easy to see that the node-congestion of this confluent flow equals the
maximum, over alli, of the number of nodes inTi. The main result of this section is the following.

Theorem 1 For the uniform-supply case, the congestion of the multi-sink confluent flow determined by
randomized rounding isO((NC(f))2 log3 n) whp2.

2We use the abbreviation “whp” throughout the paper to mean “with high probability” or, more precisely, “with probability
1 − n

−c, wheren is the number of nodes in the network andc is a constant that can be set arbitrarily large by appropriately
adjusting other constants defined within the relevant context.”
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Corollary 1.1 The randomized rounding algorithm yields añO(
√

n) approximation for the uniform-supply
multi-sink node confluent flow problem.

Proof: If NC(f) is at most
√

n, then the claim follows directly from Theorem 1. Otherwise,the claim
trivially holds since the congestion of the confluent flow is at mostn.

We analyze the randomized rounding algorithm by analyzing an equivalent probabilistic processP that
is defined for any directed acyclic graphD with a probability functionp on the edges of the dag, satisfying
the condition that for every nodeu,

∑
(u,v)∈D p(u, v) ≤ 1. The processP(D) is simply the following:

each nodeu selects at most one outgoing edge, the edge(u, v) selected with probabilityp(u, v). The edges
selected byP(D) form a forest of arborescences. LetND(v) denote the number of nodes in the subtree
rooted atv in the forest. (Note thatND(v) is a random variable.) We can calculateCD(v) = E[ND(v)] as
follows.

CD(v) =

{
1 v has no incoming edge
1 +

∑
(u,v)∈D p(u, v)CD(u) otherwise.

The randomized rounding algorithm is equivalent to the probabilistic processP(D), whereD is the dag
obtained on computing the optimal splittable flowf , and the probability functionp is given as follows:
p(u, v) = f(u, v)/fout(u) for u, v ∈ D. Furthermore, the congestion of the resultant confluent flowis the
same asmaxv ND(v), while NC(f) is the same asC∗

D = maxv CD(v). Thus, we can place a bound on the
node congestion of the confluent flow determined by randomized rounding algorithm by bounding the tail
of the distribution of the random variablemaxv ND(v) for a given dag, which is what we set out to do in the
following sections.

Our analysis ofP proceeds in three steps. First, we show in Section 4.1 that for any dagD, the height
of every tree in the forest determined byP(D) is O(C∗

D log n) whp. (We remark that this is the only step
where we need the assumption about uniform supplies in the flow problem. In fact, our analysis can be
generalized to bound the height in terms of the maximum ratioof the congestion and supply of a node.)
Second, we show in Section 4.2 that all the moments ofND(v) are upper bounded by those ofNT (v) for an
appropriate treeT obtained by unraveling the dagD. In Section 4.3, we bound the moments ofNT (v) for
arbitrary treesT , which then yields the desired high probability bound onND(v). In Section 4.4, we put it
all together and prove Theorem 1.

4.1 Bounding the height
We note that the distance betweenv and the root of the tree containingv in P(D) is the length of the
random walk starting fromv onD, according to the probabilities defined byp. In the following, we omit
the subscriptD from the termsCD(u) andC∗

D for notational convenience. For a given non-sink nodeu, let
P (u, i) denote the probability that the random walk is at nodeu after i steps. Let(w1, u) through(wj , u)
denote the edges intou in D. We then have the following recurrence relation:

P (u, i) =





0 i = 0 andu 6= v
1 i = 0 andu = v∑

(w,u)∈D P (w, i − 1)p(w, u) i > 0.

Lemma 4.1 For any non-sink nodeu andi ≥ 0, P (u, i) is at mostC(u)(1 − 1/C∗)i.
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Proof: The proof is by induction oni. For i = 0, the claim is trivially true. For the induction step, we
considerP (u, i). By definition, we have

P (u, i) =
∑

(w,u)∈D

P (w, i − 1)p(w, u)

≤ (1 − 1/C∗)i−1
∑

(w,u)∈D

p(w, u)C(w)

≤ (1 − 1/C∗)i−1(C(u) − 1)

≤ (1 − 1/C∗)iC(u),

the last step following from the inequalityC(u) ≤ C∗.

Corollary 4.1.1 Whp, the height of any tree inP(D) is O(C∗ log n).

Proof: By Lemma 4.1, the probability that the random walk fromv is at a non-sink node afterαC∗ ln(nC∗)
steps is at mostnC∗(1 − 1/C∗)αC∗ ln(nC∗) ≤ 1

nα−1 . Thus, the random walk fromv terminates at a sink in
O(C∗ log n) steps whp, yielding the desired claim.

4.2 Reduction to the case of a tree
Consider the dagD with an associated probability function. We now argue thatP(D) can be analyzed
by considering the processP on an appropriately defined tree, obtained by a natural unraveling ofD. We
transformD into a treeT through a sequence of steps. LetDj denote the dag obtained afterj steps,j ≥ 0.
For a given directed acyclic graphD, let D(v) denote the subgraph ofD induced by all of the nodes that
can reachv in D. (Note thatD(v) is also a dag.) Stepj + 1 proceeds as follows.

1. Find a nodev in Dj such that the subgraphDj(v) is a tree andv has more than one incoming edge.
If no such node is found, thenDj is a tree and the transformation is complete.

2. Let(u1, v), . . . ,(uk, v) denote thek ≥ 2 edges coming intov. We transformDj into Dj+1 as follows.
We replacev and the subtreeDj(v) rooted atv by k copies of each and replace the edge(ui, v) by
the edge(ui, vi), wherevi is theith copy ofv. Each new edge inherits the probability of the edge it
replaces or copies. This is illustrated in Figure 4.

Consider the step of the transformationDj → Dj+1. For a given nodeu and a nonnegative integerh, let
the random variableNDj

(u, h) (resp.,NDj+1
(u, h)) denote the number of nodes withinh hops ofu in the

subtree rooted atu underP(Dj) (resp.,P(Dj+1)). We note thatE[NDj
(u, h)] is equal toE[NDj+1

(u, h)].
This implies the following equality.

C∗
D = C∗

T (1)

While NDj+1
(u, h) has more “randomness” thanNDj

(u, h) owing to multiple independent copies of the
dagDj(v), it is not the case that the former random variable stochastically dominates the latter. As we show
in Lemma 4.2, however, the moments of the former are at least that of the former.

Lemma 4.2 For integersh, r ≥ 0, and nodeu, we haveE[(NDj
(u, h))r] ≤ E[(NDj+1

(u, h))r ].

The above lemma claims that for any copy of any nodeu, any moment ofNDj+1
(u, h), for any heighth,

is no less than that of(NDj
(u, h)). SinceD is the first dag in the sequence andT is the last dag in the

sequence, it follows that the moments ofND(u, h) are bounded by those ofNT (u, h), for all u andh. In
Section 4.3, we place a suitable upper bound on the moments ofNT (u, h) for any treeT .
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u2u1 u3

p1 p2 p3

v3v2v1

u1 u2 u3

p1 p2 p3

v ⇒

Figure 4: Transformation from dag to a tree

We now prove Lemma 4.2. The processP(Dj) can be divided into two independent steps. The first step
consists of the random choices of nodes not inDj(v) and the second step consists of the random choices
of nodes inDj(v). Let K (resp.,X) denote the set of nodes outside (resp., inside) ofDj(v) that are in
the subtree rooted atu, following the first step. It is sufficient to show that given any K, the moments of
NDj

(u, h) are bounded by that ofNDj+1
(u, h), i.e.:

E[(NDj
(u, h))r | K] ≤ E[(NDj+1

(u, h))r | K] for all K (2)

The desired claim then follows from Equation 2 and the fact that E[W ] =
∑

Z=z E[W |Z = z]Pr{Z = z}
for all discrete random variablesW andZ.

It remains to prove Equation 2, which we do by induction onm. Suppose thatv hasm parents. InDj ,
with probabilitypi, i ∈ M ≡ {1, . . . ,m}, v chooses parenti; with probability (1 −∑m

i=1 pi), v does not
choose any outgoing edge. InDj+1, each copy ofv independently does the above. For simplifying notations,
let X denote the random variableX(v). So in Dj, we haveX. In Dj+1, we have{X1,X2, . . . ,Xm}
independently identically distributed (iid) asX. Now we can rewrite Equation (2) as:

LHS =
m∑

i=1

E[(K + X)r]pi + Kr(1 −
m∑

i=1

pi)

RHS =
m∑

ℓ=0


E

[
(K +

ℓ∑

z=1

Xz)
r

]
∑

I



∏

i∈I

pi

∏

i∈(M−I)

(1 − pi)






First we prove the following lemmas.

Lemma 4.3 For all non-negative random variablesW , Z1, Z2, whereZ1 andZ2 are independently identi-
cally distributed (iid) asZ:

E[W r] + E[(W + Z1 + Z2)
r] ≥ 2E[(W + Z)r] ∀r ≥ 0

10



Proof:

E[W r] + E[(W + Z1 + Z2)
r] = 2E[W r] +

r∑

q=1

(
r

q

)
E[W r−q]E[(Z1 + Z2)

q]

2E[(W + Z)r] = 2E[W r] +

r∑

q=1

(
r

q

)
E[W r−q]2E[Zq]

So the claim is true, sinceE[(Z1 + Z2)
q] ≥ 2E[Zq] ∀q ≥ 0.

Lemma 4.4 For all non-negative random variables{Xi|i = 1, 2, . . . ,∞} which are independently identi-
cally distributed (iid) asX, ∀r ≥ 0:

E[(K +

ℓ∑

z=1

Xz)
r](1 − p1 − p2) + E[(K +

ℓ+1∑

z=1

Xz)
r](p1 + p2)

≤ E[(K +

ℓ∑

z=1

Xz)
r](1 − p1)(1 − p2)

+E[(K +

ℓ+1∑

z=1

Xz)
r][p1(1 − p2) + (1 − p1)p2]

+E[(K +

ℓ+2∑

z=1

Xz)
r]p1p2

Proof: It immediately follows from Lemma 4.3 (withW = (K+
∑ℓ

z=1 Xz), Z1 = Xℓ+1 andZ2 = Xℓ+2).

Now we proveLHS ≤ RHS by induction onm. The claim is trivially true form = 0 andm = 1. Suppose
LHS ≤ RHS for m ≥ 1. Then form + 1, denotep′1 = p1 + p2, p

′
2 = p3, . . . , p

′
i = pi+1, . . . , p

′
m = pm+1:

LHS =

m∑

i=1

E[(K + X)r]p′i + Kr(1 −
m∑

i=1

p′i)

≤
m∑

ℓ=0


E

[
(K +

ℓ∑

z=1

Xz)
r

]
∑

I={i1,...,iℓ}⊆M



∏

i∈I

p′i
∏

i∈(M−I)

(1 − p′i)






=

m−1∑

ℓ=0

∑

I={i1,...,iℓ}⊆M :1/∈I


E

[
(K +

ℓ∑

z=1

Xz)
r

](
∏

i∈I

p′i

)


∏

i∈(M−I−{1})

(1 − p′i)


 (1 − p′1)

+E

[
(K +

ℓ+1∑

z=1

Xz)
r

](
∏

i∈I

p′i

)
p′1

∏

i∈(M−I−{1})

(1 − p′i)




=

m−1∑

ℓ=0

∑

I={i1,...,iℓ}⊆M :1/∈I





∏

i∈I

p′i
∏

i∈(M−I−{1})

(1 − p′i)




(
E

[
(K +

ℓ∑

z=1

Xz)
r

]
(1 − p1 − p2) + E

[
(K +

ℓ+1∑

z=1

Xz)
r

]
(p1 + p2)

))
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≤
m−1∑

ℓ=0

∑

I={i1,...,iℓ}⊆M :1/∈I





∏

i∈I

pi+1

∏

i∈(M−I−{1})

(1 − pi+1)




(
E

[
(K +

ℓ∑

z=1

Xz)
r

]
(1 − p1)(1 − p2) + E

[
(K +

ℓ+1∑

z=1

Xz)
r

]
p1(1 − p2)

+E

[
(K +

ℓ+1∑

z=1

Xz)
r

]
(1 − p1)p2 + E

[
(K +

ℓ+2∑

z=1

Xz)
r

]
p1p2

))

= RHS

Note that the penultimate step follows from Lemma 4.4.

4.3 Rounding on a tree
Sections 4.1 and 4.2 indicate thatND(v), for any vertexv, can be bounded by placing an an upper bound
on the moments ofNT (v, h) for h = O(C∗

D log n). Let T be a tree rooted at noder with the edges
directed toward the root, and with probability functionp. In this section, we analyzeP(T ) and place a high
probability bound onNT (r).

To simplify the analysis, we add a distinct leafℓv, for every nodev in T , and an edge(ℓv, v) and set
p(ℓ, v) to be1. We also transform the resultant tree into a binary treeT ′ (i.e., every node has at most two
children) by repeatedly applying the following transformation: replace every node withk > 2 children by
two nodes, one of which has⌊k/2⌋ children and the other has⌈k/2⌉ children. Furthermore, we note that the
number of leaves is identical in both the trees and the heightof the binary tree is at mostlog n times that of
the original tree. LetXv denote the number of leaves that are in the subtree rooted atv obtained in process
P(T ′). Clearly,NT (v) is identical toXv, andCT (v) = E[Xv ].

One technique for analyzingXr is by using martingales (e.g., see [1, Chapter 7]). For instance, if the
probability of each edge is1/2, then the sequence of variables corresponding to the numberof nodes at each
level of the tree that connect to the root forms a martingale.The bounds on the tail ofXr that we are able to
get using martingale theory (e.g., the method of bounded differences [26]) are much weaker than what we
want. Another technique, based on Janson’s inequality, that has been used in analysis of a similar random
experiment on trees [13, 20] yields lower bounds onXr. Furthermore, our approach actually requires a
bound on the moments ofXr, which we now establish in the following main lemma of this section3.Let Mv

denote the maximumE[Xu] among all nodesu in T ′(v).

Lemma 4.5 For any integeri > 0, we haveE[Xi
r] ≤ i!M i−1

r E[Xr]hi−1

2i−1 .

Proof: The proof is by induction on the heighth of the tree. We consider the base caseh = 1, whenr is a
leaf. In this case, we haveE[Xi

r] = E[Xr]
i. The right-hand side of the desired inequality is given by

i!E[Xr]
i−1E[Xr]h

i−1

2i−1
=

i!E[Xr]
i

2i−1
≥ E[Xr]

i,

sincei! ≥ 2i−1 for all integersi > 0.
We now consider the induction step. There are two cases depending on whetherr has one child. We

omit the case whenr has one child since that is straightforward to prove. Consider the case whenr has two
children, saya andb. LetXa andXb denote the number of leaves in the subtrees, obtained after randomized

3An alternative approach for bounding the tail ofXr, suggested by Aravind Srinivasan, is to usecentral momentsof Xr

following the lines of [29].
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rounding, containinga andb, respectively.

E[Xi
r] = p(a, r)(1 − p(b, r))E[Xi

a] + (1 − p(a, r))p(b, r)E[Xi
b ] + p(a, r)p(b, r)E[(Xa + Xb)

i]

= p(a, r)E[Xi
a] + p(b, r)E[Xi

b] + p(a, r)p(b, r)

i−1∑

j=1

(
i

j

)
E[Xj

a]E[Xi−j
b ]

≤ p(a, r)E[Xi
a] + p(b, r)E[Xi

b]

+p(a, r)p(b, r)
i−1∑

j=1

(
i

j

)
j!M j−1

a E[Xa](h − 1)j−1

2j−1

(i − j)!M i−j−1
b E[Xb](h − 1)i−j−1

2i−j−1

≤ p(a, r)E[Xi
a] + p(b, r)E[Xi

b] + p(a, r)p(b, r)E[Xa]E[Xb]
i−1∑

j=1

i!M i−2
r (h − 1)i−2

2i−2

≤ p(a, r)E[Xi
a] + p(b, r)E[Xi

b] +
(i − 1)i!M i−2

r E[Xr]
2(h − 1)i−2

4 · 2i−2

≤ p(a, r)
i!M i−1

a E[Xa](h − 1)i−1

2i−1
+ p(b, r)

i!M i−1
b E[Xb](h − 1)i−1

2i−1

+
(i − 1) · i!M i−1

r E[Xr](h − 1)i−2

2i

≤ i!M i−1
r E[Xr]

2i−1

(
(h − 1)i−1 +

(i − 1)(h − 1)i−2

2

)

≤ i!M i−1
r E[Xr]h

i−1

2i−1
.

(In the fifth step, we use the fact thatp(a, r)p(b, r)E[Xa]E[Xb] is at most(p(a, r)E[Xa]+p(b, r)E[Xb])
2/4 =

E[Xr]
2/4. The sixth step follows from the induction hypothesis and the inequalityE[Xr] ≤ Mr. The sev-

enth step follows from the equationp(a, r)E[Xa] + p(b, r)E[Xb] = E[Xr]. In the last step, we use the
inequality(h − 1)i−1 + (i − 1)(h − 1)i−2/2 ≤ hi−1.) This completes the proof of the lemma.

Corollary 4.5.1 For anyi ≥ 0, E[(NT (r, h))i] is at most
i!(C∗

T
)ihi−1

2i−1 .

4.4 Putting it all together
In this section, we complete the proof of Theorem 1. Fix a sinktj . By Corollary 4.1.1, we obtain that
ND(tj) equalsND(tj , h) whp, whereh = O(C∗

D log n). We now use Markov’s inequality.

Pr[ND(tj, h) > αhC∗
D] = Pr[(ND(tj , h))i > αihi(C∗

D)i]

≤ E[(ND(tj , h))i]

αihi(C∗
D)i

≤ E[(NT (tj , h))i]

αihi(C∗
D)i

≤ i!(C∗
D)ihi−1

αihi(C∗
D)i2i−1

≤ i!

αih2i−1
.

(The second step follows from Markov’s inequality. The third step follows from Lemma 4.2. The fourth
step follows from Corollary 4.5.1 and Equation 1.) By setting α = i = O(log n), noting thatNC(f) = C∗

D,
and taking into account theO(log n) factor due to the transformation to a binary tree, we obtain the desired
claim of the theorem.
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4.5 A lower bound on the randomized rounding algorithm
In this section we present an instance, with uniform supply at each node, for which the approximation ratio
of our randomized rounding algorithm isΩ(n1/4). The basis for this instance is presented in Figure 5. The
grid-like network hasn = (3s2 + 3s − 2)/2 = O(s2) nodes, each with supply2, and2s − 1 sinks (on the
boundaries). A splittable flowf that achieves optimal congestion consists of the flow traveling up the grid,
splitting evenly at each node between the two outgoing (upward) edges. All the flow arriving into a sink is
absorbed at the sink. We can verify that this flow has maximum node congestion4s, and that the congestion
of any flow is at least4s. Therefore, it is an optimal splittable flow.

Now consider the randomized rounding algorithm applied to this flow f . Consider the nodec in the
center of the base and a nodev that is horizontally at a distanced = Ω(

√
s) to the right ofc. The process

of randomized rounding can be seen as proceeding level by level (starting at bottommost level) selecting
an ancestor for each ofc andv from the two potential candidates at each level. When the same ancestor is
chosen it leads to the merging of the flows fromv andc. Note that the merged flow has congestionΩ(s

√
s).

The distance between two ancestors at leveli can be viewed as an unbiased random walk on a line (with
probability 1

2 of remaining at the same point), that startsd steps to the right of the origin and the act of
merging is equivalent to the random walk reaching the origin. Since the nearest sink node toc andv is more
than distanceΩ(s) away this random walk continues for at leastΩ(s) steps. Further by throwing away all
those levels at which the walk stays at the same point we are still left with expectedΩ(s) steps in which
the walk moves to the left or the right. This is a standard random walk on a line; it follows from well-
known results on the maxima and first passages of such random walks (e.g., see [9, Chapter III]) that for any
ǫ, 0 < ǫ < 1, there exists aδ such that the flows fromc andv at distanceδ

√
s merge with probability greater

than1− ǫ. Hence with probability arbitrarily close to1 the congestion achieved by randomized rounding is
at leastΩ(s

√
s).

On the other hand, there exists a confluent flow in which all theflow is directed to thes − 1 sinks on
the left edge of the grid through the edges going left and upward, resulting in a maximum congestion of4s.
Thus the approximation ratio achieved by randomized rounding isΩ(

√
s) or Ω(n1/4).

5 Multicommodity confluent flows
In this section we consider the multicommodity confluent flowproblem in which we are given a general
directed graph, with one distinguished sink per commodity,arbitrary edge capacities, and arbitrary source
supplies per commodity, and need to ensure that the flow per commodity is confluent. We begin, in Sec-
tion 5.1, by studying a relaxed version of the single- and multi-commodity confluent flow problem. The
analysis in Section 5.1 is then used in Section 5.2, where we consider multicommodity confluent flows.

5.1 Concurrent flows
A concurrent flow is one in which the same fraction of every commodity is satisfied concurrently. A
commonly-used metric in multicommodity flow problems is themaximum concurrent flow[22], which is
defined as the largest fraction of every commodity that can beshipped simultaneously without violating edge
capacity restrictions. We extend this notion to single commodity confluent flows by defining themaximum
concurrent confluent flowto be the largest fraction of each source supply that can be simultaneously routed
to the sink using a confluent flow without violating edge capacity restrictions.

We note that solving the maximum concurrent flow problem is equivalent to solving theminimum con-
gestion ratio problem, where thecongestion ratiois 1 if no edge capacity constraint is violated; or the
maximum, over all edges, of the flow on the edge to its capacityotherwise.

Definition 5.1 LetG = (V,E) be a directed capacitated graph with edge capacitiesce andk commodities.
Let commodityi, i = 1, . . . , k, have sinkti ∈ V and supply functionsdi : V 7→ R≥0. A concurrent flow
f with valueα(f) is a flow that routesα(f)di(v) to ti, ∀v, i. Themaximum concurrent flowproblem is to
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Figure 5: An instance for which the randomized rounding algorithm incurs anΩ(n1/4)-approximation ratio.

find a concurrent flowf without violating any edge capacity constraints, and to maximize the following:

min {α(f), 1}

Theminimum congestion ratioproblem is to find a concurrent flowf with value 1 (i.e., a flowf to route all
supplies), and to minimize the following:

max

{
max
e∈E

Ze

ce
, 1

}

whereZe is the total flow on edgee.

Obviously, the maximum concurrent flow is the reciprocal of the minimum congestion ratio. Themaximum
concurrent confluent flowproblem and theminimum congestion ratio of confluent flowproblem requiref to
be confluent for each commodityi. Note that in our previous sections where all edge capacities are assumed
to be equal and very small, congestion is equivalent to congestion ratio. Thus the maximum concurrent
confluent flow problem is equivalent to the minimum congestion problem presented in Section 2. In this
section, we consider the relaxed version of the maximum concurrent confluent flow problem. We begin by
showing that any single commodity flow can be decomposed intoa small set of concurrent confluent flows.

Lemma 5.1 Consider a flowf that routes supplies from several sources into a single sink. The flowf can
be decomposed into a collection of at mostm concurrent confluent flows.

Proof: Consider the graph induced by the edges with positive flow inf . Set the capacity of the edges to be
the flow through that edge. Take any spanning tree on this graph and consider the largest possible fraction
of each source supply that can be accommodated by this tree without violating edge capacity constraints.
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Since the underlying graph is a tree the flow is automaticallyconfluent. Since the flow is maximal for the
tree, it will bottleneck one or more edges; i.e., those edgeswill be at their maximum capacity. Remove this
flow and consider the residual graph with zero capacity edgesremoved. The graph has fewer edges than the
original graph. We repeat the above process and obtain a collection of at mostm augmenting trees, each of
which is a confluent flow supplying a fraction of each source supply, that collectively sum to the original
flow f .

It follows from Lemma 5.1 that one can extend the Ford-Fulkerson max-flow min-cut theorem to show
the following. Define thevalue of the sparsest cutto be the minimum, over all cuts, of the ratio of the
capacity of the cut to the total supply crossing the cut; or 1 if this minimum ratio is greater than 1.

Corollary 5.1.1 For a single commodity, the value of the sparsest cut is equalto the maximum concurrent
flow, which can be decomposed into a set of at mostm concurrent confluent flows.

Proof: The proof closely follows that of the standard max-flow min-cut theorem, eg., in [6], only using
augmenting trees instead of augmenting paths.

Similarly, for multiple commodities, one can extend the results of [3, 23] to show the following.

Corollary 5.1.2 For multicommodity in an undirected graph, the value of the sparsest cut is at mostO(log(kn))
times the maximum concurrent flow, which can be decomposed into a set of at mostm concurrent confluent
flows per commodity.

Proof: It is shown in [3] that in an undirected graph, the value of thesparsest cut is within a factor of
O(log k) of the maximum concurrent flow fork-commodity flow problem with arbitrary capacities and
demands. Our setting is different in that there are multiplesources and one sink for each commodity. But
we can associate each commodityi and each nodev with one distinct commodity(i, v) and obtain a new
problem with at mostkn commodities andkn source-sink pairs. It follows from [3] that the value of the
sparsest cut is within a factor ofO(log(kn)) of the maximum concurrent flow for this new problem, which
gives a concurrent flow for our original problem.

5.2 Multicommodity confluent flows
Lemma 5.1, together with the Raghavan-Thompson rounding approach, yields anO(log n)-approximation
to the multicommodity confluent flow problem, assuming edge capacities are sufficiently large. We establish
the claim, in the following theorem, in terms of minimum congestion ratio; it implies an equivalent result
for maximum concurrent flow. DenoteDmax = maxi Di whereDi is the total supply of commodityi:
Di =

∑
v∈V di(v).

Theorem 2 There exists a polynomial time algorithm, which finds a multicommodity confluent flow whose
congestion ratio is no greater thanO(log n) times that of the optimal (non-confluent) multicommodity flow,
providedce ≥ Dmax,∀e.

Proof: Consider the optimal (non-confluent) multicommodity flow obtained by solving the linear relaxation
of the integral problem that allows non-confluent flows. Let the congestion ratio achieved by this flow be
COPT. By Lemma 5.1, this flow can be decomposed into at mostm confluent flows per commodity. For
commodity i, let anri,j fraction of Di be routed by thejth confluent flow, i.e.,Σjri,j = 1. Consider
the algorithm that randomly selects one confluent flow for each commodityi, picking thejth flow with
probabilityri,j, and scales up that flow to fraction1, i.e. that flow now has valueDi. It is obvious that this
collection of flows, one per commodity, routes the supplies for all commodities and is confluent.

We now analyze the flow through any edgee with capacityce. Let re
i be the fraction of commodityi

flowing through this edge in the optimal non-confluent flow. BydefinitionΣir
e
i Di ≤ ce × COPT. Then the

value of the flow through this edge in the confluent case is the sum of independent random variablesXi,e,

16



whereXi,e = Di,j,e with probability ri,j, whereDi,j,e is the total supply of all the nodes in the subtree
rooted under edgee in the jth confluent flow tree for commodityi. The expected value of this sum is
Σir

e
i × Di ≤ ce × COPT. Let Yi,e = Xi,e/Dmax. ThenE(ΣiYi,e) ≤ ce × COPT/Dmax.
We now apply Chernoff-Hoeffding bounds [5, 15] by considering two mutually exclusive but exhaustive

cases. IfE(ΣiYi,e) ≤ 24 log n, then we obtain thatPr(ΣiYi,e > 48e log n) < n−48e. Otherwise, we obtain
thatPr[ΣiYi,e > 1.5E(ΣiYi,e)] < n−2. The two cases together yield that with high probabilityΣiYi,e <
max{O(ce × COPT/Dmax), O(log n)}, i.e., ΣiXi,e < max{O(ce × COPT), O(Dmax log n)}. Taking the
union bound over all edges and using the fact thatce ≥ Dmax we see that there exists a selection of confluent
flows one per commodity so that the capacity of no edge is violated by more thance · O(COPT, log n).
Hence there exists a confluent flow with congestion ratio at mostO(log n) times the congestion ratio of any
(non-confluent) multicommodity flow. This randomized scheme can be made deterministic by the method
of conditional probabilities and pessimistic estimators (see, for example, [1, Chapter 15] and [27]) in a
straightforward fashion. The pessimistic estimator, in our case, is

∑

e

E
[
eλZe/ce

]

eλc log n

wherec = k
2 log n , λ = ln 1−µ

µ , µ = 1
k

∑k
i=1 E

[
Xi,e

ce

]
. Since our derandomization follows standard tech-

niques, we omit the details here and refer the interested reader to [4].

6 Discussion
In this section, we briefly discuss potential directions forfuture research and interesting open problems
suggested by our work. We begin with considering another natural notion of confluence. Our definition
of confluent flow capturesnode-confluence, since flows that meet at anodeneed to depart along the same
edge. One can also define a notion of edge-confluence. We say that a flowf is edge-confluent, if for every
nodeu ∈ V − {t}, there exists a mappingφ from the in-edgesIu of u to the out-edgesOu of u such that
for all e ∈ Ou, f(e) =

∑
e′:φ(e′)=e f(e′). It is easy to derive a polynomial-time approximation-preserving

reduction from the confluent flow problem to the edge-confluent flow problem.

Two immediate problems left open by our work are to obtain better bounds on the gap between confluent
flow congestion and splittable flow congestion and to bridge the gap between upper and lower bounds on the
approximation factor for arbitrary networks. A better, or more simplified, analysis of the randomized round-
ing algorithm for general networks would also be valuable. Given our polynomial-time optimal algorithm
for trees, another potential line of research is to considerlarger classes of networks such as planar networks,
or meshes. Another interesting direction we are pursuing isto identify relationships among edge-confluent
and confluent flows.

While our study is motivated in part by the applications of confluent flows in networks, there is con-
siderable work that needs to be done before any of the solutions that we have presented can be migrated to
practical scenarios. It will be interesting to explore the viability of finding confluent flows with limited infor-
mation and in a distributed manner. Finally, bicriteria approximations in which multiple objective functions
are considered (e.g., congestion and latency) are also topics worth pursuing (e.g., see [25]).
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August 1993. Springer.

[18] J. Kleinberg, Y. Rabani, and E. Tardos. Fairness in routing and load balancing. InProceedings of the 40th Annual
IEEE Symposium on Foundations of Computer Science, pages 568–578, October 1999.

[19] Jon M. Kleinberg. Single-source unsplittable flow. InProceedings of the 37th Annual IEEE Symposium on
Foundations of Computer Science, pages 68–77, October 1996.

[20] G. Konjevod, R. Ravi, and A. Srinivasan. An approximation algorithm for the covering steiner problem.Random
Structures & Algorithms, 20:465–48, 2002. Special Issue on Probabilistic Methods in Combinatorial Optimiza-
tion.

[21] A. Kumar, R. Rastogi, A. Silberschatz, and B. Yener. Algorithms for provisioning virtual private networks in the
hose model. InProceedings of the ACM SIGCOMM 2001 Conference, volume 31 ofComputer Communication
Review, pages 135–148, August 2001.

[22] T. Leighton and S. Rao. Multicommodity max-flow min-cuttheorems and their use in designing approximation
algorithms.JACM: Journal of the ACM, 46, 1999.

[23] N. Linial, E. London, and Y. Rabinovich. The geometry ofgraphs and some of its algorithmic applications.
Combinatorica, 15:215–245, 1995.

18



[24] D. Lorenz, A. Orda, D. Raz, and Y. Shavitt. How good can IProuting be? Technical Report 2001-17, DIMACS,
April 2001.

[25] M. Marathe, R. Ravi, R. Sundaram, S. Ravi, D. Rosenkrantz, and H. Hunt. Bicriteria network design problems.
Journal of Algorithms, 28(1):142–171, July 1998.

[26] C. McDiarmid. On the method of bounded differences. In J. Siemons, editor,Surveys in Combinatorics, pages
148–188. Cambridge University Press, Cambridge, UK, 1989.

[27] R. Motwani and P. Raghavan.Randomized Algorithms. Cambridge University Press, Cambridge, UK, 2000.

[28] P. Raghavan and C. Thompson. Randomized rounding: A technique for provably good algorithms and algorith-
mic proofs.Combinatorica, 7, 1987.

[29] J. P. Schmidt, A. Siegel, and A. Srinivasan. Chernoff-Hoeffding bounds for applications with limited indepen-
dence.SIAM Journal on Discrete Mathematics, 8:223–250, 1995.

[30] J. Wang and K. Nahrstedt. Hop-by-hop routing algorithms for premium-class traffic in diffserv networks. In
Proc. of IEEE INFOCOM 2002, New York, NY, June 2002.

19


