Meet and Merge: Approximation Algorithms for Confluent
Flows

Jiangzhuo Cheh Rajmohan Rajaraman Ravi Sundaran

Abstract

In this paper we investigate the problem of determiningfluentflows with minimum congestion.
A flow of a given commodity is said to be confluent if at any noti¢he flow of the commodity departs
along a single edge. Confluent flows appear in a variety ofiegiin areas ranging from wireless
communications to evacuations; in fact, most flows in therimét are confluent since Internet routing is
destination based.

We consider the single commodity confluent flow problem, imclhwe are given an-node directed
network G, a sinkt and supplies at each node, and the goal is to find a confluenttilatwroutes
all the supplies to the sink while minimizing the maximum edmpngestion. Our main result is an
approximation algorithm, based on randomized roundingtie special case when all the supplies
are uniform; the algorithm finds a confluent flow with edge a@stpnO(C? log® n) whereC'is the
node congestion of an optimal splittable flow. This impliesé{\/ﬁ) approximation algorithm for the
problem. Our result relies on the analysis of a natural guiistic process defined on directed acyclic
graphs, that may be of independent interest.

For tree networks, we present an optimal polynomial-tingeathm for a multi-sink generalization
of the above confluent flow problem. We show that it is NP-hardpgproximate the congestion of the
optimal confluent flow for general networks to within a factérl /3. We also establish a lower bound
on the gap between confluent and splittable flows, and considkicommodity and fractional versions
of confluent flow problems.

*College of Computer Science, Northeastern Universityt@o81A 02115. Emaichenj, rraj }@cs. neu. edu. Par-
tially supported by NSF CAREER award CCR-9983901.

fCollege of Computer and Information Science, Northeastiniversity, Boston MA 02115, & Akamai Technologies, Cam-
bridge, MA 02142. Emaikoods@cs. neu. edu.

1 Introduction

Consider the following three scenarioScenario 1:1t is 5:30 AM on a bleak Saturday morning when a
major fire engulfs a big hotel. The hotel guests and emplofteeshrough the corridors and passageways
as they follow the exit signs in their haste to get out. Theastrs of fleeing people meet and merge as
they race towards the different emergency exits from whitdy tpour out. Scenario 2:Content delivery
networks (CDNs) employ vast deployments of servers digith throughout the world. For many appli-
cations ranging from distributing rich-media content tdlexiing billing data, CDNs often organize their
deployment of servers in the form of a rooted tree (typicedigted at the Network Operations Center) with
each node forwarding data from its children to its parent wod versa. FoiScenario 3 we turn to the
wireless domain. As 802.11 networks get increasingly degaldthrough airports and coffee shops) many
start-ups are looking into setting up ad-hoc networks offiVikccess points that act as forwarding agents
back to the wired access point that connects to the InteArearchitecture that is commonly considered is
for the ad-hoc network to be organized as a tree (rooted awitteel access point) with each Wi-Fi access
point merge-forwarding the traffic from its children to itarpnt.

A common thread running through each of these scenariosisathflows of a given commodity (be
they people or CDN data or wireless packets) @efluent A flow (of a given commodity) is said to be
confluent if all the flow (of this commaodity) arriving at a node depantsri the node along a single edge.

Confluent follows arise naturally in other applications adlwThe biggest application, by far, is the
Internet. Most flows on the Internet today are confluent beeduaternet routing is destination-based.
Destination-based routing owes its widespread use andanitguo the fact that it saves memory on routers;
requiring only one entry per node in a routing table, it leedénear storage. Routing on the Internet is dic-
tated by BGP which selects a shortest-path tree for eachatdde Autonomous System level. BGP routing
is destination-based. A major shortcoming of shortestpaduting, however, is that it ignores congestion
since the shortest paths are usually calculated indep#ndeneach source-destination pair.

In this paper, we study a number of optimization problemsceaning confluent flows. Our primary
interest is in finding confluent flows that minimize the maximaongestion in the network, tl@ngestion
of an edge (resp., hode) being defined by the total amountwfgtong through the edge (resp., node). We
distinguish between the single commodity and multi-comityoehriants. The bulk of this paper concerns
thesingle commodity confluent flow problewhich is defined as follows. We are given a directed network,
a distinguished sink, and supplies associated with eadltso®ur goal is to determine a confluent flow
(that is a tree rooted at and directed toward the sink) suahtlle maximum congestion of any edge is
minimized.

The maximum congestion of a confluent flow directed towarchglsisink occurs at one of the edges
incident into the sink. Thus, one can reduce the confluentfilmblem into the following multi-sink prob-
lem. We are given a set of sinks throught; and supplies at each node. We would like to determine a
confluent flow that routes all the node supplies to the sinké shat the maximum flow arriving at any
sink is minimized. We refer to this problem as tiagle commodity multi-sink confluent flow problelim
addition to being a useful reformulation, the multi-sinblplem itself naturally captures several applications
such as the evacuation scenario mentioned at the outseisqgiaper. Furthermore, while the single sink
and multi-sink variants of the single commodity problem egeivalent for general networks, the multi-sink
version is more general when considering certain spe@akek of networks (e.g., trees, meshes).

1.1 Ourresults
In this paper, we investigate the optimization and apprexiitity of confluent flow problems.

The term “confluent flow” was suggested to us by Jon Kleinbagjmilar notion of confluence also arose in some extensions
that Kleinberg, Rabani, and Tardos were considering of fa&irouting and load balancing algorithms [18].

e Our main result is for the single commodity problem for adiy networks with uniform supply at
each node. We present an approximation algorithm, basedsimme randomized rounding, that
determines a confluent flow with edge congestidfC? log® 1), whereC is the node congestion of
an optimal splittable flow. This implies ﬁ(ﬁ)-approximation algorithm for the single commodity
flow problem, where: is the number of nodes in the network. We complement the gdiegeesult
by showing that the there exists an instance for which thdamnized rounding algorithm incurs an
Q(n'/*) approximation ratio with probability — e, wheres > 0 can be made arbitrarily small. These
results, which appear in Section 4, apply to both the sinigle and multi-sink variants.

e We show that it is NP-hard to approximate the edge (or nodeyestion of the optimal confluent
flow in general directed networks to within a factor of 4/3gevor the uniform-supply case. We also
show that there exists an instance for which the optimattaple flow has constant edge and node
congestion, while the best confluent flow f&8og n) node congestion. These results may be found
in Section 2.

e We provide optimal polynomial-time algorithms for the ningink single commaodity problem (with
arbitrary supplies) for both undirected and directed tréé® algorithms are described in Section 3.

e We also study the capacitated multicommodity variants aflaent flows. Our results, which appear
in Section 5, include a proof that the randomized roundirgc@dure of Raghavan-Thompson [28]
gives anO(log n) approximation for the multicommodity confluent flow probleassuming the edge
capacities are sufficiently large.

From atechnical standpoint, perhaps the most challengirtgppthis work is the analysis of the randomized

algorithm for single commodity confluent flow. Our resultieslon the analysis of a natural probabilistic

process defined on directed acyclic graphs, that may be epamtlent interest. While the particular process
we study is closely related to branching processes andngatés, the bounds derived from existing general
results in this area do not suffice for our purposes. Througdreful calculation of higher moments, we are

able to derive useful bounds on the tail of the distributibnetevant random variables.

1.2 Related work

A natural question to ask is how the congestion of the bedfigemt flow compares with that of the best
splittable or unsplittable flow, both of which are naturdbarations of confluent flows. Splittable flows
for the single commodity case are characterized by the kvellwn max-flow min-cut theorem of Ford and
Fulkerson [10, 11]. The unsplittable flow problem, whichuiegs that the supply from every source is
routed along a single path, may be approximated to withinmnstemt factor using the algorithms of [7, 19].
The relationship between the congestion of confluent angdlitiable flows is addressed in [24], in which
an(n) separation is established. Our results for confluent floucatd that the optimal node congestion
of (un)splittable flow is a better lower bound on the congestif confluent flows. (See Section 2.)

To the best of our knowledge, the study of [24] is the first tpliektly discuss the effect of confluence on
congestion in the context of IP routing. A recent study [3@jleres the use of confluent flow-based routing
(referred to as hop-by-hop routing) for premium traffic ir ttifferentiated services framework of QoS
routing. Both the studies [24] and [30] present heuristlataans for various problems related to IP routing;
these solutions, however, do not achieve non-trivial axpration factors. In [14, 21] confluent flows are
also considered in a model where the demands are not assbueidh individual source-sink pairs; instead
with sources or sinks, as a whole. Furthermore, the obgdtinction being optimized is the total cost of
edges used, not the maximum congestion. Also related is thk of [17], which raises the problem of
finding a subtree of a given network that can route a givenfsaudticommodity flow pairs with minimum
congestion.

Our results for the multicommaodity version of confluent flovelplems are straightforward generaliza-
tions of the rounding algorithm due to Raghavan and Thomfa8pfor multicommodity flows. Through
a simple decomposition of fractional confluent flows, we dse able to show that many of the existing
results for concurrent fractional multicommodity flowsye[22, 3, 23]) directly translate to corresponding
results for concurrent fractional confluent flows.

The probabilistic process that we study in our analysis @fémdomized rounding algorithm for general
graphs, when restricted to trees, is similar to a random rampat analyzed for the group Steiner and
Steiner covering problems [13, 20]. The measure of intéresur study is however complementary to
that of [13, 20]. Our probabilistic process for trees caro die presented as a branching process ([9,
Chapter XlI], [2]) with different probabilities associatevith each branch. Viewed in this context, our
analysis bounds the upper tail of the distribution of thaltptogeny within a given number of generations.
Bounds on progeny in supercritical branching processegieea in [16] and a related branching process is
also analyzed in [8].

2 Preliminaries and hardness results

In this section, we formally define the single commodity coafit flow problem. We defer to Section 5 for
the definition of the multicommodity and fractional verssohetG = (V, E) be a directed network.

Definition 2.1 Let.S C V be a set of sources andc V be a distinguished sink. We say that a flgw
from S to ¢ is confluentif for every nodeu, there exists at most one edge v) that has positive flow (i.e.,

f(u,v) > 0).

In this paper, we seek confluent flows that have low congestiOne can consider two notions of
congestion: node congestiomnd edge congestion For a flow £, let the in-flow f"(v) (resp., out-flow
f°U(v)) of a nodev be Pwer f(wv) (resp..y°, yep f(v,u)). Letsupv) denote the supply of node
v. Note that for any node, other than a sink node, we hay&(v) + sup(v) = f°(v). We define
the congestionof nodewv as the larger of the in-flow and out-flow of the node and dentoby if (v) for
notational convenience. For a given flgiw the node congestioVC'(f) equalsmax,cy _g4 f(v), While
the edge congestioRC(f) equalsmax.cr f(e). (Note that the node congestion for a single commodity
flow is given by the maximum congestion among the nodssjuding the sinkthe sink has the same
congestion, regardless of the particular flow.)

Observation 1 The edge congestion of a confluent flow is identical to its fumhgestion.

Proof: The edge congestion of a confluent flow is the flow on one of tige®dhcident into the sink say
(u,t), and the node congestion is the flow througlwhich is identical tof (u, t). |

Basic separation results A major focus of this paper is the problem of finding a singlmeodity confluent
flow that minimizes edge congestion. As mentioned in Secti@y Lorenz et al [24] present an instance
(see Figure 1(a)) for which the edge congestion of an optimadluent flow iS2(n) times that of an optimal
(un)splittable flow; their separation result holds evertliercase when all nodes have unit supply. (Note that
the integrality theorem for maximum flow implies that the gestions of the best unsplittable and splittable
flows are equal.) We claim that ti®de congestionf the optimal splittable flow is a better lower bound on
the edge (or node) congestion of the optimal confluent flodeéu, our result of Section 4 shows that this
gap isO(y/n) when every node has uniform supply.

In the following, we establish a lower bound Qflog n) on the separation between (un)splittable and
confluent flows, with respect to node congestion. Consideirtbtance of Figure 1(b). We havée:devel
complete binary tree, all the leaves of which are conneated $ink. Each node has unit supply. One
splittable flow is given as follows. The supply from each ngdes out on an arbitrary outgoing edge. Any

% r
cy (b)

Figure 1: (a) An instance (due to [24]) which shows@fn) gap between confluent and (un)splittable
flows, with respect to edge congestion. (b) An instance whlabws arf2(logn) gap between confluent
and (un)splittable flows, with respect to node congestiaredch figure, all nodes offer unit supply and the
dark node is the sink.

flow coming into a node (at most 1 unit) is routed out on the augaused by the supply at the node. This
solution has edge congestiérand node congestio? But for any confluent flow, all supplies along path
used by the supply at the root need to be routed through the ks Since this path has lendth= log(n),
the edge and node congestions are at leg$t:).

Hardness of approximation We show that it is NP-hard to approximate the congestionnobgtimal
confluent flow to a factor better thaty3, even for the special case when every node has unit suppl. Th
reduction is from 2DIRPATH problem, which is shown to be N&t¢hin [12] and defined as follows: Given
ann-node directed grapty and two node pairs;, t; andss, t2, find node-disjoint directed paths frogm

to ¢; andss to t2. We reduce this problem instance to an instance of the canffleev problem as follows.
We add a sink with directed edges fromy andt; to t. We add a third node with arcs fromo to ¢t and
from all other nodes t@. We now add the following additional nodes and edgesni{ipodes, each with
an edge intas; (i) n2 nodes, each with an edge intg (i) 2n2 nodes, each with an edge 4g; (iv) 2n>
nodes, each with an edge intg and (v)3n? nodes, each with an edge intoEach node in the network has
unit supply. It is easy to see that there exists a confluentiidtvcongestion at mostn? + o(n?) iff there
exist node disjoint directed paths in the original graphgowise, the congestion is at ledst’. Hence, the
congestion of confluent flows is not approximable to bettantty3 in polynomial time unless 2DIRPATH
is solvable in polynomial time.

Multi-sink problem . As discussed in Section 1, we solve the single commoditfiwent flow problem by
considering a more general multi-sink version of the prnoblevhich is what we address in Sections 3 and 4.
Given a setS of sources with supplies and a gebf sinks, a multi-sink confluent flow routes each supply
to any sink such that the total flow is node-confluent. The estign of a multi-sink confluent flow is the
maximum congestion among all sinks of the network.

3 Multi-sink confluent flow for trees

Given an undirected treéE = (V, E') with n nodes, each nodewith nonnegative integer suppbup(v) and

k sinkstq,... ti, we would like to construct a multi-sink confluent flow fronmetlources to the sinks. By
definition, the flow satisfies the following conditions: (I) #ie supplies are routed to the sinks; (ii) the flow
routing the supplies to a particular sink is confluent; fi¢ confluent flows to each sink are node-disjoint.
The goal is to minimize the maximum congestion, which is $yntipe maximum total supply routed to any
sink. Since the underlying network is a tree, our problengisvalent to partitionind” into a set of subtrees
such that there is at least one sink in each subtree and thenadaof the total supply, among all subtrees, is

minimized. In this section, we present an optimal polyndrimae algorithm for this problem.

Our algorithm, defined in Figure 3, consists of a binary deams the optimal congestiof’ in the
range|0, > . .- SUp(v)] and uses a subroutine for finding whether there exists a-sioki confluent flow
with node congestiol’; the subroutine also returns a flow with the desired propsttguld it exist. The
intuition is simple: assign sources to the nearby sinksenthiey are not overloaded yet, and do this greedily.
General idea of the algorithm for trees Given a objective congestioft, the algorithm needs to find
whether it is achievable. It repeatedly looks at the leavektdes to decide the relationship of at least one
leaf and its parent, whether they should be in the same subtrthey should be separated, in each round.
Four scenarios are considered, at least one of which neitedsappens. (1) If a sink leab has a sink
parent, ther is useless other than taking case of its own supply, thus earrhoved. (2) For a non-sink
leaf, it has to be in the same subtree as its parent in ordeiute its supply to any sink. (3) If several sink
leaves has the same parent, then only one of them is usefatHer supplies; therefore we keep the least
heavily loaded one and remove the others. (4) If a sink leafehaon-sink parent with degree 2, then the
supply of the parent had better be taken care of by this sadkile., they should be in the same subtree, if
possible. Note that in the algorithm, & ROVEL EAF operation decides to separate the leaf and its parent; a
MoVEL EAF operation decides to group the leaf and its parent. Figuiiees @ complete example showing
how the algorithm deals with the four cases.

U
sink-node with supply 2 @ source-node with supply 1

Figure 2: A complete example showing how the algorithmsBoNGESTION? deals with the four cases.
(a) The given treeC = 4. (b) Case 1: sinkv is removed. (c) Case 2: sourgds moved toy. (d) Case 3:
sink v is removed. (e) Case 4: sinkis removed. (f) The subtrees output by the algorithm, whéddilitates
a confluent flow with congestion at masSt= 4.

It suffices to prove the correctness oA8ICONGESTION?. Since the algorithm removes one leaf in every
iteration and does not add any edges, the given network nsnaairee. We next claim that the algorithm
terminates. For this, we show that as long as the tree haasittl®o nodes, there exists at least one leaf
satisfying one of the four conditions listed in the alganithA tree with at least two nodes has at least two
leaves. If any of the leaves is a source-node or a transi-fcakse 1 or 2), then our claim holds. Suppose
all of the leaves are sink-nodes. If any of the (at least twi)-s0de leaves has a sink-node parent (case 1),
then again one of the conditions applies. Otherwise, oneeotonditions holds if any two of the sink-nodes
are siblings (case 3). Eliminating all of these possilaitleaves us with a tree with at least 4 nodes. Thus,
all that remains to be shown is that when none of the aboves cggaly, there exists a leaf with a parent of
degree exactlg (case 4). The following simple lemma establishes this claim

Lemma 3.1 If every leaf of a tree with at least 4 vertices has no siblthgn there exist at least two parents
with degree 2.

Proof. Since a tree has at least 2 leaves, it has at least 2 parettigy Iboth have degree 2, we are done.
Suppose parenthas degree 3. We travel along the internal vertices, stgirimm v. When an internal node:

o MoVELEAF(v): Move all sinks inv and any supply to
Definitions. p(U), and remove.

e Types of nodes:A sink-nodes a node thatcon- HASCONGESTION?(I', C): Repeat the following
tains a sink; asource-nodés a node that con- steps.
tains a source but no sinks;t@nsit-nodeis a
node that is neither a source-node not a sink-
node.

e If T has exactly one node, then returoNf the
node is a source-node, and¥otherwise.

e Find a leaf of one of the following types and execute

e Parent and siblings: For a leafv, we define the corresponding operation.

theparentof v, p(v), to be the unique node ad-

jacent tov and the siblings of to be the leaves 1. sink-node with a sink-node parent or transjt-
adjacent to the parent of node: REMOVEL EAF(v).
e Load: Theload of a sink-node is the total sup- 2. source-node: Bup(v) +sup(p(v)) < C, then

ply of the sources located at the node. MoOVEL EAF(v); otherwise, return .
TreeAlg(T): Perform binary search to determine the 3. Sink-node with a non-sink-node parent and
smallestC in [0, ", . Suf(v)] for which the subrou- some sink-node siblings: EMOVEL EAF(w)
tine HASCONGESTION?(T, C) returns Yes. Remov- for every sink-node leab adjacent tg(v) ex-
ing the edges marked byERIOVEL EAF yields the de- cept the one with minimum load.
sired confluent flow. 4. sink-node with a non-sink-node parent of de-
REMOVELEAF(v): Remove leafy from the tree; ifv gree exactly 2: ifsupv) + supp(v)) >
is a sink-node, then mark the edge p(v)). C, then do FEMOVELEAF(v); otherwise, do

MOVELEAF(v).

Figure 3: The algorithm for trees.

(). has degree 2 and is a parent, stop.
(ii). has degree 2 and is not a parent, continue on its uadsitighbor.
(iii). has degree 3, continue on its unvisited non-leaf hba@ since it has at most one leaf neighbor.

Since it is a tree, the travel eventually stops and it stopsage (i). So we get one parent with degree 2. The
travel has two options when startingwatSo there are at least 2 parents with degree 2. [|

Lemma 3.2 The algorithmHASCONGESTION?(T, C) returnsY Esiff tree T admits a multi-sink confluent
flow of congestion at most.

Proof: It is sufficient to analyze a single iteration and show thatéé 7~ is changed intd™*, T* has a
YEs answer iffT’~ has a ¥es answer. Suppose thd@t™ has a s answer with a solution as partitiaR,
and the iteration identifies a leafsatisfying one of the desired conditions and executes tiresymonding
operation. Let us consider the various cases for

¢ Transit-node leaf: No subtree A needs to contain. And any solution fofl'* is valid for7—.

¢ Sink-node leaf with a sink-node parent: The nodesidp(v) need not in the same subtreefnsince
they are both sinks. This solution is also validiri. For the reverse direction, any valid solution for
T, together withv as a separate tree, is valid for .

e Source-node leaf: 1P, v must be in the same subtree as its parent. PSwvith v and its parent
merged, is feasible i ™. For the reverse direction, any valid solution for, with the change that
the nodew is attached to its original parent, is also valid for.

e Sink-node leaf with non-sink-node parent and sink-nodéngjb: If in P, the parent is disjoint with
all these sink-node leaves, théxis feasible in"*. Ifin P, the parent is joint with some of them, then
another partitionP’ with all of them except the minimum-load one separated i3 al¥Es solution to
T—. P'is feasible inT*. Similarly, any valid solution foff'* is also valid forT'—, after the addition
of more subtrees, each consisting of one of the removedrsidks.

e Sink-node leaf with non-sink node parent of degree 2: Weiden$wo cases. First, if RMOVELEAF
is done, therv andp(v) cannot be in the same subtreeftn so P is feasible inTt. Otherwise, ifv
andp(v) are in the same subtree I thenP is feasible in7'*. If they are separated, then we can cut
the parent from its subtree and join it with The cut subtree still has a sink (since the parent is not a
sink). The resulting partition is also ae¥ solution to7T~ and is feasible i .

We now argue the other direction. Suppd3eis a valid solution forT' ™. If the operation in the
iteration is REMOVEL EAF, then P/, with one more subtree consisting ©flone, is a valid solution
for T—. Otherwise,P’, with v attached to its original parent, is a valid solution for.

|

The algorithm FASCONGESTION? can be modified to apply to directed trees. For a source-leade
v, call its parent drue parentif the lone adjacent edge is going out @f and afalse parentotherwise.
For a sink-node leaf, call its parent arue parentif the lone adjacent edge is coming intpand afalse
parentotherwise. As in ASCONGESTION? we seek a leaf that satisfies one of four conditions. Case 1 is
the same as before. For case 2. we executssBLEAF only if the source-node leaf has a true parent and
sup(v) + sup(p(v)) is at mostC'; otherwise, we return N. Case 3 is the same as before. Finally, in case 4,
we perform the same operations as for undirected trees #itikenode leaf has a true parent; otherwise, we
remove the leaf.

4 Multi-sink confluent flow for general networks

In this section, we present a simple randomized roundingriifgn for finding a multi-sink confluent flow
in a given directed network. We analyze the algorithm fordhge when every node has unit supply. 1;et
throught;, denote thek sinks.

We first compute, using a standard maximum flow algorithm phtiable) flow f from the sources to
the sinkst; throught; such that the flow minimizes the maximum congestion amongitites. This can
be done by performing binary search on the congestion véhus, requiringO(log n) invocations of the
maximum flow algorithm. We can assume, without loss of gditgréhat the edges used in the flofv
constitute a directed acyclic graph, by removing cyclesatit increasing the congestion on any node.

We now round the flowf to obtain a confluent flow, which, by definition, is a forest ofde-disjoint
trees, each tree rooted at and directed toward a digtinthe rounding procedure is simple. Recall tffiat)
denotes the flow on edgeand f°“(v) denotes the flow out of node Each node in V — {t; : 1 <i < k}
independently selects exactly one of its outgoing edget, thé probability equal tg(e)/f(v). (Note that
the sum of the probabilities for all the outgoing edges of denis 1.) The selected edges, together with the
nodes inV/, form a forest, each tree in the forest is an arboresceneetdi toward a distinct roet. Let T;
denote the tree rooted at note It is easy to see that the node-congestion of this confluewtdguals the
maximum, over ali, of the number of nodes if;. The main result of this section is the following.

Theorem 1 For the uniform-supply case, the congestion of the mulii-sionfluent flow determined by
randomized rounding i© ((NC(f))?log® n) whi?.
2\We use the abbreviation “whp” throughout the paper to meaith“high probability” or, more precisely, “with probabijit

1 — n~¢, wheren is the number of nodes in the network ands a constant that can be set arbitrarily large by appragyiat
adjusting other constants defined within the relevant ctrite

Corollary 1.1 The randomized rounding algorithm yields ér(l\/ﬁ) approximation for the uniform-supply
multi-sink node confluent flow problem.

Proof: If NC(f) is at mosty/n, then the claim follows directly from Theorem 1. Otherwitfee claim
trivially holds since the congestion of the confluent flowtisrestn. [|

We analyze the randomized rounding algorithm by analyzmgauivalent probabilistic proce$3that
is defined for any directed acyclic graphwith a probability functionp on the edges of the dag, satisfying
the condition that for every node, Z(M)Ep p(u,v) < 1. The process(D) is simply the following:
each node: selects at most one outgoing edge, the €dge) selected with probability(u, v). The edges
selected byP(D) form a forest of arborescences. L¥p(v) denote the number of nodes in the subtree
rooted at in the forest. (Note thalVp(v) is a random variable.) We can calculdig (v) = E[Np(v)] as

follows.
1 v has no incoming edge

Cp(v) = { 1+ 3 (0)ep P(u,v)Cp(u) otherwise

The randomized rounding algorithm is equivalent to the ahilistic processP(D), whereD is the dag
obtained on computing the optimal splittable flgivand the probability functiop is given as follows:
p(u,v) = f(u,v)/f%w) for u,v € D. Furthermore, the congestion of the resultant confluent iotive
same asnax, Np(v), while NC(f) is the same a€'j, = max, Cp(v). Thus, we can place a bound on the
node congestion of the confluent flow determined by randainieanding algorithm by bounding the tail
of the distribution of the random variableax, Np(v) for a given dag, which is what we set out to do in the
following sections.

Our analysis ofP proceeds in three steps. First, we show in Section 4.1 thatrp dagD, the height
of every tree in the forest determined BYD) is O(C% log n) whp. (We remark that this is the only step
where we need the assumption about uniform supplies in thegdtoblem. In fact, our analysis can be
generalized to bound the height in terms of the maximum mattithe congestion and supply of a node.)
Second, we show in Section 4.2 that all the moment¥gfv) are upper bounded by those 8- (v) for an
appropriate tred obtained by unraveling the ddg. In Section 4.3, we bound the momentsNof(v) for
arbitrary treeq’, which then yields the desired high probability bounda(v). In Section 4.4, we put it
all together and prove Theorem 1.

4.1 Bounding the height

We note that the distance betweerand the root of the tree containingin P(D) is the length of the
random walk starting fronw on D, according to the probabilities defined py In the following, we omit
the subscrip®D from the termsCp (u) andCy, for notational convenience. For a given non-sink nadket
P(u,i) denote the probability that the random walk is at nacdafteri steps. Le{w,,) through(w;,u)
denote the edges intoin D. We then have the following recurrence relation:

0 i=0andu # v
Pu,i) = ¢ 1 i=0andu=wv
Z(w,u)ED P(w,i — 1)p(w,u) i>0.

Lemma 4.1 For any non-sink node andi > 0, P(u,) is at mostC(u)(1 — 1/C*)%.

Proof: The proof is by induction or. Fori = 0, the claim is trivially true. For the induction step, we
considerP(u,). By definition, we have

P(ui) = Y P(wi—1)p(w,u)

(w,u)eD
< (1-1/00 N plw,u)C(w)
(w,u)€eD
< (1-1/C%YC() ~ 1)
< (1-1/C*)Clu),
the last step following from the inequality(u) < C*. []

Corollary 4.1.1 Whp, the height of any tree iR(D) is O(C* logn).

Proof: By Lemma 4.1, the probability that the random walk frons at a non-sink node afterC* In(nC*)
steps is at mostC*(1 — 1/C*)¢" n(nC") < L Thus, the random walk from terminates at a sink in

noa—1-

O(C*log n) steps whp, yielding the desired claim. [|

4.2 Reduction to the case of a tree

Consider the da@ with an associated probability function. We now argue tR&D) can be analyzed
by considering the proced3 on an appropriately defined tree, obtained by a natural efirgvof D. We
transformD into a tree7 through a sequence of steps. gt denote the dag obtained aftgsteps,j > 0.
For a given directed acyclic graph, let D(v) denote the subgraph @ induced by all of the nodes that
can reachv in D. (Note thatD(v) is also a dag.) Step+ 1 proceeds as follows.

1. Find a node in D; such that the subgraph; (v) is a tree and has more than one incoming edge.
If no such node is found, theR; is a tree and the transformation is complete.

2. Let(uq,v),...,(ug,v) denote thé: > 2 edges coming into. We transformD; into D, ; as follows.
We replacev and the subtred;(v) rooted atv by k£ copies of each and replace the edag v) by
the edgg(u;, v;), wherewv; is theith copy ofv. Each new edge inherits the probability of the edge it
replaces or copies. This is illustrated in Figure 4.

Consider the step of the transformatiéh)y — D;, . For a given node: and a nonnegative integér let
the random variabl&Vp, (u, h) (resp.,Np, ., (u, h)) denote the number of nodes withinhops ofu in the
subtree rooted at underP(D;) (resp.,P(D;;1)). We note thatt’[Np, (u, h)] is equal toE[Np,, , (u, h)].
This implies the following equality.

o

Cp = Cx 1)

While Np, ., (u, k) has more “randomness” tha¥p, (u, k) owing to multiple independent copies of the
dagD;(v), itis not the case that the former random variable stoatwlstidominates the latter. As we show
in Lemma 4.2, however, the moments of the former are at lbasof the former.

Lemma 4.2 For integersh, r > 0, and nodeu, we haveE[(Np, (u, h))"] < E[(Np, ., (u, h))"].

The above lemma claims that for any copy of any nadany moment ofNp,_, (u, k), for any height,
is no less than that afNp, (u, h)). SinceD is the first dag in the sequence afdis the last dag in the
sequence, it follows that the momentsiéH (u, k) are bounded by those &1 (u, h), for all w andh. In
Section 4.3, we place a suitable upper bound on the momenXs @f, /) for any treeT".

9

Figure 4: Transformation from dag to a tree

We now prove Lemma 4.2. The procg3gD;) can be divided into two independent steps. The first step
consists of the random choices of nodes nobif{v) and the second step consists of the random choices
of nodes inD;(v). Let K (resp.,X) denote the set of nodes outside (resp., insidepgfv) that are in
the subtree rooted at, following the first step. It is sufficient to show that givenya/', the moments of
Np;(u, h) are bounded by that d¥p, , (u, h), i.e.:

E[(Np, (u, b)) | K] < E[(Np,,, (u, b)) | K] for all K 2)

The desired claim then follows from Equation 2 and the faat i\W| = >, . E[W|Z = z]Pr{Z = z}
for all discrete random variablé® and Z.

It remains to prove Equation 2, which we do by inductionmenSuppose that hasm parents. InD;,
with probability p;, i € M = {1,...,m}, v chooses parerit with probability (1 — """, p;), v does not
choose any outgoing edge. Iy ;, each copy of independently does the above. For simplifying notations,
let X denote the random variabl&(v). So inD;, we haveX. In D;.;, we have{X;, Xs,..., X}
independently identically distributed (iid) &. Now we can rewrite Equation (2) as:

LHS = iE[(K—i—X)r]prf—Kr(l_iPi)
=1 i=1

RHS i(E (K—i—in)T]ZI:(Hpi 11 (lpi)))

=0 el ie(M-1I)

First we prove the following lemmas.

Lemma 4.3 For all non-negative random variablé%’, Z;, Z,, whereZ; and Z, are independently identi-
cally distributed (iid) asZ:

E[W') + E[(W + Z1 + Z5)"] > 2E[(W + Z)"] Vr >0

10

Proof:

d r
EW" |+ E(W+Z1 + Z)"] = (W] Z <q) EW"™E[(Zy + Z2)?]
q=1
Bl +2y] = 25w+ 3 (7) B 2e(z
q=1
So the claim is true, sincB[(Z, + Z2)?| > 2E[Z%] ¥Yq > 0. []
Lemma 4.4 For all non-negative random variablesX;|i = 1,2, ..., 00} which are independently identi-

cally distributed (iid) asX, vr > 0:

{41

¢
E[(K + ZXz)T](l —p1—p2) + E[(K+)_ X.)"[(p1 +p2)
z=1

K+ZX 1(1 = p1)(1 = ps)

£+1
K-i-ZX [p1(1 —p2) + (1 — p1)p2]

€+2
E[(K + 3" X.) Ipips

Proof: Itimmediately follows from Lemma 4.3 (with’ = (K+Z£:1 X.), Z1 = X¢y1 @ndZy = Xyyo0).
|

Now we provelL. HS < RH S by induction orvn. The claim is trivially true forn = 0 andm = 1. Suppose
LHS < RHS form > 1. Then form + 1, denotep] = p1 + p2,ph = p3, .-, D = Pit1s- - Do = Pm+1:

LHS = > E[(K+X)pi+ K (1-> 1})
=1 =1
m J4
<y (E (K+> X.) > (Hpé 11 (1p§)>)
=0 z=1 I={i1,...;ig}CM \i€I ic(M—I)

l
(K+ZXZ)T] (HM) (II «a pé)) (1-ph)
()

T={i1,..,ig}CM:1¢1 z=1 il ie(M—I—{1}

+1
(K + ZXZ)’”] p2~> i I (-
icl ie(M—I1—-{1})

(Hpé 11 (1292))

(=0 T={i1,....ig}CM:1¢T i€l ie(M—I—{1})

¢ 041
E (K+ZXZ)T] (1=p1i—p2)+E [(K+) X.)"| (; +p2)>>
z=1 z=1

11

IN

[Irivv JI -piro)

£=0 I={i1,...,i;}CM:1¢I icl ie(M—I—{1})
¢

0+1
(K + ZXz)r] (1=p1)1—p2) + E

(K+> Xz)r] p1(1 —p2)

z=1

042
(K+> Xz)’"] p1p2>)

z=1

(K + ZXZ)’"] (1—p1)p2+E

= RHS
Note that the penultimate step follows from Lemma 4.4.

4.3 Rounding on atree

Sections 4.1 and 4.2 indicate th#i(v), for any vertexv, can be bounded by placing an an upper bound
on the moments ofN7 (v, h) for h = O(C}logn). LetT be a tree rooted at nodewith the edges
directed toward the root, and with probability functipnin this section, we analyzB(T") and place a high
probability bound onVy (7).

To simplify the analysis, we add a distinct leaf for every nodev in 7', and an edgé/,, v) and set
p(¢,v) to bel. We also transform the resultant tree into a binary fféé.e., every node has at most two
children) by repeatedly applying the following transfotioa: replace every node with > 2 children by
two nodes, one of which ha# /2| children and the other hd# /2] children. Furthermore, we note that the
number of leaves is identical in both the trees and the heifjtite binary tree is at mosbg n times that of
the original tree. LefX,, denote the number of leaves that are in the subtree rooted@tined in process
P(T"). Clearly, Ny (v) is identical toX,,, andCr(v) = E[X,].

One technique for analyzing,. is by using martingales (e.g., see [1, Chapter 7]). For intgtaif the
probability of each edge is/2, then the sequence of variables corresponding to the nunfibedes at each
level of the tree that connect to the root forms a martingélle bounds on the tail of,. that we are able to
get using martingale theory (e.g., the method of boundddrdifices [26]) are much weaker than what we
want. Another technique, based on Janson’s inequality, s been used in analysis of a similar random
experiment on trees [13, 20] yields lower boundsXn Furthermore, our approach actually requires a
bound on the moments df,., which we now establish in the following main lemma of thistsa?®.Let M,
denote the maximun’[X,,] among all nodes in T (v).

IMITLE[X A

Lemma 4.5 For any integeri > 0, we haveE[X!] < ST

Proof: The proof is by induction on the heightof the tree. We consider the base case 1, whenr is a
leaf. In this case, we hav@[X!] = E[X,]". The right-hand side of the desired inequality is given by

Z’!E[Xr]"’%E[Xr]hH _ i!E[XT]i > BIX,J
2i—1 2i—1

sincei! > 2~ for all integersi > 0.

We now consider the induction step. There are two cases depenn whether has one child. We
omit the case when has one child since that is straightforward to prove. Canrdide case whenhas two
children, say: andb. Let X, and X}, denote the number of leaves in the subtrees, obtained aftdomized

3An alternative approach for bounding the tail &f., suggested by Aravind Srinivasan, is to usmtral moment®f X,
following the lines of [29].

12

rounding, containing andb, respectively.
E[X;] = pla,r)(1—pb,r)EX] + (1 —pla,r))p(b, f)E[XZ] +p(a,m)p(b, 1) E[(Xo + X5)')

i—1 /.
= pla,)E[Xg] +p(b,r)E[X5] + pla,r)p(b,r) Y (;)E[Xg]E[Xg—j]
j=1

< pla,r)EX,] + p(b,r)BIX}]

i—1 . . i—1 i1 /s . i—j—1 i—i—1
i\ ML E[X (b — 1)1 (i —)M, T E[X)(h — 1)
wote.rpn) 3 () Al o
j:
: : i—1 Z'MZ 2 1)i—2
< p(a,) ELXG) + p(b,r) EX]) + p(a, 1)p(b, 1) ELXG] B[X)) o
7j=1
)) Mz 2E h—1 1—2
< pla,n) B + p(o,r) B + " 2[1 2“)
IMILE[X,](h — 1)1t IMITLE[X (h — 1)t
< plan M PRI DT) M B2
(i—1)- il M E[X,](h —1)72
+ 5
WM E[X,] 1 (=1 (h—1)"2
< —r T2 ((h-1)
< S (- B
AMI~LE[X,|h!
< - .
— 2171

(In the fifth step, we use the fact thaa, r)p(b, 7) B[X, | E[X,) is at mostp(a, r) E[X,]+p(b, 1) E[X}])? /4 =
E[X,]?/4. The sixth step follows from the induction hypothesis arglitrequality£[X,] < M,.. The sev-
enth step follows from the equatigria, r) E[X,] + p(b,r)E[Xp] = E[X,]. In the last step, we use the

inequality (h — 1)"~1 4 (i — 1)(h — 1)*=2/2 < h*~1.) This completes the proof of the lemma. m
Corollary 4.5.1 For anyi > 0, E[(Nz(r, h))"] is at most%_

4.4 Putting it all together

In this section, we complete the proof of Theorem 1. Fix a sinkBy Corollary 4.1.1, we obtain that
Np(t;) equalsNp(t;, h) whp, whereh = O(C% logn). We now use Markov’s inequality.

Pr[Np(tj,h) > ahCy] = Pr[(Np(tj,h))" > a'h'(Ch)]

_ El(Np(t;,)]
- a'hi(C5)
_ E[(Ne(t;.)]
= (G
Z[(c*)ihifl
= azhz(g%)z% 1
1!

(The second step follows from Markov’'s inequality. The dhatep follows from Lemma 4.2. The fourth
step follows from Corollary 4.5.1 and Equation 1.) By sejtin= i = O(logn), noting thatNC'(f) = C%,
and taking into account th@(log n) factor due to the transformation to a binary tree, we obtaéndesired
claim of the theorem.

13

4.5 Alower bound on the randomized rounding algorithm
In this section we present an instance, with uniform suppBaah node, for which the approximation ratio
of our randomized rounding algorithm @n'/*). The basis for this instance is presented in Figure 5. The
grid-like network has: = (3s2 + 3s — 2)/2 = O(s?) nodes, each with suppB; and2s — 1 sinks (on the
boundaries). A splittable floy that achieves optimal congestion consists of the flow thagelp the grid,
splitting evenly at each node between the two outgoing (sgwvedges. All the flow arriving into a sink is
absorbed at the sink. We can verify that this flow has maximadercongestiords, and that the congestion
of any flow is at leasts. Therefore, it is an optimal splittable flow.

Now consider the randomized rounding algorithm appliedhts flow f. Consider the node in the
center of the base and a nod¢hat is horizontally at a distaneeé= 2(y/s) to the right ofc. The process
of randomized rounding can be seen as proceeding level kY (starting at bottommaost level) selecting
an ancestor for each efandv from the two potential candidates at each level. When theesamestor is
chosen it leads to the merging of the flows frorandc. Note that the merged flow has congestiofs/s).
The distance between two ancestors at lévedn be viewed as an unbiased random walk on a line (with
probability% of remaining at the same point), that stadtsteps to the right of the origin and the act of
merging is equivalent to the random walk reaching the ori§ince the nearest sink nodedandv is more
than distancél(s) away this random walk continues for at le&Xts) steps. Further by throwing away alll
those levels at which the walk stays at the same point we #ireeftwith expected(2(s) steps in which
the walk moves to the left or the right. This is a standard oamdvalk on a line; it follows from well-
known results on the maxima and first passages of such randdks ¢e.g., see [9, Chapter Ill]) that for any
€,0 < € < 1, there exists & such that the flows fromandwv at distanceé /s merge with probability greater
thanl — e. Hence with probability arbitrarily close tbthe congestion achieved by randomized rounding is
at least(sy/s).

On the other hand, there exists a confluent flow in which alffldne is directed to thes — 1 sinks on
the left edge of the grid through the edges going left and ugywasulting in a maximum congestion 44.
Thus the approximation ratio achieved by randomized ramiiQ(y/s) or Q(n'/4).

5 Multicommodity confluent flows

In this section we consider the multicommodity confluent flomeblem in which we are given a general
directed graph, with one distinguished sink per commoditigjtrary edge capacities, and arbitrary source
supplies per commodity, and need to ensure that the flow pemaality is confluent. We begin, in Sec-
tion 5.1, by studying a relaxed version of the single- andtrmaimmodity confluent flow problem. The
analysis in Section 5.1 is then used in Section 5.2, whereonsider multicommodity confluent flows.

5.1 Concurrent flows
A concurrent flow is one in which the same fraction of every puwodity is satisfied concurrently. A
commonly-used metric in multicommodity flow problems is theximum concurrent flof22], which is
defined as the largest fraction of every commodity that cashiped simultaneously without violating edge
capacity restrictions. We extend this notion to single cardity confluent flows by defining theaximum
concurrent confluent flowo be the largest fraction of each source supply that cannbeltsineously routed
to the sink using a confluent flow without violating edge céiyaestrictions.

We note that solving the maximum concurrent flow problem isvedent to solving theninimum con-
gestion ratio problemwhere thecongestion ratiois 1 if no edge capacity constraint is violated; or the
maximum, over all edges, of the flow on the edge to its capatitgrwise.

Definition 5.1 LetG = (V, E) be a directed capacitated graph with edge capacitieand kx commodities.
Let commodity, < = 1,...,k, have sink; € V and supply functiong; : V — Rx>(. A concurrent flow
f with valuea(f) is a flow that routesx(f)d;(v) to t;, Vv, i. Themaximum concurrent floproblem is to

14

Figure 5: An instance for which the randomized rounding adigm incurs arf)(n'/4)-approximation ratio.

find a concurrent flowf without violating any edge capacity constraints, and to iméze the following:

min {«(f), 1}

Theminimum congestion ratiproblem is to find a concurrent flofwwith value 1 (i.e., a flowf to route all
supplies), and to minimize the following:
1)
max ¢ max —, 1
ecE Ce

Obviously, the maximum concurrent flow is the reciprocalhaf minimum congestion ratio. Theaximum

concurrent confluent flogwroblem and theninimum congestion ratio of confluent flpnoblem requiref to

be confluent for each commodity Note that in our previous sections where all edge capaditie assumed
to be equal and very small, congestion is equivalent to cstimyeratio. Thus the maximum concurrent
confluent flow problem is equivalent to the minimum congesfiooblem presented in Section 2. In this
section, we consider the relaxed version of the maximumuwwent confluent flow problem. We begin by
showing that any single commaodity flow can be decomposedaisimall set of concurrent confluent flows.

whereZ. is the total flow on edge.

Lemma 5.1 Consider a flowf that routes supplies from several sources into a single. Siie flowf can
be decomposed into a collection of at mestoncurrent confluent flows.

Proof: Consider the graph induced by the edges with positive floy iet the capacity of the edges to be

the flow through that edge. Take any spanning tree on thishgrafd consider the largest possible fraction
of each source supply that can be accommodated by this ttheuwiviolating edge capacity constraints.

15

Since the underlying graph is a tree the flow is automaticadiyfluent. Since the flow is maximal for the
tree, it will bottleneck one or more edges; i.e., those edgkde at their maximum capacity. Remove this
flow and consider the residual graph with zero capacity edgmasved. The graph has fewer edges than the
original graph. We repeat the above process and obtainectioth of at mostn augmenting trees, each of
which is a confluent flow supplying a fraction of each sourgepy that collectively sum to the original
flow f. [|

It follows from Lemma 5.1 that one can extend the Ford-Fd&armax-flow min-cut theorem to show
the following. Define thevalue of the sparsest ctiv be the minimum, over all cuts, of the ratio of the
capacity of the cut to the total supply crossing the cut; drthis minimum ratio is greater than 1.

Corollary 5.1.1 For a single commodity, the value of the sparsest cut is egudde maximum concurrent
flow, which can be decomposed into a set of at mosbncurrent confluent flows.

Proof: The proof closely follows that of the standard max-flow min-theorem, eg., in [6], only using
augmenting trees instead of augmenting paths. [|
Similarly, for multiple commodities, one can extend theuttssof [3, 23] to show the following.

Corollary 5.1.2 For multicommodity in an undirected graph, the value of thersest cut is at mo$? (log(kn))
times the maximum concurrent flow, which can be decompoted set of at most: concurrent confluent
flows per commodity.

Proof: It is shown in [3] that in an undirected graph, the value of $harsest cut is within a factor of
O(log k) of the maximum concurrent flow fok-commodity flow problem with arbitrary capacities and
demands. Our setting is different in that there are multgolerces and one sink for each commodity. But
we can associate each commoditgnd each node with one distinct commodity:, v) and obtain a new
problem with at mostn commaodities and:n source-sink pairs. It follows from [3] that the value of the
sparsest cut is within a factor 6f(log(kn)) of the maximum concurrent flow for this new problem, which
gives a concurrent flow for our original problem. |

5.2 Multicommodity confluent flows

Lemma 5.1, together with the Raghavan-Thompson roundipgoaph, yields ar®(log n)-approximation
to the multicommodity confluent flow problem, assuming edggacities are sufficiently large. We establish
the claim, in the following theorem, in terms of minimum cestjon ratio; it implies an equivalent result
for maximum concurrent flow. DenotBmax = max; D; where D; is the total supply of commodity:

Di = ZUEV dz(v)

Theorem 2 There exists a polynomial time algorithm, which finds a raaftimodity confluent flow whose
congestion ratio is no greater thati(log n) times that of the optimal (non-confluent) multicommodity,flo
providedc, > Dmax Ve.

Proof: Consider the optimal (non-confluent) multicommaodity flowaibed by solving the linear relaxation
of the integral problem that allows non-confluent flows. Llbet tongestion ratio achieved by this flow be
Copt. By Lemma 5.1, this flow can be decomposed into at mestonfluent flows per commodity. For
commoditys, let anr; ; fraction of D; be routed by theith confluent flow, i.e.>;r; ; = 1. Consider
the algorithm that randomly selects one confluent flow fohezmmmodityi, picking thejth flow with
probability ; ;, and scales up that flow to fractidni.e. that flow now has valu®;. It is obvious that this
collection of flows, one per commodity, routes the supplarsafl commodities and is confluent.

We now analyze the flow through any edgevith capacityc.. Letr{ be the fraction of commodity
flowing through this edge in the optimal non-confluent flow. d&finition~;r{D; < c. x Copt. Then the
value of the flow through this edge in the confluent case is the af independent random variabl&s .,

16

where X; . = D; ;. with probability ; ;, where D ; . is the total supply of all the nodes in the subtree
rooted under edge in the jth confluent flow tree for commodity. The expected value of this sum is
Yir§ x Dy < ce x Copr. LetY . = X; o/Dmax. ThenE(X;Y;) < ce X Copt/Dmax-

We now apply Chernoff-Hoeffding bounds [5, 15] by considgriwo mutually exclusive but exhaustive
cases. IfE(2;Y;) < 24logn, then we obtain thar(3;Y; . > 48elogn) < n~48¢. Otherwise, we obtain
thatPr[¥;Y; . > 1.5E(X;Y;.)] < n~2. The two cases together yield that with high probabiliyy; . <
max{O(c. x CopT/Dmax), O(logn)}, i.e., £;X; . < max{O(c. x Copt), O(Dmaxlogn)}. Taking the
union bound over all edges and using the fact that DnaxWe see that there exists a selection of confluent
flows one per commodity so that the capacity of no edge is t@dldy more tharc, - O(Copr, logn).
Hence there exists a confluent flow with congestion ratio ati®i¢log n) times the congestion ratio of any
(non-confluent) multicommaodity flow. This randomized scleecan be made deterministic by the method
of conditional probabilities and pessimistic estimat@ee| for example, [1, Chapter 15] and [27]) in a
straightforward fashion. The pessimistic estimator, in@ase, is

E [SAZe/ce]
eAclogn
e
wherec = %,)\ =In 1_—“,“ = %Z’;l E | %< | Since our derandomization follows standard tech-
gn w 7 Ce
niques, we omit the details here and refer the interestaterda [4]. |

6 Discussion

In this section, we briefly discuss potential directions fisture research and interesting open problems
suggested by our work. We begin with considering anothaurabnhotion of confluence. Our definition
of confluent flow capturesode-confluengesince flows that meet atraodeneed to depart along the same
edge. One can also define a notion of edge-confluence. Weaag tlow f is edge-confluentf for every
nodeu € V — {t}, there exists a mapping from the in-edgeqd,, of u to the out-edge®),, of u such that
foralle € O, f(e) = Ze,:¢(e,):ef(e’). It is easy to derive a polynomial-time approximation-grefg
reduction from the confluent flow problem to the edge-contidiem problem.

Two immediate problems left open by our work are to obtaitdsdtounds on the gap between confluent
flow congestion and splittable flow congestion and to bridigegap between upper and lower bounds on the
approximation factor for arbitrary networks. A better, conm simplified, analysis of the randomized round-
ing algorithm for general networks would also be valuablé/e@ our polynomial-time optimal algorithm
for trees, another potential line of research is to condatger classes of networks such as planar networks,
or meshes. Another interesting direction we are pursuing identify relationships among edge-confluent
and confluent flows.

While our study is motivated in part by the applications offtwent flows in networks, there is con-
siderable work that needs to be done before any of the spfutltat we have presented can be migrated to
practical scenarios. It will be interesting to explore tiehility of finding confluent flows with limited infor-
mation and in a distributed manner. Finally, bicriteria mpimations in which multiple objective functions
are considered (e.g., congestion and latency) are alscstegrth pursuing (e.g., see [25]).

7 Acknowledgments
We would like to thank Jon Kleinberg, Aravind Srinivasang &va Tardos for several helpful discussions.

References
[1] N. Alon and J. H. Spencefhe Probabilistic MethodWiley, New York, NY, 1991.

[2] K. Athreya and A. Vidyashankar. Branching processeshiéal Report TR-99-16, Department of Statistics,
University of Georgia, 1999.

17

[3] Y. Aumann and Y. Rabani. A®(log k) approximate min-cut max-flow theorem and approximatiootgm.
SIAM Journal on Computin@7(1):291-301, February 1998.

[4] J. Chen, R. Rajaraman, and R. Sundaram. Meet and mergeroAmation algorithms for confluent flows.
Technical report, College of Computer & Information Sciendortheastern University, March 2003.

[5] H. Chernoff. A measure of the asymptotic efficiency fastteof a hypothesis based on the sum of observations.
Annals of Mathematical Statistic®3:493-509, 1952.

[6] T.H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stéitroduction to AlgorithmsMIT Press, 2001.

[7] Y. Dinitz, N. Garg, and M. Goemans. On the single-sounesplittable flow problem. IfProceedings of the 39th
Annual IEEE Symposium on Foundations of Computer Scjgrages 290-299, November 1998.

[8] W. Evans, C. Kenyon, Y. Peres, and L Schulman. Broadegsth trees and the ising modéinnals of Applied
Probability, 10:410-433, 2000.

[9] W. Feller. An Introduction to Probability Theory and its Applicatign®lume 1. Wiley, New York, NY, 1967.

[10] L. Ford, Jr. and D. Fulkerson. Maximal flow through a netls Canadian Journal of Mathematic8:399-404,
1956.

[11] L. Ford, Jr. and D. Fulkersorklows in NetworksPrinceton University Press, Princeton, NJ, 1962.

[12] S. Fortune, J. Hopcroft, and J. Wyllie. The directedgralph homeomorphism probleriheoretical Computer
Sciencel0:111-121, 1980.

[13] N. Garg, G. Konjevod, and R. Ravi. A polylogarithmic apgpimation algorithm for the group steiner tree
problem. InProceedings of the 9th Annual ACM-SIAM Symposium on Disétlgforithms 1998.

[14] A. Gupta, J. Kleinberg, A. Kumar, R. Rastogi, and B. Yerferovisioning a virtual private network: A network
design problem for multicommodity flow. IBTOC: ACM Symposium on Theory of Comput2ap1.

[15] W. Hoeffding. On the distribution of the number of susses in independent trialfAnnals of Mathematical
Statistics 27:713-721, 1956.

[16] R. Karp and Y. Zhang. Bounded branching process and ANDiree evaluationRandom Structures & Algo-
rithms 7:97-116, 1995.

[17] S. Khuller, B. Raghavachari, and N. Young. Designindtreommodity flow trees. In Frank K. H. A. Dehne,
Jorg-Rudiger Sack, Nicola Santoro, and Sue Whitesidkmrs, Proceedings of the 3rd Workshop on Algorithms
and Data Structuresvolume 709 ofLecture Notes in Computer Sciengages 433—-441, Montréal, Canada,
August 1993. Springer.

[18] J. Kleinberg, Y. Rabani, and E. Tardos. Fairness iningLand load balancing. IRroceedings of the 40th Annual
IEEE Symposium on Foundations of Computer Scignages 568—-578, October 1999.

[19] Jon M. Kleinberg. Single-source unsplittable flow. Pmoceedings of the 37th Annual IEEE Symposium on
Foundations of Computer Sciengages 68—77, October 1996.

[20] G. Konjevod, R. Ravi, and A. Srinivasan. An approximatalgorithm for the covering steiner probleRandom
Structures & Algorithms20:465-48, 2002. Special Issue on Probabilistic Methnd&mbinatorial Optimiza-
tion.

[21] A. Kumar, R. Rastogi, A. Silberschatz, and B. Yener. @&ithms for provisioning virtual private networks in the
hose model. IProceedings of the ACM SIGCOMM 2001 Conferemodume 31 ofComputer Communication
Reviewpages 135-148, August 2001.

[22] T. Leighton and S. Rao. Multicommodity max-flow min-¢beorems and their use in designing approximation
algorithms.JACM: Journal of the ACiW46, 1999.

[23] N. Linial, E. London, and Y. Rabinovich. The geometrygriiphs and some of its algorithmic applications.
Combinatorica1l5:215-245, 1995.

18

[24] D. Lorenz, A. Orda, D. Raz, and Y. Shavitt. How good camdBting be? Technical Report 2001-17, DIMACS,
April 2001.

[25] M. Marathe, R. Ravi, R. Sundaram, S. Ravi, D. Rosenlgiaarid H. Hunt. Bicriteria network design problems.
Journal of Algorithms28(1):142—-171, July 1998.

[26] C. McDiarmid. On the method of bounded differences. .I8i@mons, editoiSurveys in Combinatoricpages
148-188. Cambridge University Press, Cambridge, UK, 1989.

[27] R. Motwani and P. RaghavaRandomized Algorithm&ambridge University Press, Cambridge, UK, 2000.

[28] P. Raghavan and C. Thompson. Randomized rounding: Wntqae for provably good algorithms and algorith-
mic proofs.Combinatorica7, 1987.

[29] J. P. Schmidt, A. Siegel, and A. Srinivasan. Chernodiefiding bounds for applications with limited indepen-
dence.SIAM Journal on Discrete Mathematj&223-250, 1995.

[30] J. Wang and K. Nahrstedt. Hop-by-hop routing algorighior premium-class traffic in diffserv networks. In
Proc. of IEEE INFOCOM 2002New York, NY, June 2002.

19

