
Using Mixture Models for Collaborative Filtering

Jon Kleinberg
∗

Department of Computer Science
Cornell University, Ithaca, NY, 14853

kleinber@cs.cornell.edu

Mark Sandler
Department of Computer Science

Cornell University, Ithaca, NY 14853

sandler@cs.cornell.edu

ABSTRACT
A collaborative filtering system at an e-commerce site or
similar service uses data about aggregate user behavior to
make recommendations tailored to specific user interests.
We develop recommendation algorithms with provable per-
formance guarantees in a probabilistic mixture model for col-
laborative filtering proposed by Hoffman and Puzicha. We
identify certain novel parameters of mixture models that are
closely connected with the best achievable performance of a
recommendation algorithm; we show that for any system in
which these parameters are bounded, it is possible to give
recommendations whose quality converges to optimal as the
amount of data grows.

All our bounds depend on a new measure of independence
that can be viewed as an L1-analogue of the smallest sin-
gular value of a matrix. Using this, we introduce a tech-
nique based on generalized pseudoinverse matrices and lin-
ear programming for handling sets of high-dimensional vec-
tors. We also show that standard approaches based on L2

spectral methods are not strong enough to yield compara-
ble results, thereby suggesting some inherent limitations of
spectral analysis.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Com-

plexity]: Non-numerical Algorithms and Problems; H.3.3
[Information Storage and Retrieval]: Clustering, Infor-
mation Filtering

General Terms
Algorithms, theory

Keywords
Mixture models, latent class models, collaborative filtering,

∗Supported in part by a David and Lucile Packard Founda-
tion Fellowship and NSF ITR Grant IIS-0081334.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’04, June 13–15, 2004, Chicago, Illinois, USA.
Copyright 2004 ACM 1-58113-852-0/04/0006 ...$5.00.

clustering, text classification, singular value decomposition,
linear programming

1. INTRODUCTION

Collaborative Filtering. A Web site or other on-line ser-
vice that receives extensive traffic has the potential to an-
alyze the resulting usage data for the benefit of its user
population. One of the most common applications of such
analysis is collaborative filtering: a Web site offering items
for sale or download can analyze the aggregate decisions of
the whole population, and then make recommendations to
individual users of further items that they are likely to be
interested in. The recommendations made to a specific user
are thus based not just on his or her own previous actions,
but also on collaborative information — the information col-
lected from other users in the system. Perhaps the most
well-known example of collaborative filtering in a practical
setting is Amazon’s purchase recommendations [9], which is
based on rules of the form “users who are interested in item
X are also likely to be interested in item Y .” This is a sim-
ple but highly visible example of the notion; a wide range of
more elaborate schemes have been studied and implemented
as well, based on more extensive profiles of users and more
subtle notions of similarity among items (see e.g. [11]).

Given the extensive experimental work in this area, there
has been relatively little theoretical analysis of the prob-
lem of collaborative filtering. In particular, Hofmann and
Puzicha have proposed a highly expressive probabilistic mix-
ture model for collaborative filtering [6], but previous work
has left open a large gap between the general form of this
model and the limited special cases in which one can obtain
algorithms with provable guarantees [7, 8].

In this paper, we provide the first recommendation al-
gorithms with strong provable performance guarantees in
a large and natural sub-class of mixture models. Focusing
on a sub-class of the set of all mixture models is necessary,
since it is known that collaborative filtering algorithms can-
not achieve good performance in all instances of the mix-
ture model [7]. Given this, we identify a novel parameter
of mixture models that, in a fairly precise sense, “controls”
the extent to which recommendation algorithms can achieve
near-optimal performance, and we quantify our results in
terms of this parameter, obtaining strong bounds whenever
it is bounded away from 0.

In a line of work that parallels the use of mixture models
for this problem, Azar et al. and Drineas et al. have con-
sidered a formalism in which user behavior follows a latent



linear model [2, 4]. This work is not directly comparable
to ours, both because of these differences in the underly-
ing generative model, as well as differences in the objective
function and the way in which data is gathered from users.
We discuss this comparison further below, focusing on the
relationship between the spectral methods employed by [2,
4] and the mixture model parameters we develop here.

We now define the underlying mixture model that we use
here, and then describe our results.

Mixture models. Mixture models have a long history in
statistics and machine learning [10]; for our purposes, we
cast the description in terms of Hofmann and Puzicha’s mix-
ture model formulation of collaborative filtering [6].

To define the model, we imagine a system with a set of
M items (e.g. books) that are available for sale to a set
of N users. Clearly if a user’s interest in one item were
unrelated to her interest in any other, there would be no
hope of making recommendations; so it is necessary to posit
some underlying generative process by which users select
items. We therefore assume that there is a latent set of k
clusters, which we can think of as the “genres” that users
may be interested in.

Formally, each cluster c is a distribution over all the items,
assigning probability w(i|c) to each item i. These are the
probabilities with which a user seeking something in genre c
will choose each of the items; for example, if c corresponds to
“computer books,” then the distribution specifies that read-
ers seeking computer books will choose The Art of Computer
Programming with probability x, The Mythical Man-Month
with probability y, and so on. Note that each cluster assigns
a probability to each item, so these can be heavily overlap-
ping clusters. (For example, the The Mythical Man-Month
might also have a large probability in a cluster c′ correspond-
ing to “management.”) The set of all probabilities induced
by all clusters will be represented in a M × k weight matrix
W , whose (i, c) entry is simply the probability w(i|c).

Dually, each user u is represented by a distribution over
clusters, with her probability (or preference) for cluster c
denoted by p(c|u). This reflects the fact that, at different
times, the same user can be seeking items of different genres.
These probabilities are encoded in a k×N preference matrix
P .

For each user u, we now construct a history of s prior
selections in the following natural way. For each of s itera-
tions, user u does the following: first she selects a genre c
with probability p(c|u), and then she selects an item i with
probability w(i|c). For example, a user might first select The
Mythical Man-Month because she was looking for something
in the genre “management”; then select The Art of Com-
puter Programming because she was looking for something
in the genre “computer books”; and finally select 2001: A
Space Odyssey because she was looking for something in the
genre “science fiction.”

We thus have a model with underlying parameters (the
weight matrix and preference matrix), and these generate
a history of selections for each user. Finally, we need to
formalize the goal in making recommendations.

Kumar et al. [8] proposed the following objective func-
tion: the system should recommend a single item iu to each
user u, and the utility of this recommendation is simply the
probability that user u would have selected iu herself. Since
iu could potentially have been selected as part of each of the

k clusters, this probability is
X

c∈C
p(c|u)w(iu|c), (1)

where C is the set of clusters. The goal is to maximize the
total utility of all recommendations. Clearly, if the system
knew the full weight and preference matrices, then it could
achieve the obvious optimum: recommending the item to
each user for which the expression in Equation (1) is max-
imized. Kumar et al. proposed investigating the perfor-
mance of recommendation algorithms relative to this opti-
mum for two variants of the problem, depending on which
parameters are unknown:

Semi-omniscient algorithms, which know the weight
matrix but not the preference matrix. This corresponds
to a setting in which the operators of the collaborative
filtering system have done some initial modeling of re-
lationships among the items, but do not know anything
about the user population. As we will see, in the full
mixture model even this is quite challenging.

The Strong Benchmark, in which the system knows nei-
ther the weight matrix nor the preference matrix.

Finally, we briefly discuss the relative sizes of the pa-
rameters under consideration. Algorithms that only begin
making good recommendations after a user has selected an
enormous number of items are clearly of limited interest; we
want the number s of selections made by each user to re-
main bounded independently of the total number of items.
On the other hand, it seems natural that if the number of
items grows, then more and more users may be needed to
gain sufficient information about the structure of the items.
Thus, we parametrize the mixture model so that the num-
ber of selections s required from a single user may depend
on the number of clusters k and the performance guarantee
we are seeking, but is bounded independently of the number
of items M and the number of users N ; and the number of
users we require in order to achieve good performance may
grow as a function of the number of items M .

The mixture model is thus a very expressive framework for
representing the collaborative filtering problem: although
items are grouped into genres, these genres can overlap ar-
bitrarily, and items can have partial membership in many
different genres. Similarly, different selections by a single
user might require different “explanations” in terms of these
genres.

The expressiveness of the mixture model also poses a prob-
lem, since it has been shown that no algorithm can give
near-optimal recommendations in all instances of the mix-
ture model [7]. The only positive results to date have been
for the special case in which the distributions induced by the
clusters have disjoint support [7, 8] — in other words, each
item belongs to a single cluster, and so there is no real “mix-
ture” taking place. Our goal here is to find a much more
general setting in which it is possible to design effective al-
gorithms, and to do this we identify two further parameters
of the mixture model. We show that when these parame-
ters are both bounded, strong performance guarantees can
be obtained; and both parameters are necessary in the sense
that bounding either one alone does not suffice.

Our Results. Our first main result is a polynomial-time,
semi-omniscient recommendation algorithm: given access to



the weight matrix and to a sufficient number of selections
per user, the algorithm provides recommendations of utility
at least (1− ε) times optimal with probability at least 1− δ.
The number of selections required per user is a function
of ε, δ, the number of clusters k, and the two additional
parameters alluded to above:

Cluster imbalance. For each cluster c, consider the
largest probability wc that it assigns to any single item.
We define w+ = maxc∈C wc and w− = minc∈C wc, and
we call the ratio W =

w+

w−
the cluster imbalance.

Cluster independence. We define

Γ = min
x6=0

|Wx|1
|x|1

(2)

as a measure of linear independence between clusters.
It is easy to show that if the cluster distributions have
disjoint support (as in [7, 8]), then Γ = 1; on the other
hand, if the distributions induced by the clusters are
not linearly independent, then Γ = 0.

As we will show in the next section bounding W from above
and Γ away from zero is natural in a sense we make precise
below; roughly, any system in which these parameters are
not bounded is unstable, and can be modified through the
addition of a bounded number of items to one in which good
recommendations are not possible.

Our second main result concerns the strong benchmark.
Here we provide an algorithm that, given a sufficient number
of users relative to the number of items, and a sufficient
number of selections per user, provides recommendations of
utility at least (1−ε) times optimal with probability at least
1−δ. The number of selections needed per user is a function
of ε, δ, k, W, Γ, and one additional parameter, an analogue
to Γ for the preference matrix:

User non-degeneracy. By analogy with Γ, we define

ΓP = min
x6=0

|xP/N|1
|x|1 , which measures how redundant the

user preferences are. For example, if this parameter is
0, it means that the collection of preferences of each
user for a given cluster can be computed from a fixed
linear combination of the user preferences for the other
clusters. Note that the use of P/N in this formula
brings the normalization of P more closely into align-
ment with that of W , on which we computed Γ; the
point is that the sum of all entries in P (without nor-
malization) is equal to N (since each of the N columns
of P corresponds to a user and sums to 1), while the
sum of all entries in W is k � N (since each of the k
columns of W corresponds to a cluster and sums to 1).

The strong benchmark is more challenging than the case
of semi-omniscient algorithms, and our result here is corre-
spondingly weaker in two respects. First, in contrast to W
and Γ, we do not know whether bounding the parameter ΓP

away from 0 is in fact necessary for obtaining strong perfor-
mance guarantees. Second, while the number of selections
required per user is polynomial in ε and δ, it is exponential
in the number of clusters k; thus, the result should best be
viewed as applying to a fixed constant number of clusters.
Eliminating both these restrictions is an interesting open
question.

We believe that the role of the parameter Γ in the analy-
sis is an interesting feature of these results. One can think
of Γ as an L1-analogue of the smallest singular value of the

weight matrix W , since the smallest singular value would
be obtained by replacing the 1-norm in Equation (2) by the
2-norm. The parameter Γ appears to be fairly novel in these
types of analyses, however, and we believe it would be inter-
esting to study it further in its own right. In the next section
we argue that, for purposes of the results here, assuming an
analogous bound on the smallest (L2) singular value would
be much weaker, since there are cases where this converges
to 0 while Γ remains large. This is another point of com-
parison with the framework of [2, 4] (which, again, posit
a different underlying model and objective function): in a
sense that would be interesting to put on a deeper tech-
nical foundation, the Γ parameter appears to be naturally
adapted to the mixture model in much the same way that
the smallest singular value is adapted to the latent linear
structure used in those papers.

Finally, while we have cast these results in the language of
collaborative filtering, they can also be interpreted in terms
of mixture models more generally. Given the relevance of
mixture models to information retrieval, computer vision,
and a number of problems in statistics [10] we expect there
may be further applications of the techniques here. In Sec-
tion 3.2 we present preliminary computational results for a
potential application in text classification.

2. MIXTURE MODELS: OVERVIEW
The goal of this section is to build intuition behind the

mixture model and establish some basic facts. It is orga-
nized as follows. In the first two subsections we explain the
role of the parameters defined in the introduction, and also
discuss the sense in which they are essential quantities in the
performance of any recommendation algorithm. The third
subsection provides a brief comparison of singular values and
our L1 analogue. We note that all the examples in this sec-
tion apply even to the case of semi-omniscient algorithms.

Clusters imbalance. If two users each get optimal recom-
mendations, what is the maximum possible ratio between
the utilities of these recommendations? In other words, how
different might the contribution of two different users be to
the total utility function? Obviously every user has prefer-
ence ≥ 1

k
for at least one cluster; hence if we simply rec-

ommend the heaviest item in that cluster we will get utility
at least

w−

k
. On the other hand, the total utility of item

i for user u is
P

c∈C w(i|c)p(c|u) ≤ P

c∈C w+p(c|u) = w+

Therefore the ratio between the contributions of two differ-
ent users is at most k

w+

w−
= kW.

We summarize this in the following lemma.

Lemma 2.1. For every user there exists a recommenda-
tion of utility at least

w−

k
and there is no recommendation

of utility more than w+.

It can be shown that for any fixed function g(k), one can
choose W large enough so that in any system with cluster
imbalance at least W, and users with appropriately cho-
sen preferences each selecting g(k) items, no algorithm can
give recommendations better than O( 1

k
OPT ) with constant

probability. In fact, this holds even in the simpler weighted
model of [7], where the cluster distributions have disjoint
support. We refer the reader to [7] for an example of this.

Cluster independence and the L1 norm. It is not diffi-
cult to construct examples of systems where Γ is small, and



no good recommendation algorithm exists. We refer the
reader to [7] for an example of this. One can ask whether
it is the case that good recommendations are impossible in
every system with a small value of Γ, but this is clearly too
sweeping to be the case. Consider for example an instance
with two clusters that induce exactly the same distribution
over items. Here we have Γ = 0, but clearly one can simply
treat the two clusters as a single cluster, and good recom-
mendations will be possible.

A related general negative result does hold, however: any
system in which Γ is small is highly “unstable,” in the sense
that adding a bounded number of items to it will produce
a system in which no good recommendation algorithm ex-
ists. More precisely, we can show that every system which
has Γ ≤ 1/s, where s is the number of samples per user,
can be augmented with O(k) items, so that it becomes im-
possible to give recommendations that are better than a 2-
approximation in the worst case. Thus, while it is possible
to have Γ = 0 and still be able to give close to optimal rec-
ommendations, such an ability is always vulnerable to the
addition of just a few items.

Spectral analysis. As noted above, our definition of inde-
pendence between clusters is very similar to the definition of
the smallest singular value of a rectangular matrix. Indeed

Γ = min
x6=0

||Wx||1
||x||1 , while the smallest singular value can be

defined as λ = min
x6=0

||Wx||2
||x||2 . Using standard norm inequali-

ties we immediately have Γ√
M

≤ λ ≤ Γ
√

k. Both inequalities

are tight, but the number of clusters k is small in compar-
ison with the total number of items M . Thus, to within
a term that depends only on k, bounds expressed in terms
of 1

Γ
cannot be weaker than those expressed in terms of 1

λ
.

But things can be much weaker in the opposite direction.
The example in Appendix A provides a family of systems
in which, as the number of items grows, Γ remains bounded
by a constant while λ approaches zero. This shows a con-
crete sense in which bounds depending on 1

λ
can be strictly

weaker than those based on 1
Γ
.

3. A SEMI-OMNISCIENT ALGORITHM
There are a few notational conventions to which we will

adhere in this and next sections:

• All items, users and clusters are numbered starting
from 1. We use i and j to denote items, c and d
to denote clusters, and u and v to denote users. We
will also use these letters to denote matrix indices and
unless specifically stated otherwise, they will “type-
check” with the meaning of the index. We use capital
calligraphic letters I, U and C to denote collections of
items, users and clusters respectively.

3.1 Discussion.
Our goal in this section is to give good recommendations

in the case when the weight matrix W is known. For this,
our analysis will need to compare two vectors (over the space
of all items) associated with each user u: the utility vector
u, whose ith entry is the probability that u will choose item
i; and (after u has made s choices) the selection vector ũ,
whose ith entry is the number of times that item i was se-
lected in the s samples, divided by s. (Note that ũ is an

extremely sparse vector, with almost all entries equal to 0.)
Now, if we knew the utility vector, we would just recom-
mend the entry with largest value; thus, we wish to show
that we can closely approximate this value so as to make a
near-optimal recommendation.

We begin with the following simple lemma.

Lemma 3.1. For an arbitrary user u with selection and
utility vectors ũ and u respectively, and for any vector v

such that ||v||∞ < B, if we have s > B2

ε2δ
selections from this

user then Pr
ˆ
|vT ũ − vT u| > ε

˜
< δ

Proof. Indeed, we have

ũ =
1

s

sX

l=1

ũl,

where ũl denotes the indicator vector for the lth selection.
So

vT
ũ =

1

s

sX

l=1

vT
ũl,

where the terms in the sum are independent random vari-
ables (as user selections are independent from each other)
drawn from the same distribution, and |vT ũl| < B. There-
fore the variance of vT ũ is at most 1

s
B
√

s and hence by

Chebyshev’s inequality Pr
ˆ
|vT ũ − vtu| > ε

˜
< B2

ε2s
< δ.

In other words, this lemma shows that despite the sparseness
of ũ, we can use it to compute vT u for any vector v whose
coordinates have bounded absolute value.

The following is just a re-formulation of the lemma above.

Corollary 3.2. Given an arbitrary user u making s se-
lections, with selection and utility vectors ũ and u, any
vector v such that ||v||∞ < B, and any δ, we have

Pr
h

|vT ũ − vT u| > B√
sδ

i

< δ.

The rest of our argument is based on the idea of general-
ized pseudoinverse matrices. For an arbitrary M × k weight
matrix W of rank k, we call a k×M matrix W ′ a generalized
pseudoinverse1 of W if W ′ × W = I. If M = k then such
a matrix is unique and it is simply W−1. If M > k, then
there can be infinitely many generalized pseudoinverses. We
are interested in the one for which the largest absolute value
of any entry is as small as possible. The following example
illustrates how we intend to use such a matrix. Suppose
there is a user u with selection and utility vectors ũ and u.
Obviously u is in the range of W (i.e. there exists y such
that Wy = u). Therefore

W (W ′
u) = WW ′(Wy) = Wy = u.

Say W and W ′ have all elements bounded by constants w+

and γ; then by lemma 3.1 and the Union Bound, it follows

that k3γ2

ε2δ
selections are sufficient to have

||W ′
ũ − W ′

u||∞ <
ε

k
,

with probability at least 1 − δ. Therefore

||W (W ′
ũ − W ′

u)||∞ < w+ε,

1We note that the standard notion of the pseudoinverse ma-
trix from linear algebra is a particular instance of the gener-
alized pseudoinverse as defined here, and different from the
particular instances we will be considering



or equivalently

||WW ′
ũ − u||∞ < w+ε, (3)

so we can reconstruct u with component-wise error at most
w+ε. We will make this more concrete after we establish the
existence of a generalized pseudoinverse in which all entries
are bounded.

Theorem 3.3. For any M × k matrix W = {wic} such

that Γ = min
x6=0

|Wx|1
|x|1 > 0, the following holds:

1. There exists a generalized pseudoinverse B = {bcj}
such that max |bcj | < 1

Γ
.

2. The generalized pseudoinverse matrix B minimizing
max |bcj | can be found in polynomial time.

Proof. For the second part, the matrix B = {bcj} can be
found by solving the following linear program:

8

><

>:

X

i

bciwid = δcd for 1 ≤ c, d ≤ k

−γ ≤ bci ≤ γ for 1 ≤ c ≤ k, 1 ≤ j ≤ M
min γ

,

where δcd = 1 when c = d and is equal to 0 otherwise. To
prove the first part it suffices to show that the following
system of linear inequalities is feasible for γ ≥ 1/Γ.

 PM
i=1 bciwid = δcd for 1 ≤ c, d ≤ k

−γ ≤ bci ≤ γ for 1 ≤ i ≤ M , 1 ≤ c ≤ k
(4)

Obviously this system has a solution if and only if the fol-
lowing system has a solution for every c.

 PM
i=1 xiwid = δcd for 1 ≤ d ≤ k

−γ ≤ xi ≤ γ for 1 ≤ i ≤ M
(5)

Now we introduce additional variables yi and zi such that
yi + zi = 2γ and xi = yi − γ = γ − zi. For simplicity we use
vector notation Y = (y1, . . . , yM ) and Z = (z1, . . . , zM ) and
rewrite the system in vector form:

8

<

:

(Y − ~γ, Z − ~γ)

„
W I

−W I

«

= (2δc,~0)

Y ≥ 0, Z ≥ 0
, (6)

where I is the M × M identity matrix, δc is the c-th row of
the k×k identity matrix, and ~γ is the M -dimensional vector
of the form (γ, γ, . . . γ). Simplifying, we have:

8

<

:

(Y, Z)

„
W I

−W I

«

= (2δc, 2~γ)

Y ≥ 0, Z ≥ 0
(7)

By Farkas’s lemma this system has a solution if and only if
the following dual system is infeasible.

8

>><

>>:

„
W I

−W I

« „
V
U

«

≤ ~0

(2δc, 2~γ)

„
V
U

«

> 0
(8)

By expanding the first inequality we immediately have U ≤
WV ≤ −U, and hence U ≤ 0. Therefore ||WV ||1 ≤ ||U ||1 =
−P

i ui and thus

vc ≤ ||V ||1 ≤ 1

Γ
||WV ||1 ≤ − 1

Γ

MX

i=1

ui.

Substituting this into second inequality we have:

(2δc, 2~γ)

„
V
U

«

≤ (− 2

Γ
+ 2γ)

X

i

ui (9)

But if γ ≥ 1/Γ, the right hand side is non-positive, and thus
both constraints of (8) cannot be satisfied simultaneously;
therefore for γ ≥ 1/Γ and every j the system (5) is feasible,
and hence the desired generalized pseudoinverse B exists.

By the theorem, max w′
ij ≤ 1

Γ
, so substituting 1

Γ
for γ in the

discussion preceding (3), we have

||W (W ′
ũ) − u||∞ < w+ε.

But we know the maximal utility for every user is at least
w−

k
, so if we take ε = ε

kW , we get a recommendation of
(1 − ε) times the optimal total utility.

Now for completeness we present the full algorithm.

Algorithm 1 (Semi-omniscient algorithm).

Input: Weight matrix W , ε, δ, and for each user u a selection

vector ũ with at least
k5W2

(εΓ)2δ
selections.

Output: An approximately best recommendation for user u.

Description:

1 Compute W ′ using the linear program of Theorem 3.3.

2 For user u, compute u = WW ′ũ and recommend an
item i which maximizes ui.

The correctness of this algorithm follows immediately
from Theorem 3.3 and Lemmas 2.1 and 3.1.

3.2 Preliminary computational results
One application of the algorithm described in this section

is to the problem of supervised text classification. To adapt
the framework to this problem, we take the ‘users’ to be
the documents, the ‘items’ to be all possible terms in the
documents, and the ‘clusters’ to be the possible topics.

We implemented the algorithm and tested it on the news-
group 20 dataset, which consists of 20000 messages from
20 different newsgroups. We used half of the messages to
construct the term distribution for each newsgroup, and the
other half to test the algorithm. The training part consists of
computing the term distribution for every topic (this forms
the matrix W in our analysis), followed by computing the
generalized pseudoinverse W ′. Now, given a new document
with term vector ũ, we compute a relevance to each topic
by simply calculating the vector p̃ = W ′ũ. We classify the
document to be in topic c if pc ≈ ||p̃||∞.

While the results of this study are only preliminary, they
appear promising relative to other approaches in this area
(see e.g. [3]). Given that our algorithm computes, for each
document, a distribution over all topics, it may also be use-
ful for cases in which one wants to explicitly represent the
partial relevance of a document to several topics simultane-
ously.

4. STRONG BENCHMARK
Our semi-omniscient algorithm was based on a sequence

of facts that we recapitulate here at an informal level:



If all the entries in an k × M matrix B have bounded
absolute value, then Bũ ≈ Bu

If the utility vector of a user u is in the range of a matrix
A, then AA′u = u, and hence, possibly, u ≈ AA′ũ

Every utility vector is in the range of the weight matrix
W , and all entries of W ′ have absolute value bounded
by 1

Γ
.

Essentially, in our analysis, we only used the fact that the
weight matrix W satisfies the first two of these points. In
this section we consider the strong benchmark — the problem
of making recommendations when even the weight matrix W
is not known. Our goal is to to show that, despite lacking
knowledge of W , we can build a matrix A that can be used
instead of W . The rest of this section is organized as follows.
First we provide our algorithm, which is fairly simple and
intuitive; we devote the rest of the section to the analysis of
the algorithm.

4.1 Algorithm
First we give two simple definitions:

Definition 1 (Correlation Matrix). Let P̃ij de-
note the fraction of all users whose first two selections are i

and j respectively, and let E
h

P̃ij

i

denote the expected frac-

tion of users with this property (where the expectation is
computed with respect to the true weight and preference ma-
trices). The M×M matrix P̃ = {P̃ij} is called the observed

correlation matrix, and the matrix P = {E
h

P̃ij

i

} is called

the correlation matrix.

Obviously the matrix P is symmetric,
P

ij P̃ij =
P

ij Pij =

1, and P = W PP T

N
W T . We use Pi to denote the i-th row

of the correlation matrix P.
Note that to simplify our analysis we have only used the

first two selections from every user; an implicit point of the
analysis to follow is that this is sufficient to determine the
necessary relationships among items. The plan is to care-
fully choose k columns of P̃ to form the desired matrix A.

The second definition extends the notion of cluster inde-
pendence to the setting of arbitrary matrices.

Definition 2 (Independence coefficient). We de-
fine the independence coefficient of a collection of vectors
(x1, x2, . . . xl) to be

min
|α1|+···+|αl|=1

||
X

i

αixi||1.

We define three functions. γr(P ) is the independence coeffi-
cient of the rows of P . γc(W ) is the independence coefficient
of columns of W . The function γ(x1, x2, . . . xl) over the col-
lection of vectors (x1, x2, . . . xl) is defined as independence
coefficient of the vectors x1

||x1||1 , x2
||x2||1 , . . . xl

||xl||1 .

Now we present the algorithm.

Algorithm 2.

Input: User selections, ε, δ.

Output: Recommendation iu for each user u.

Description:

1. Build the observed correlation matrix P̃.

2. Find k columns of P̃, P̃i1 , P̃i2 , . . . P̃ik , such that

||P̃ic ||1 ≥ ε

N1/4 for each 1 ≤ c ≤ k, and the matrix
A defined as

A =
“

P̃i1/||P̃i1 ||1, . . . , P̃ik/||P̃ik ||1
”

has a column independence coefficient that is as large
as possible.2

3. For each user u with selection vector ũ, compute ū =
AA′ũ and recommend the item i which maximizes util-
ity in ū

Note that most of the computing time is spent in step 2 of
the algorithm. Once this is done, we can make recommen-
dations to users very quickly.

4.2 Analysis of the algorithm
Our analysis consists of two theorems. The first theorem

guarantees that the matrix A found by the algorithm will
have large independence coefficient and small maximal el-
ement. Then we give a few results bounding the sampling
error. Finally we state and prove the main result of this
section, showing that the algorithm makes good recommen-
dations.

Before we continue we introduce some additional notation.
All items which have total weight wi =

P

c∈C w(i|c) ≤ εΓ
2M

(with respect to the true weight matrix W) are called
inessential, reflecting the fact that the total aggregate
weight of all such items combined is less than εΓ

2
. We denote

the set of inessential items by I0. Correspondingly we call
every item in I1 = I − I0 an essential item.

Weight matrix. Extending the terminology used thus
far, we call an arbitrary M × k matrix A a weight matrix
if it has only nonnegative elements, and all of its columns
are normalized (in the 1-norm). To prevent confusion, the
matrix W will be referred to as the true weight matrix. For
a weight matrix A, we use the same notation that we in-
troduced earlier for the true weight matrix W. For example
a(i|c) denotes the element in the i-th row and c-th column.
In addition we introduce a few additional symbols. Let Ac

denote the c-th column of matrix A (corresponding to the
probability distribution for cluster c) and let ai denote the
normalized (in 1-norm) i-th row of A (we will call this the
item affiliation vector). Also let ai =

P

c a(i|c) denote the
total weight of item i (across all clusters).

Preference matrix. We call an arbitrary k × M ma-
trix P a preference matrix if it has only nonnegative entries
and all of its columns are normalized in the 1-norm. It is
important to note that while W and P T have the same di-
mensions, their normalization is different. Let Pc denote
the normalized (in 1-norm) c-th row of P (this is the vector
of user utilities over cluster c), and let pu denote the u-th
column of matrix P (the preference vector for user u).

Distance function. For a collection of vectors
(x1, . . . xl), we denote by x−i the collection of all vectors
but xi. We define dmin(x1, x2 . . . xl) = mini d(xi, x−i),
where d(xi, x−i) is the L1 distance between xi and subspace
spanned by x−i.

The rest of the analysis consists of two parts: first we
prove that both A and A′ have their elements bounded by

2While this suggests an exponential running time, in the
analysis below we show that it can be replaced with a step
that is implementable in polynomial time.



functions of W, Γ and ΓP , and then we will prove that these
bounds are sufficient.

Lemma 4.1. For any k ×N matrix P such that P/N has

row independence at least ΓP , the matrix (PP T

N
)−1 has the

property that the absolute value of all entries is bounded by
1

Γ2
P

. Moreover, γr(
PP T

N
) ≥ Γ2

P
k

Proof. It suffices to prove that the smallest eigenvalue
of PP T is at least NΓ2

P . Indeed, for any vector x whose
L2-norm is equal to 1, we have:

||PP T x||2 ≥ (xT PP T x) = ||P T x||22 ≥ ||P T x||21
N

≥
≥ (NΓP ||x||1)2

N
≥ NΓ2

P

which gives us the first part of the lemma. For the second
part we just note that for any k × k matrix Q we have

γr(Q) ≥ maxij Q−1
ij

k

Theorem 4.2 (Bounds on A). The matrix A found
in step 2 of Algorithm 2 has the property that

(a) the absolute values of all entries are bounded by 2W
and

(b) A has independence coefficient at least

γc(A) ≥ ΓkΓ2
P

2(2k + 1)k−1
. (10)

We split the proof of this theorem into several lemmas.
First we want to bound the independence coefficient of

A. Recall that for both the true weight matrix W and for
P , we have made the assumptions that γc(W ) and γr(P/N)
respectively are bounded away from zero.

Lemma 4.3. If γc(W ) ≥ Γ, then for any k − 1 vectors
X = (x1, x2, . . . xk−1), there exists an essential item i such
that d(wi,X) ≥ Γ

2k

Proof. Suppose it is not the case; then for all i ∈ I1, we
have d(wi,X) < Γ

2k
. For an item i, let x(i) denote a vector

which achieves this minimum distance. Since the subspace
X has dimension at most k − 1, there exists a vector x⊥,
with ||x⊥||1 = 1, that is orthogonal to X. By the definition
of γc(W ) we have Wx⊥ ≥ Γ, but on the other hand we have

Wx⊥ =
P

i∈I |(x⊥wi)|wi ≤
P

i∈I0

εΓ
2M

+

+
P

i∈I1

h

|
“

x⊥`
wi − x(i)

´”

|wi

i

<

< M εΓ
2M

+ Γ
k
|P

i∈I1
wi| ≤ Γ.

leading us to a contradiction.

Lemma 4.4. Let γc(W ) ≥ Γ, and let I ′ = i1, i2, . . . , it, be
a subset of items, where t < k, with weight vectors x1, . . . , xt,
satisfying γ(x1, x2, . . . , xt) ≥ a. Then I′ can be augmented
with an essential item j having weight vector xt+1 such that

γ(x1, x2, . . . xt+1) ≥ a
Γ

Γ + 2k
(11)

Proof. By Lemma 4.3, we can always choose an item j so
that

d(wj , {x1, x2, . . . xt}) ≥ Γ

2k
. (12)

Now our claim is that this item j satisfies (11). For the sake
of contradiction suppose it does not; then let

||
X

i=1,2,...t+1

αixi||1 < a
Γ

Γ + 2k
,

where xt+1 = wj . Obviously if αt+1 ≤ a 2k
Γ+2k

, then we
contradict the independence of x1, . . . xt:

||
X

i=1,...t

αixi||1 < a
Γ

Γ + 2k
+ a

2k

Γ + 2k
= a.

On the other hand, if αt+1 > a 2k
Γ+2k

, then we have

||
X

i=1,2,...t

αi

αt+1xi
+ xt+1||1 <

aΓ

(Γ + 2k)αt+1
<

Γ

2k
,

which obviously contradicts (12).

This lemma has an obvious corollary:

Corollary 4.5. Let γc(W ) > Γ. Then there always ex-
ists a subset of essential items i1, i2, . . . ik, such that

γ(wi1 , . . . wik ) ≥
h

Γ
2k+1

ik−1

From here, our next major goal is to show the existence of
k sufficiently independent columns in the matrix P. Before
we continue we prove the following simple result.

Lemma 4.6. Let γc(W ) ≥ Γ and γr(P/N) ≥ ΓP . Then
there are k columns i1, i2, . . . , ik of matrix P such that

γ(Pi1 , . . .Pik ) ≥ Γk

(2k + 1)k−1
Γ2

P . (13)

Moreover items i1, . . . , ik are essential.

Proof. By Corollary 4.5 there exists a set of essential items

i1, . . . , ik, such that γ(wi1 , . . . wik ) ≥
h

Γ
2k+1

ik−1

We show

that this set satisfies (13). It is sufficient to show that for any

v = (v1, . . . vk) with ||v||1 = 1, we have Py ≥ Γk

(2k+1)k−1 Γ2
P ,

where y is defined as follows:

yj =

 vl
||Pl||1 if j = il for some l

0 otherwise

Given our assumption that γr(P/N) ≥ ΓP , and since items
are essential, we have Pl > 0, so the definition above is valid.
From our assumption on i1, . . . , ik it immediately follows
that

||W T y||1 ≥ [
Γ

2k + 1
]k−1 ×

X

l

|vl|wl

||Pl||1

But,

||Pl||1 =
X

c

w(l|c)
P

u p(u|c)
N

≤
X

c

w(l|c) = wl,

and therefore we can rewrite the above bound as:

||W T y||1 ≥ [
Γ

2k + 1
]k−1

X

l

|vl| ≥ [
Γ

2k + 1
]k−1. (14)

Now, recall the definition of P = W PP T

N
W T . Therefore

Py ≥ Γ||PP T

N
W T y||1 ≥ ΓΓ2

P ||W T y||1 ≥ ΓkΓ2
P

(2k + 1)k−1



where the first and second inequalities follow from the
lemma’s assumption of large γc(W ) and γr(P/N), together
with Lemma 4.1. The third inequality follows from (14),
and this concludes the proof.

The algorithm only has access to the observed correlation
matrix P̃, not the true correlation matrix P. We now must
show that, with sufficient data, these two matrices are very
close to one another. The following lemma is an immediate
consequence of tail inequalities:

Lemma 4.7. For any fixed ε and δ, and given enough
users, we have

max
ij

|P(i, j) − P̃(i, j)| <
ε

N1/4
, (15)

with probability at least 1 − δ.

Proof. For any item i and any λ, we can apply Chernoff
bounds to obtain

Pr
h

P̃(i, j) −P(i, j) ≥ λP(i, j)
i

≤
»

eλ

(1 + λ)1+λ

–P(i,j)N

and

Pr
h

P̃(i, j) −P(i, j) ≤ −λP(i, j)
i

≤ e−
λ2

P(i,j)N
2 .

Note that these bounds hold for any values of N and λ.

Now, if P(i, j) ≤ N−1/3, then substituting λ = εN−1/4

P(i,j)
≥

εN1/12 gives us the desired bounds. If on the contrary
P(i, j) ≥ N−1/3, then recalling that P(i, j) ≤ 1 and tak-

ing λ = εN−1/4 we have ε

N1/4 ≥ λP(i, j), and hence

Pr
h˛
˛
˛P̃(i, j) −P(i, j)

˛
˛
˛ ≥ ε

N1/4

i

≤ e

„

− λ2
P(i,j)N

4

«

≤ e−
ε2N1/6

4

Note that the probability of wrong estimation decreases ex-
ponentially as N grows; therefore if we take N large enough
we can apply union bounds and hence we can ensure that
P(i, j) is estimated correctly for all items with high proba-
bility.

A similar result holds for most subsets of normalized
columns of P̃ and P:

Corollary 4.8. Let i1, i2, . . . , ik be a collection of items
such that ||P̃ic ||1 ≥ ε

N1/4 and let matrices A and B

be comprised of normalized columns P̃i1 , P̃i2 , . . . P̃ik and
Pi1 ,Pi2 , . . .Pik respectively. For any fixed ε and δ and given
enough users we have:

max
i,c

|Aic − Bic| ≤ ε (16)

with probability at least 1 − δ.

Proof. This can be immediately achieved by using lemma 4.7
with ε = ε2/2, and using tail inequalities to bound difference

between ||P̃i||1 and ||Pi||1.

Lemma 4.9 (Equivalence of P and P̃). Suppose P
has a subset of independent columns with independence coef-
ficient at least a, and all items corresponding to this subset
are essential. Then given enough users, with probability at
least (1 − δ) the same subset in P̃ is also independent, with
independence coefficient at least a/2. It also holds in the

opposite direction: if some subset of columns in P̃ is inde-
pendent, the same subset in P has independence coefficient
at least half of that with probability 1 − δ.

Proof. Suppose that γ(P̃i1 , P̃i2 , . . . P̃ik ) ≥ ε, and all items
i1, . . . ik are essential. We introduce two M × k matrices A
and B which are formed by normalized columns P̃i1 , . . . P̃ik

and Pi1 , . . . ,Pik respectively. We have to prove that γ(B) ≥
a implies γ(A) ≥ a/2 with high probability.

This is equivalent to showing that for all v with ||v||1 = 1,
we have ||Av||1 ≥ a

2
. It suffices to show that ||(A − B)v||1 ≤

a
2
, which in turn can be achieved by having

max
i,c

|Bic − Aic| ≤ a

2Mk
.

By Corollary 4.8 the last inequality holds if we have enough
users. The proof for the other direction is completely sym-
metric.

Now, we want to bound maximal element of matrix A.
The following lemma is immediate.

Lemma 4.10. For any vector v which is a convex combi-
nation of W1, W2, . . . , Wk we have

w−

k
≤ ||v||∞ ≤ w+.

Corollary 4.11. If we have enough users, then for any
normalized column v of P̃, considered during step 2 of the
algoirthm we have

w−

2k
≤ ||v||∞ ≤ 2w+, with high probabil-

ity.

Proof. Indeed we have

P =
WPP T W T

N
,

and since elements of P and W are non-negative, each col-
umn of P is a convex combination of columns of W . The
result for P̃ follows immediately from corollary 4.8, by tak-
ing ε =

w−

2k

Now we are ready to prove Theorem 4.2.

Proof of Thm 4.2. Part (a) holds because of Corollary
4.11. Now we prove part (b), for which it suffices to show
that as the number of users N grows, all essential items
will be considered during step 2 of the algorithm with high
probability. Combining this fact and Lemmas 4.6 and 4.9
yields the desired result.

Indeed, any essential item i has total weight at least
εΓ
2M

, and therefore there is at least one cluster c such that

w(i|c) ≥ εΓ
2kM

. Now, because γr(P/N) = ΓP , each cluster
has total probability weight at least ΓP N , and so the ex-
pected number of times item i is selected is at least N εΓΓP

2kM
.

Thus

E
h

||NP̃i||1
i

≥ NεΓΓP

2kM
,

and since none of the parameters above depend on N , we
can apply tail and union bounds to show that if N is large
enough then ||P̃i||1 ≥ ε

N1/4 holds for each essential item i
with high probability.

Recall that when we initially presented Algorithm 2, we
noted that an exponential search for the k-tuple of columns
with maximum independence coefficient was not actually
necessary. One can now see the reason for this: the proof
of Lemma 4.4 shows that we can apply a greedy algorithm
similar to the one used there to build a matrix A with es-
sentially the same results.



Now we have to show that the bounds we have obtained
are sufficient. Observe that we cannot directly use the anal-
ysis of Section 3 here, since our user utility vectors are not
truly in the range of A, but rather are close to it.

First we bound the different kinds of error incurred be-
cause of sampling error.

Lemma 4.12. For the matrix A found in step 2 of Al-
gorithm 2, and for any fixed ε, δ, the following holds with
probability at least 1 − δ, provided that we have sufficiently
many users with two selections per user:

max
ij

|
`
(AA′ − I)P̃

´

ij
| ≤ ε

The number of users needed is a function of ε, δ, Γ, ΓP and
M .

Proof. Define matrix B in exactly the same way as in
Lemma 4.9. By Lemma 4.9, we have γ(B) > γ(A)/2 with
high probability. If this holds, then BB′P = P (because P
is a rank-k matrix, and all columns are linear combinations
of columns of B). Therefore every column of P, say Pi, can
be represented as a product of B and a k-dimensional vector
qi = B′Pi; obviously ||qi||∞ ≤ 1

γc(B)
.

Now the rest is easy:

P̃i = Pi + ε = Bqi + ε = (A + E)qi + ε = (Aqi) + (ε + Eqi),

where ε and E are vector and matrix error terms whose el-
ements can be upper-bounded using Lemma 4.7 and Corol-
lary 4.8. We have

AA′P̃i = AA′(Aqi + (ε + Eqi)) = Aqi + AA′(ε + Eqi)

= P̃i + (ε + Eqi)(AA′ − I).

If we upper-bound each entry in ε and E by ε1 < ε[γc(A)]2

4M2 ≤
εγc(B)γc(A)

2M2 , assuming enough users as required by Lemma
4.7 and Corollary 4.8, then the total error term in this equa-
tion will be less than ε; hence

max
ij

|(AA′P̃ − P̃)ij | ≤ ε

Now, we are ready to formulate and prove the main the-
orem of this section.

Theorem 4.13. Assuming that the system contains
enough users, Algorithm 2 gives a (1 − ε)-optimal recom-
mendation with high probability for any user u who made at
least s ≥ k

δ[Γ′ε/(8k2W)]2
selections, where Γ′ is the indepen-

dence coefficient of A and Γ′ ≥ ΓkΓ2
P

2(2k+1)k−1 .

Proof. For this proof ||x|| denotes the L∞ norm of x.
Clearly every user u has at least one item of utility

w−

k
;

hence it suffices to prove that u is estimated by ū = AA′ũ
such that

||u − ū|| <
εw−

k
. (17)

The recommended item will be at most
εw−

k
away from op-

timal and hence will be (1 − ε)-optimal.
The proof consists of two parts: first we prove that the

utility vector of a user u can be represented as u = Pv, with

||v|| ≤ k2

ΓΓ2
P

; and second we substitute this expression for u

into ||u − ū|| and finish the analysis.

Indeed we have P = W PP T

N
W T and u = Wp. Now, W T

is a k × M matrix, so W T W ′T = I. Therefore we have the
following:

u = Wp = W PP T

N
W T W ′T

“
PP T

N

”−1

p =

= P
h

W ′ `
1
N

PP ′T ´−1
p

i

,

where the existence of (PP T )−1 follows from Lemma 4.1.

Moreover, the elements of ( PP T

N
)−1 are bounded by 1

Γ2
P

;

therefore we have:

||v|| = ||W ′T
„

PP ′T

N

«−1

p|| ≤ k2

ΓΓ2
P

. (18)

Now we substitute u = Pv into the left-hand side of (17):

||ū − u|| = ||AA′ũ − u|| ≤
≤ ||AA′ũ − AA′u|| + ||AA′u − u|| ≤
≤ ||A(A′ũ − A′u))|| + ||(AA′ − I)Pv||

(19)

To bound the first term we use the fact that the absolute
values of all entries in A′ are bounded by 1/Γ′. Applying
Lemma 3.1 and the union bound, we have ||A′ũ − A′u|| <

ε
4k2W with probability at least 1 − δ. Substituting this we
have

||A(A′
ũ − A′

u)|| ≤ w+
ε

4kW ≤ ε
w−
2k

.

To bound the second term, we write

||(AA′ − I)(Pv)|| = ||(AA′ − I)[(P̃ + E)v]||
≤ ||(AA′ − I)P̃v|| + ||(AA′ − I)Ev||

(20)

where E = P − P̃.

Now fix ε1 = ε
ΓΓ2

P
2M2k2 and, provided we have enough users,

apply Lemmas 4.7 and 4.12 so that we have

maxij |
`
(AA′ − I)P̃

´

ij
| ≤ ε1

maxij |Eij | ≤ ε1

with high probability. Therefore we can bound the expres-
sion in (20) by ε

2Mk
≤ εw−

2k
Thus the whole expression in

(19) can be upper bounded by
εw−

k
, as desired.

Note that the first term of (19) is an error introduced by
insufficient sampling, while the second is an error introduced
by an insufficient number of users.

5. NOTES AND OPEN PROBLEMS
We have shown how to obtain provably good recommen-

dations for a mixture model with unknown parameters, pro-
vided the parameters W, Γ, and ΓP are bounded. While
bounding ΓP appears to be a relatively mild assumption in
most potential applications of this model, we do not know
of a concrete sense in which it is a necessary assumption; it
is an interesting open question to determine whether good
recommendations can still be found when this parameter is
not bounded.

As discussed above, the definition of Γ raises the prospect
of defining an L1 analogue of the singular values of a matrix.
Just as Γ plays the role of the smallest singular value, we
can define the L1 analogue of the i-th singular value:

Γi(W ) = min
dimΩ=i

max
x∈Ω

||Wx||1
||x||1



If W is a weight matrix then we clearly have Γ = Γ1 ≤ Γ2 ≤
· · · ≤ Γk = 1. It would be interesting to explore properties
of these values; for example, can we define a useful analogue
of the full singular value decomposition, but with respect to
L1 norm?

Finally, it would be interesting to explore trade-offs be-
tween the amount of data used by these types of recom-
mendation algorithms and the performance guarantees they
achieve. Our algorithms have a running time that is polyno-
mial in the amount of data; but for the strong benchmark,
the amount of data needed is exponential in some of the pa-
rameters. One would like to know whether this bound can
be made polynomial, or whether perhaps it is possible to es-
tablish a lower bound. Further, while our goal has been to
obtain (1−ε)-approximations for arbitrarily small ε, one can
consider the amounts of data and computation required for
weaker guarantees. For example, simply recommending the
most popular item to everyone is an Ω(1/k)-approximation,
with enough users but with just one selection per user. How
much data is required if we want a (1/b)-approximation for
b < k?

Acknowledgment. The authors would like to thank Frank
McSherry; discussions with him about spectral analysis and
the use of correlation matrices provided part of the motiva-
tion for this work.

6. REFERENCES
[1] J. Breese, D. Heckerman, C. Kadie “Empirical Analysis

of Predictive Algorithms for Collaborative Filtering,” In
Proc. 14th Conference on Uncertainty in Artificial
Intelligence, 1998

[2] Y. Azar, A. Fiat, A. Karlin, F. McSherry, J. Saia
“Spectral analysis of data” Proc. ACM Symposium on
Theory of Computing, 2000

[3] L. D. Baker, A. K. McCallum “Distributional
Clustering of Words for Text Categorization” In Proc.
ACM SIGIR Intl. Conf. Information Retrieval, 1998

[4] P. Drineas, I. Kerendis, P. Raghavan “Competitive
Recommender Systems” Proc. ACM Symposium on
Theory of Computing, 2002

[5] G. H. Golub, C.F. Van Loan, Matrix Computations
(3rd edition), Johns Hopkins University Press, 1996.

[6] T. Hofmann, J. Puzicha, “Latent Class Models for
Collaborative Filtering,” Proc. International Joint
Conference in Artificial Intelligence, 1999.

[7] J. Kleinberg, M. Sandler, “Convergent Algorithms for
Collaborative Filtering, ” Proc. ACM Conference on
Electronic Commerce, 2003.

[8] S.R. Kumar, P. Raghavan, S. Rajagopalan, A.
Tomkins, “Recommendation systems: A probabilistic
analysis,” Proc. IEEE Symposium on Foundations of
Computer Science, 1998.

[9] G. Linden, B. Smith, J. York, “Amazon.com
Recommendations: Item-to-Item Collaborative
Filtering,” IEEE Internet Computing, Jan./Feb. 2003.

[10] Geoffrey McLachlan, David Peel. Finite Mixture
Models. Wiley, 2000.

[11] P. Resnick, H. Varian, “Recommender systems,”
Communications of the ACM, 40(1997). Introduction to
a special issue on collaborative filtering.

APPENDIX
A. SPECTRAL ANALYSIS: EXAMPLE

Fix some small θ, say θ = 0.1, and pick some large m.
Say we have 2m + mθ − 1 items and two clusters, and let
r = 1 − m−θ ≈ 1. We define clusters as follows:

(
2

m2θ
,

1

m2θ
, . . . ,

1

m2θ
| {z }

mθ − 2 items

,
r

m
, . . . ,

r

m
| {z }

m items

, 0, 0, . . . , 0
| {z }

m items

)

(
1

m2θ
, . . . ,

1

m2θ
| {z }

mθ − 2 items

,
2

m2θ
, 0, 0, . . . , 0

| {z }

m items

,
r

m
, . . . ,

r

m
| {z }

m items

)

We assume that there are N/2 users who each only like the
first cluster, and N/2 users who each only like the second
cluster. Obviously each user wants to get recommended an
item with weight 2/m2θ in the cluster he likes, and these
items are different for different clusters, so it is important
to be able to distinguish between these different types of
users.

In both clusters 1 − m−θ of the weight is concentrated
on disjoint items; therefore it is easy to distinguish between
different types of users. Easy calculations show that in this
system Γ > 0.9 and W = 1 for any sufficiently large m, and
hence the algorithms we develop below will give good rec-
ommendations using only f(ε, δ) samples, for some function
f . On the other hand, for spectral analysis, we consider
the matrix W ′ = (W ′

1, W
′
2) comprised of the weight vectors

normalized with respect to the L2 norm. (Without this nor-
malization, it is even easier to construct a bad example for
the smallest singular value.) Then the least singular value
of W ′ can be bounded by:

λ ≤ ||W ′
1 − W ′

2||2 ≤ m
3θ
2 ||W1 − W2||2 = O(−m

θ
2 ),

which converges to 0 as m grows. Thus, any bound on the
amount of data needed that is based on 1/λ will be increas-
ing unboundedly with m, even though the actual amount
of data needed (and the amount computed from a bound
involving Γ) remains constant with m.


