
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Journal of Computer and System Sciences 74 (2008) 823–830

www.elsevier.com/locate/jcss

The gap in circumventing the impossibility of consensus

Rachid Guerraoui a,1, Petr Kuznetsov b,∗

a Distributed Programming Laboratory, EPFL, CH-1015, Lausanne, Switzerland
b Max Planck Institute for Software Systems, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany

Received 14 November 2005; received in revised form 6 October 2007

Available online 13 October 2007

Abstract

The impossibility of reaching deterministic consensus in an asynchronous and crash prone system was established for a weak
variant of the problem, usually called weak consensus, where a set of processes need to decide on a common value in {0,1}, so
that both 0 and 1 are possible decision values. On the other hand, approaches to circumventing the impossibility focused on a
stronger variant of the problem, called consensus, where the processes need to decide on one of the values they initially propose
(0 or 1). This paper studies the computational gap between the two problems. We show that any set of deterministic object types
that, combined with registers, implements weak consensus, also implements consensus. Then we exhibit a non-deterministic type
that implements weak consensus, among any number of processes, but, combined with registers, cannot implement consensus even
among two processes. In modern terminology, this type has consensus power 1 and weak consensus power ∞.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Asynchronous distributed system; Consensus; Weak consensus; FLP impossibility; Atomic objects; Determinism

1. Introduction

1.1. Background

A consensus protocol is a distributed algorithm that makes a set of processes decide on a common value out of two
possible values: 0 or 1, where both 0 and 1 are possible decision values. In 1983, it was shown that no deterministic
protocol can solve consensus in a basic distributed system model where no synchrony assumption is made (i.e., in an
asynchronous system), processes can only communicate by exchanging messages, and at least one process can fail by
crashing [5]. The impossibility was extended later to the shared memory model where processes could communicate
through atomic objects, i.e., registers [6,11].

Given the importance of consensus in reliable distributed computing, a lot of work has been devoted to study-
ing abstractions that, when added to the basic distributed model, circumvent the impossibility. In particular, it was
suggested to augment the system model with more sophisticated synchronization abstractions than message passing
channels or registers. More precisely, the idea was to study object types that should be used, besides registers, to

* Corresponding author. Fax: +49 681 9325 299.
E-mail addresses: rachid.guerraoui@epfl.ch (R. Guerraoui), pkouznet@mpi-sws.mpg.de (P. Kuznetsov).

1 Fax: +41 21 693 7570.

0022-0000/$ – see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcss.2007.10.002



Author's personal copy

824 R. Guerraoui, P. Kuznetsov / Journal of Computer and System Sciences 74 (2008) 823–830

solve consensus among two or more processes in an asynchronous system assuming an arbitrary number of possible
crashes [6]. Types like queue, test-and-set or compare-and-swap can indeed be used to do so and they are said to
implement consensus (among a specific number of processes). It was observed that certain types could implement
consensus among k processes but not among k + 1 processes. For example, instances of type queue and registers
make it possible to solve consensus among 2 processes but not among 3 processes [6]. In a sense, queue is a minimal
type to implement consensus among 2 processes: 2 is also said to be the consensus power of queue. In comparison,
the consensus power of type register is 1: with registers only, consensus cannot be solved among 2 processes [4,6,11].
At the other extreme, the consensus power of type compare-and-swap is ∞ [6]: instances of this type and registers
make it possible to solve consensus among any number of processes. The notion of consensus power gives rise to a
hierarchy, called the consensus hierarchy, with types that have low consensus power at the bottom and those that have
high consensus power at the top.

1.2. Motivation

The motivation of this work is the simple observation that the original impossibility of consensus [5,11] was stated
for a weak variant of consensus, whereas abstractions to circumvent the impossibility have been studied with a stronger
consensus variant in mind.

In a weak consensus protocol, the processes can decide any value (0 or 1), provided that there is an execution of
the protocol where 0 is decided and one where 1 is decided. In the stronger variant of consensus, which is simply
called consensus in the literature, the value decided must be one of the values proposed. In particular, if all processes
initially propose 0 (respectively 1), the decision value must be 0 (respectively 1).

It is indeed natural to state an impossibility result on the weak variant of consensus and, when seeking abstractions
that circumvent the impossibility, to consider abstractions that also solve a stronger variant of consensus. However,
determining that some abstraction is, in some sense, minimal to implement (the strong variant of) consensus does not
mean that the abstraction is indeed minimal to circumvent the impossibility (of weak consensus).

The motivation of this work was to determine whether the gap also exists from the object type perspective. More
precisely, we address the following question: If a type implements weak consensus, does it also implement consensus?
In particular, is the consensus power of a type the same as its weak consensus power?

1.3. Contributions

To address the first question, we distinguish between deterministic types and non-deterministic ones. In short,
a deterministic type is one such that the output and the state that result from invoking any operation on an object of
that type, performed in the absence of concurrency and failures, is uniquely determined by (a) the state of the object
just before invoking the operation and (b) the operation itself.

(1) We show that, for any number of processes, any set of deterministic types that includes register and implements
weak consensus, also implements consensus. In a sense, the consensus and weak consensus powers of a deter-
ministic type are the same. Said differently, the consensus and weak consensus hierarchies, when restricted to
deterministic types, are the same. To prove this result, we exploit the inherent computation power of deterministic
types. In short, we observe that any protocol that solves weak consensus using objects of a deterministic type
boils down to reaching a critical state s of some object X, such that, applying different operations to s leads
to distinguishable states of X. Since X is deterministic, there is a protocol that brings X to state s. We use this
observation to derive a protocol that solves another variant of consensus, named team consensus [14,15], which
implies that the protocol also solves consensus [3,15].

(2) We show that this is not the case with non-deterministic types. Basically, we exhibit a new non-deterministic
type, which we call rambler, that implements weak consensus for an arbitrary number of processes, but cannot
implement consensus even among two processes. In other words, we exhibit a non-deterministic type which has
weak consensus power ∞ and consensus power 1. Type rambler is constructed in such a way that, using any
number of its instances, no process can obtain any meaningful information about other processes: the instances
might exhibit the very same behavior for an arbitrary sequence of invocations. Intuitively, this means that type
rambler cannot implement consensus even among two processes. On the other hand, the type has some non-trivial



Author's personal copy

R. Guerraoui, P. Kuznetsov / Journal of Computer and System Sciences 74 (2008) 823–830 825

agreement properties, and these make it possible to solve weak consensus among any number of processes using
just one instance of type rambler.

Our results imply that, unlike consensus, the weak consensus abstraction is not universal [6]: this follows from the
existence of a non-deterministic type that implements weak consensus but not consensus.

1.4. Roadmap

In Section 2, we present the system model. In Section 3, we define the consensus and the weak consensus prob-
lems, as well as another variant of consensus, team consensus [14,15], which is a key element of one of our proofs.
In Section 4, we show that any deterministic type that implements weak consensus also implements consensus. In
Section 5, we show that this is not the case with non-deterministic types. In Section 6, we conclude the paper with
some general observations about the questions raised in this paper.

2. Model

The model we consider in this paper is the one of [9,10]: a set of asynchronous processes communicating through
atomic shared objects. We recall below the details of the model which are relevant for our results.

2.1. Processes

We consider a set Π of n + 1 processes p0, . . . , pn (n � 1) that communicate using shared objects. The processes
are asynchronous in the sense that we do not make any assumption about their relative speeds. The processes might
fail by crashing, i.e., stop executing their steps. A process that never crashes is said to be correct. A process that is not
correct is said to be faulty. We do not make any assumption about the resilience of the system, i.e. on the number of
processes that can fail during the computation.

2.2. Objects and types

We assume that processes communicate via applying operations on shared objects. Every object is an instance of
a type which is defined by a tuple (Q,Q0,O,R, δ). Here Q is a set of states, Q0 ⊆ Q is a set of initial states, O is a
set of operations, R is a set of responses, and δ ⊆ Q × O × Q × R is a relation, known as the sequential specification
of the type. We assume that every sequential specification δ is total: for each pair (q, o) ∈ Q × O , there exists a pair
(q ′, r) ∈ Q × R such that (q, o, q ′, r) ∈ δ.

For deterministic types, the set of initial states is a singleton (Q0 = {q0}) and the sequential specification can be
seen a function δ : Q × O → Q × R. The sequential specification of a non-deterministic type carries each state and
operation to a non-empty set of response and state pairs.

The deterministic register type is defined as a tuple (Q, {⊥},O,R, δ) where Q is the countable set of values that
can be stored in a register (⊥ ∈ Q), O = {read(),write(v) | v ∈ Q}, R = Q ∪ {ok} and ∀v, v′ ∈ Q, δ(v,write(v′)) =
(v′,ok) and δ(v, read()) = (v, v).

We assume that shared objects are atomic: operations applied on an atomic object can be seen as taking place
instantaneously. A wait-free linearizable implementation of an object type [1,6,8] is one example of an atomic object.

2.3. Protocols

A protocol is a distributed deterministic automaton that identifies the sequences of events for processes p0, . . . , pn

and shared objects. We use a simplified form of the I/O automaton formalism [12], At any point in a protocol’s
execution, the state of each process is called its local state. The set of local states together with the states of all shared
objects is called the protocol’s global state. A computation step of a process is defined by the process identifier, an
operation on a shared object, and the corresponding response. In an initial state of a protocol, every object is in an
initial state specified by its type. An execution of a protocol is a sequence of alternating global states and steps of the
processes that begins with an initial state of the protocol and respects the sequential specifications of the object types.



Author's personal copy

826 R. Guerraoui, P. Kuznetsov / Journal of Computer and System Sciences 74 (2008) 823–830

For every local state of each process, the protocol deterministically identifies the next operation the process is going
to execute. We say that an execution e of P is a pi -solo execution if pi is the only process that takes steps in e.

2.4. Schedules

A schedule is a (finite or infinite) sequence of identifiers of processes in Π . For a given protocol P and an initial
state s, we say that a schedule σ triggers an execution e of P , if e begins with s and processes appear in e in the order
defined by σ . Clearly, if processes access only deterministic objects, a schedule and an initial state trigger exactly one
execution. On the other hand, if non-deterministic objects can be accessed, a schedule and an initial state might trigger
a number of executions.

3. Variants of consensus

3.1. Weak consensus

In a consensus protocol, every process initially has a proposed value in {0,1}. The protocol ensures that the
processes reach a common decision based on their initial states [5]. Formally, a consensus protocol ensures:

• Termination: every process that takes an infinite number of computation steps eventually decides on a value in
{0,1};

• Agreement: no two processes decide on different values.

Clearly, there is a trivial protocol that satisfies only these two properties: every process always decides 0. To filter out
such protocols, the following non-triviality property was defined [5]:

• Weak validity: there is an execution of the protocol in which 0 is decided and an execution in which 1 is decided.

A protocol that guarantee termination, agreement and weak validity, is said to solve weak consensus. (Sometimes, the
problem is also called non-trivial agreement.) It is known that there does not exists a weak consensus protocol in an
asynchronous system in the presence of at least one faulty process [5,11].

3.2. Consensus

This impossibility result of [5,11] also holds for a consensus protocol in which, instead of weak validity, the
following property is ensured:

• Validity: any decided value is the initial value of some process.

Weak consensus is trivially reduced to consensus: any solution of consensus has an execution in which 0 is decided
(e.g., when all processes propose 0) and an execution in which 1 is decided (e.g., when all processes propose 1).

3.3. Consensus solvability and initial states

A set S of types is said to implement (weak) consensus if there exists a (weak) consensus protocol P such that in
every execution of P , processes access only objects of types in S .

A state s of a type T is called reachable if, for each initial state x of T , there is a sequence of operations of T that
brings x to s. We use the following observation about deterministic objects: allowing the protocol designer to initialize
shared objects to any reachable states does not affect the ability of deterministic objects to solve consensus. Formally,
let S be any set of deterministic types. We denote by S̄ the initial-state closure of S , i.e., the set of all deterministic
types T ′ = (Q, {q ′},O,R, δ) where q ′ is a reachable state of some type T = (Q, {q},O,R, δ) in S .

Lemma 1. (See [3].) Let S be any set of deterministic types. If S̄ implements consensus, then S implements consensus.



Author's personal copy

R. Guerraoui, P. Kuznetsov / Journal of Computer and System Sciences 74 (2008) 823–830 827

3.4. Team consensus

To prove our first result (in Section 4), we use a form of consensus, team-restricted consensus (or simply team
consensus) [14,15]. Formally, a protocol P solves team consensus if there is a (known a priori) partition of Π into two
non-empty teams A and B such that P solves consensus for processes in Π provided all processes on the same team
propose the same value. Obviously, team consensus can be solved whenever consensus can be solved. Surprisingly,
the converse is also true [14,15]:

Lemma 2. Let S be any set of types. If S implements team consensus, then S also implements consensus.

4. Deterministic types

In this section, we show that, with respect to deterministic types, weak consensus is equivalent to consensus: any
set of types that implements weak consensus also implements consensus.

Theorem 3. Let S be any set of deterministic types that includes register. If S implements weak consensus, then S
also implements consensus.

Proof. Let P be any protocol that solves weak consensus using objects of types in S .
Following [5], we use a bivalency argument. A global state that is reachable by an execution of P (from now on

simply a state of P ) is assigned a tag v ∈ {0,1} if there is an execution of P passing through that state in which some
process decides v. If a state is assigned both tags 0 and 1, it is called bivalent. If a state is assigned only one tag v, it
is called v-valent. A state is univalent if it is 0-valent or 1-valent. Termination of weak consensus ensures that every
state of P is either bivalent or v-valent for some v ∈ {0,1}.

We proceed through the following arguments:
(1) P has a bivalent initial state [5].
(2) There exists a critical state of P , i.e., a bivalent state s such that every step of P applied to s results in a univalent

state [5]. Suppose, to obtain a contradiction, that P has no critical state. Thus, starting from the initial bivalent state
and inductively proceeding to a bivalent state reachable from it, we establish an infinite execution e of P that passes
through bivalent states only. By the Agreement property of weak consensus, no process can decide in a bivalent state.
Hence, no process ever decides in e—contradicting the Termination property. Thus, a critical state of P exists.

(3) Let s be any critical state of P . Consider any step of P applied to s. Since protocol P and all objects that we
use are deterministic, the resulting state of P is determined by the identity of the process that takes the step.

We partition the system into two teams Π0 and Π1: Πj (j ∈ {0,1}) consists of the processes whose steps applied
to s result in a j -valent state. Since s is bivalent, the two teams are non-empty.

Let V be the set of objects used by P . We present a protocol P ′ that solves team consensus for teams Π0 and
Π1 using objects in V initialized to their states in s and, additionally, two multiple-writer multiple-reader registers,
denoted r0 and r1, initialized to ⊥. For each j ∈ {0,1}, let team Πj be associated with register rj . In P ′, every process
pi first writes its input value into its team’s register and then takes its own steps of P starting from its state in s until
pi reaches a local state of P in which a value j ∈ {0,1} is decided. (We say that j is the value pi obtains from P .) At
this point, the process reads rj and returns the value read.

Since processes emulate an execution of P (passing through s), the Termination property of weak consensus
implies that every process that takes sufficiently many steps of P obtains a value j ∈ {0,1} from P . By the definition
of s, Π0, and Π1, value j can only be obtained if the first step of P applied to s was taken by some process pk ∈ Πj .
By protocol P ′, prior to taking this step, pk has written its input value in rj : the Validity property follows.

Suppose that all members of the same team propose the same value. Thus, no two different values can be written
in the team’s register, and the Agreement property of weak consensus implies that no two processes return different
values. Hence, P ′ solves team consensus using registers and objects in V initialized to their states in s. Note that
all these initial states are reachable. Thus P ′ solves consensus using objects in S̄ , the initial-state closure of S , i.e.,
assuming that all objects in S are initialized to certain reachable states.

Since team consensus is equivalent to consensus (Lemma 2), P ′ can be transformed into a solution to consensus
using objects in S̄ . By Lemma 1, S implements consensus. �



Author's personal copy

828 R. Guerraoui, P. Kuznetsov / Journal of Computer and System Sciences 74 (2008) 823–830

5. Non-deterministic types

It turns out that some non-deterministic atomic objects capable of implementing weak consensus are too weak to
implement consensus. To illustrate this, we introduce a new non-deterministic type which we call rambler. Through
accessing objects of type rambler, no process can obtain any meaningful information about other processes: the objects
might exhibit the very same behavior for an arbitrary sequence of accesses. Intuitively, this means that, combined with
registers, the objects of type rambler cannot solve consensus even among two processes. On the other hand, the type
is strong enough to solve weak consensus.

More precisely, type rambler is defined by the tuple (Q, {⊥},O,R, δ), where:

• Q = {⊥, t0, t1,0,1} is the set of its states;
• O = {o0, o1} is the set of its operations;
• R = {0,1} is the set of its responses; and
• δ, its sequential specification, is

δ = {
(⊥, oi, tj , j), (⊥, oi, tj ,1 − j), (t0, oi, i, i), (t1, oi,1 − i,1 − i), (j, oi , j, j)

∣∣ i, j ∈ {0,1}}.

The state transition graph of a rambler object is depicted in Fig. 1. The nodes of the graph define the states of the
object and the edges define operations applied in the states and the corresponding responses.

Note that type rambler is built in such a way that, by accessing only objects of this type, there is no way for a
process to learn anything about steps of other processes. More precisely, objects of type rambler satisfy the following
property:

Lemma 4. Let P be any protocol that uses atomic objects of types in {rambler, register}, s0 be any initial state of P ,
and σ be any schedule. Then there is an execution e of P triggered by σ and s0 in which every operation (if any) on
an object of type rambler returns 0.

Proof. An adversary constructs an execution triggered by σ as follows. Processes take steps according to σ until
an object of type rambler is accessed for the first time. We assume that the object returns 0 (this is possible for any
invocation) and the adversary does not specify its state until the object is accessed for the second time. (The objects
can be in any state in {t0, t1}.) Assume that the operation with which the object is accessed for the second time is
oi (i ∈ {0,1}). Then, after the first invocation, the object has state ti . By the specification of type rambler, the object
returns 0 on the second and all subsequent invocations.

By repeating the argument for every object of type rambler, the adversary constructs an execution in which all
operations on objects of type rambler return nothing but 0. �

Fig. 1. State transition graph of rambler.



Author's personal copy

R. Guerraoui, P. Kuznetsov / Journal of Computer and System Sciences 74 (2008) 823–830 829

5.1. Weak consensus with rambler

Despite the weak “synchronization power” of objects of type rambler expressed by Lemma 4, a single object of the
type can implement weak consensus: pi just invokes oi mod 2 twice on the object and decides on the last value returned.
After the first operation, the object is brought to a state in {t0, t1} and becomes deterministic. Assume that the object
is in state t0. Now if p0 is the first to access it with operation o0, then the decision value is 0. If p1 is the first to access
it, then the decision value is 1. The case when the state of the object is t1 is symmetric. Thus, there exist a 0-valent
and a 1-valent execution, so the Weak Validity property is ensured. The protocol returns at most one value in {0,1} in
any execution, so the Agreement is also ensured.

5.2. Impossibility of consensus with rambler

Theorem 5. No protocol can solve consensus among 2 processes with objects of types in {rambler, register}.

Proof. We proceed by contradiction. Let P be a protocol that solves consensus among 2 processes, p0 and p1, using
atomic objects of types in {rambler, register}. Consider an execution of P in which a process pi decides. We call the
local state of pi just after the decision the final state of pi . Similar to [2,3,7], we define the decision graph of P [13],
denoted by C(P ), as follows. Vertices of C(P ) represent the final states of processes p0 and p1 resulting from all
possible executions of P (for all possible initial states). Two vertices are connected by an edge if the corresponding
final states can appear in the same state of P .

We establish a contradiction through the following steps.

(1) By Lemma 4, for each schedule σ and each initial state s of P , there exists an execution eσ,s of P triggered by σ

and s in which every operation on an object of type rambler returns 0. Since the protocol is deterministic, for each
σ and s, there is exactly one such execution eσ,s . Let C′ be the subgraph of C(P ) corresponding to all executions
eσ,s (for all possible σ and s).

(2) For all i ∈ {0,1}, let vi be the vertex of C′ corresponding to a pi -solo execution in which pi proposes i and, by the
Validity property of consensus, decides i. (There is a unique such vertex, since pi is the only process to decide.)
We show in the following that v0 and v1 belong to the same connected component of C′.
Assume, to obtain a contradiction, that v0 and v1 belongs to distinct components of C′, C0 and C1, respectively.
Then we convert P into a protocol P ′ that solves consensus among two processes using only registers. Every
process pi (i ∈ {0,1}) writes its proposed value in register ri and then takes steps of protocol P (proposing i),
except that each time pi is about to invoke an operation on an object of type rambler, pi updates its state according
to P as if the operation returned 0. By Lemma 4, for pi , every execution of P ′ is indistinguishable from an
execution of P in which every operation on an object of type rambler returns 0. Thus, finally, pi ends up with a
state in C′. If the state of pi belongs to C0, pi reads r0 and decides on the value read. Otherwise, pi reads r1 and
decides on the value read.
The Termination property of P ′ follows immediately from the Termination property of P . Final states that corre-
spond to the same execution of P belong to the same component of C′, so the Agreement property of P ′ is also
ensured. Note that, by the assumption, for all i ∈ {0,1}, v1−i /∈ Ci . Thus, in any execution of P ′, no process can
reach a state in Ci unless pi has taken at least one step of P . By the protocol, before taking a step of P , pi writes
its input value in ri . Thus, no process can decide on a value unless the value was proposed by some process—the
Validity property is ensured.
So two processes solve consensus using only registers, contradicting [5,11]. Therefore, v0 and v1 belong to the
same connected component of C′.

(3) By the Validity property, p0 decides on 0 in v0 and p1 decides on 1 in v1. Consider the path connecting v0 and v1
in C′. Recall that every vertex of C′ denotes a final local state of some process. Any two neighbors on the path
correspond to the same execution of P , and, by the Agreement property, must have the same decision value. But
v0 and v1 have different decision values—a contradiction.

Thus, we conclude that no protocol can solve consensus among two processes using objects of types in {rambler,
register}. �



Author's personal copy

830 R. Guerraoui, P. Kuznetsov / Journal of Computer and System Sciences 74 (2008) 823–830

6. Concluding notes

The motivation of this work was the observation that the impossibility of consensus was established for a weak vari-
ant of the problem, namely weak consensus, whereas research on circumventing the impossibility has been performed
on the stronger consensus variant.

This paper exhibits the computational gap between the two problems. We show that any set of deterministic object
types that, combined with registers, implements weak consensus, also implements consensus. Then we exhibit a non-
deterministic type that implements weak consensus, among any number of processes, but, combined with registers,
cannot implement consensus even among two processes. In modern terminology, this type has consensus power 1
and weak consensus power ∞. On the other hand, consensus is universal [6] and has consensus number ∞. Using
consensus and registers, any type can be implemented.

Acknowledgments

We are grateful to Partha Dutta for an interesting discussion on the subject, to Eli Gafni for the insightful observa-
tion that non-determinism in the system model may be the only reason for solving weak consensus but not consensus,
and to Faith Ellen and anonymous reviewers for their helpful comments.

References

[1] H. Attiya, J.L. Welch, Distributed Computing: Fundamentals, Simulations and Advanced Topics, 2nd edition, Wiley, 2004.
[2] O. Biran, S. Moran, S. Zaks, A combinatorial characterization of the distributed tasks which are solvable in the presence of one faulty

processor, in: Proceedings of the 7th Annual ACM Symposium on Principles of Distributed Computing, PODC, 1988.
[3] E. Borowsky, E. Gafni, Y. Afek, Consensus power makes (some) sense!, in: Proceedings of the 13th Annual ACM Symposium on Principles

of Distributed Computing, PODC, 1994.
[4] D. Dolev, C. Dwork, L.J. Stockmeyer, On the minimal synchronism needed for distributed consensus, J. ACM 34 (1) (1987) 77–97.
[5] M.J. Fischer, N.A. Lynch, M.S. Paterson, Impossibility of distributed consensus with one faulty process, J. ACM 32 (3) (1985) 374–382.
[6] M. Herlihy, Wait-free synchronization, ACM Trans. Progr. Lang. Syst. 13 (1) (1991) 124–149.
[7] M. Herlihy, N. Shavit, The asynchronous computability theorem for t -resilient tasks, in: Proceedings of the 25th ACM Symposium on Theory

of Computing, STOC, 1993.
[8] M. Herlihy, J.M. Wing, Linearizability: A correctness condition for concurrent objects, ACM Trans. Progr. Lang. Syst. 12 (3) (1990) 463–492.
[9] P. Jayanti, Wait-free computing, in: Proceedings of the 9th International Workshop on Distributed Algorithms, WDAG’95, in: Lecture Notes

in Comput. Sci., vol. 972, Springer-Verlag, 1995.
[10] P. Jayanti, Robust wait-free hierarchies, J. ACM 44 (4) (1997) 592–614.
[11] M.C. Loui, H.H. Abu-Amara, Memory requirements for agreement among unreliable asynchronous processes, Adv. Comput. Res. (1987)

163–183.
[12] N.A. Lynch, Distributed Algorithms, Morgan Kaufmann Publishers, 1996.
[13] S. Moran, Y. Wolfstahl, Extended impossibility results for asynchronous complete networks, Inform. Process. Lett. 26 (3) (1987) 145–151.
[14] G. Neiger, Failure detectors and the wait-free hierarchy, in: Proceedings of the 14th Annual ACM Symposium on Principles of Distributed

Computing, PODC, 1995.
[15] E. Ruppert, Determining consensus numbers, SIAM J. Comput. 30 (4) (2000) 1156–1168.


