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Abstract

We present new expected risk bounds for binary and multiclass prediction, and resolve several recent conjectures on
sample compressibility due to Kuzmin and Warmuth. By exploiting the combinatorial structure of concept class F ,
Haussler et al. achieved a VC(F)/n bound for the natural one-inclusion prediction strategy. The key step in their
proof is a d = VC(F) bound on the graph density of a subgraph of the hypercube—one-inclusion graph. The first main
result of this report is a density bound of n

`

n−1

≤d−1

´

/ ( n

≤d ) < d, which positively resolves a conjecture of Kuzmin and
Warmuth relating to their unlabeled Peeling compression scheme and also leads to an improved one-inclusion mistake
bound. The proof uses a new form of VC-invariant shifting and a group-theoretic symmetrization. Our second main
result is an algebraic topological property of maximum classes of VC-dimension d as being d-contractible simplicial
complexes, extending the well-known characterization that d = 1 maximum classes are trees. We negatively resolve
a minimum degree conjecture of Kuzmin and Warmuth—the second part to a conjectured proof of correctness for
Peeling—that every class has one-inclusion minimum degree at most its VC-dimension. Our final main result is a
k-class analogue of the d/n mistake bound, replacing the VC-dimension by the Pollard pseudo-dimension and the
one-inclusion strategy by its natural hypergraph generalization. This result improves on known PAC-based expected
risk bounds by a factor of O(log n) and is shown to be optimal up to a O(log k) factor. The combinatorial technique
of shifting takes a central role in understanding the one-inclusion (hyper)graph and is a running theme throughout.

Key words: one-inclusion mistake bounds, worst-case expected risk, multiclass prediction, sample compression, shifting

1. Introduction

In [13,12] Haussler, Littlestone and Warmuth proposed the one-inclusion prediction strategy as a natural
approach to the prediction (or mistake-driven) model of learning, in which a prediction strategy maps a
training sample and test point to a test prediction with hopefully guaranteed low probability of erring. The
significance of their contribution was two-fold. On the one hand the derived VC(F)/n upper-bound on the
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worst-case expected risk of the one-inclusion strategy learning from F ⊆ {0, 1}X improved on the previous-
best bound for consistent learners by an order of logn. This was achieved by taking the combinatorial
structure of the underlying F into account—which had not been done in previous work—in order to break
ties between hypotheses consistent with the training set but offering contradictory predictions on a given
test point. At the same time Haussler [12] introduced the idea of shifting subsets of the n-cube down around
the origin—an idea previously developed in combinatorics—as a powerful tool for learning-theoretic results.
In particular, shifting admitted deeply insightful proofs of Sauer’s Lemma and a VC-dimension bound on
the density of the one-inclusion graph—the key result needed for the one-inclusion strategy’s expected risk
bound.

Recently shifting has impacted work towards the sample compressibility conjecture of [19], in [17]. In order to
k-compress a concept class C, one must be able to compress any sample s consistent with C to a subsample of
length at most k and then be able to map such a compressed-set to some s-consistent concept (not necessarily
belonging to C). Given a k-compression scheme for bounded k, Littlestone and Warmuth demonstrated a
proof for the learnability of C that is simpler than proofs based on finite VC-dimension. The necessity of
having a bounded compression scheme for learnability motivated the compression conjecture, which states
that every concept class C of VC-dimension d has a d (or order d)-compression scheme.

This paper continues the study of the one-inclusion graph—the natural graph structure induced by a subset
of the n-cube—and its related prediction strategy under the lens of shifting. After the necessary background
including the prediction model of learning, PAC-based expected risk bounds, the one-inclusion prediction
strategy and sample compressibility summarized in Section 2, we develop the technique of shatter-invariant
shifting in Section 3.1. While a subset’s VC-dimension cannot be increased by Haussler’s shifting, shatter-
invariant shifting guarantees a finite sequence of shifts to a fixed-point under which the shattering of a
chosen set remains invariant, thus preserving VC-dimension throughout.

In Section 3.2 we apply a group-theoretic symmetrization to tighten the mistake bound—the worst-case
expected risk bound—of the deterministic one-inclusion strategy from d/n to ⌈Dd

n⌉/n, where Dd
n < d for

all n, d; the bound for the randomized one-inclusion strategy is improved to Dd
n/n. The derived Dd

n density
bound positively resolves a conjecture of Kuzmin and Warmuth which was suggested as a step towards a
correctness proof of the Peeling unlabeled compression scheme [17]. In Section 5 we provide counter-examples
to another conjecture of Kuzmin and Warmuth which is the second step of the conjectured correctness proof;
Section 6 discusses the consequences of our combinatorial results for sample compression. Notably, a proof of
correctness for Peeling would imply a result on the inembeddability of maximal classes into certain maximum
classes.

Section 4 explores characterizations and properties of one-inclusion graphs and maximum/maximal concept
classes. A colorability characterization of one-inclusion-isomorphic graphs, extending previous work on char-
acterizing graphs embeddable in the n-cube [7,15,14], is provided. We extend the work on forbidden labels of
Floyd [8] slightly to cubical characterizations of both maximum and non-maximum maximal classes on finite
domains. Finally we extend the classic result of Dudley [5] that a maximum concept class of VC-dimension
1 is a tree. We show that maximum classes of VC-dimension d on finite domains are in fact d-contractible
simplicial complexes, the natural generalization of trees in algebraic topology.

Finally we generalize the prediction model, the one-inclusion strategy and its bounds from binary to k-
class learning in Section 7. To date, the best bound on expected risk in this case is O(α logα) for α =
ΨG-dim (F) /n, where ΨG-dim (F) denotes the graph dimension of F . We derive a bound of ΨP-dim (F) /n,
which improves the dependence on n by a log factor. Here, ΨP-dim (F) is the Pollard dimension of F . We
show that this bound is at most an O(log k) factor from optimal. Thus, as in the binary case, exploiting
class structure enables significantly better bounds on expected risk for multiclass prediction.

A preliminary version of this report appeared as [21].
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2. Definitions & background

We begin with some notation. Sets/random variables, scalars and vectors will be written in uppercase,
lowercase and bolded typeface, respectively, as in C, x,v. The set of natural numbers N is defined as the
positive integers. We define

(

n
≤r

)

=
∑r

i=0

(

n
i

)

to be the number of subsets of size at most r in a set of

cardinality n. Let [n] = {1, . . . , n} and Sn be the set of permutations on [n]. We write the density of graph
G = (V,E) as dens (G) = |E|/|V | and graph minimum degree as δ (G). The bit-wise exclusive-OR of strings
u,v ∈ {0, 1}n will be written as u xor v. 1 [A] denotes the indicator function of A.

2.1. The prediction model of learning

We begin with the basic setup of [13]. The set X is the domain and F ⊆ {0, 1}X is a concept class on X . For
notational convenience we write sam (x, f) = ((x1, f(x1)) , . . . , (xn, f(xn))) for x ∈ Xn, f ∈ F . A prediction

strategy is a mapping of the form Q :
⋃

n>1 (X × {0, 1})n−1 ×X → {0, 1}, taking a labeled sample and test
point to a prediction of the point’s label.

Definition 1 (Mistake bounds) The prediction model of learning concerns the following scenario. Given
full knowledge of strategy Q, an adversary picks a distribution P on X and concept f ∈ F so as to max-

imize the probability of {Q (sam (X1, . . . ,Xn−1, f) ,Xn) 6= f(Xn)} where Xi
i.i.d.
∼ P . Thus the measure of

performance is the worst-case expected risk

M̂Q,F (n) = sup
f∈F

sup
P

EX∼P n [1 [Q (sam ((X1, . . . ,Xn−1), f) ,Xn) 6= f(Xn)]] .

A mistake bound for Q with respect to F is an upper-bound on M̂Q,F .

While Valiant’s Probably Approximately Correct (PAC) model is concerned with showing that
Pr (E [1 [Q(sam ((X1, . . . ,Xn−1), f) ,Xn) 6= f(Xn)] | X1, . . . ,Xn−1] > ǫ) is small (i.e. the risk is concen-
trated close to 0), the prediction model focuses on the size of the expectation
E [E [1 [Q(sam ((X1, . . . ,Xn−1), f) ,Xn) 6= f(Xn)] | X1, . . . ,Xn−1]] (i.e. that the expected risk is close to
0). The following allows us to derive mistake-bounds by bounding a worst-case average [13, Corollary 2.1].

Lemma 2 (Permutation mistake bounds) For any n > 1, concept class F and prediction strategy Q,

M̂Q,F (n)≤ sup
f∈F

sup
x∈Xn

1

n!

∑

g∈Sn

1
[

Q
(

sam
((

xg(1), . . . , xg(n−1)

)

, f
)

, xg(n)

)

6= f
(

xg(n)

)]

=
ˆ̂
MQ,F (n) .

A permutation mistake bound for Q with respect to F is an upper-bound on
ˆ̂
MQ,F .

2.2. The capacity of function classes contained in {0, . . . , k}X

For a finite set Y, we denote by Πx (F) = {(f(x1), . . . , f(xn)) | f ∈ F} the projection of F ⊆ YX on
x ∈ Xn—the equivalence classes of functions induced by labelings of x.

Definition 3 The Vapnik-Chervonenkis dimension of concept class F is defined as VC(F) =
sup {n | ∃x ∈ Xn,Πx (F) = {0, 1}n}. Any x satisfying {0, 1}|x| = Πx (F) is said to be shattered by F .

Lemma 4 (Sauer’s Lemma [22]) For any n ∈ N and V ⊆ {0, 1}n, |V | ≤
(

n
≤VC(V )

)

. A subset V satisfying

∀c ∈ {0, 1}n,VC(V ∪ {c}) > VC(V ) is known as maximal; if furthermore V meets Sauer’s Lemma with
equality then it is called maximum.
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It is well-known that the VC-dimension is an inappropriate measure of capacity when |Y| > 2. The following
unifying framework of class capacities for |Y| <∞ is due to [2].

Definition 5 (Translation framework for multiclass capacity) Let k ∈ N, F ⊆ {0, . . . , k}X and Ψ
be a family of mappings ψ : {0, . . . , k} → {0, 1, ⋆} called translations. For x ∈ Xn, v ∈ Πx (F) ⊆ {0, . . . , k}n

and ψ ∈ Ψn we write ψ(v) = (ψ1(v1), . . . , ψn(vn)) and ψ(Πx (F)) = {ψ(v) : v ∈ Πx (F)}. We say that
x ∈ Xn is Ψ-shattered by F if there exists a ψ ∈ Ψn such that {0, 1}n ⊆ ψ(Πx (F)). The Ψ-dimension of
F is defined by

Ψ-dim (F) = sup{n | ∃x ∈ Xn,ψ ∈ Ψn s.t. {0, 1}n ⊆ ψ(Πx (F))} .

Example 6 The following translation families and corresponding dimensions are used in this paper:

(a) The Pollard pseudo-dimension ΨP-dim (V ) is induced by the family ΨP = {ψP,i : i ∈ [k]} where
ψP,i(a) = 1 [a < i].

(b) The Graph dimension ΨG-dim (V ) is induced by the family ΨG = {ψG,i : i ∈ {0, . . . , k}} where ψG,i(a) =
1 [a = i].

(c) The Natarajan dimension ΨN-dim (V ) is induced by the family ΨN = {ψN,i,j : i, j ∈ {0, . . . , k}, i 6= j}
where

ψN,i,j(a) =











1 , a = i ,

0 , a = j ,

⋆ , a /∈ {i, j} .

Finite Ψ-dimension, for certain ‘distinguisher’ translation families, characterizes multiclass learnability [2,
Theorem 16]. The Ψs in Example 6 are all distinguishers.

2.3. Existing expected risk bounds for consistent multiclass learners

The following is a precise statement of the PAC-based multiclass expected risk bound referenced in Section 1.
The statement and its proof both follow [13, Theorem 4.1] closely.

Theorem 7 Let F ,H ⊆ {0, . . . , k}X be arbitrary with d = ΨG-dim (H) ∈ N. Let Q be a prediction strategy
such that for all x ∈

⋃

n≥1 X
n and all f ∈ F , Q(sam (x, f) , ·) ∈ H and Q(sam (x, f) , xi) = f(xi) for all

i ∈ [n]. Equivalently Q is a learning algorithm that when given an f ∈ F-labeled training set outputs a

consistent 1 hypothesis from H. Then M̂Q,F (n) ≤ 2(d+1)
n log2

(

4en
d

)

for all n > d.

Proof. For x ∈
⋃

n∈N
Xn define the risk functional RQ,f,P (x) = EP [Q (sam (x, f) ,X) 6= f(X)]. Let d =

ΨG-dim (F). By [2, Lemma 15] the VC-dimension of the 0-1 loss class induced by F equals d. Then by
e.g. [4], for all f ∈ F , distributions P on X , ǫ > 0 and n > d,

PrP n (RQ,f,P (X) ≥ ǫ)≤ (2en/d)d21−ǫn/2 .

By this inequality and the fact that the risk is most 1,

EP n [RQ,f,P (X)] = EP n [RQ,f,P (X)|RQ,f,P (X) < ǫ] PrP n (RQ,f,P (X) < ǫ)

+ EP n [RQ,f,P (X)|RQ,f,P (X) ≥ ǫ] PrP n (RQ,f,P (X) ≥ ǫ)

≤ ǫ+ (2en/d)d21−ǫn/2 .

Taking ǫ = 2t−1
(

log2(nd
−1) + d log2(2end

−1)
)

the result follows by Fubini’s theorem. �

1 In Section 1 we refer to the PAC-based bound as being in terms of ΨG-dim (F). Consistency of Q implies that ΨG-dim (F) ≤
ΨG-dim (H) so we are being at worst generous to the PAC-based bound.
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Algorithm 1 The deterministic multiclass one-inclusion prediction strategy QG,F

Given: F ⊆ {0, . . . , k}X , sam ((x1, . . . , xn−1), f) ∈ (X × {0, . . . , k})n−1
s.t. f ∈ F , xn ∈ X

Returns: a prediction of f(xn) in {0, . . . , k}

1. V ←− Πx (F) ;
2. G ←− G (V ) ;

3.
−→
G ←− orient G to minimize the maximum outdegree ;

4. Vspace ←− {v ∈ V | v1 = f(x1), . . . , vn−1 = f(xn−1)} ;
5. if Vspace = {v} then return vn ;

6. else return the nth component of the head of hyperedge Vspace in
−→
G ;

Algorithm 2 The randomized multiclass one-inclusion prediction strategy QGrand,F

Given: F ⊆ {0, . . . , k}X , sam ((x1, . . . , xn−1), f) ∈ (X × {0, . . . , k})n−1
, xn ∈ X

Returns: a random prediction of f(xn)

1. V ←− Πx (F) ;
2. G = (V,E)←− G (V ) ;
3. Pe ←− distribution on e ∈ E minimizing total probability incident to each vertex ;
4. Vspace ←− {v ∈ V | v1 = f(x1), . . . , vn−1 = f(xn−1)} ;
5. if Vspace = {v} then return vn ;

else {
6. Select V ∈ Vspace randomly according to distribution PVspace ;

7. return the nth component of V ;
}

2.4. The one-inclusion prediction strategy

A subset of the n-cube—the projection of some F—induces the one-inclusion graph, which underlies a natural
prediction strategy that is the focus of this section. The following definition generalizes the important data
structure to subsets of {0, . . . , k}n.

Definition 8 (One-inclusion hypergraphs) The one-inclusion hypergraph G (V ) = (V,E) of V ⊆
{0, . . . , k}n is the undirected graph with vertex-set V and hyperedge-set E of maximal (with respect to inclu-
sion) sets of pairwise hamming-1 separated vertices. Under k = 1, the induced E is an edge-set and G (V )
reduces to the one-inclusion graph.

The one-inclusion graph’s prediction strategy QG,F [13] immediately generalizes to the multiclass prediction
strategy of Algorithm 1. For the remainder of this paper, barring Section 7, we will restrict our discussion
to the k = 1 case, on which the following result focuses.

In words, the one-inclusion graph G of the projection of F on x ∈ Xn is formed. G is then oriented to
−→
G

so that maximum outdegree is minimized. Recall that an oriented hyperedge is a set with a single element
identified as the head. The set Vspace of vertices in G consistent with the labeled n − 1-sample is formed.
This set is either a singleton or an hyperedge in G. If Vspace is a singleton v, predict the label of f(xn) as

the nth component of v, vn. Otherwise predict the last component of the head of the directed hyperedge in
−→
G .

Example 9 Consider the subset V = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (1, 2, 0), (2, 2, 0), (1, 1, 1), (2, 1, 1),
(0, 1, 2), (1, 1, 2), (2, 1, 2), (0, 2, 2)} ⊂ {0, 1, 2}3 that is induced by points x1, x2, x3 ∈ X and some class F ⊂
{0, 1, 2}X . It is depicted in Figure 1 together with its induced hyperedge set. A possible orientation of the
hypergraph, representing one of several possible prediction strategies for F on {x1, x2, x3}, is shown in
Figure 2; notice that the maximum outdegree is 2.
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Fig. 1. The one-inclusion hypergraph of Example 9. Ver-
tices are depicted as points, hyperedges as bounding el-
lipses.
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x1

0

2

1

0

1

2

0 21

x

Fig. 2. The hypergraph of Figure 1 oriented with maxi-
mum outdegree 2. Predictions are made by following the
head.

Replacing orientation with a distribution over each (hyper)edge induces a randomized strategy QGrand,F

in Algorithm 2. By exploiting the combinatorial structure of concept classes, Haussler et al. were able to
improve on best-known bounds on worst-case expected risk by a factor of logn [13, Theorem 2.3].

Theorem 10 (The one-inclusion mistake bounds) M̂QG,F ,F (n) ≤ VC(F)
n for every concept class F

and n > 1. The same holds for the randomized strategy.

A lower bound in [18] showed that the one-inclusion strategy’s performance is optimal within a factor of
1 + o(1). In the deterministic (randomized) one-inclusion prediction strategy, the orientation (respectively
assignment of edge distributions) is achieved by a simple reduction to a network flow problem [13].

2.5. Sample compressibility

We recall the notions of labeled [19,8,9] and unlabeled [16,17] compression schemes. We begin with the
former, essential definition of [19] on which all subsequent definitions are based. Informally, one k-compresses
a concept class C by compressing any sample s of length at least k that is consistent with C, to a subsample
of length at most k and then mapping such a compressed-set to some s-consistent concept (not necessarily
belonging to C).

Definition 11 (Labeled compression schemes) Let k ∈ N, domain X and family F ⊆ {0, 1}X be arbi-
trary, and consider a pair of mappings of the following form

κF :
∞
⋃

n=k

(X × {0, 1})n −→
k
⋃

l=0

(X × {0, 1})l

ρF :

(

k
⋃

l=0

(X × {0, 1})l

)

×X −→ {0, 1} .

If, for each f ∈ F and x ∈
⋃∞

n=k X
n, the following conditions are satisfied,

(i) [ subsample condition]: the compression function κF maps the sequence sam (x, f) to a subsequence of
length at most k, called the representative of f ; and

(ii) [ consistency condition]: the reconstruction function ρF labels xi consistently with f(xi) for each i ∈ [n].

Then (κF , ρF ) is a k-compression scheme. A k-compression scheme is said to have size k, and if the rep-
resentative size bound k is met with equality for some f ∈ F and x ∈ Xn then we say it is of size exactly
k. A compression scheme defines a hypothesis (not necessarily in F) by the mapping ρF (κF (sam (x, f)), ·) :
X → {0, 1}.
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Littlestone and Warmuth [19] showed that k-compressibility in the above labeled sense, for any k < ∞,
is sufficient for learnability. Furthermore their proof is considerably simpler than (the more traditional)
learnability proofs based directly on finite VC-dimension. The authors asked the natural question of neces-
sity [19,8,9,23,24,16,17], which corresponds to the following.

Problem 12 (Sample compression) Does every concept class of VC-dimension d < ∞ have a labeled
compression scheme of size O(d)?

Floyd and Warmuth were the first to demonstrate a significant positive result on the problem, by showing
that maximum classes of VC-dimension d can be d-compressed [8,9]. Over a decade later Kuzmin and
Warmuth recently showed that d-maximum classes can in fact be compressed to unlabeled sets [16,17];
earlier, Ben-David and Litman demonstrated a special-case of this result in [3].

Definition 13 (Unlabeled compression schemes) Let C be a maximum concept class of VC-dimension
d on a finite domain X . A representation mapping r of C satisfies:

(i) r is a bijection between C and subsets of X of size at most d; and
(ii) [ non-clashing] : c| (r(c) ∪ r(c′)) 6= c′| (r(c) ∪ r(c′)) for all c, c′ ∈ C, c 6= c′.

Given bijectivity, the non-clashing condition is equivalent to:

3. For each x ⊆ X , c ∈ C, there exists exactly one c′ ∈ C such that sam (x, c′) = sam (x, c) and r(c) ⊆ x.

Such a representation mapping constitutes a d-unlabeled compression scheme for C.

This definition is sufficient for the unlabeled analogue of the labeled Definition 11, where a C-consistent
sample is compressed to an unlabeled sample-subsequence of length at most d and which itself can be
reconstructed to a concept consistent with the original sample. Trivially a k-unlabeled compression scheme
can be transformed into a k-compression scheme; however it is still not clear whether including labels
aids compression or not. An answer to Problem 12 must provide a general scheme that satisfies the two
conditions laid out in Definition 11, and need go no further. Kuzmin and Warmuth were able to prove
that a sophisticated Tail Matching algorithm successfully d-unlabeled compresses all d-maximum concept
classes [16,17]. They also proposed a significantly simpler unlabeled Peeling algorithm but it is still not known
whether this correctly compresses maximum classes. The algorithm assigns representatives to concepts by
iteratively ‘peeling’ away a minimum degree vertex from the present one-inclusion graph of the class; the
peeled vertex’s representative is assigned to be the set of remaining edges adjoining that vertex, and then
that vertex is removed. Two of the combinatorial results in this paper relate to Kuzmin and Warmuth’s
conjectured correctness proof for Peeling, as described in Section 6 below.

What is needed for the compressibility conjecture of Warmuth et al. is a general d-compression scheme of
d-maximal classes. Any concept class C of VC-dimension d can be expanded by adding one concept at a
time until it is d-maximal, and an un/labeled d-compression scheme for such a maximal class immediately
induces a d-sized scheme for C. With this and the d-compressibility of maximum classes in mind, the following
question naturally arises.

Problem 14 As a function of d <∞, what is an upper-bound on the supremum over each d-maximal class
V , of the infimum of the VC-dimension of maximum classes containing V ?

An answer of O(d) would immediately imply a positive solution to the compressibility conjecture. It is clear
that maximum classes have a very special, recursive structure that is not shared by maximal classes. In
particular consider the following products of projecting away an axis [25,10].

Definition 15 For any V ⊆ {0, 1}n, define with respect to i ∈ [n]

(i) The reduction, V i = Π[n]\{i}

({

v ∈ V | i ∈ IG(V )(v)
})

; and

(ii) The tail, taili (V ) =
{

v ∈ V | i /∈ IG(V )(v)
}

,
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where IG(V )(v) ⊆ [n] denotes the set of labels of the edges incidental to vertex v ∈ V .

Welzl [25] proved that the reduction Ci and projection Π[n]\{i} (C) of a d-maximum class C are d − 1-
and d-maximum concept classes respectively; and through the recursive decomposition of a given maximum
class into these products, several sets of authors have shown that a maximum class can be compressed
recursively [8,9,16,17]. In particular, to the best of our knowledge all maximum compression schemes appeal
to this special structure that is not shared by non-maximum maximal classes. It is not yet clear how to
compress maximal classes in general, or whether the specialized schemes developed for maximum classes can
be brought to bear on this task.

3. Shifting and graph density

The key to proving the classic one-inclusion mistake bound of Theorem 10 is the following result on graph
density [13, Lemma 2.4].

Lemma 16 (One-inclusion graph density bound) For all n ∈ N, V ⊆ {0, 1}n, dens (G (V )) ≤ VC(V ).

An elegant proof of this deep result, due to Haussler [12], uses shifting. Shifting is the process of contracting
a subset of the n-cube towards 0 along one direction s ∈ [n] at a time – each point with a gap below in the
s direction is translated down.

Definition 17 (Shifting operators) For each s ∈ [n] define the shift operators on vertex v ∈ V ⊆ {0, 1}n

and vertex-set V , respectively, as

Ss(v;V ) =











(v1, . . . , vs−1, 1, vs+1, . . . , vn) if vs = 1 and

(v1, . . . , vs−1, 0, vs+1, . . . , vn) ∈ V

(v1, . . . , vs−1, 0, vs+1, . . . , vn) otherwise

Ss(V ) = {Ss(v;V ) | v ∈ V } .

One-inclusion graph G (V ) is said to be shifted to G (Ss(V )) along s – that is, the ‘shifted’ edge-set is the
edge-set induced by the shifted vertex-set.

Closed-below sets are those subsets of the n-cube that are the fixed-points of shifting.

Definition 18 Let I ⊆ [n]. We call a subset V ⊆ {0, 1}n I-closed-below if Ss(V ) = V for all s ∈ I. If V is
[n]-closed-below then we call it closed-below.

The process of “shifting down to 0” can be generalized to axis-parallel contractions to v⋆ ∈ {0, 1}n (or equiv-
alently shifting can be preceded by a relabeling of component-wise labels, and followed by the subsequent
inverse re-labelings). For such cases the closed-below property simply generalizes to a fixed-point property.
Indeed many of the following properties and their consequences for shifting also apply to these more general
contractions.

A number of properties of shifting follow relatively easily [12]:

|Ss(V )| = |V | , by the injectivity of Ss( · ;V ) (1)

VC(Ss(V )) ≤ VC(V ) , as Ss(V ) shatters I ⊆ [n] ⇒ V shatters I (2)

|E| ≤ |V | ·VC(V ) , as V closed-below ⇒ maxv∈V ‖v‖1 ≤ VC(V ) (3)

|Ss(E)| ≥ |E| , by cases (4)

∃T ∈ N, s ∈ [n]T s.t. SsT
(. . . Ss1

(V )) is closed-below (a fixed-point) . (5)

Properties (1–2) and the justification of (3) together imply Sauer’s lemma; Properties (1–5) lead to
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|E|

|V |
≤ . . . ≤

|SsT
(. . . Ss1

(E))|

|SsT
(. . . Ss1

(V ))|
≤ VC(SsT

(. . . Ss1
(V ))) ≤ . . . ≤ VC(V )

proving Lemma 16.

3.1. Shatter-invariant shifting

While Haussler shifts to bound density, the number of edges can increase and the VC-dimension can
decrease—both contributing to the observed gap between graph density and capacity. Our first result demon-
strates that shifting can in fact be controlled to preserve VC-dimension.

Lemma 19 Consider arbitrary n ∈ N, I ⊆ [n] and V ⊆ {0, 1}n that shatters I. There exists a finite
sequence s1, . . . , sT in [n] such that each Vt = Sst

(. . . Ss1
(V )) shatters I and VT is closed-below. In particular

VC(VT ) = VC(VT−1) = . . . = VC(V ).

Proof. ΠI (·) is invariant to shifting on I = [n]\I. So some finite number of shifts on I will produce a I-
closed-below family W that shatters I. Hence W must contain representatives for each element of {0, 1}|I|

on I with components equal to 0 outside I. Thus the shattering of I is invariant to the shifting of W on I,
so that a finite number of shifts on I produces an I-closed-below W ′ that shatters I. Repeating the process
a finite number of times until no non-trivial shifts are made produces a closed-below family that shatters I.
The second claim now follows from (2). �

In addition to the following interesting but inapplicable approach to bounding density, shatter-invariant
shifting will be applied in Section 3.2 to prove that only maximum subsets can maximize density amongst
all subsets with constant VC-dimension.

Remark 20 Lemma 19 suggests that we study graph density by accounting for edges added during shifting—
edges that must appear in the final closed-below graph W that are not present in the original V . If d = VC(V )
then for each d-index-set I witnessing the VC-dimension of V , V can be shifted down to some fixed-point
WI while retaining the shattering of I. Such a WI must contain an I-colored d-cube, and in particular
each of that cube’s d2d−1 edges. We can thus maximize a lower-bound on the number of edges added to V
when shifting to WI , optimizing over the collection of index sets S = {I ⊆ [n] : |I| = d, V shatters I} and
witnessing subsets VI = {U ⊆ V | U shatters I}. This produces the density bound of

|E|

|V |
≤ d−

d2d−1 −minI∈S maxU∈VI
|E (G (U)) |

|V |
≤ d .

Shifting can be further controlled to retain shattering of certain collections of sets, which can be applied to
produce similar bounds.

3.2. Tightly bounding graph density by symmetrization

Kuzmin and Warmuth [17] introduced Dd
n as a potential bound on the graph density of maximum classes.

We begin with properties of Dd
n, a technical lemma and then proceed to the main result which positively

resolves the conjecture of Kuzmin and Warmuth. A discussion of the sample compressibility consequences
of the result can be found in Section 6.

Definition 21 Define Dd
n =

n
(

n−1
≤d−1

)

( n
≤d )

for all n ∈ N and d ∈ [n]. Denote by V d
n the VC-dimension d

closed-below subset of {0, 1}n equal to the union of all
(

n
d

)

closed-below embedded d-cubes.

Lemma 22 Dd
n

(i) equals the graph density of V d
n for each n ∈ N and d ∈ [n];

(ii) is strictly upper-bounded by d, for all n;
(iii) equals d

2 for all n = d ∈ N;
(iv) is strictly monotonic increasing in d (with n fixed);
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(v) is strictly monotonic increasing in n (with d fixed); and
(vi) approaches d as n→∞.

Proof. By counting, for each d ≤ n <∞, the density of G
(

V d
n

)

equals Dd
n:

∣

∣E
(

G
(

V d
n

))
∣

∣

|V d
n |

=

∑d
i=1 i

(

n
i

)

∑d
i=0

(

n
i

)
=

n
∑d−1

i=0
i+1
n

(

n
i+1

)

(

n
≤d

) =
n
∑d−1

i=0

(

n−1
i

)

(

n
≤d

) =
n
(

n−1
≤d−1

)

(

n
≤d

)

proving (i). Since for all A,B,C,D > 0, A
B < A+C

B+D iff A
B < C

D , it is sufficient for (iv) to prove that

Dd−1
n <

n(n−1

d−1)
(n

d)
. By (i) and Lemma 16 Dd

n ≤ d, and so

Dd−1
n ≤ d− 1 < d =

n · (n− 1)!

n!

(n− d)!

(n− d)!

d!

(d− 1)!
=
n (n−1)!

(n−d)!(d−1)!

n!
(n−d)!d!

=
n
(

n−1
d−1

)

(

n
d

) .

Monotonicity in d, (i) and Lemma 16 together prove (ii). Now for any n ∈ N

Dn
n =

n
(

n−1
≤n−1

)

(

n
≤n

)

=
n2n−1

2n

=
n

2
,

proving part (iii). Theorem 24 states that V d
n uniquely maximizes density, at Dd

n, over all closed-below
families of VC-dimension d in the n-cube. Thus Dd

n−1 = dens
(

V d
n−1

)

< Dd
n which is part (v). Part (vi)

follows from the asymptotically matching lower-bound of [18]. �

Lemma 23 Consider arbitrary U, V ⊆ {0, 1}n with dens (G (V )) ≥ ρ > 0, |U | ≤ |V | and |E (G (U)) | ≥
|E (G (V )) |. If dens (G (U ∩ V )) < ρ then dens (G (U ∪ V )) > ρ.

Proof. If G (U ∩ V ) has density less than ρ then

|E (G (U ∪ V )) |

|U ∪ V |
≥
|E (G (U)) |+ |E (G (V )) | − |E (G (U ∩ V )) |

|U |+ |V | − |U ∩ V |

≥
2|E (G (V )) | − |E (G (U ∩ V )) |

2|V | − |U ∩ V |

>
2ρ|V | − ρ|U ∩ V |

2|V | − |U ∩ V |
= ρ

�

Theorem 24 (Symmetrization density bound) Every family V ⊆ {0, 1}n with d = VC(V ) has
(V,E) = G (V ) with graph density

|E|

|V |
≤ Dd

n < d . (6)

For n ∈ N and d ∈ [n], V d
n is the unique closed-below VC-dimension d subset of {0, 1}n meeting (6) with

equality. A VC-dimension d family V ⊆ {0, 1}n meets (6) with equality only if V is maximum.

Proof. Allow a permutation g ∈ Sn to act on vector v ∈ {0, 1}n and family V ⊆ {0, 1}n by g(v) =
(

vg(1), . . . , vg(n)

)

and g(V ) = {g(v) | v ∈ V }; and define Sn(V ) =
⋃

g∈Sn
g(V ). Note that a closed-below

VC-dimension d family V ⊆ {0, 1}n satisfies Sn(V ) = V iff V = V d
n , as VC(V ) ≥ d implies V contains
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Fig. 3. The improved graph density bound of Theorem 24. The density bounding Dd
n is plotted (dotted solid)

alongside the previous best d (dashed), for d ∈ {1, 2, 10}.

an embedded d-cube, invariance to Sn implies further that V contains all
(

n
d

)

such cubes, and VC(V ) ≤ d
implies that V ⊆ V d

n . Consider now any

V ∗
n,d ∈ arg min

{

|U |

∣

∣

∣

∣

∣

U ∈ arg max
{U⊆{0,1}n|VC(U)≤d,U closed-below}

dens (G (U))

}

.

For the purposes of contradiction assume that V ∗
n,d 6= g(V ∗

n,d) for some permutation g ∈ Sn. Then if

dens
(

G
(

V ∗
n,d ∩ g(V

∗
n,d)

))

≥ dens
(

G
(

V ∗
n,d

))

then V ∗
n,d would not have been selected above (i.e. a closed-

below family at least as small and dense as V ∗
n,d ∩ g(V ∗

n,d) would have been chosen). Thus

dens
(

G
(

V ∗
n,d ∪ g(V

∗
n,d)

))

> dens
(

G
(

V ∗
n,d

))

by Lemma 23. But then again V ∗
n,d would not have been

selected (i.e. a distinct family at least as dense as V ∗
n,d ∪ g(V

∗
n,d) would have been selected instead, since

every vector in this union contains no more than d 1’s). Hence V ∗
n,d = Sn(V ∗

n,d) and so V ∗
n,d = V d′

n and

by Lemma 22.(i) dens
(

G
(

V ∗
n,d

))

= Dd′

n , for d′ = VC(V ∗
n,d) ≤ d. But by Lemma 22.(iv) this implies that

d = d′ and (6) is true for all closed-below families; V d
n uniquely maximizes density amongst all closed-below

VC-dimension d families in the n-cube.

For an arbitrary V ⊆ {0, 1}n with d = VC(V ) consider any of its closed-below fixed-point (cf. (5)), W ⊆
{0, 1}n. Noting that VC(W ) ≤ d and dens (G (V )) ≤ dens (G (W )) by (2) and (1) & (4) respectively, the
bound (6) follows directly for V . Furthermore if we shift to preserve VC-dimension then VC(W ) = d while
still |V | = |W |. And since dens (G (W )) = Dd

n only if W = V d
n , it follows that V maximizes density amongst

all VC-dimension d families in the n-cube, with dens (G (V )) = Dd
n, only if it is maximum. �

Theorem 24 improves on the VC-dimension density bound of Lemma 16 for low sample sizes (see Figure 3).
This new result immediately implies the following one-inclusion mistake bounds (see Appendix A for the
proof).

Theorem 25 (Symmetrization mistake bound) Consider any n ∈ N and F ⊆ {0, 1}X with VC(F) =
d <∞. Then M̂QG,F ,F (n) ≤

⌈

Dd
n

⌉

/n and M̂QGrand,F ,F (n) ≤ Dd
n/n.
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For small d, n∗(d) = min
{

n ≥ d | d =
⌈

Dd
n

⌉}

—the first n for which the new and old deterministic one-
inclusion mistake bounds coincide—appears to remain very close to 2.96d (see Fig. 4). The randomized
strategy’s mistake bound of Theorem 25 offers a strict improvement over that of [13].

Fig. 4. Calculating the point at which the new mistake bound of Theorem 25 coincides with that of [13,12]. For
each 1 ≤ d ≤ 300, we see that the new bound provides a strict improvement iff n is no more than about 2.96d.

Remark 26 The symmetrization method of Theorem 24 can be extended over subgroups G ⊂ Sn to gain
even tighter estimates of density. Just as the Sn-invariant V d

n is the maximizer of density among all closed-
below V ⊆ V d

n , there exist G-invariant families that maximize the density over all of their sub-families: to
estimate a graph’s density, find the smallest subgroup that admits an invariant family containing the given
graph and count that invariant’s density.

4. Characterizations

We now consider several related characterizations and properties of the one-inclusion graph. Beginning with
Section 4.1 we present an edge-colorability characterization of graphs isomorphic to a one-inclusion graph,
extending results of [7,15,14]. The characterization fully justifies the use of ‘color’ in-place of ‘dimension’
when discussing edges, embedded cubes, etc. Section 4.2 introduces the complementary characterization of
maximum and maximal subsets of the n-cube—an extension of the notion of forbidden labels [8]. Finally the
well-known characterization of VC-dimension 1 maximum classes as trees composed of a single edge of each
color [5], is extended in Section 4.3 to an algebraic topological property of maximum classes of arbitrary
dimension.

4.1. Characterizing one-inclusion-isomorphic graphs

In this section we equate a set of n colors with the n dimensions of {0, 1}n, coloring each edge of a one-
inclusion graph according to the axis to which it is parallel. Constraints on the structure of a one-inclusion
graph can then be re-written in terms of conditions on such a coloring; and from this we can characterize
arbitrary graphs isomorphic to one-inclusion graphs. In particular the colorability characterization facilitates
the useful visualization of subgraphs of the n-cube for n > 3.
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Definition 27 Let G = (V,E) be an arbitrary graph. Then an edge-coloring or simply coloring of G is
a mapping col : E → C into some finite set of colors C. The parity of a color c ∈ C in some subgraph
(W,F ) of G is defined as ⊕(W,F ) (c) =

∑

f∈F 1 [col (f) = c] mod 2. If the parity is congruent to 0 (1)
then we say that c has even (odd) parity in (W,F ). If the subgraph is the whole graph G or is other-
wise understood then we may drop the subgraph parameter as in ⊕ (c) = ⊕G (c). The parity ⊕(W,F ) =
(

⊕(W,F ) (c1) , . . . ,⊕(W,F ) (cn)
)

∈ {0, 1}n of an edge coloring col (·) in subgraph (W,F ) is the vector of pari-
ties taken over the colors {c1, . . . , cn} = C.

We begin with necessary colorability conditions.

Proposition 28 If G = (V,E) is isomorphic to one-inclusion graph G (φ(V )) via the mapping φ : V →
{0, 1}n, then there exists a coloring col : E → C = {c1, . . . , cn} of G satisfying:

(i) Each color has even parity in each cycle of G.
(ii) There do not exist two walks in G with the same initial point and different end points, having the same

color parities.
(iii) If x, y, z ∈ V are vertices such that x, y are connected to z by walks Wx,Wy with

∣

∣⊕Wx
xor ⊕Wy

∣

∣ = 1,
then {x, y} ∈ E. Furthermore, if ⊕φ(Wx) xor ⊕φ(Wy) = {i} ⊂ [n] then the induced coloring in G (φ(V ))
satisfies col ({φ(x), φ(y)}) = ci.

In addition (ii) implies (iv) and is equivalent to (v):

(iv) At each v ∈ V each color appears in the adjoining edges of v at most once.
(v) Any walk in G with distinct start and end vertices must have some odd-parity color.

In particular coloring each {x, y} ∈ E by the index on which φ(x) and φ(y) differ, is one such coloring.

Proof. To prove (ii) ⇒ (iv) consider distinct u, v, w ∈ V such that {u, v}, {v, w} ∈ E. Then (ii) implies
that the single-edge walks (v, u) and (v, w) must have different parities which implies that col ({u, v}) 6=
col ({v, w}) leading to (iv). For the equivalence, suppose that (ii) were false, then take such a pair of falsifying
walks W1,W2 both starting at some s ∈ V and ending at f1 6= f2 ∈ V respectively; the walk W = W−1

1 ◦W2

has all-even parities. But together with f1 6= f2 this implies that W witnesses the falsification of (v). Now
suppose that (ii) is true forG and consider any walkW starting and finishing at distinct s, f ∈ V respectively.
Pick any vertex m along W and consider the components W1,W2 along W starting (ending) at s (m) and m
(f) respectively—at most one of these could be a walk with empty edge-set. It follows that walks W−1

1 and
W2 begin at m and end at s 6= f so that W1 and W2 must have different parities. Hence the composition
W must have at least one odd component-parity implying (v).

Now suppose that (V,E) is a isomorphic to the one-inclusion graph G (V ) ⊆ {0, 1}n, and we must construct
an edge-coloring satisfying the given conditions. We color each edge {u, v} ∈ E with col ({u, v}) := i ∈ [n]
s.t. φ(u)i 6= φ(v)i. This is a well-defined function since {φ(u), φ(v)} is an edge in G (φ(V )), and so exactly
one such i exists. That is, we are coloring G and G (φ(V )) such that each edge’s color is invariant under
φ. (i) follows from the fact that a cycle in {0, 1}n, viewed as a walk with arbitrary start point along the
cycle, must experience an even number of steps in any one direction since the end and start vertices must
coincide. The end vertex of a {0, 1}n-walk with fixed starting vertex is invariant under permutations of
the walk’s step direction sequence, implying (ii) as a special case by reduction of color occurrence counts
modulo 2. Take walks Wx,Wy as in condition (iii). Clearly ⊕Wx

xor ⊕Wy
= φ(x) xor φ(y); thus φ(x) and

φ(y) differ on exactly the single coordinate i ∈ [n] and hence {φ(x), φ(y)} is an edge of G (φ(V )) and
col ({x, y}) = col ({φ(x), φ(y)}) = i. �

Conditions (i) and (ii) together exactly characterize cycles by dictating that a walk is a cycle iff the walk
has all even parities. Condition (iii) additionally says that if we can close a walk with a single one-inclusion
edge e to make a valid cycle (with even parities) then e is indeed included in G (φ(V )).

Proposition 29 Let G = (V,E) be an arbitrary graph with k ∈ N connected components. If G can be edge-
colored with C = {c1, . . . , cn} such that conditions (i)–(iii) of Proposition 28 hold, then G is isomorphic to a
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one-inclusion graph in {0, 1}n+⌈log
2
(k)+1⌉ for k > 1, or to a one-inclusion graph in {0, 1}n for connected G.

Proof. Assume that G is connected and let T = (V,E′) be an arbitrary spanning tree forG, arbitrarily rooted
at some v0 ∈ V . For each v ∈ V let Pv denote the unique path from v0 to v in T , and define ℓ(v) = ⊕Pv

.
Trivially ℓ(v0) = ⊕({v0},∅) = (0, . . . , 0). We claim that ℓ(v) represents a valid one-inclusion isomorphism:
that ℓ(v) is an injection, that the image of V under ℓ(·) induces a one-inclusion graph such that {u, v} ∈ E
iff dhamm (ℓ(u), ℓ(v)) = 1 and with {u, v}, {u, v′} ∈ E, v 6= v′ implying that ℓ(u) xor ℓ(v) 6= ℓ(u) xor ℓ(v′).

By (ii) ℓ(·) is an injection. Suppose that {u, v} ∈ E; if {u, v} ∈ E′ then dhamm (ℓ(u), ℓ(v)) = 1 by construction
of ℓ, so suppose that {u, v} ∈ E\E′. Then W = Pu ◦ {u, v} ◦ P

−1
v is a cycle in G and by (i) must have all

even parities. Thus the parities of Pu and Pv on colors in C\ {col ({u, v})} must coincide and on col ({u, v})
must differ. Thus again dhamm (ℓ(u), ℓ(v)) = 1. Suppose for distinct u, v ∈ V that dhamm (ℓ(u), ℓ(v)) = 1
then by (iii) {u, v} ∈ E; furthermore col ({u, v}) equals the coordinate on which ℓ(u) and ℓ(v) differ. Finally
suppose that {u, v}, {u, v′} ∈ E, v 6= v′. Then together with (iv) this second consequence of (iii) implies that
ℓ(u) xor ℓ(v) = {col ({u, v})} 6= {col ({u, v′})} = ℓ(u) xor ℓ(v′).

If k > 1 then map each component of G into a different copy of the n-cube. There may be common vectors
within the different n-cubes, or vectors that are hamming-1 apart so that new unwanted edges would be
necessary to maintain the one-inclusion property. Thus to maintain both the isomorphism and the one-
inclusion property we embed each image into a different corner of an {0, 1}n+m-cube for sufficiently large
m. It can be shown 2 that for any m ∈ N the {0, 1}m-cube contains a set of 2m−1 vectors that are pairwise
no less than hamming-2 apart. Thus we can pack k points in an ⌈log2(k) + 1⌉-cube and so we embed the k
disconnected one-inclusion graphs constructed as above in corners of the n+ ⌈log2(k) + 1⌉-cube so that no
new edges need to be added to maintain the one-inclusion property. �

In [14], Havel and Morávek prove that a graph (V,E) with vertex-set V ⊆ {0, 1}n admits a coloring satisfying
conditions (i) and (v) iff {u, v} ∈ E implies dhamm (u, v) = 1. This and other earlier work, such as [7,15],
focus on identifying isomorphism with a subgraph of the n-cube, rather than isomorphism with a one-
inclusion graph as considered here where the additional condition (iii) is required. These so-called cubical
(as opposed to necessarily one-inclusion) graphs have applications in networks and parallel algorithms [20];
significant work has gone into enumerating classes of graphs that are cubical/non-cubical and also into the
computational complexity of the corresponding decision problem.

4.2. The complementary view of one-inclusion graphs

Focusing on the complement of a subset of the n-cube turns out to provide a surprisingly useful view on the
combinatorics of such subsets.

Definition 30 The complementary set of a family V ⊆ {0, 1}n is V = {0, 1}n\V . A collection of subcubes C
contained/embedded in V is called d-complete if each subcube is of dimension d and for each choice of I ⊂ [n]
with |I| = d there exists a C ∈ C shattering I (or equivalently C is I-colored). A maximally overlapping
d-complete collection in the n-cube is a minimizer of

∣

∣

⋃

C∈C C
∣

∣ over all d-complete collections in the n-cube.

The key to the usefulness of the complementary set is the following geometric characterization of a finite
concept class VC-dimension.

Theorem 31 V ⊆ {0, 1}n has VC(V ) ≤ d iff V contains a (n− d− 1)-complete collection of subcubes. In
particular this implies that VC(V ) = d iff V contains a (n − d − 1)-complete collection of subcubes but no
(n− d)-complete collection.

Proof. For fixed I ⊆ [n], |I| = k+1, ΠI (V ) 6= {0, 1}k+1 iff there exists an ([n]\I)-colored (n−k−1)-subcube
embedded in V . Thus VC(V ) ≤ k iff V contains a (n − k − 1)-complete collection of subcubes. Now apply

2 Points in diagonally opposite corners—take all vectors with an even number of 1’s.
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this equivalence directly with k = d and its inverse with k = d− 1. This proves VC(V ) ≤ d iff V contains a
(n− d− 1)-complete collection and VC(V ) ≥ d iff V does not contain a (n− d)-complete collection. �

From this result we gain the first natural characterization of maximal classes.

Lemma 32 (Complementary characterization of maximal sets) V ⊆ {0, 1}n of VC(V ) = d is max-
imal iff V is a (n − d − 1)-complete collection of subcubes and properly contains no (n − d − 1)-complete
collection.

Proof. Consider any V ⊆ {0, 1}n with V equal to a (n− d− 1)-complete collection, and properly containing
no other (n−d−1)-complete collection. Then Theorem 31 implies that VC(V ) = d. Adding any point v /∈ V
to V corresponds to removing v from V , thereby breaking at least one of the (n− d− 1)-cubes in V . Since
V ∪ {v} contains no (n− d− 1)-complete collection, VC(V ∪ {v}) ≥ d+ 1 which by definition implies that
V is maximal.

Consider now any maximal V ⊆ {0, 1}n of VC-dimension d. Then by Theorem 31, V contains a (n− d− 1)-
complete collection C. By the maximality of V , V \

⋃

C∈C C = ∅ since any point v ∈ V not covered by C

could be added to V so that V \{v} would still contain
⋃

C∈C C implying the contradictory VC(V ∪{v}) = d.

Thus V contains (but not properly contains) an (n− d− 1)-complete collection. �

We can also study the complement of special maximal classes—maximum classes.

Lemma 33 V d
n = {x ∈ {0, 1}n : ‖x‖1 ≤ d} is the only maximal closed-below family of VC-dimension d in

the n-cube. Thus maximal and maximum coincide for closed-below families.

Proof. Let V ⊆ {0, 1}n be a maximal closed-below family of VC-dimension d. VC(V ) = d implies that V
contains at least one d-cube but no (d+ 1)-cube (where cubes are embedded in V and contain the origin).
Maximality implies that, for every v ∈ V , VC(V ∪ {v}) > d and thus that v must have at least d+ 1 ones.
Hence V = V d

n . �

Theorem 34 (Complementary characterization of maximum sets) For any n, d ∈ N and set V ⊆
{0, 1}n, the following statements are equivalent:

(i) V is maximum with VC(V ) = d;
(ii) V is the union of a maximally overlapping (n − d − 1)-complete collection C, in the sense that C

covers a minimum number of distinct points in the n-cube (|
⋃

C∈C C| = |V | is minimum over all
(n− d− 1)-complete collections);

(iii) V is maximum with VC(V ) = n− d− 1.
(iv) V is the union of a maximally overlapping d-complete collection; and
(v) V and V contain a d-complete and a (n− d− 1)-complete collection respectively.

Proof. Let V ⊆ {0, 1}n be a maximum class with VC-dimension d. By Lemma 32 maximal V has complement
V equal to the union of some (n − d − 1)-complete collection C. If |

⋃

C∈C C| were not minimal over all
(n− d− 1)-collections then there would exist families of VC-dimension d in the n-cube of larger cardinality
than V contradicting the choice of V as maximum. Thus (i) ⇒ (ii). Conversely if V ⊆ {0, 1}n is defined by
V =

⋃

C∈C C, for some maximally overlapping (n − d − 1)-complete collection C, then V can not properly
contain an (n − d − 1)-complete collection and so is maximal of VC-dimension d and furthermore has
maximum cardinality over all VC-dimension d maximal subsets in the n-cube. So (ii) ⇒ (i).

For (iii) and (iv), let V
′

denote V with all n components of each of its vertices flipped. Any sequence of
shifts takes V down to a closed-below fixed-point iff the sequence takes V up to a closed-above fixed-point

iff it takes V
′
down to the (correspondingly flipped) closed-below fixed-point. Since V is maximum, every

sequence of shifts down to a fixed-point maps V to V d
n as that is the unique closed-below family of cardinality

( n
≤d ) and VC-dimension at most d (see Lemma 33); such a sequence takes V up to V d

n and V
′

down to

V n−d−1
n . Now consider a VC-invariant shifting of V

′
down to a closed-below family; this corresponds to a
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shifting of V down to V d
n . Hence the VC-invariant shifting of V

′
has fixed-point V n−d−1

n and so V
′

is a

maximum VC-dimension n− d− 1 family. Since VC(V ) = VC(V
′
) and |V | = |V

′
|, the results follows.

Consider now an arbitrary subset V ⊆ {0, 1}n such that V and V contain a d and a (n − d − 1)-complete
collection of cubes respectively. Denote the unions of these collections Ud and Un−d−1 respectively. By Sauer’s
Lemma, (ii) and (iv), |V | ≥ |Ud| ≥

(

n
≤d

)

and |V | ≥ |Un−d−1| ≥
(

n
≤n−d−1

)

. With |V | = 22n

− |V | this implies

that V = Ud and V = Un−d−1, that Ud and Un−d−1 are the unions of maximally overlapping collections and
so that V is maximum of VC-dimension d. The converse is immediate, and so (i) ⇔ (v). �

Remark 35 The equivalences of (i)–(iv) in Theorem 34, were first shown by Floyd in her thesis [8] under the
guise of forbidden labels. Each complementary n−d−1-cube of a maximum class of VC-dimension d can be
uniquely identified with the intersection over that cube’s concepts’ sets of support—i.e. the cube’s concept with
fewest 1’s. Floyd referred to such a concept as a forbidden label since no concept in the class can be consistent
with that complementary concept. In particular Floyd showed that a maximum class is characterized by its
set of forbidden labels [8, Lemma 3.15] and that such a class has a maximum complement of the appropriate
VC-dimension [8, Lemma 3.20]. She also considered maximum classes on infinite domains, which is beyond
the scope of this paper. The relatively superficial change of viewpoint from forbidden labels to complementary
simplicial complexes may provide a useful geometric characterization of maximum classes. The forbidden
labels of maximal classes, as per Lemma 32, were not discussed in [8].

With Theorem 34.(v), we can prove the following classic result (see e.g. [5,1]) characterizing VC-1 maximum
classes.

Lemma 36 V ⊆ {0, 1}n is maximum of VC-dimension 1 iff G (V ) is a tree with d uniquely colored edges.

Proof. Consider maximum V ⊆ {0, 1}n of VC-dimension 1. By Theorem 34, V equals a union of d uniquely
colored edges and so is acyclic. By Sauer’s Lemma |V | = d + 1. Thus V is a tree with d uniquely colored
edges. Conversely such a tree has VC-dimension 1 and has d+ 1 vertices, and thus is maximum. �

4.3. An algebraic topological property: maximum classes are contractible

We now develop a natural extension of the tree characterization of maximum VC-1 classes of Lemma 36. The
direction of extension replaces vertices and edges of a graph by higher dimensional cubes; in the language of
algebraic topology we are interested in simplicial complexes (like graphs) that are contractible (like trees).
We begin with some preliminaries needed only for this section, then state and prove the main theorem.

Definition 37 A homotopy is a continuous map F : X × [0, 1] → Y . The initial map is F restricted
to X × {0} and the final map is F restricted to X × {1}. We often say that the initial and final maps
are homotopic; and for such maps we refer to the respective product domains as X with the short-hand
understood by context. A homotopy equivalence between spaces X and Y is a pair of maps f : X → Y and
g : Y → X such that f ◦ g, is homotopic to the identity map on Y and g ◦ f is homotopic to the identity
map on X.

Definition 38 A cubical simplicial complex is a union of solid cubes of the form [a1, b1] × . . . × [am, bm]
(for varying but bounded m) such that the intersection of any two cubes is either a cubical face of both cubes
or the empty-set.

Recall that a contractible complex X is one which has the same homotopy type as a point, that is, the
identity map I : X → X is homotopic to the constant map c : X → p a point in X. (Note c is considered as
a map from X to X with image p). Then in our situation of contractibility, the two maps are c considered
as the map from X to {p} and i : {p} → X which takes p to p but considered as a point of X. Then the
composition c◦ i is the identity on {p} so the constant homotopy which is independent of the second variable
in [0, 1] is the homotopy from c ◦ i to the identity on {p} and i ◦ c is homotopic to the identity map I on X
via the homotopy of the identity to the constant map.
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Theorem 39 (Algebraic topological property of maximum classes) Maximum classes of VC-dim.
d in the n-cube form d-dimensional cubical complexes which are contractible subcomplexes of the cubical
structure of the binary hypercube [0, 1]n.

Proof. Consider the projection map f from the n-cube to the (n−1)-cube. We prove our result by induction
on n + d. So by assumption, any Maximum(n′, d′) class with d′ + n′ < d + n is contractible. Let X denote
our Maximum(n, d) class, viewed as a d-dimensional cubical complex. Then we know that f(X) = X ′ is
a contractible d-dimensional cubical complex, since it is a Maximum(n − 1, d) class. Also f projects the
reduction, which is of the form Y × [0, 1], onto Y , where Y is a Maximum(n− 1, d− 1) class, and hence by
the inductive hypothesis is a contractible (d− 1)-dimensional cubical complex.

Now we do some basic algebraic topology. Consider a pair of spaces such as (X,Y × [0, 1]). So the second
space is a subspace of the first one. Then we can examine the effect of collapsing the subspace to a point.
Write this as X/Y × [0, 1] (a quotient space). Now by standard arguments, if the subspace is contractible,
then the quotient space is homotopy equivalent to the original space. In other words, collapsing a contractible
subspace to a point does not affect the homotopy properties of a space. Note here that X is a cubical complex
and Y × [0, 1] is a subcomplex, which is a sufficient condition to apply this collapsing result.

Next, consider the two quotient spaces, X/Y × [0, 1] and f(X)/Y . It also follows by standard results that
these are in fact homeomorphic. In fact, the map f : X 7→ f(X) is one-to-one on X\(Y × [0, 1]) and projects
Y × [0, 1] → Y . So again, since Y × [0, 1] is a subcomplex of X, it follows that the results of collapsing
Y × [0, 1] to a point in X and Y to a point in f(X) are homeomorphic by the map induced by f . But now
we can apply the result of the previous paragraph. Namely we know by induction that f(X) is contractible
and Y is contractible, so f(X)/Y is contractible. But therefore it follows that X/Y × [0, 1] is contractible.
Finally we got this by collapsing a contractible subspace Y × [0, 1] to a point ( the extra factor [0, 1] makes
no difference to contractibility as is easy to see). So X is homotopy equivalent to X/Y × [0, 1] which we have
just proved is contractible, hence X is contractible. (Anything homotopy equivalent to a contractible space
is contractible). �

Note that there are contractible cubical complexes, equal to the union of a complete collection of d-cubes,
which are not maximum classes; and there are also such cubical complexes which are not contractible.

Example 40 Consider the union of a complete collection of 2-cubes in {0, 1}5, shown in Figure 5. This
class is contractible but not maximum: the subset’s VC-dimension and cardinality are 3 and 17 respectively,
whereas the cardinality of a 2-maximum class in the 5-cube is 16.

Example 41 Consider the union of a complete collection of 1-cubes in {0, 1}4, shown in Figure 6. This
class is not contractible or maximum: the subset’s VC-dimension is 2, its cardinality is 6, and it is not even
connected.

Remark 42 Theorems 34 and 39 together lead to the interesting result that a d-complete cubical complex
of fewest vertices is in fact contractible.

5. One-inclusion minimum degree can exceed VC-dimension

Kuzmin and Warmuth conjectured [17] that every VC-dimension d <∞ class has a one-inclusion graph with
minimum degree δ ≤ d. This conjecture was motivated by their Peeling algorithm: if the conjecture were
true then the Peeling algorithm would successfully compress all maximum classes. The following counter-
example, motivated by the complementary view of the one-inclusion graph, resolves the conjecture as false.
See Section 6 for an in-depth discussion of peeling as well as other consequences of this result.

Theorem 43 There exists a family V ⊂ {0, 1}12 with VC-dimension 10 having vertices of graph degree in
{11, 12}.

17



x1 x2 x3 x4 x5

c1 0 0 0 0 0

c2 1 0 0 0 0

c3 0 1 0 0 0

c4 0 0 1 0 0

c5 1 1 0 0 0

c6 0 1 1 0 0

c7 1 0 1 0 0

c8 0 0 0 1 0

c9 1 0 0 1 0

c10 0 1 0 1 0

c11 0 1 1 1 0

c12 0 0 0 1 1

c13 1 0 0 1 1

c14 1 0 0 0 1

c15 0 0 1 0 1

c16 0 1 1 0 1

c17 0 1 0 0 1

Fig. 5. The non-maximum, contractible, 2-complete col-
lection of Example 40.

x1 x2 x3 x4

c1 0 0 0 0

c2 1 0 0 0

c3 1 1 0 0

c4 1 0 1 0

c5 0 1 1 1

c6 0 1 1 0

Fig. 6. The non-maximum, incontractible, 1-complete col-
lection of Example 41.

Proof. We describe V by way of V , which is composed of three vertex-disjoint 4-cubes that are pairwise
hamming-4 separated:

V = S1 ∪ S2 ∪ S3 , where S1 = {0, 1}4 × {(0, 0, 1, 1, 0, 0, 1, 1)}

S2 = {(0, 0, 1, 1)} × {0, 1}4 × {(1, 1, 0, 0)}

S3 = {(1, 1, 0, 0, 1, 1, 0, 0)} × {0, 1}4 .

We first establish that VC(V ) = d = 10. The three subcubes collectively contain edges along each direction
in [12], thus V contains an (n − d − 1) = 1-complete collection of cubes. The subcubes S1, S2, S3 shatter
{1, . . . , 4}, {5, . . . , 8} and {9, . . . , 12} respectively, and since they are pairwise-4 apart V cannot contain an
(n− d) = 2-complete collection. Thus VC(V ) = 10 by Theorem 31.

Since S1, S2, S3 are pairwise-4 separated, any vertex v ∈ V hamming-1 from Si must be hamming-1 from
exactly one w ∈ Si and at least distance-2 from the other two complementary-subcubes; in particular every
v ∈ V can adjoin at most one w ∈ V and so at most one v’s potential {0, 1}12-neighbors can be missing
from V and so v has degree in {11, 12}. �

5.1. The uniform degree-VC ratio

Although the proof of Theorem 43 is tied to the details of the counter-example—particularly that the δ-VC
gap is 1—-the example does immediately extend to related examples of higher VC-dimension, embedded in
higher-dimensional hypercubes.
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Corollary 44 For each d ≥ 10 and n ≥ d+ 2 there exists a family V ⊆ {0, 1}n such that VC(V ) = d and
δ (G (V )) = d+ 1.

Proof. For d = 10 Theorem 43 provides a graph with V10 ⊂ {0, 1}
10+2 with VC-dimension 10 and minimum

degree 11. For any d ≥ 10 we can construct an appropriate Vd ⊂ {0, 1}
d+2, as we did for V10, with the

following complementary set:

V d = Sd,1 ∪ Sd,2 ∪ Sd,3

where

Sd,1 = {0, 1}4 × {(0, 0, 1, 1, 0, 0, 1, 1)} × {0}d−10

Sd,2 = {(0, 0, 1, 1)} × {0, 1}4 × {(1, 1, 0, 0)} × {0}d−10

Sd,3 = {(1, 1, 0, 0, 1, 1, 0, 0)} × {0, 1}d−6

The same arguments for V10 apply for general d > 10 to imply that VC(Vd) = d and δ (G (Vd)) = d+1. Now
to get families in arbitrary n-cubes for n ≥ d+2 (for d ≥ 10) note that we can simply embed the appropriate
Vd in the n-cube, i.e. as Vd × {0}

n−d−2, which does not affect VC-dimension or minimum degree. �

Thus there are ‘many’ counter-examples for which the δ-VC gap is one, but can larger gaps be achieved? A
first step towards answering this question is provided by the following corollary.

Lemma 45 For any n ∈ N and any V ⊆ {0, 1}n, VC(V × V ) = 2VC(V ) and δ (V × V ) = 2δ (V ).

Proof. V shatters index-set I ⊆ [n] iff V ×V shatters I ◦I, where ◦ denotes concatenation. For fixed u, v ∈ V
consider the vertex u ◦ v ∈ V × V . u ◦ v is hamming-1 from some x ◦ y, x, y ∈ {0, 1}n, iff either u = x and
dhamm (v, y) = 1 or v = y and dhamm (u, x) = 1. Thus deg(u ◦ v) = deg(u) + deg(v) and

δ (G (V × V )) = min
v∈V ×V

deg(v) = min
u,v∈V

deg(u ◦ v) = 2min
v∈V

deg(v) = 2δ (V )

�

Corollary 46 For each i ∈ N there exists a family V ∈ {0, 1}12i with δ (G (V ))−VC(V ) = i.

Proof. Consider the family V ⊂ {0, 1}12 with VC(V ) = 10 and δ (V ) = 11 constructed as the counter-
example in Theorem 43. Then by induction on i Lemma 45 implies that for any i ∈ N, the product family
Vi =

∏i
j=1 V ⊂ {0, 1}

12i has VC(Vi) = 10i and δ (G (Vi)) = 11i. �

Corollary 46 demonstrates arbitrary δ-VC gaps. We see that to achieve large gaps it is sufficient for both the
minimum degree and VC-dimension to be large. Whether this is necessary motivates the next definition.

Definition 47 (The uniform degree-VC ratio) The uniform degree-VC ratio is defined as

κ = sup
n∈N

sup
V ⊆{0,1}n

|V |≥1

δ (G (V ))

VC(V )
.

The classic density bound and the full n-cube establish basic upper- and lower-bounds on κ.

Lemma 48 1 ≤ κ < 2.

Proof. The lower-bound is witnessed by the n-cube: for n ∈ N, δ (G ({0, 1}n)) = n and VC({0, 1}n) = n. The
upper-bound follows from the density bound of Theorem 24: for any n ∈ N, V ⊆ {0, 1}n and (V,E) = G (V )

we have that δ (G (V )) ≤

∑

v∈V
deg(v)

|V | ≤ 2|E|
|V | ≤ 2D

VC(V )
n < 2VC(V ). �

The Kuzmin-Warmuth degree conjecture and density bounds are naturally related.
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Proposition 49 The Kuzmin-Warmuth minimum degree conjecture [17] is true iff κ ≤ 1.

Corollary 50 κ ≥ 1.1.

Proof. The example families Vi, i ∈ N, of Theorem 43, Corollary 46 satisfy deg(G(Vi))
VC(Vi)

= 1.1. �

The classic density bound shows that the VC-dimension is bounded below by graph density. Since the
degree conjecture fails, this raises the natural question as to whether there is some intermediate bound for
the VC-dimension that is less than the minimal degree but larger than the density.

6. Consequences for sample compression

Kuzmin and Warmuth [17] proposed the elegant Peeling algorithm (Algorithm 3) and conjectured that it
is an unlabeled d-compression scheme for d-maximum classes. Given V ⊆ {0, 1}n and k ≤ n, one k-peels V
by successively removing vertices of degree less than k from V , at each step removing a minimum-degree
vertex. A successful peeling ultimately reaches ∅. At each stage the currently peeled vertex is assigned its
present incident dimensions as its representative. Thus a k-peeled V admits a mapping r from concepts of
V to representatives of size at most k.

Algorithm 3 The Min-Peeling Algorithm of [17]

Given: C ⊆ {0, 1}X with |X | <∞
Returns: a representation mapping r for C

G←− G (ΠX (C)) ;
while C 6= ∅ do

(v, c) ←− a minimum-degree vertex in G and the concept of C in that vertex’s version space ;
r(c) ←− IG(v) ;
(G,C)←− (G\{v}, C\{c}) ;

end while
return r ;

Kuzmin and Warmuth’s minimum degree conjecture [17] predicted that every VC-dimension d class has a
one-inclusion graph with minimum degree δ ≤ d. If this were true then every d-dimensional class would have
a d-peeling. As a refinement to this conjecture, Kuzmin and Warmuth also conjectured that Dd

n bounds the
density of all one-inclusion graphs and that any graphG of VC-dimension d in the n-cube with dens (G) ≤ Dd

n

has δ (G) ≤ Dd
n. Although we have verified the Dd

n density bound with Theorem 24 our counter-examples
in Section 5 negatively resolve both minimum degree conjectures. Note, however, that our examples are not
maximum classes and so it is still possible that Peeling is a valid maximum unlabeled d-compression scheme.

An immediate consequence of a proof of the correctness of maximum peeling (together with our minimum
degree counter-examples) would be an impossibility statement for embedding maximal classes in certain
maximum classes, giving a lower bound on the quantity in Problem 14.

Proposition 51 (Peeling implies an increase of VC-dim when embedding) If every maximum
class of VC-dimension d in the n-cube can be d-peeled, then there exists a maximal class V which can-
not be embedded in any maximum class of VC-dimension smaller than κ · VC(V ). In particular, for each
i ∈ N there exist maximal classes of VC-dimension 10i that could not be embedding in any maximum class
of VC-dimension equal to or smaller than 11i.

Proof. Suppose that d-maximum classes could be d-peeled and assume that it were possible to embed a
maximal class L of minimum degree δ > d in a d-maximum class M . Then d-peeling the M would proceed
by iteratively removing minimum degree vertices, each of degree at most d. Eventually a minimum degree
vertex will come from the embedding of L; consider the first such vertex. It will have degree at least δ > d
and so it follows that M could not be d-peeled. Thus any maximal class embeddable in a d-maximum class
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must have minimum degree at most d. The particular 10i-maximal classes can be found by adding concepts
to the examples of Section 5. �

7. Expected risk bounds for multiclass prediction

As in the k = 1 case, the key to developing the multiclass one-inclusion mistake bound is in bounding
hypergraph density. We proceed by shifting a graph induced by the one-inclusion hypergraph.

Theorem 52 (One-inclusion hypergraph density bound) For any k, n ∈ N and V ⊆ {0, . . . , k}n, the

one-inclusion hypergraph (V,E) = G (V ) satisfies |E|
|V | ≤ ΨP-dim (V ).

Proof. We begin by replacing the hyperedge structure E with a related edge structure E′. Two vertices
u,v ∈ V are connected in the graph (V,E′) iff there exists an i ∈ [n] such that u,v differ only at i and no
w ∈ V exists such that ui < wi < vi and wj = uj = vj on [n]\{i}. Trivially

|E|

|V |
≤
|E′|

|V |
≤
k|E|

|V |
. (7)

Consider now shifting vertex v ∈ V at shift label t ∈ [k] along shift coordinate s ∈ [n] by

Ss,t(v;V ) = vs(v′
s)

where

vs(i) = (v1, . . . , vs−1, i, vs+1, . . . , vn) for i ∈ {0, . . . , k}

v′s =

{

min
{

x ∈ {0, . . . , vs}
∣

∣

∣
vs(x) /∈ V or x = vs

}

if vs = t

vs otherwise

We shift V on s at t as usual; we shift V on s alone by bubbling vertices down to fill gaps below:

Ss,t(V ) = {Ss,t(v;V ) | v ∈ V }

Ss(V ) = Ss,k(Ss,k−1(. . . Ss,1(V ))) .

Let Ss(E
′) denote the edge-set induced by Ss(V ). The mapping Ss on a vertex-set is injective implying that

|Ss(V )|= |V | . (8)

Consider any {u,v} ∈ E′ with i ∈ [n] denoting the index on which u,v differ. If i = s then no other vertex
w ∈ V can come between u and v during shifting by construction of E′, so {Ss(u;V ), Ss(v;V )} ∈ Ss(E

′).
Now suppose that i 6= s. If both vertices shift down by the same number of labels then they remain connected
in Ss(E

′). Otherwise assume WLOG that Ss(u;V )s < Ss(v;V )s then the shifted vertices will lose their edge,
however since vs did not shift down to Ss(u;V )s there must have been some w ∈ V different from u on
{i, s} such that ws < vs with Ss(w;V )s = Ss(u;V )s. Thus, Ss(w;V ) and Ss(u;V ) differ only on {i} and a
new edge {Ss(w;V ), Ss(u;V )} is in Ss(E

′) that was not in E′ (otherwise u would not have shifted). Thus

|Ss(E
′)| ≥ |E′| . (9)

Suppose that I ⊆ [n] is ΨP -shattered by Ss(V ). If s /∈ I then ΠI (Ss(V )) = ΠI (V ) and I is ΨP -shattered by
V . If s ∈ I then V ΨP -shatters I. Consider witnesses of Ss(V )’s ΨP -shattering of I equal to 1 at s, taking
each value in {0, 1}|I|−1 on I\{s}. These were not shifted and so are witnesses for V . Since these vertices
were not shifted they were blocked by vertices of V of equal values on I\{s} but equal to 0 at s. These are
the remaining half of the witnesses of V ’s ΨP -shattering of I. Thus
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Ss(V ) ΨP -shatters I ⊆ [n]⇒ V ΨP -shatters I . (10)

In a finite number of shifts starting from (V,E′), a closed-below family W with induced edge-set F will
be reached. If I ⊆ [n] is ΨP -shattered by W and |I| = d = ΨP-dim (W ), then since W is closed-below
the translation vector (ψP,1, . . . , ψP,1) (·) = (1 [· < 1] , . . . ,1 [· < 1]) must witness this shattering. Hence each
w ∈W has at most d non-zero components. Counting edges in F by upper-adjoining vertices we have proved
that

(V,E′) finitely shifts to closed-below graph (W,F ) s.t. |F | ≤ |W | ·ΨP-dim (W ) . (11)

Combining properties (7)–(11) we have that |E|
|V | ≤

|E′|
|V | ≤

|F |
|W | ≤ ΨP-dim (W ) ≤ ΨP-dim (V ). �
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x1

0
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0

1
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0 21

x

Fig. 7. The graph induced by the one-inclusion hy-

pergraph of Figure 7, for the shifting process in The-

orem 52. The graph’s density increases to 14

12
and

pseudo-dimension remains fixed.
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0 21

0
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1

x

Fig. 8. The closed-below fixed-point reached by shift-

ing the graph in Figure 7. The graph’s density further

increases to 16

12
while the vertex-set’s pseudo-dimension

does not increase (it remains at 2).

Example 53 Consider the class V ⊂ {0, 1, 2}3 of Example 9, with one-inclusion hypergraph displayed in
Figure 1. G (V ) has density 11

12 while ΨP-dim (V ) = 2. To illustrate the shifting process in the proof of
Theorem 52, consider Figures 7 and 8. The former depicts the graph induced by the hypergraph G (V ); it
has density 14

12 ≥
11
12 and dimension ΨP-dim (V ). The latter figure depicts a closed-below fixed point reached

by shifting on x3 at 1, x3 at 2, x1 at 1, x2 at 1 and finally on x2 at 2. The fixed-point graph has density
16
12 ≥

14
12 and dimension 2 ≤ ΨP-dim (V ).

The remaining arguments from the k = 1 case of [13,12] now imply the multiclass mistake bound.

Theorem 54 (One-inclusion multiclass mistake bounds) Consider any k, n ∈ N and class F ⊆
{0, . . . , k}X with ΨP-dim (F) <∞. The multiclass one-inclusion prediction strategy satisfies M̂QG,F ,F (n) ≤
ΨP-dim (F) /n.

7.1. Proof of the general multiclass mistake bound

We begin with the generalization of Lemma 2.2[13, Corollary 2.1].

Lemma 55 For any n > 1, k ∈ N, any F ⊆ {0, . . . , k}X and any deterministic prediction strategy Q,

M̂Q,F (n) ≤
ˆ̂
MQ,F (n).

Proof. For initially fixed f ∈ F , permutation σ ∈ Sn and distribution P on X , exchangeability of Pn and
linearity of expectation imply
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EP n [1 [Q (sam ((X1, . . . ,Xn−1) , f) ,Xn) 6= f(Xn)]]

= EP n

[

1
[

Q
(

sam
((

Xσ(1), . . . ,Xσ(n−1)

)

, f
)

,Xσ(n)

)

6= f
(

Xσ(n)

)]]

= EP n

[

1

n!

∑

σ∈Sn

1
[

Q
(

sam
((

Xσ(1), . . . ,Xσ(n−1)

)

, f
)

,Xσ(n)

)

6= f
(

Xσ(n)

)]

]

≤ sup
x∈Xn

1

n!

∑

σ∈Sn

1
[

Q
(

sam
((

xσ(1), . . . , xσ(n−1)

)

, f
)

, xσ(n)

)

6= f
(

xσ(n)

)]

.

Taking the supremum over F of both sides of the inequality completes the proof. �

We now generalize [13, Theorem 2.3] to derive multiclass permutation mistake bounds from directed one-
inclusion hypergraph maximum outdegree.

Lemma 56 Consider any F ⊆ {0, . . . , k}X . If ∆(V ) upper-bounds the maximum outdegree of
−−−→
G (V ) for any

V ⊆ {0, . . . , k}n under some understood orientation strategy 3 , then
ˆ̂
MQG,F ,F (n) ≤ supx∈Xn

∆(Πx(F))
n for

all n > 1.

Proof. Observe for fixed f ∈ F , x and sample-order permutation σ ∈ Sn, that given
sam

((

xσ(1), . . . , xσ(n−1)

)

, f
)

strategy QG,F makes a mistake on xσ(n) iff v = (f(x1), . . . , f(xn)) has an

out-going edge in the xσ(n)
th direction. Secondly observe that xi appears in n−1 of the n! permutations of

x. Thus

1

n!

∑

σ∈Sn

1
[

QG,F

(

sam
((

xσ(1), . . . , xσ(n−1)

)

, f
)

, xσ(n)

)

6= f
(

xσ(n)

)]

≤
outdeg ((f (x1) , . . . , f (xn)))

n
.

And taking suprema of both sides leads to

ˆ̂
MQG,F ,F ≤ sup

x∈Xn

sup
f∈F

outdeg ((f (x1) , . . . , f (xn)))

n
= sup

x∈Xn

∆(Πx (F))

n
.

�

Next we follow [12] in a non-constructive orientation of G (Πx (F)).

Lemma 57 For any V ⊆ {0, . . . , k}n the edges of one-inclusion hypergraph G (V ) = (V,E) can be oriented

to give directed one-inclusion hypergraph
−−−→
G (V ) with maximum outdegree at most ⌈maxdens (G (V ))⌉, where

maxdens (G) is the maximum density of all subgraphs of (hyper)graph G.

Proof. The result follows from an application of Hall’s Theorem [11] to subgraphs of the bipartite graph
depicted in Figure 9. We construct the bipartite graph (Vb, Eb) by taking vertices Vb = E ∪V (1) ∪ . . .∪V (d),
where V (1), . . . , V (d) are d = maxdens (G (V )) copies of the hypergraph’s vertex-set V . Then (w(1), w(2)) ∈
Vb × Vb is in undirected edge-set Eb iff there exists i, j ∈ {1, 2} and v ∈ V s.t. i 6= j, w(i) is one of the d
copies of v, and v ∈ w(j) ∈ E. Denote the neighbors of a vertex v ∈ Vb by Γb (v) ⊆ Vb.

Consider now any subgraph (V ′, E′) of G (V ) induced by selecting q = |E′| ≤ |E| hyperedges from the
one-inclusion hypergraph, so that all vertices of V ′ have positive degree in the subgraph—isolated vertices
are removed. Then

3 Notice that the way we orient is unimportant, just that ∆ is a bound on outdegree that depends only on V .
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Fig. 9. The bipartite graph from the proof of Lemma 57. The vertex partitions are (on the left) the

hyperedges of the one-inclusion hypergraph and (on the right) maxdensity-many copies of the vertices
of the one-inclusion hypergraph. Each one-inclusion hyperedge is connected, in the bipartite graph,
to the copies of its neighboring one-inclusion vertices.

∣

∣

∣

∣

∣

⋃

e∈E′

Γb (e)

∣

∣

∣

∣

∣

= d|V ′|

≥ |E′|

= q .

The first equality follows from the fact that the set of vertices adjoining E′ in (V ′, E′) is exactly V ′ and so in
(Vb, Eb) the set of adjoining vertices are the d copies of V ′. The inequality is the statement dens ((V ′, E′)) ≤ d
rearranged. Thus the family of |E| neighbor sets SE = {Γb (e) | e ∈ E} satisfies the following: for all 1 ≤ q ≤
|E|, the union of any q of the sets in SE contains at least q distinct elements. Thus SE satisfies the conditions

of Hall’s Theorem [11] so that each set of neighbors Γb (e) has a distinct representative v
(i)
e ∈ Γb (e) which

is the ith copy of some (k + 1)-valued vector ve ∈ V that adjoins e in G (V ). Each such ve provides an

orientation for hyperedge e (arbitrarily) directed out from v. As the neighbor set representatives v
(i)
e are

unique, when treating different copies of the same G (V ) vertex as distinct, no one-inclusion hypergraph
vertex v can be the representative of more than d hyperedges. Thus the outdegree for each v ∈ V in G (V )
is at most d. �

Finally note that Pollard dimension is non-decreasing with inclusion, so all subgraphs of a one-inclusion
hypergraph G (V ) have Pollard pseudo-dimension at most ΨP-dim (V ).

Combining this observation with Lemmas 55–57 and Theorem 5.1 we see that

M̂QG,F ,F (n)≤
ˆ̂
MQG,F ,F (n)

≤ sup
x∈Xn

⌈maxdens (Πx (F))⌉

n

≤ sup
x∈Xn

ΨP-dim (Πx (F))

n

≤
ΨP-dim (F)

n
.
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7.2. Towards a bound in terms of the Graph dimension

In addition to Theorem 54 the following analogous density bound is possible (implying the analogous mistake
bound), but is in terms of the ΨG-dim instead of the Pollard pseudo-dimension. The result holds for the
special case of all k ∈ N and n = 2. A general bound of this type would allow more direct comparison with
the PAC-based result of Theorem 7.

Lemma 58 For any k ∈ N and family V ⊆ {0, . . . , k}2, dens (G (V )) ≤ ΨG-dim (V ).

Proof. Fix n = 2 and k ∈ N. We will show that for each V ⊆ {0, . . . , k}n there exists a translation vector
ψ ∈ Ψn

G such that dens (G (V )) ≤ dens (G (ψ(V ))) which by Lemma 2.9 is in turn bounded above by
VC(ψ(V )) ≤ ΨG-dim (V ).

ψ

1

x 2

0

0

2

1

x’

x’1

1 B

D

A

C

i

0

k

i

1

2

0 k

D

D

A

C D

B

C D

B

x

Fig. 10. The left-hand figure shows the pre-images for each of the possible elements of the image of
V ⊆ {0, . . . , k}2 under some translation induced by a pair (i1, i2) ∈ {0, . . . , k}2.

We use translations ψ ∈ Ψn
G and the thresholding indices that induce them (i1, . . . , in) ∈ {0, . . . , k}n inter-

changeably, as described in Example 2.6.

Let ψ̂ ∈ Ψ2
G, with its equivalent representation (̂i1, î2) ∈ {0, . . . , k}

2, produce a maximally dense translation

ψ̂ ∈ arg maxψ∈Ψ2

G
dens (G (ψ(V ))). At least one such translation must exist as |Ψ2

G| = (k + 1)2 < ∞. We

split on the density of the one-inclusion graph of the translated T = ψ̂(V ) (see Table 1), using the notation
of Figure 10 for referring to the elements of T : A = (1, 1), B = (0, 1), C = (1, 0),D = (0, 0).

Table 1
Enumeration of the possible densities of the translated one-inclusion graph.

dens (G (T )) T

0 φ, {A}, {B}, {C}, {D}, {A, D}, {B, C}

1

2
{A, B}, {A, C}, {D, B}, {D, C}

2

3
{A, B, C}, {A, B, D}, {A, C, D}, {B, C, D}

1 {A, B, C, D}

Suppose that dens (G (T )) = 0. Assume that |E|
|V | > 0. Then |E| ≥ 1, and we know that there is a row i

(column j) hyperedge which adjoins at least two vertices along that row (column). This is a contradiction,
as we could have positioned (î1, î2) over either of these vertices to get {A,B} ⊆ T ({A,C} ⊆ T ) and as a
consequence dens (G (T )) ≥ 0.5.

Suppose that dens (G (T )) = 1
2 and assume that |E|

|V | >
1
2 . Note that for any non-empty hypergraph (V,E),

2 |E|
|V | ≤

1
|V |

∑

v∈V deg(v). Thus at least one vertex in V must have degree 2 or more. This contradicts our

assumption, as it implies that we could have positioned (î1, î2) over this vertex to have {A,B,C} ⊆ T which
would imply dens (G (T )) ≥ 2

3 .
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Suppose that dens (G (T )) = 2
3 and assume that |E|

|V | >
2
3 . Again there must be at least one vertex in V

of degree at least 2. Assume there was just one such vertex, then counting |E| ≤ |V |+1
2 ≤ 2|V |

3 provided
|V | ≥ 3 which is the case by the assumed density on V . This is a contradiction, so there must be at least
two vertices of degree 2 or more, in V . But then we could have placed (î1, î2) over one of these, to get the
full cube {A,B,C,D} = T .

Finally note that dens (G (V )) ≤ 1 always holds, so combining cases we have proven that for n = 2 |E|
|V | ≤

dens (G (T )). �

7.3. A general lower bound

We now show that the general multiclass mistake bound of Theorem 54 is optimal to within a O(log k)
factor, noting that ΨN is smaller than ΨP by at most such a factor [2, Theorem 10].

Definition 59 We call a family F ⊆ {0, . . . , k}X trivial if either |F| = 1 or there exist no x1, x2 ∈ X and
f1, f2 ∈ F such that f1(x1) 6= f2(x1) and f1(x2) = f2(x2).

Theorem 60 Consider any deterministic or randomized prediction strategy Q and any F ⊆ {0, . . . , k}X

that has 2 ≤ ΨN-dim (F) < ∞ or is non-trivial with ΨN-dim (F) < 2. Then for all n > ΨN-dim (F),
M̂Q,F (n) ≥ max{1,ΨN-dim (F)− 1}/(2en).

Proof. Following [6], we use the probabilistic method to prove the existence of a target in F for which
prediction under a distribution P supported by a ΨN -shattered subset is hard. Consider d = ΨN-dim (F) ≥
2 with n > d. Fix a Z = {z1, . . . , zd} ΨN -shattered by F and then a subset FZ ⊆ F of 2d functions that
ΨN -shatters Z. Define a distribution P on X by P ({zi}) = n−1 for each i ∈ [d−1], P ({zd}) = 1−(d−1)n−1

and P ({x}) = 0 for all x ∈ X\Z. Observe that

PrP n (∀i ∈ [n− 1],Xn 6= Xi)≥PrP n (Xn 6= zd,∀i ∈ [n− 1],Xn 6= Xi)

=
d− 1

n

(

1−
1

n

)n−1

≥
d− 1

en
.

For any f ∈ FZ and x ∈ Zn with xn 6= xi for all i ∈ [n− 1], exactly half of the functions in FZ consistent
with sam ((x1, . . . , xn−1), f) output some i ∈ {0, . . . , k} on xn and the remaining half output some j ∈
{0, . . . , k}\{i}. Thus EUnif(FZ) [1 [Q(sam ((x1, . . . , xn−1, F ) , xn) 6= F (xn)]] = 0.5 for such an x and so

M̂Q,F ≥ M̂Q,FZ
≥ EUnif(FZ)×P n [1 [Q(sam ((X1, . . . ,Xn−1, F ) ,Xn) 6= F (Xn)]] ≥

d− 1

2en
.

The similar case of d < 2 is omitted here and shows that there is a distribution P on X and function f ∈ F
such that EP n [1 [Q(sam ((X1, . . . ,Xn−1), f) ,Xn) 6= f(Xn)]] ≥ (2en)−1. �

8. Conclusions and open problems

In this paper we have developed new shifting machinery and tightened the binary one-inclusion mistake
bound from d/n to Dd

n/n (⌈Dd
n⌉/n for the deterministic strategy). This was made possible through a sym-

metrization density bound, a result recently conjectured by Kuzmin and Warmuth [17]. We have described
the k-class generalization of the prediction learning model and derived a mistake bound for the multiclass
one-inclusion prediction strategy that improves on previous PAC-based expected risk bounds by O(log n)
and that is within O(log k) of optimal. We also presented several characterizations and properties of one-
inclusion graphs and their vertex-sets: a colorability characterization of one-inclusion isomorphic graphs,
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the complementary characterizations of maximum (due to Floyd [8]) and maximal classes, and the algebraic
topological property of maximum classes that d-maximum classes are d-contractible simplicial complexes.
Finally we settled the minimum degree conjecture of Kuzmin and Warmuth [17] as being false, and intro-
duced the uniform VC-degree ratio κ as a measure of how greatly a subset’s dimension and minimum degree
can differ.

Here shifting with invariance to the shattering of a single set was described, however we are aware of
invariance to more complex shatterings. The symmetrization method of Theorem 24 can be extended over
subgroups G ⊂ Sn to gain tighter density bounds.

In addition to the general multiclass mistake bound of ΨP -dim(F)/n (Theorem 54), Lemma 58 provides
the analogous bound in terms of the Graph dimension for all k ∈ N but only the special case of n = 2. It
is open as to whether this result generalizes to n ∈ N. While a general ΨG-based bound would allow direct
comparison with the PAC-based expected risk bound, it should also be noted that ΨP and ΨG are in fact
incomparable—neither ΨG ≤ ΨP nor ΨP ≤ ΨG singly holds for all classes [2, Theorem 1].

While Theorem 24 resolves the conjectured density bound of Kuzmin and Warmuth [17], the remainder of
the conjectured correctness proof for the Peeling compression scheme (and also the less refined minimum
degree conjecture) is shown to be false. A consequence of a proof of correctness for d-peeling maximum classes
of VC-dimension d would be an impossibility result for generally embedding maximal classes in maximum
classes with only a constant additive increase in VC-dimension.
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Appendix A. Proof of Theorem 25

The proof corresponds exactly to the proof of Theorem 10 [13, Theorem 2.3], using the symmetrization
graph density bounded of Theorem 24 in place of the original density bound of Lemma 16 [13, Lemma 2.4].
We provide a high-level sketch of how the results are chained in [13]. The proof of Theorem 54 contains
these results, generalized, in full detail.

For the deterministic strategy, a simple argument [13, Theorem 2.3] shows that this worst-case average over
permutations is at most the supremum over x ∈ Xn of the maximum outdegree of (the oriented) G (Πx (F)),
over n. The essential ingredients are that the strategy makes a mistake iff the correct vertex in the projected
graph (e.g. the vertex corresponding to (f(x1), . . . , f(xn))) has an out-going edge in the nth direction—

or that under permutation σ of the n-sample there is such an edge in the σ(n)
th

direction. Secondly xi

appears last in the sample in n−1 of the n! permutations of the sample. Either the network flow construction
of [13] or the application of Hall’s Theorem [11] of [12] then show that G (V ) can be oriented so that its
maximum outdegree is at most ⌈maxdens (G (V ))⌉ where maxdens (G) denotes the maximum density of all
subgraphs of (hyper)graph G. Theorem 24 then bounds the density of all subgraphs of V by Dd

n, as each
has VC-dimension at most VC(V ).

The randomized strategy follows roughly the same argument. In place of edge-orientation the goal is to assign
a distribution on each edge—a probability on each of the two adjoining vertices. The same argument that

upper-bounds
ˆ̂
M(n) for the deterministic strategy, produces an upper-bound for the randomized strategy in

terms of the sum of the out-going probabilities from a vertex, over all vertices. The network flow construction
assigns probabilities so that each vertex’s total probability is at most the maximum subgraph density. Again,
Theorem 24 implies that this is in turn at most Dd

n.

Lemma 2 [13, Corollary 2.1] finally leads to the mistake bounds for both cases.
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