Almost 2-SAT is Fixed-Parameter Tractable

Igor Razgon and Barry O'Sullivan
\{i.razgon,b.osullivan\}@cs.ucc.ie
Computer Science Department, University College Cork, Ireland

Abstract

We consider the following problem. Given a 2-CNF formula, is it possible to remove at most k clauses so that the resulting 2-CNF formula is satisfiable? This problem is known to different research communities in Theoretical Computer Science under the names 'Almost 2SAT', 'All-but-k 2-SAT', '2-CNF deletion', '2-SAT deletion'. The status of fixed-parameter tractability of this problem is a long-standing open question in the area of Parameterized Complexity. We resolve this open question by proposing an algorithm which solves this problem in $O\left(15^{k} * k * m^{3}\right)$ and thus we show that this problem is fixed-parameter tractable.

1 Introduction

We consider the following problem. Given a 2 -CNF formula, is it possible to remove at most k clauses so that the resulting 2 -CNF formula is satisfiable? This problem is known to different research communities in Theoretical Computer Science under the names 'Almost 2-SAT', 'All-but-k 2-SAT', '2-CNF deletion', '2-SAT deletion'. The status of fixed-parameter tractability of this problem is a long-standing open question in the area of Parameterized Complexity. The question regarding the fixed-parameter tractability of this problem was first raised in 1997 by Mahajan and Raman [12] (see [13] for the journal version). This question has been posed in the book of Niedermeier [16] being referred as one of central challenges for parameterized algorithms design. Finally, in July 2007, this question was included by Fellows in the list of open problems of the Dagstuhl seminar on Parameterized Complexity [6]. In this paper we resolve this open question by proposing an algorithm that solves this problem in $O\left(15^{k} * k * m^{3}\right)$ time. Thus we show that this problem is fixed-parameter tractable (FPT).

1.1 Overview of the algorithm

We start from the terminology we adopt regarding the names of the considered problems. We call Almost 2-SAT (abbreviated as 2-ASAT) the optimization problem whose output is the smallest subset of clauses that have to be removed from the given 2-CNF formula so that the resulting 2-CNF formula is satisfiable. The parameterized 2-ASAT problem gets as additional input a parameter k and the output of this problem is a set of at most k clauses whose removal makes the given $2-\mathrm{CNF}$ formula satisfiable, in case such a set exists. If there is no such
a set, the output is 'NO'. So, the algorithm proposed in this paper solves the parameterized 2-ASAT problem.

We introduce a variation of the 2-ASAT problem called the annotated 2ASAT problem with a single literal abbreviated as 2-ASLASAT. The input of this problem is (F, L, l), where F is a 2 -CNF formula, L is a set of literals such that F is satisfiable w.r.t. L (i.e. has a satisfying assignment which does not include negations of literals of L), l is a single literal. The task is to find a smallest subset of clauses of F such that after their removal the resulting formula is satisfiable w.r.t. $(L \cup\{l\})$. The parameterized versions of the 2-ASLASAT problem is defined analogously to the parameterized 2-ASAT problem.

The description of the algorithm for the parameterized 2-ASAT problem is divided into two parts. In the first part (which is the most important one) we provide an algorithm which solves the parameterized 2-ASLASAT problem in $O^{*}\left(5^{k}\right)$ time. In the second part we show that the parameterized 2-ASAT problem can be solved by $O^{*}\left(3^{k}\right)$ applications of the algorithm solving the parameterized 2 -ASLASAT problem. The resulting runtime follows from the product of the last two complexity expressions. The transformation of the 2-ASAT problem into the 2-ASLASAT problem is based on the iterative compression and can be seen as an adaptation of the method employed in [9] in order to solve the graph bipartization problem. In the rest of the subsection we overview the first part.

In order to show that the 2-ASLASAT problem is FPT, we represent the 2-ASLASAT problem as a separation problem and prove a number of theorems based on this view. In particular, we introduce a notion of a walk from a literal l^{\prime} to a literal $l^{\prime \prime}$ in a 2 -CNF formula F. We define the walk as a sequence ($l^{\prime} \vee$ $\left.l_{1}\right),\left(\neg l_{1} \vee l_{2}\right), \ldots,\left(\neg l_{k-1} \vee l_{k}\right),\left(\neg l_{k} \vee l^{\prime \prime}\right)$ of clauses of F such that literals are ordered within each clause so that the second literal of each clause except the last one is the negation of the first literal of the next clause. Then we prove that, given an instance (F, L, l) of the 2-ASLASAT problem, F is insatisfiable w.r.t. $L \cup\{l\}$ if and only if there is a walk from $\neg L$ (i.e. from the set of negations of the literals of L) to $\neg l$ or a walk from $\neg l$ to $\neg l$. Thus the 2 -ASLASAT problem can be viewed as a problem of finding the smallest set of clauses whose removal breaks all these walks.

Next we define the notion of a path of F as a walk of F with no repeated clauses. Based on this notion we prove a Menger's like theorem. In particular, given an instance (F, L, l) of the 2 -ASLASAT problem, we show that the smallest number of clauses whose removal breaks all the paths from $\neg L$ to $\neg l$ equals the largest number of clause-disjoint paths from $\neg L$ to $\neg l$ (for this result it is essential that F is satisfiable w.r.t. L). Based on this result, we show that the size of the above smallest separator of $\neg L$ from from $\neg l$ can be computed in a polynomial time by a Ford-Fulkerson-like procedure. Thus this size is a polynomially computable lower bound on the size of the solution of (F, L, l).

Next we introduce the notion of a neutral literal l^{*} of (F, L, l) whose main property is that the number of clauses which separate $\neg\left(L \cup\left\{l^{*}\right\}\right)$ from $\neg l$ equals the number of clauses separating $\neg L$ from $\neg l$. Then we prove a theorem stating that in this case the size of a solution of $\left(F, L \cup\left\{l^{*}\right\}, l\right)$ does not exceed the size
of a solution of (F, L, l). The strategy of the proof is similar to the strategy of the proof of the main theorem of [2].

Having proved all the above theorems, we present the algorithm solving the parameterized 2-ASLASAT problem on input (F, L, l, k). The algorithm selects a clause C. If C includes a neutral literal l^{*} then the algorithm applies itself recursively to ($\left.F, L \cup\left\{l^{*}\right\}, l, k\right)$ (this operation is justified by the theorem in the previous paragraph). If not, the algorithm produces at most three branches on one of them it removes C from F and decreases the parameter. On each of the other branches the algorithm adds one of literals of C to L and applies itself recursively without changing the size of the parameter. The search tree produced by the algorithm is bounded because on each branch either the parameter is decreased or the lower bound on the solution size is increased (because the literals of the selected clause are not neutral). Thus on each branch the gap between the parameter and the lower bound of the solution size is decreased which ensures that the size of the search tree exponentially depends only on k and not on the size of F.

1.2 Related Work

As said above, the parameterized 2-ASAT problem has been introduced in 12. In [11], this problem was shown to be a generalization of the parameterized graph bipartization problem, which was also an open problem at that time. The latter problem has been resolved in [18]. The additional contribution of [18] was introducing a method of iterative compression which has had a considerable impact on the design of parameterized algorithms. The most recent algorithms based on this method are currently the best algorithm for the undirected Feedback Vertex Set [3] and the first parameterized algorithm for the famous Direct FVS problem 4. For earlier results based on the iterative compression, we refer the reader to a survey article [10].

The study of parameterized graph separation problems has been initiated in [14]. The technique introduced by the author allowed him to design fixedparameter algorithms for the multiterminal cut problem and for a more general multicut problem, the latter assumed that the number of pairs of terminals to be separated was also a parameter. The latter result has been extended in [8] where fixed-parameter algorithms for multicut problems on several classes of graphs have been proposed. The first $O\left(c^{k} * \operatorname{poly}(n)\right)$ algorithm for the multiterminal cut problem has been proposed in [2]. A reformulation of the main theorem of 2] is an essential part of the parameterized algorithm for the Directed FVS problem [4] mentioned in the previous paragraph. In the present paper, we applied the strategy of proof of this theorem in order to show that adding a neutral literal to the set of literals of the input does not increase the solution size. Along with computing the separators, the methods of computing disjoint paths have been investigated. The research led to intractability results [19] and parameterized approximability results [7].

The parameterized MAX-SAT problem (a complementary problem to the one considered in the present paper) where the goal is to satisfy at least k clauses of
arbitrary sizes received a considerable attention from the researchers resulted in a series of improvements of the worst-case upper bound on the runtime of this problem. Currently the best algorithm is given in [5] and solves this problem in $O\left(1.37^{k}+|F|\right)$, where $|F|$ is the size of the given formula.

1.3 Structure of the Paper

In Section 2 we introduce the terminology which we use in the rest of the paper. In Section 3 we prove the theorems mentioned in the above overview subsection. In Section 4 we present an algorithm for the parameterized 2-ASLASAT problem, prove its correctness and evaluate the runtime. In Section 5 we present the iterative compression based transformation from parameterized 2-ASAT problem to the parameterized 2-SLASAT problem.

2 Terminology

2.1 2-CNF Formulas

A CNF formula F is called a ${ }^{2-C N F}$ formula if each clause of F is of size at most 2. Throughout the paper we make two assumptions regarding the considered 2 CNF formulas. First, we assume that all the clauses of the considered formulas are of size 2 . If a formula has a clause (l) of size 1 then this clause is represented as $(l \vee l)$. Second, everywhere except the very last theorem, we assume that all the clauses of any considered formula are pairwise distinct. 1 This assumption allows us to represent the operation of removal clauses from a formula in a settheoretical manner. In particular, let S be a set of clauses 2. Then $F \backslash S$ is a 2-CNF formula which is the $A N D$ of clauses of F that are not contained in S. The result of removal a single clause C is denoted by $F \backslash C$ rather than $F \backslash\{C\}$.

Let F, S, C, L be a 2 -CNF formula, a set of clauses, a single clause, and a set of literals. Then $\operatorname{Var}(F), \operatorname{Var}(S), \operatorname{Var}(C), \operatorname{Var}(L)$ denote the set of variables whose literals appear in F, S, C, and L, respectively. For a single literal l, we denote by $\operatorname{Var}(l)$ the variable of l. Also we denote by $\operatorname{Clauses}(F)$ the set of clauses of F.

A set of literals L is called non-contradictory if it does not contain a literal and its negation. A literal l satisfies a clause $\left(l_{1} \vee l_{2}\right)$ if $l=l_{1}$ or $l=l_{2}$. Given a 2CNF formula F, a non-contradictory set of literals L such that $\operatorname{Var}(F)=\operatorname{Var}(L)$ and each clause of F is satisfied by at least one literal of L, we call L a satisfying assignment of $F . F$ is satisfiable if it has at least one satisfying assignment. Given a set of literals L, we denote by $\neg L$ the set consisting of negations of all the literals of L. For example, if $L=\left\{l_{1}, l_{2}, \neg l_{3}\right\}$ then $\neg L=\left\{\neg l_{1}, \neg l_{2}, l_{3}\right\}$.

Let F be a 2-CNF formula and L be a set of literals. F is satisfiable with respect to L if F has a satisfying assignment P which does not intersect with

[^0]$\neg L 3$. The notion of satisfiability of a 2 -CNF formula with respect to the given set of literals will be very frequently used in the paper, hence, in order to save the space, we introduce a special notation for this notion. In particular, we say that $S W R T(F, L)$ is true (false) if F is, respectively, satisfiable (not satisfiable) with respect to L. If L consists of a single literal l then we write $S W R T(F, l)$ rather than $S W R T(F,\{l\})$.

2.2 Walks and paths

Definition 1. A walk of the given 2-CNF formula F is a non-empty sequence $w=\left(C_{1}, \ldots, C_{q}\right)$ of (not necessarily distinct) clauses of F having the following property. For each C_{i} one of its literals is specified as the first literal of C_{i}, the other literal is the second literal, and for any two consecutive clauses C_{i} and C_{i+1} the second literal of C_{i} is the negation of the first literal of C_{i+1}.

Let $w=\left(C_{1}, \ldots, C_{q}\right)$ be a walk and let l^{\prime} and $l^{\prime \prime}$ be the first literal of C_{1} and the second literal of C_{q}, respectively. Then we say that l^{\prime} is the first literal of w, that $l^{\prime \prime}$ is the last literal of w, and that w is a walk from l^{\prime} to $l^{\prime \prime}$. Let L be a set of literals such that $l^{\prime} \in L$. Then we say that w is a walk from L. Let $C=\left(l_{1} \vee l_{2}\right)$ be a clause of w. Then l_{1} is a first literal of C with respect to (w.r.t.) w if l_{1} is the first literal of some C_{i} such that $C=C_{i}$. A second literal of a clause with respect to a walk is defined accordingly. (Generally a literal of a clause may be both a first and a second with respect to the given walk, which is shown in the example below). We denote by $\operatorname{reverse}(w)$ a walk $\left(C_{q}, \ldots, C_{1}\right)$ in which the first and the second literals of each entry are exchanged w.r.t. w. Given a clause $C^{\prime \prime}=\left(\neg l^{\prime \prime} \vee l^{*}\right)$, we denote by $w+\left(\neg l^{\prime \prime} \vee l^{*}\right)$ the walk obtained by appending $C^{\prime \prime}$ to the end of w and setting $\neg l^{\prime \prime}$ to be the first literal of the last entry of $w+\left(\neg l^{\prime \prime} \vee l^{*}\right)$ and l^{*} to be the second one. More generally, let w^{\prime} be a walk whose first literal is $\neg l^{\prime \prime}$. Then $w+w^{\prime}$ is the walk obtained by concatenation of w^{\prime} to the end of w with the first and second literals of all entries in w and w^{\prime} preserving their roles in $w+w^{\prime}$.

Definition 2. A path of a 2-CNF formula F is a walk of F all clauses of which are pairwise distinct.

Consider an example demonstrating the above notions. Let $w=\left(l_{1} \vee l_{2}\right),\left(\neg l_{2} \vee\right.$ $\left.l_{3}\right),\left(\neg l_{3} \vee l_{4}\right),\left(\neg l_{4} \vee \neg l_{3}\right),\left(l_{3} \vee \neg l_{2}\right),\left(l_{2} \vee l_{5}\right)$ be a walk of some 2-CNF formula presented so that the first literals of all entries appear before the second literals. Then l_{1} and l_{5} are the first and the last literals of w, respectively, and hence w is a walk from l_{1} to l_{5}. The clause $\left(\neg l_{2} \vee l_{3}\right)$ has an interesting property that both its literals are first literals of this clause with respect to w (and therefore the second literals as well). The second item of w witnesses $\neg l_{2}$ being a first literal of $\left(\neg l_{2} \vee l_{3}\right)$ w.r.t. w (and hence l_{3} being a second one), while the second item of w from the end provides the witness for l_{3} being

[^1]a first literal of $\left(\neg l_{2} \vee l_{3}\right)$ w.r.t. w (and hence $\neg l_{2}$ being a second one). The rest of clauses do not possess this property. For example l_{1} is the first literal of $\left(l_{1} \vee l_{2}\right)$ w.r.t. w (as witnessed by the first entry) but not the second one. Next, $\operatorname{reverse}(w)=\left(l_{5} \vee l_{2}\right),\left(\neg l_{2} \vee l_{3}\right),\left(\neg l_{3} \vee \neg l_{4}\right),\left(l_{4} \vee \neg l_{3}\right),\left(l_{3} \vee \neg l_{2}\right),\left(l_{2} \vee l_{1}\right)$. Let w_{1} be the prefix of w containing all the clauses except the last one. Then $w=w_{1}+\left(l_{2} \vee l_{5}\right)$. Let w_{2} be the prefix of w containing the first 4 entries, w_{3} be the suffix of w containing the last 2 entries. Then $w=w_{2}+w_{3}$. Finally, observe that w is not a path due to the repeated occurrence of clause $\left(\neg l_{2} \vee l_{3}\right)$, while w_{2} is a path.

2.3 2-ASAT and 2-ASLASAT problems.

Definition 3. 1. A Culprit Set (CS) of a 2-CNF formula F is a subset S of Clauses (F) such that $F \backslash S$ is satisfiable.
2. Let (F, L, l) be a triple where F is a 2-CNF formula, L is a non-contradictory set of literals such that $\operatorname{SWRT}(F, L)$ is true and l s a literal such that $\operatorname{Var}(l) \notin \operatorname{Var}(L) . A C S$ of (F, L, l) is a subset S of $C l a u s e s(F)$ such that $S W R T(F \backslash S, L \cup\{l\})$ is true.

Having defined a CS with respect to two different structures, we define problems of finding a smallest CS (SCS) with respect to these structures. In particular Almost 2-SAT problem (2-ASAT problem) is defined as follows: given a 2-CNF formula F, find an SCS of F. The Annotated Almost 2-SAT problem with single literal (2-ASLASAT problem) is defined as follows: given the triplet (F, L, l) as in the last item of Definition 3, find an SCS of (F, L, l).

Now we introduce parameterized versions of the 2-ASAT and 2-ASLASAT problems, where the parameter restricts the size of a CS. In particular, the input of the parameterized 2-ASAT problem is (F, k), where F is a 2-CNF formula and k is a non-negative integer. The output is a CS of F of size at most k, if one exists. Otherwise, the output is 'NO'. The input of the parameterized 2ASLASAT problem is (F, L, l, k) where (F, L, l) is as specified in Definition 3. The output is a CS of (F, L, l) of size at most k, if there is such one. Otherwise, the output is 'NO'.

3 2-ASLASAT problem: related theorems.

3.1 Basic Lemmas.

Lemma 1. Let F be a $2-\mathrm{CNF}$ formula and w be a walk of F. Let l_{x} and l_{y} be the first and the last literals of w, respectively. Then $S W R T\left(F,\left\{\neg l_{x}, \neg l_{y}\right\}\right)$ is false. In particular, if $l_{x}=l_{y}$ then $\operatorname{SWRT}\left(F, \neg l_{x}\right)$ is false.

Proof. Since w is a walk of $F, \operatorname{Var}\left(l_{x}\right) \in \operatorname{Var}(F)$ and $\operatorname{Var}\left(l_{y}\right) \in \operatorname{Var}(F)$. Consequently for any satisfying assignment P of F both $\operatorname{Var}\left(l_{x}\right)$ and $\operatorname{Var}\left(l_{y}\right)$ belong to $\operatorname{Var}(P)$. Therefore $S W R T\left(F,\left\{\neg l_{x}, \neg l_{y}\right\}\right)$ may be true only if there is a satisfying assignment of F containing both $\neg l_{x}$ and $\neg l_{y}$. We going to show that
this is impossible by induction on the length of w This is clear if $|w|=1$ because in this case $w=\left(l_{x} \vee l_{y}\right)$. Assume that $|w|>1$ and the statement is satisfied for all shorter walks. Then $w=w^{\prime}+\left(l_{t} \vee l_{y}\right)$, where w^{\prime} is a walk of w from l_{x} to $\neg l_{t}$. By the induction assumption $S W R T\left(F,\left\{\neg l_{x}, l_{t}\right\}\right)$ is false and hence any satisfying assignment of F containing $\neg l_{x}$ contains $\neg l_{t}$ and hence contains l_{y}. As we noted above in the proof, this implies that $S W R T\left(F,\left\{\neg l_{x}, \neg l_{y}\right\}\right)$ is false.

Lemma 2. Let F be a 2-CNF formula and let L be a set of literals such that $S W R T(F, L)$ is true. Let $C=\left(l_{1} \vee l_{2}\right)$ be a clause of F and let w be a walk of F from $\neg L$ containing C and assume that l_{1} is a first literal of C w.r.t. w. Then l_{1} is not a second literal of C w.r.t. any walk from $\neg L$.

Proof. Let w^{\prime} be a walk of F from $\neg L$ which contains C so that l_{1} is a second literal of C w.r.t. w^{\prime}. Then w^{\prime} has a prefix $w^{\prime \prime}$ whose last literal is l_{1}. Let l^{\prime} be the first literal of w^{\prime} (and hence of $w^{\prime \prime}$). According to Lemma 1 is false. Therefore if $l_{1} \in \neg L$ then $S W R T(F, L)$ is false (because $\left\{\neg l_{1}, \neg l^{\prime}\right\} \subseteq L$) in contradiction to the conditions of the lemma. Thus $l_{1} \notin \neg L$ and hence l_{1} is not the first literal of w. Consequently, w has a prefix w^{*} whose last literal is $\neg l_{1}$. Let l^{*} be the first literal of w (and hence of w^{*}). Then $w^{*}+\operatorname{reverse}\left(w^{\prime \prime}\right)$ is a walk from l^{*} to l^{\prime}, both belong to $\neg L$. According to Lemma 1. $S W R T\left(F,\left\{\neg l^{*}, \neg l^{\prime}\right\}\right)$ is false and hence $S W R T(F, L)$ is false in contradiction to the conditions of the lemma. It follows that the walk w^{\prime} does not exist and the present lemma is correct.

Lemma 3. Let F be a 2-CNF formula, let L be a set of literals such that $S W R T(F, L)$ is true, and let w be a walk from $\neg L$. Then F has a path p with the same first and last literals as w and the set of clauses of p is a subset of the set of clauses of w.

Proof. The proof is by induction on the length of w. The statement is clear if $|w|=1$ because w itself is the desired path. Assume that $|w|>1$ and the lemma holds for all shorter paths from $\neg L$. If all clauses of w are distinct then w is the desired path. Otherwise, let $w=\left(C_{1}, \ldots, C_{q}\right)$ and assume that $C_{i}=C_{j}$ where $1 \leq i<j \leq q$. By Lemma 2, C_{i} and C_{j} have the same first (and, of course, the second) literal. If $i=1$, let w^{\prime} be the suffix of w starting at C_{j}. Otherwise, if $C_{j}=q$, let w^{\prime} be the prefix of w ending at C_{i}. If none of the above happens then $w^{\prime}=\left(C_{1}, \ldots, C_{i}, C_{j+1}, C_{q}\right)$. In all the cases, w^{\prime} is a walk of F with the same first and last literals as w such that $\left|w^{\prime}\right|<|w|$ and the set of clauses of w^{\prime} is a subset of the set of clauses of w. The desired path is extracted from w^{\prime} by the induction assumption.

3.2 A non-empty SCS of (F, L, l) : necessary and sufficient condition

Theorem 1. Let (F, L, l) be an instance of the 2-ASLASAT problem. Then $S W R T(F, L \cup\{l\})$ is false if and only if F has a walk from $\neg l$ to $\neg l$ or a walk from $\neg L$ to $\neg l$.

Proof. Assume that F has a walk from $\neg l$ to $\neg l$ or from $\neg l^{\prime}$ to $\neg l$ such that $l^{\prime} \in L$. Then, according to Lemma 1 $S W R T(F, l)$ is false or $S W R T\left(F,\left\{l^{\prime}, l\right\}\right)$ is false, respectively. Clearly in both cases $S W R T(F, L \cup\{l\})$ is false as $L \cup\{l\}$ is, by definition, a superset of both $\{l\}$ and $\left\{l^{\prime}, l\right\}$.

Assume now that $S W R T(F, L \cup\{l\})$ is false. Let I be a set of literals including l and all literals l^{\prime} such that F has a walk from $\neg l$ to l^{\prime}. Let S be the set of all clauses of F satisfied by I.

Assume that I is non-contradictory and does not intersect with $\neg L$. Let P be a satisfying assignment of F which does not intersect with $\neg L$ (such an assignment exists according to definition of the 2-ASLASAT problem). Let P^{\prime} be the subset of P such that $\operatorname{Var}\left(P^{\prime}\right)=\operatorname{Var}(F) \backslash \operatorname{Var}(I)$. Observe that $P^{\prime} \cup$ I is non-contradictory. Indeed, P^{\prime} is non-contradictory as being a subset of a satisfying assignment P of F, I is non-contradictory by assumption, and due to the disjointness of $\operatorname{Var}(I)$ and $\operatorname{Var}\left(P^{\prime}\right)$, there is no literal $l^{\prime} \in I$ and $\neg l^{\prime} \in P^{\prime}$. Next, note that every clause C of F is satisfied by $P^{\prime} \cup I$. Indeed, if $C \in S$ then C is satisfied by I, by definition of I. Otherwise, assume first that $\operatorname{Var}(C) \cap$ $\operatorname{Var}(I) \neq \emptyset$. Then $C=\left(\neg l^{\prime} \vee l^{\prime \prime}\right)$, where $l^{\prime} \in I$. Then either $l^{\prime}=l$ or F has a walk w from $\neg l$ to l^{\prime}. Consequently, either $\left(\neg l^{\prime} \vee l^{\prime \prime}\right)$ or $w+\left(\neg l^{\prime} \vee l^{\prime \prime}\right)$ is a walk from $\neg l$ to $l^{\prime \prime}$ witnessing that $l^{\prime \prime} \in I$ and hence $C \in S$, a contradiction. It remains to conclude that $\operatorname{Var}(C) \cap \operatorname{Var}(I)=\emptyset$, i.e. that $\operatorname{Var}(C) \subseteq \operatorname{Var}\left(P^{\prime}\right)$. If P^{\prime} contains contradictions of both literals of C then $P \backslash P^{\prime}$ contains at least one literal of C implying that P contains a literal and its negation in contradiction to the definition of P. Consequently, C is satisfied by P^{\prime}. Taking into account that $\operatorname{Var}\left(P^{\prime} \cup I\right)=\operatorname{Var}(F), P^{\prime} \cup I$ is a satisfying assignment of F. Observe that $P^{\prime} \cup I$ does not intersect with $\neg(L \cup l)$. Indeed, both I and P^{\prime} do not intersect with $\neg L$, the former by assumption the latter by definition. Next, $l \in I$ and $P^{\prime} \cup I$ is noncontradictory, hence $\neg l \notin P^{\prime} \cup I$. Thus $P^{\prime} \cup I$ witnesses that $S W R T(F, L \cup\{l\})$ is true in contradiction to our assumption. Thus our assumption regarding I made in the beginning of the present paragraph is incorrect.

It follows from the previous paragraph that either I contains a literal and its negation or I intersects with $\neg L$. In the former case if $\neg l \in I$ then by definition of I there is a walk from $\neg l$ to $\neg l$. Otherwise I contains l^{\prime} and $\neg l^{\prime}$ such that $\operatorname{Var}\left(l^{\prime}\right) \neq \operatorname{Var}(l)$. Let w_{1} be the walk from $\neg l$ to l^{\prime} and let w_{2} be the walk from $\neg l$ to $\neg l^{\prime}$ (both walks exist according tot he definition of I). Clearly $w_{1}+\operatorname{reverse}\left(w_{2}\right)$ is a walk from $\neg l$ to $\neg l$. In the latter case, F has a walk w from $\neg l$ to $\neg l^{\prime}$ such that $l^{\prime} \in L$. Clearly $\operatorname{reverse}(w)$ is a walk from $\neg L$ to $\neg l$. Thus we have shown that if $S W R T(F, L \cup\{l\})$ is false then F has a walk from $\neg l$ to $\neg l$ or a walk from $\neg L$ to $\neg l$, which completes the proof of the theorem.

3.3 Smallest Separators

Definition 4. A set SC of clauses of a 2-CNF formula F is a separator with respect to a set of literals L and literal l_{y} if $F \backslash S C$ does not have a path from L to l_{y}.

We denote by $\operatorname{Sep} \operatorname{Size}\left(F, L, l_{y}\right)$ the size of a smallest separator of F w.r.t. L and l_{y} and by $\operatorname{OptSep}\left(F, L, l_{y}\right)$ the set of all smallest separators of F w.r.t. L and l_{y}. Thus for any $S \in \operatorname{OptSep}\left(F, L, l_{y}\right),|S|=\operatorname{SepSize}\left(F, L, l_{y}\right)$.

Given the above definition, we derive an easy corollary from Lemma 1
Corollary 1. Let (F, L, l) be an instance of the 2-ASLASAT problem. Then the size of an SCS of this instance is greater than or equal to $\operatorname{SepSize}(F, \neg L, \neg l)$.

Proof. Assume by contradiction that S is a CS of (F, L, l) such that $|S|<$ $\operatorname{SepSize}(F, \neg L, \neg l)$. Then $F \backslash S$ has at least one path p from a literal $\neg l^{\prime}\left(l^{\prime} \in L\right)$ to $\neg l$. According to Lemma [1 $F \backslash S$ is not satisfiable w.r.t. $\left\{l^{\prime}, l\right\}$ and hence it is not satisfiable with respect to $L \cup\{l\}$ which is a superset of $\left\{l^{\prime}, l\right\}$. That is, S is not a CS of (F, L, l), a contradiction.

Let $D=(V, A)$ be the implication graph on F which is a digraph whose set $V(D)$ of nodes corresponds to the set of literals of the variables of F and $\left(l_{1}, l_{2}\right)$ is an arc in its set $A(D)$ of arcs if and only if $\left(\neg l_{1} \vee l_{2}\right) \in \operatorname{Clauses}(F)$. We say that arc $\left(l_{1}, l_{2}\right)$ represents the clause $\left(\neg l_{1} \vee l_{2}\right)$. Note that each arc represents exactly one clause while a clause including two distinct literals is represented by two different arcs. In particular, if $\neg l_{1} \neq l_{2}$, the other arc which represents $\left(\neg l_{1} \vee l_{2}\right)$ is $\left(\neg l_{2}, \neg l_{1}\right)$. In the context of D we denote by L and $\neg L$ the set of nodes corresponding to the literals of L and $\neg L$, respectively. We adopt the definition of a walk and a path of a digraph given in [1]. Taking into account that all the walks of D considered in this paper are non-empty we represent them as the sequences of arcs instead of alternative sequences of arcs and nodes. In other words, if $w=\left(x_{1}, e_{1}, \ldots, x_{q}, e_{q}, x_{q+1}\right)$ is a walk of D, we represent it as $\left(e_{1}, \ldots, e_{q}\right)$. The arc separator of D w.r.t. a set of literals L and a literal l is a set of arcs such that the graph resulting from their removal has no path from L to l. Similarly to the case with 2 -CNF formulas, we denote by $\operatorname{ArcSepSize}(D, L, l)$ the size of the smallest arc separator of D w.r.t. L and l.

Theorem 2. Let F be a 2-CNF formula, let L be a set of literals such that $S W R T(F, \neg L)$ is true. Let l_{y} be a literal such that $\operatorname{Var}\left(l_{y}\right) \notin \operatorname{Var}(L)$. Then the following statements hold.

1. The largest number MaxPaths $\left(F, L, l_{y}\right)$ of clause-disjoint paths from L to l_{y} in F equals the largest number MaxPaths $\left(D, \neg L, l_{y}\right)$ of arc-disjoint paths from $\neg L$ to l_{y} in D.
2. $\operatorname{SepSize}\left(F, L, l_{y}\right)=\operatorname{ArcSepSize}\left(D, \neg L, l_{y}\right)$
3. $\operatorname{MaxPaths}\left(F, L, l_{y}\right)=\operatorname{SepSize}\left(F, L, l_{y}\right)$.

Note that generally (if there is no requirement that $\operatorname{SWRT}(F, \neg L)$ is true) $\operatorname{SepSize}\left(F, L, l_{y}\right)$ may differ from $\operatorname{ArcSepSize}\left(D, \neg L, l_{y}\right)$. The reason is that a separator of D may correspond to a smaller separator of F due to the fact that some arcs may represent the same clause. As we will see in the proof, the requirement that $S W R T(F, \neg L)$ is true rules out this possibility.

Proof of Theorem 2, We may safely assume that $\operatorname{Var}(L) \subseteq \operatorname{Var}(F)$ because literals whose variables do not belong to $\operatorname{Var}(F)$ cannot be starting points
of paths in F. Also since $l_{y} \notin \neg L$ any walk from $\neg L$ to l_{y} in D is non-empty. We use this fact implicitly in the proof without referring to it.

Let $w=\left(C_{1}, \ldots, C_{q}\right)$ be a walk from l^{\prime} to $l^{\prime \prime}$ in F. Let $w(D)=\left(a_{1}, \ldots, a_{q}\right)$ be the sequence of arcs of D constructed as follows. For each $C_{i}=\left(l_{1} \vee l_{2}\right)$ (we assume that l_{1} is the first literal of $\left.C_{i}\right), a_{i}=\left(\neg l_{1}, l_{2}\right)$. Then $\neg l^{\prime}$ is the tail of a_{1} and $l^{\prime \prime}$ is the head of a_{q}. Also, by definition of w, for any two arcs a_{i} and a_{i+1}, the head of a_{i} is the same as the tail of a_{i+1}. It follows that $w(D)$ is a walk from $\neg l^{\prime}$ to $l^{\prime \prime}$ in D such that each a_{i} represents C_{i}. Now, let $\mathbf{P}=\left\{p_{1}, \ldots, p_{t}\right\}$ be a set of clause-disjoint paths from L to l_{y} in F. Then $\left\{p_{1}(D), \ldots, p_{q}(D)\right\}$ is a set of walks from $\neg L$ to l_{y} in D which are arc-disjoint. Indeed, if an arc a belongs to both $p_{i}(D)$ and $p_{j}(D)$ (where $\left.i \neq j\right)$ then, due to the disjointness of p_{i} and p_{j}, this arc a represents two different clauses which is impossible by definition. Since every $p_{i}(D)$ includes a path $p_{i}^{\prime}(D)$ with the same first and last nodes and the set of arcs being a subset of the set of arcs of $p_{i}(D)$ (see [1], Proposition 4.1.), we can specify t arc-disjoint paths $\left\{p_{1}^{\prime}(D), \ldots p_{t}^{\prime}(D)\right\}$ from $\neg L$ to l_{y}, which shows that $\operatorname{MaxPaths}\left(D, \neg L, l_{y}\right) \geq \operatorname{MaxPaths}\left(F, L, l_{y}\right)$.

Conversely, let $p=\left(a_{1}, \ldots, a_{q}\right)$ be a path from $\neg l^{\prime}$ to $l^{\prime \prime}$ in D. Let $p(F)$ be the sequence $\left(C_{1}, \ldots, C_{q}\right)$ of clauses defined as follows. For each $a_{i}=\left(\neg l_{1}, l_{2}\right)$, $C_{i}=\left(l_{1} \vee l_{2}\right), l_{1}$ and l_{2} are specified as the first and the second literals of C_{i}, respectively. Then l^{\prime} is the first literal of $C_{1}, l^{\prime \prime}$ is the last literal of C_{q} and for each consecutive pair C_{i} and C_{i+1} the second literal of C_{i} is the negation of the first literal of C_{i+1}. In other words, $p(F)$ is a walk from l^{\prime} to $l^{\prime \prime}$ in F where each C_{i} is represented by a_{i}. Now, let $\mathbf{P}=\left\{p_{1}, \ldots, p_{t}\right\}$ be a set of arc-disjoint paths from $\neg L$ to l_{y} in D. Then $\left\{p_{1}(F), \ldots p_{t}(F)\right\}$ is a set of walks from L to l_{y} in F. Observe that these walks are clause-disjoint. Indeed, if a clause $C=\left(l_{1} \vee l_{2}\right)$ belongs to both $p_{i}(F)$ and $p_{j}(F)$ (where $i \neq j$) then ($l_{1} \vee l_{2}$) is represented by arc, say, $\left(\neg l_{1}, l_{2}\right)$ in p_{i} and by arc $\left(\neg l_{2}, l_{1}\right)$ in p_{j}. By construction of $p_{i}(F)$ and $p_{j}(F), l_{1}$ is the first literal of C w.r.t. $p_{i}(F)$ and the second literal of C w.r.t. $p_{j}(F)$ which contradicts Lemma 2. That is the walks of $\left\{p_{1}(F), \ldots, p_{t}(F)\right\}$ are clause-disjoint. Also, by Lemma 3, for each $p_{i}(F)$, there is a path $p_{i}^{\prime}(F)$ of F with the same first and last literals as $p_{i}(F)$ and whose set of clauses is a subset of the set of clauses of $p_{i}(F)$. Clearly the paths $\left\{p_{1}^{\prime}(F), \ldots, p_{t}^{\prime}(F)\right\}$ are clause disjoint. Thus $\operatorname{MaxPaths}\left(D, \neg L, l_{y}\right) \leq \operatorname{MaxPaths}\left(F, L, l_{y}\right)$. Combining this statement with the statement proven in the previous paragraph, we conclude that $\operatorname{MaxPaths}\left(D, \neg L, l_{y}\right)=\operatorname{MaxPaths}\left(F, L, l_{y}\right)$.

Let $S \in \operatorname{OptSep}\left(F, L, l_{y}\right)$. For each $C \in S$, let p_{C} be a path of F from L to l_{y} including C (such a path necessarily exists due to the minimality of S). Let $a(C)$ be an arc of $p_{C}(D)$ which represents C. Let $S(D)$ be the set of all $a(C)$. We are going to show that $S(D)$ separates $\neg L$ from l_{y} in D. Assume that this is not so and let p^{*} be a path from $\neg L$ to l_{y} in $D \backslash S(D)$. Then, according to Lemma 3 $p^{*}(F)$ necessarily includes a path from L to l_{y} and hence $p^{*}(F)$ contains at least one clause $C=\left(l_{1} \vee l_{2}\right)$ of S. Let a^{*} be an arc of p^{*} which represents C. By definition of of $p^{*}, a^{*} \neq a(C)$ and hence $a(C)$ is, say $\left(\neg l_{1}, l_{2}\right)$ and a^{*} is $\left(\neg l_{2}, l_{1}\right)$. By definition of $p_{C}(D)$ and $p^{*}(F), l_{1}$ is the first literal of C w.r.t. p_{C} and the second one w.r.t. $p^{*}(F)$ which contradicts Lemma 2. This shows that
$S(D)$ separates $\neg L$ from l_{y} in D and, consequently, taking into account that $|S(D)|=|S|, \operatorname{ArcSepSize}\left(D, \neg L, l_{y}\right) \leq \operatorname{SepSize}\left(F, L, l_{y}\right)$.

Let S be a smallest arc separator of D w.r.t. $\neg L$ and l_{y}. For each $a \in S$, let p_{a} be a path of D from $\neg L$ to l_{y} which includes a. Let $C(a)$ be a clause of $p_{a}(F)$ which is represented by a. Denote the set of all $C(a)$ by $S(F)$. Then we can show that $S(F)$ is a separator w.r.t. L and l_{y} in F. In particular, let p^{*} be a path from L to l_{y} in $F \backslash S(F)$. Then $p^{*}(D)$ necessarily includes an $\operatorname{arc} a \in S$. Let C^{*} be a clause of p^{*} represented by a. Since $C^{*} \neq C(a)$, the arc a represents two different clauses in contradiction to the definition of D. Consequently, taking into account that $|S(F)| \leq|S|, \operatorname{ArcSepSize}\left(D, \neg L, l_{y}\right) \geq \operatorname{SepSize}\left(F, L, l_{y}\right)$. Considering the previous paragraph we conclude that $\operatorname{ArcSepSize}\left(D, \neg L, l_{y}\right)=\operatorname{SepSize}\left(F, L, l_{y}\right)$.

Let PF be a largest set of clause-disjoint paths from L to l_{y} in F and let $\mathbf{P D}$ be a largest set of arc-disjoint paths from $\neg L$ to l_{y} in D. It follows from the above proof that in order to show that $|\mathbf{P F}|=\operatorname{SepSize}\left(F, L, l_{y}\right)$, it is sufficient to show that $|\mathbf{P D}|=\operatorname{ArcSepSize}\left(D, \neg L, l_{y}\right)$. Taking into account that by our assumption $l_{y} \notin \neg L$, the latter can be easily derived by contracting the vertices of $\neg L$ into one vertex and applying the arc version of Menger's Theorem for directed graphs [1].

3.4 Neutral Literals

Definition 5. Let (F, L, l) be an instance of the 2-aslasat problem. A literal l^{*} is a neutral literal of (F, L, l) if $\left(F, L \cup\left\{l^{*}\right\}, l\right)$ is a valid instance of 2-ASLASAT problem and SepSize $(F, \neg L, \neg l)=\operatorname{SepSize}\left(F, \neg\left(L \cup\left\{l^{*}\right\}\right), \neg l\right)$.

The following theorem has a crucial role in the design of the algorithm provided in the next section.

Theorem 3. Let (F, L, l) be an instance of the 2-ASALSAT problem and let l^{*} be a neutral literal of (F, L, l). Then there is a CS of $\left(F, L \cup\left\{l^{*}\right\}, l\right)$ of size smaller than or equal to the size of an $S C S$ of (F, L, l).

Before we prove Theorem 3, we extend our terminology.
Definition 6. Let (F, L, l) be an instance of the 2-ASLASAT problem. A clause $C=\left(l_{1} \vee l_{2}\right)$ of F is reachable from $\neg L$ if there is a walk w from $\neg L$ including C. Assume that l_{1} is a first literal of C w.r.t. w. Then l_{1} is called the main literal of C w.r.t. (F, L, l).

Given Definition 6 Lemma 2 immediately implies the following corollary.
Corollary 2. Let (F, L, l) be an instance of the 2-ASLASAT problem and let $C=\left(l_{1} \vee l_{2}\right)$ be a clause reachable from $\neg L$. Assume that l_{1} is the main literal of C w.r.t. (F, L, l). Then l_{1} is not a second literal of C w.r.t. any walk w^{\prime} starting from $\neg L$ and including C.

Now we are ready to prove Theorem 3
Proof of Theorem 3. Let $S P \in \operatorname{OptSep}\left(F, \neg\left(L \cup\left\{l^{*}\right\}\right), \neg l\right)$. Since $\neg L$ is a subset of $\neg\left(L \cup\left\{l^{*}\right\}\right), S P$ is a separator w.r.t. $\neg L$ and $\neg l$ in F. Moreover, since l^{*} is a neutral literal of $(F, L, l), S P \in \operatorname{OptSet}(F, \neg L, \neg l)$.

In the 2 -CNF $F \backslash S P$, let R be the set of clauses reachable from $\neg L$ and let $N R$ be the rest of the clauses of $F \backslash S P$. Observe that the sets $R, N R, S P$ are a partition of the set of clauses of F.

Let X be a SCS of (F, L, l). Denote $X \cap R, X \cap S P, X \cap N R$ by $X R, X S P$, $X N R$ respectively. Observe that the sets $X R, X S P, X N R$ are a partition of X.

Let Y be the subset of $S P \backslash X S P$ including all clauses $C=\left(l_{1} \vee l_{2}\right)$ (we assume that l_{1} is the main literal of C) such that there is a walk w from l_{1} to $\neg l$ with C being the first clause of w and all clauses of w following C (if any) belong to $N R \backslash X N R$. We call this walk w a witness walk of C. By definition, $S P \backslash X P=S P \backslash X$ and $N R \backslash X N R=N R \backslash X$, hence the clauses of w do not intersect with X.

Claim $1|Y| \leq|X R|$.
Proof. By definition of the 2-aslasat problem, $S W R T(F, L)$ is true. Therefore, according to Theorem 2, there is a set \mathbf{P} of $|S P|$ clause-disjoint paths from $\neg L$ to $\neg l$. Clearly each $C \in S P$ participates in exactly one path of \mathbf{P} and each $p \in \mathbf{P}$ includes exactly one clause of $S P$. In other words, we can make one-to-one correspondence between paths of \mathbf{P} and the clauses of $S P$ they include. Let $\mathbf{P Y}$ be the subset of \mathbf{P} consisting of the paths corresponding to the clauses of Y. We are going to show that for each $p \in \mathbf{P Y}$ the clause of $S P$ corresponding to p is preceded in p by a clause of $X R$.

Assume by contradiction that this is not true for some $p \in \mathbf{P Y}$ and let $C=\left(l_{1} \vee l_{2}\right)$ be the clause of $S P$ corresponding to p with l_{1} being the main literal of C w.r.t. (F, L, l). By our assumption, C is the only clause of $S P$ participating in p, hence all the clauses of p preceding C belong to R. Consequently, the only possibility of those preceding clauses to intersect with X is intersection with $X R$. Since this possibility is ruled out according to our assumption, we conclude that no clause of p preceding C belongs to X. Next, according to Corollary 2, l_{1} is the first literal of C w.r.t p, hence the suffix of p starting at C can be replaced by the witness walk of C and as a result of this replacement, a walk w^{\prime} from $\neg L$ to $\neg l$ is obtained. Taking into account that the witness walk of C does not intersect with X, we get that w^{\prime} does not intersect with X. By Theorem $\mathbb{1}$, $S W R T(F \backslash X, L \cup\{l\})$ is false in contradiction to being X a CS of (F, L, l). This contradiction shows that our initial assumption fails and C is preceded in p by a clause of $X R$.

In other words, each path of $\mathbf{P Y}$ intersects with a clause of $X R$. Since the paths of $\mathbf{P Y}$ are clause-disjoint, $|X R| \geq|\mathbf{P Y}|=|Y|$, as required.

Consider the set $X^{*}=Y \cup X S P \cup X N R$. Observe that $\left|X^{*}\right|=|Y|+|X S P|+$ $|X N R| \leq|X R|+|X S P|+|X N R|=|X|$, the first equality follows from the mutual disjointness of $Y, X S P$ and $X N R$ by their definition, the inequality follows from Claim the last equality was justified in the paragraph where the
sets $X P, X S P, X N R$, and X have been defined. We are going to show that X^{*} is a CS of $\left(F, L \cup\left\{l^{*}\right\}, l\right)$ which will complete the proof of the present theorem.

Claim $2 F \backslash X^{*}$ has no walk from $\neg\left(L \cap\left\{l^{*}\right\}\right)$ to $\neg l$.
Proof. Assume by contradiction that w is a walk from $\neg\left(L \cap\left\{l^{*}\right\}\right)$ to $\neg l$ in $F \backslash X^{*}$. Taking into account that $S W R T\left(F \backslash X^{*}, L \cup\left\{l^{*}\right\}\right)$ is true (because we know that $S W R T\left(F, L \cup\left\{l^{*}\right\}\right)$ is true), and applying Lemma 3, we get that $F \backslash X^{*}$ has a path p from $\neg\left(L \cap\left\{l^{*}\right\}\right)$ to $\neg l$. As p is a path in F, it includes at least one clause of $S P$ (recall that $S P$ is a separator w.r.t. $\neg\left(L \cap\left\{l^{*}\right\}\right)$ and $\neg l$ in $F)$. Let $C=\left(l_{1} \vee l_{2}\right)$ be the last clause of $S P$ as we traverse p from $\neg\left(L \cap\left\{l^{*}\right\}\right)$ to $\neg l$ and assume w.l.o.g. that l_{1} is the main literal of C w.r.t. $\left(F \backslash X^{*}, L \cup\left\{l^{*}\right\}, l\right)$ (and hence of $\left(F, L \cup\left\{l^{*}\right\}, l\right)$). Let p^{*} be the suffix of p starting at C.

According to Corollary 2, l_{1} is the first literal of p^{*}. In the next paragraph we will show that no clause of R follows C is p^{*}. Combining this statement with the observation that the clauses of $F \backslash X^{*}$ can be partitioned into $R, S P \backslash X S P$ and $N R \backslash X N R$ (the rest of clauses belong to X^{*}) we conclude that p^{*} is a walk witnessing that $C \in Y$. But this is a contradiction because by definition $Y \subseteq X^{*}$. This contradiction will complete the proof of the present claim.

Assume by contradiction that C is followed in p^{*} by a clause $C^{\prime}=\left(l_{1}^{\prime} \vee l_{2}^{\prime}\right)$ of R (we assume w.l.o.g. that l_{1}^{\prime} is the main literal of C^{\prime} w.r.t. $\left(F \backslash X^{*}, L \cup\left\{l^{*}\right\}, l\right)$). Let p^{\prime} be a suffix of p^{*} starting at C^{\prime}. It follows from Corollary 2 that the first literal of p^{\prime} is l_{1}^{\prime}. By definition of R and taking into account that $R \cap X^{*}=\emptyset$, $F \backslash X^{*}$ has a walk w_{1} from $\neg L$ whose last clause is C^{\prime} and all clauses of which belong to R. By Corollary 2, the last literal of w_{1} is l_{2}^{\prime}. Therefore we can replace C^{\prime} by w_{1} in p^{\prime}. As a result we get a walk w_{2} from $\neg L$ to $\neg l$ in $F \backslash X^{*}$. By Lemma 3. there is a path p_{2} from $\neg L$ to $\neg l$ whose set of clauses is a subset of the set of clauses of w_{2}. As p_{2} is also a path of F, it includes a clause of $S P$. However, w_{1} does not include any clause of $S P$ by definition. Therefore, p^{\prime} includes a clause of $S P$. Consequently, p^{*} includes a clause of $S P$ following C in contradiction to the selection of C. This contradiction shows that clause C^{\prime} does not exist, which completes the proof of the present claim as noted in the previous paragraph.

Claim $3 F \backslash X^{*}$ has no walk from $\neg l$ to $\neg l$.
Proof. Assume by contradiction that $F \backslash X^{*}$ has a walk w from $\neg l$ to $\neg l$. By definition of X and Theorem w contains at least one clause of X. Since $X S P$ and $X N R$ are subsets of X^{*}, w contains a clause $C^{\prime}=\left(l_{1}^{\prime} \vee l_{2}^{\prime}\right)$ of $X R$. Assume w.l.o.g. that l_{1}^{\prime} is the main literal of C^{\prime} w.r.t. (F, L, l). If l_{1}^{\prime} is a first literal of C^{\prime} w.r.t. w then let w^{*} be a suffix of w whose first clause is C^{\prime} and first literal is l_{1}^{\prime}. Otherwise, let w^{*} be a suffix of reverse(w) having the same properties. In any case, w^{*} is a walk from l_{1}^{\prime} to $\neg l$ in $F \backslash X^{*}$ whose first clause is C^{\prime}. Arguing as in the last paragraph of proof of Claim 2 we see that $F \backslash X^{*}$ has a walk w_{1} from $\neg L$ to l_{2}^{\prime} whose last clause is C^{\prime}. Therefore we can replace C^{\prime} by w_{1} in w^{*} and get a walk w_{2} from $\neg L$ to $\neg l$ in $F \backslash X^{*}$ in contradiction to Claim 2, This contradiction shows that our initial assumption regarding the existence of w is incorrect and hence completes the proof of the present claim.

It follows from Combination of Theorem 1. Claim 2, and Claim 3 that X^{*} is a CS of $\left(F, L \cup\left\{l^{*}\right\}, l\right)$, which completes the proof of the present theorem.

4 Algorithm for the parameterized 2-ASLASAT problem and its analysis

4.1 The algorithm

FindCS (F, L, l, k)
Input: An instance (F, L, l, k) of the parameterized 2-ASLASAT problem.
Output: A CS of (F, L, l) of size at most k if one exists. Otherwise 'NO' is returned.

1. if $S W R T(F, L \cup\{l\})$ is true then return \emptyset
2. if $k=0$ then Return 'NO'
3. if $k \geq|\operatorname{Clauses}(F)|$ then return $\operatorname{Clauses}(F)$
4. if $\operatorname{SepSize}(F, \neg L, \neg l)>k$ then return 'NO' \square
5. if F has a walk from $\neg L$ to $\neg l$ then

Let $C=\left(l_{1} \vee l_{2}\right)$ be a clause such that $l_{1} \in \neg L$ and $\operatorname{Var}\left(l_{2}\right) \notin \operatorname{Var}(L)$
6. else Let $C=\left(l_{1} \vee l_{2}\right)$ be a clause which belongs to a walk of F from $\neg l$ to $\neg l$ and $S W R T\left(F,\left\{l_{1}, l_{2}\right\}\right)$ is true ${ }^{5}$
7. if Both l_{1} and l_{2} belong to $\neg(L \cup\{l\})$ then
$7.1 S \leftarrow \operatorname{FindCS}(F \backslash C, L, l, k-1)$
7.2 if S is not 'NO' then Return $S \cup\{C\}$
7.3 Return 'NO'
8. if Both l_{1} and l_{2} do not belong to $\neg(L \cup\{l\})$ then
$8.1 S_{1} \leftarrow \operatorname{FindCS}\left(F, L \cup\left\{l_{1}\right\}, l, k\right)$
8.2 if S_{1} is not 'NO' then Return S_{1}
$8.3 S_{2} \leftarrow \operatorname{FindCS}\left(F, L \cup\left\{l_{2}\right\}, l, k\right)$
8.4 if S_{2} is not 'NO' then Return S_{2}
$8.5 S_{3} \leftarrow \operatorname{FindCS}(F \backslash C, L, l, k-1)$
8.6 if S_{3} is not 'NO' then Return $S_{3} \cup\{C\}$
8.7 Return 'NO'
(In the rest of the algorithm we consider the cases where exactly one literal of C belongs to $\neg(L \cup\{l\})$. W.l.o.g. we assume that this literal is $\left.l_{1}\right)$
9. if l_{2} is not neutral in (F, L, l)
$9.1 S_{2} \leftarrow \operatorname{FindCS}\left(F, L \cup\left\{l_{2}\right\}, l, k\right)$
9.2 if S_{2} is not 'NO' then Return S_{2}
$9.3 S_{3} \leftarrow \operatorname{FindCS}(F \backslash C, L, l, k-1)$
9.4 if S_{3} is not 'NO' then Return $S_{3} \cup\{C\}$
9.5 Return 'NO'
10. Return $\operatorname{FindCS}\left(F, L \cup\left\{l_{2}\right\}, l, k\right)$

[^2]
4.2 Additional Terminology and Auxiliary Lemmas

In order to analyze the above algorithm, we extend our terminology. Let us call a quadruple (F, L, l, k) a valid input if (F, L, l, k) is a valid instance of the parameterized 2-ASLASAT problem (as specified in Section 2.3.).

Now we introduce the notion of the search tree $S T(F, L, l, k)$ produced by FindCS (F, L, l, k). The root of the tree is identified with (F, L, l, k). If $\operatorname{FindCS}(F, L, l, k)$ does not apply itself recursively then (F, L, l, k) is the only node of the tree. Otherwise the children of (F, L, l, k) correspond to the inputs of the calls applied within the call $\operatorname{FindCS}(F, L, l, k)$. For example, if $\operatorname{FindCS}(F, L, l, k)$ performs Step 9 then the children of (F, L, l, k) are $\left(F, L \cup\left\{l_{2}\right\}, l, k\right)$ and $(F \backslash C, L, l, k-1)$. For each child ($F^{\prime}, L^{\prime}, l^{\prime}, k^{\prime}$) of (F, L, l, k), the subtree of $S T(F, L, l, k)$ rooted by $\left(F^{\prime}, L^{\prime}, l^{\prime}, k^{\prime}\right)$ is $S T\left(F^{\prime}, L^{\prime}, l^{\prime}, k^{\prime}\right)$. It is clear from the description of FindCS that the third item of a valid input is not changed for its children hence in the rest of the section when we denote a child or descendant of (F, L, l, k) we will leave the third item unchanged, e.g. $\left(F_{1}, L_{1}, l, k_{1}\right)$.

Lemma 4. Let (F, L, l, k) be a valid input. The Solve $2 A S L A S A T(F, L, l, k)$ succeeds to select a clause on Steps 5 and 6 .

Proof. Assume that F has a walk from $\neg L$ to $\neg l$ and let w be the shortest possible such walk. Let l_{1} be the first literal of w and let $C=\left(l_{1} \vee l_{2}\right)$ be the first clause of F. By definition $l_{1} \in \neg L$. We claim that $\operatorname{Var}\left(l_{2}\right) \notin \operatorname{Var}(L)$. Indeed, assume that this is not true. If $l_{2} \in \neg L$ then $\operatorname{SWRT}\left(F,\left\{\neg l_{1}, \neg l_{2}\right\}\right)$ is false and hence $S W R T(F, L)$ is false as L is a superset of $\left\{\neg l_{1}, \neg l_{2}\right\}$. But this contradicts the definition of the 2 -aslasat problem. Assume now that $l_{2} \in L$. By definition of the 2 -asLasat problem, $\operatorname{Var}(l) \notin \operatorname{Var}(L)$, hence C is not the last clause of w. Consequently the first literal of the second clause of w belongs to $\neg L$. Thus if we remove the first clause from w we obtain a shorter walk from $\neg L$ to $\neg l$ in contradiction to the definition of w. It follows that our claim is true and the required clause C can be selected if the condition of Step 5 is satisfied.

Consider now the case where the condition of Step 5 is not satisfied. Note that $S W R T(F, L \cup\{l\})$ is false because otherwise the algorithm would have finished at Step 1. Consequently by Theorem $1 F$ has a walk from $\neg l$ to $\neg l$. We claim that any such walk w contains a clause $C=\left(l_{1} \vee l_{2}\right)$ such that $S W R T\left(F,\left\{l_{1}, l_{2}\right\}\right)$ is true. Let P be a satisfying assignment of F (which exists by definition of the 2-aslasat problem). Let F^{\prime} be the 2-CNF formula created by the clauses of w and let P^{\prime} be the subset of P such that $\operatorname{Var}\left(P^{\prime}\right)=\operatorname{Var}\left(F^{\prime}\right)$. By Lemma 1, $S W R T\left(F^{\prime}, l\right)$ is false and hence, taking into account that $\operatorname{Var}(l) \in \operatorname{Var}\left(F^{\prime}\right)$, $\neg l \in P^{\prime}$. Consequently $l \in \neg P^{\prime}$. Therefore $\neg P^{\prime}$ is not a satisfying assignment of F^{\prime} i.e. $\neg P^{\prime}$ does not satisfy at least one clause of F^{\prime}. Taking into account that $\operatorname{Var}\left(\neg P^{\prime}\right)=\operatorname{Var}\left(F^{\prime}\right)$, it contains negations of both literals of at least one clause C of F^{\prime}. Therefore P^{\prime} (and hence P) contains both literals of C. Clearly, C is the required clause.

The soundness of Steps 5 and 6 of FindCS is assumed in the rest of the paper without explicit referring to Lemma 4

Lemma 5. Let (F, L, l, k) be a valid input and assume that Solve $2 A S L A S A T(F, L, l, k)$ applies itself recursively. Then all the children of (F, L, l, k) in the search tree are valid inputs.

Proof. Let $\left(F_{1}, L_{1}, l, k_{1}\right)$ be a child of (F, L, l, k). Observe that $k_{1} \geq k-$ 1. Observe also that $k>0$ because $\operatorname{FindCS}(F, L, l, k)$ would not apply itself recursively if $k=0$. It follows that $k_{1} \geq 0$.

It remains to prove that $\left(F_{1}, L_{1}, l\right)$ is a valid instance of the 2 -ASLASAT problem. If $k_{1}=k-1$ then $\left(F_{1}, L_{1}, l\right)=(F \backslash C, L, l)$ where C is the clause selected on Steps 5 and 6. In this case the validity of instance ($F \backslash C, L, l$) immediately follows from the validity of (F, L, l). Consider the remaining case where $\left(F_{1}, L_{1}, l, k_{1}\right)=\left(F, L \cup\left\{l^{*}\right\}, l, k\right)$ where l^{*} is a literal of the clause $C=\left(l_{1} \vee l_{2}\right)$ selected on Steps 5 and 6. In particular, we are going to show that

- $L \cup\left\{l^{*}\right\}$ is non-contradictory;
$-\operatorname{Var}(l) \notin \operatorname{Var}\left(L \cup\left\{l^{*}\right\} ;\right.$
- $\operatorname{SWRT}\left(F, L \cup\left\{l^{*}\right\}\right)$ is true.

That $L \cup\left\{l^{*}\right\}$ is non-contradictory follows from description of the algorithm because it is explicitly stated that the literal being joined to L does not belong to $\neg(L \cup\{l\})$. This also implies that the second condition may be violated only if $l^{*}=l$. In this case assume that C is selected on Step 5 . Then w.l.o.g. $l_{1} \in \neg L$ and $l_{2}=l$. Let P be a satisfying assignment of F which does not intersect with $\neg L$ (existing since $\left(S W R T(F, L)\right.$ is true). Then $l_{2} \in P$, i.e. $S W R T(F, L \cup\{l\})$ is true, which is impossible since in this the algorithm would stop at Step 1. The assumption that C is selected on Step 6 also leads to a contradiction because on the one hand $S W R T(F, l)$ is false by Lemma 1 due to existence of a walk from $\neg l$ to $\neg l$, on the other hand $S W R T(F, l)$ is true by the selection criterion. It follows that $\operatorname{Var}(l) \notin \operatorname{Var}\left(L \cup\left\{l^{*}\right\}\right)$.

Let us prove the last item. Assume first that C is selected on Step 5 and assume w.l.o.g. that $l_{1} \in \neg L$. Then, by the first statement, $l^{*}=l_{2}$. Moreover, as noted in the previous paragraph $l_{2} \in P$ where P is a satisfying assignment of F which does intersect with $\neg L$, i.e. $S W R T\left(F, L \cup\left\{l_{2}\right\}\right)$ is true in the considered case. Assume that C is selected on Step 6 and let w be the walk from $\neg l$ to $\neg l$ in F to which C belongs. Observe that F has a walk w^{\prime} from l^{*} to $\neg l$: if l^{*} is a first literal of C w.r.t. w then let w^{\prime} be a suffix of w whose first literal is l^{*}, otherwise let be the suffix of reverse (w) whose first literal is l^{*}. Assume that $S W R T\left(F, L \cup\left\{l^{*}\right\}\right)$ is false. Since $L \cup\left\{l^{*}\right\}$ is non-contradictory by the first item, $\operatorname{Var}\left(l^{*}\right) \notin \operatorname{Var}(L)$. It follows that $\left(F, L, l^{*}\right)$ is a valid instance of the 2-ASLASAT problem. In this case, by Theorem $1, F$ has either a walk from $\neg L$ to $\neg l^{*}$ or a walk from $\neg l^{*}$ to $\neg l^{*}$. The latter is ruled out by Lemma 1 because $S W R T\left(F, l^{*}\right)$ is true by selection of C. Let $w^{\prime \prime}$ be a walk from $\neg L$ to $\neg l^{*}$ in F. Then $w^{\prime \prime}+w^{\prime}$ is a walk of F from $\neg L$ to $\neg l$ in contradiction to our assumption that C is selected on Step 6. Thus $S W R T\left(F, L \cup\left\{l^{*}\right\}\right)$ is true. The proof of the present lemma is now complete.

Now we introduce two measures of the input of the Solve $2 A S L A S A T$ procedure. Let $\alpha(F, L, l, k)=|\operatorname{Var}(F) \backslash \operatorname{Var}(L)|+k$ and $\beta(F, L, l, k)=\max (0,2 k-$ $\operatorname{SepSize}(F, \neg L, \neg l)$).

Lemma 6. Let (F, L, l, k) be a valid input and let $\left(F_{1}, L_{1}, l, k_{1}\right)$ be a child of (F, L, l, k). Then $\alpha(F, L, l, k)>\alpha\left(F_{1}, L_{1}, l, k_{1}\right)$.

Proof. If $k_{1}=k-1$ then the statement is clear because the first item in the definition of the α-measure does not increase and the second decreases. So, assume that $\left(F_{1}, L_{1}, l, k_{1}\right)=\left(F, L \cup\left\{l^{*}\right\}, l, k\right)$. In this case it is sufficient to prove that $\operatorname{Var}\left(l^{*}\right) \notin \operatorname{Var}(L)$. Due to the validity of $\left(F, L \cup\left\{l^{*}\right\}, l, k\right)$ by Lemma 5 , $l^{*} \notin \neg L$, so it remains to prove that $l^{*} \notin L$. Assume that $l^{*} \in L$. Then the clause C is selected on Step 6. Indeed, if C is selected on Step 5 then one of its literals belongs to $\neg L$ and hence cannot belong to L, due to the validity of (F, L, l, k) (and hence being L non-contradictory), while the variable of the other literal does not belong to $\operatorname{Var}(L)$ at all. Let w be the walk from $\neg l$ to $\neg l$ in F to which C belongs. Due to the validity of $\left(F, L \cup\left\{l^{*}\right\}, l, k\right)$ by Lemma 5 , $l^{*} \neq \neg l$. Therefore either w or $\operatorname{reverse}(w)$ has a suffix which is a walk from $\neg l^{*}$ to $\neg l$, i.e. a walk from $\neg L$ to $\neg l$. But this contradicts the selection of C on Step 6. So, $l^{*} \notin L$ and the proof of the lemma is complete.

For the next lemma we extend our terminology. We call a node ($F^{\prime}, L^{\prime}, l, k^{\prime}$) of $S T(F, L, l, k)$ a trivial node if it is a leaf or its only child is of the form $\left(F^{\prime}, L^{\prime} \cup\left\{l^{*}\right\}, l, k^{\prime}\right)$ for some literal l^{*}.

Lemma 7. Let (F, L, l, k) be a valid input and let $\left(F_{1}, L_{1}, l, k_{1}\right)$ be a child of (F, L, l, k). Then $\beta(F, L, l, k) \geq \beta\left(F_{1}, L_{1}, l, k_{1}\right)$. Moreover if (F, L, l, k) is a nontrivial node then $\beta(F, L, l, k)>\beta\left(F_{1}, L_{1}, l, k_{1}\right)$.

Proof. Note that $\beta(F, L, l, k)>0$ because if $\beta(F, L, l, k)=0$ then $\operatorname{FindCS}(F, L, l, k)$ does not apply itself recursively, i.e. does not have children. It follows that $\beta(F, L, l, k)=2 k-\operatorname{SepSize}(F, \neg L, \neg l)>0$. Consequently, to show that $\beta(F, L, l, k)>$ $\beta\left(F_{1}, L_{1}, l, k_{1}\right)$ or that $\beta(F, L, l, k) \geq \beta\left(F_{1}, L_{1}, l, k_{1}\right)$ it is sufficient to show that $2 k-\operatorname{SepSize}(F, \neg L, \neg l)>2 k_{1}-\operatorname{SepSize}\left(F_{1}, \neg L_{1}, \neg l\right)$ or $2 k-\operatorname{SepSize}(F, \neg L, \neg l) \geq$ $2 k_{1}-\operatorname{SepSize}\left(F_{1}, \neg L_{1}, \neg l\right)$, respectively.

Assume first that $\left(F_{1}, L_{1}, l, k_{1}\right)=(F \backslash C, L, l, k-1)$. Observe that $\operatorname{SepSize}(F \backslash$ $C, \neg L, \neg l) \geq \operatorname{SepSize}(F, \neg L, \neg l)-1$. Indeed assume the opposite and let S be a separator w.r.t. to $\neg L$ and $\neg l$ in $F \backslash C$ whose size is at most $\operatorname{SepSize}(F, \neg L, \neg l)-$ 2. Then $S \cup\{C\}$ is a separator w.r.t. $\neg L$ and $\neg l$ in F of size at most $\operatorname{SepSize}(F, \neg L, \neg l)-$ 1 in contradiction to the definition of $\operatorname{SepSize}(F, \neg L, \neg l)$. Thus $2(k-1)-$ $\operatorname{SepSize}(F \backslash C, \neg L, \neg l)=2 k-\operatorname{SepSize}(F \backslash C, \neg L, \neg l)-2 \leq 2 k-\operatorname{SepSize}(F, \neg L, \neg l)-$ $1<2 k-\operatorname{SepSize}(F, \neg L, \neg l)$.

Assume now that $\left(F_{1}, L_{1}, l, k_{1}\right)=\left(F, L \cup\left\{l^{*}\right\}, l, k\right)$ for some literal l^{*}. Clearly, $\operatorname{SepSize}(F, \neg L, \neg l) \leq \operatorname{SepSize}\left(F, \neg\left(L \cup\left\{l^{*}\right\}\right), \neg l\right)$ due to being $\neg L$ a subset of $\neg\left(L \cup\left\{l^{*}\right\}\right)$. It follows that $2 k-\operatorname{SepSize}(F, \neg L, \neg l) \geq 2 k-\operatorname{SepSize}(F, \neg(L \cup$ $\left.\left.\left\{l^{*}\right\}\right), \neg l\right)$. It remains to show that \geq can be replaced by $>$ in case where (F, L, l, k) is a non-trivial node. It is sufficient to show that in this case $\operatorname{SepSize}(F, \neg L, \neg l)<$ $\operatorname{SepSize}\left(F, \neg\left(L \cup\left\{l^{*}\right\}\right), \neg l\right)$. If (F, L, l, k) is a non-trivial node then the recursive call $\operatorname{FindCS}\left(F, L \cup\left\{l^{*}\right\}, l, k\right)$ is applied on Steps 8.2, 8.4, or 9.3. In the last case, it is explicitly said that l^{*} is not a neutral literal in (F, L, l). Consequently, $\operatorname{SepSize}(F, \neg L, \neg l)<\operatorname{SepSize}\left(F, \neg\left(L \cup\left\{l^{*}\right\}\right), \neg l\right)$ by definition.

For the first two cases note that Step 8 is applied only if the clause C is selected on Step 6. That is, F has no walk from $\neg L$ to $\neg l$. In particular, F has no path from $\neg L$ to $\neg l$, i.e. $\operatorname{Sep} \operatorname{Size}(\neg L, \neg l)=0$. Let w be the walk from $\neg l$ to $\neg l$ in F to which C belongs. Note that by Lemma 5 ($F, L \cup\left\{l^{*}\right\}, l, k$) is a valid input, in particular $\operatorname{Var}\left(l^{*}\right) \neq \operatorname{Var}(l)$. Therefore either w or reverse (w) has a suffix which is a walk from $\neg l^{*}$ to $\neg l$, i.e. a walk from $\neg\left(L \cup\left\{l^{*}\right\}\right)$ to $\neg l$. Applying Lemma 3 together with Lemma 5, we see that F has a path from $\neg\left(L \cup\left\{l^{*}\right\}\right)$ to $\neg l$, i.e. $\operatorname{Sep} \operatorname{Size}\left(F, \neg\left(L \cup\left\{l^{*}\right\}, \neg l\right)>0\right.$.

Lemma 8. Let (F, L, l, k) be a valid input. Then the following statements are true regarding $S T(F, L, l, k)$.

- The height of $S T(F, L, l, k)$ is at most $\alpha(F, L, l, k)$. ${ }^{6}$
- Each node $\left(F^{\prime}, L^{\prime}, l, k^{\prime}\right)$ of $S T(F, L, l, k)$ is a valid input, the subtree rooted by $\left(F^{\prime}, L^{\prime}, l, k^{\prime}\right)$ is $S T\left(F^{\prime}, L^{\prime}, l, k^{\prime}\right)$ and $\alpha\left(F^{\prime}, L^{\prime}, l, k^{\prime}\right)<\alpha(F, L, l, k)$.
- For each node $\left(F^{\prime}, L^{\prime}, l, k^{\prime}\right)$ of $S T(F, L, l, k), \beta\left(F^{\prime}, L^{\prime}, l, k^{\prime}\right) \leq \beta(F, L, l, k)-t$ where t is the number of non-trivial nodes besides $\left(F^{\prime}, L^{\prime}, l, k^{\prime}\right)$ in the path from (F, L, l, k) to $\left(F^{\prime}, L^{\prime}, l, k^{\prime}\right)$ of $S T(F, L, l, k)$.

Proof. This lemma is clearly true if (F, L, l, k) has no children. Consequently, it is true if $\alpha(F, L, l, k)=0$. Now, apply induction on the size of $\alpha(F, L, l, k)$ and assume that $\alpha(F, L, l, k)>0$. By the induction assumption, Lemma 5 , and Lemma 6, the present lemma is true for any child of (F, L, l, k). Consequently, for any child $\left(F^{*}, L^{*}, l, k^{*}\right)$ of (F, L, l, k), the height of $S T\left(F^{*}, L^{*}, l, k^{*}\right)$ is at most $\alpha\left(F^{*}, L^{*}, l, k^{*}\right)$. Hence the first statement follows by Lemma 6, Furthermore, any node ($F^{\prime}, L^{\prime}, l, k^{\prime}$) of $S T(F, L, l, k)$ belongs to $S T\left(F^{*}, L^{*}, l, k^{*}\right)$ of some child $\left(F^{*}, L^{*}, l, k^{*}\right)$ of (F, L, l, k) and the subtree rooted by $\left(F^{\prime}, L^{\prime}, l, k^{\prime}\right)$ in $S T(F, L, l, k)$ is the subtree rooted by $\left(F^{\prime}, L^{\prime}, l, k^{\prime}\right)$ in $S T\left(F^{*}, L^{*}, l, k^{*}\right)$. Consequently, $\left(F^{\prime}, L^{\prime}, l, k^{\prime}\right)$ is a valid input, the subtree rooted by it is $S T\left(F^{\prime}, L^{\prime}, l, k^{\prime}\right)$, and $\alpha\left(F^{\prime}, L^{\prime}, l, k^{\prime}\right) \leq \alpha\left(F^{*}, L^{*}, l, k^{*}\right)<\alpha(F, L, l, k)$, the last inequality follows from Lemma 6. Finally, $\beta\left(F^{\prime}, L^{\prime}, l, k^{\prime}\right) \leq \beta\left(F^{*}, L^{*}, l, k^{*}\right)-t^{*}$ where t^{*} is the number of non-trivial nodes besides $\left(F^{\prime}, L^{\prime}, l, k^{\prime}\right)$ in the path from $\left(F^{*}, L^{*}, l, k^{*}\right)$ to $\left(F^{\prime}, L^{\prime}, l, k^{\prime}\right)$ in $S T\left(F^{*}, L^{*}, l, k^{*}\right)$, and hence in $S T(F, L, l, k)$. If (F, L, l, k) is a trivial node then $t=t^{*}$ and the last statement of the present lemma is true by Lemma 7. Otherwise $t=t^{*}+1$ and by another application of Lemma 7 we get that $\beta\left(F^{\prime}, L^{\prime}, l, k^{\prime}\right) \leq \beta(F, L, l, k)-t^{*}-1=\beta(F, L, l, k)-t$.

4.3 Correctness Proof

Theorem 4. Let (F, L, l, k) be a valid input. Then $\operatorname{FindCS}(F, L, l, k)$ correctly solves the parameterized 2-ASLASAT problem. That is, if $\operatorname{FindCS}(F, L, l, k)$ returns a set, this set is a CS of (F, L, l) of size at most k. If $\operatorname{FindCS}(F, L, l, k)$ returns ' $N O$ ' then (F, L, l) has no $C S$ of size at most k.

[^3]Proof. Let us prove first the correctness of $\operatorname{FindCS}(F, L, l, k)$ for the cases when the procedure does not apply itself recursively. It is only possible when the procedure returns an answer on Steps 1-4. If the answer is returned on Step 1 then the validity is clear because nothing has to be removed from F to make it satisfiable w.r.t. L and l. If the answer is returned on Step 2 then $S W R T(F, L \cup\{l\})$ is false (since the condition of Step 1 is not satisfied) and consequently the size of a CS of (F, L, l) is at least 1 . On the other hand, $k=$ 0 and hence the answer 'NO' is valid in the considered case. For the answer returned on Step 3 observe that $\operatorname{Clauses}(F)$ is clearly a CS of (F, L, l) (since $S W R T(\emptyset, L \cup\{l\})$ is true) and the size of Clauses (F) does not exceed k by the condition of Step 3. Therefore the answer returned on this step is valid. Finally if the answer is returned on Step 4 then the condition of Step 4 is satisfied. According to Corollary this condition implies that any CS of (F, L, l) has the size greater than k, which justifies the answer 'NO' in the considered step.

Now we prove correctness of $\operatorname{FindCS}(F, L, l, k)$ by induction on $\alpha(F, L, l, k)$. Assume first that $\alpha(F, L, l, k)=0$. Then it follows that $k=0$ and, consequently, FindCS (F, L, l, k) does not apply itself recursively (the output is returned on Step 1 or Step 2). Therefore, the correctness of $\operatorname{FindCS}(F, L, l, k)$ follows from the previous paragraph. Assume now that $\alpha(F, L, l, k)>0$ and that the theorem holds for any valid input $\left(F^{\prime}, L^{\prime}, l, k^{\prime}\right)$ such that $\alpha\left(F^{\prime}, L^{\prime}, l, k^{\prime}\right)<\alpha(F, L, l, k)$. Due to the previous paragraph we may assume that $\operatorname{FindCS}(F, L, l, k)$ applies itself recursively, i.e. the node (F, L, l, k) has children in $S T(F, L, l, k)$.

Claim 4 Let $\left(F_{1}, l_{1}, l, k_{1}\right)$ be a child of (F, L, l, k). Then $\operatorname{FindCS}\left(F_{1}, L_{1}, l, k_{1}\right)$ is correct.

Proof. By Lemma $5\left(F_{1}, L_{1}, l, k_{1}\right)$ is a valid input. By Lemma6, $\alpha\left(F_{1}, L_{1}, l, k_{1}\right)<$ $\alpha(F, L, l, k)$. The claim follows by the induction assumption.

Assume that $\operatorname{FindCS}(F, L, l, k)$ returns a set S. By description of the algorithm, either S is returned by $\operatorname{FindCS}\left(F, L \cup\left\{l^{*}\right\}, l, k\right)$ for a child $\left(F, L \cup\left\{l^{*}\right\}, l, k\right)$ of (F, L, l, k) or $S=S_{1} \cup\{C\}$ and S_{1} is returned by $\operatorname{FindCS}(F \backslash C, L, l, k-1)$ for a child $(F \backslash C, L, l, k-1)$ of (F, L, l, k). In the former case, the validity of output follows from Claim 4 and from the easy observation that a CS of ($F, L \cup\left\{l^{*}\right\}, l, k$) is a CS of (F, L, l, k) because L is a subset of $L \cup\left\{l^{*}\right\}$. In the latter case, it follows from Claim 4 that $\left|S_{1}\right| \leq k-1$ and that S_{1} is a CS of $(F \backslash C, L, l)$ i.e. $S W R T\left((F \backslash C) \backslash S_{1}, L \cup\{l\}\right)$ is true. But $(F \backslash C) \backslash S_{1}=F \backslash\left(S_{1} \cup\{C\}\right)=F \backslash S$. Consequently S is a CS of (F, L, l) of size at most k, hence the output is valid in the considered case.

Consider now the case where $\operatorname{FindCS}(F, L, l, k)$ returns 'NO' and assume by contradiction that there is a CS S of (F, L, l) of size at most k. Assume first that 'NO' is returned on Step 7.3. It follows that $C \notin S$ because otherwise $S \backslash C$ is a CS of $(F \backslash C, L, l)$ of size at most $k-1$ and hence, by Claim 4, the recursive call of Step 7.2 . would not return 'NO'. However, this means that any satisfying assignment of $F \backslash S$ which does not intersect with $\neg(L \cup\{l\})$ (which exists by definition) cannot satisfy clause C, a contradiction. Assume now that 'NO' is returned on Step 10. By Claim 4 ($\left.F, L \cup\left\{l_{2}\right\}, l\right)$ has no CS of size at most k.

Therefore, according to Theorem 3 the size of a SCS of (F, L, l) is at least $k+1$ which contradicts the existence of S. Finally assume that 'NO' is returned on Step 8.7. or on Step 9.5. Assume first that the clause C selected on Steps 5 and 6 does not belong to S. Let P be a satisfying assignment of $(F \backslash S)$ which does not intersect with $\neg(L \cup\{l\})$. Then at least one literal l^{*} of C is contained in P. This literal does not belong to $\neg(L \cup\{l\})$ and hence $\operatorname{FindCS}\left(F, L \cup\left\{l^{*}\right\}, l, k\right)$ has been applied and returned 'NO'. However, P witnesses that S is a CS of $\left(F, L \cup\left\{l^{*}\right\}, l, k\right)$ of size at most k, that is $\operatorname{FindCS}\left(F, L \cup\left\{l^{*}\right\}, l, k\right)$ returned an incorrect answer in contradiction to Claim 4. Finally assume that $C \in S$. Then $S \backslash C$ is a CS of $(F \backslash C, L, l)$ of size at most $k-1$ and hence answer 'NO' returned by FindCS $(F \backslash C, L, l)$ contradicts Claim 4. Thus the answer 'NO' returned by $\operatorname{FindCS}(F, L, l, k)$ is valid.

4.4 Evaluation of the runtime.

Theorem 5. Let (F, L, l, k) be a valid input. Then the number of leaves of $S T(F, L, l, k)$ is at most $\sqrt{5}^{t}$, where $t=\beta(F, L, l, k)$.

Proof of Theorem 5 Since $\beta(F, L, l, k) \geq 0$ by definition, $\sqrt{5}^{t} \geq 1$. Hence if FindCS (F, L, l, k) does not apply itself recursively, i.e. $S T(F, L, l, k)$ has only one node, the theorem clearly holds. We prove the theorem by induction on $\alpha(F, L, l, k)$. If $\alpha(F, L, l, k)=0$ then as we have shown in the proof of Theorem 4. $\operatorname{FindCS}(F, L, l, k)$ does not apply itself recursively and hence the theorem holds as shown above. Assume that $\alpha(F, L, l, k)>0$ and that the theorem holds for any valid input ($\left.F^{\prime}, L^{\prime}, l, k^{\prime}\right)$ such that $\alpha\left(F^{\prime}, L^{\prime}, l, k^{\prime}\right)<\alpha(F, L, l, k)$. Clearly we may assume that (F, L, l, k) applies itself recursively i.e. $S T(F, L, l, k)$ has more than 1 node.

Claim 5 For any non-root node $\left(F^{\prime}, L^{\prime}, l, k^{\prime}\right)$ of $S T(F, L, l, k)$, the subtree of $S T(F, L, l, k)$ rooted by $\left(F^{\prime}, L^{\prime}, l, k^{\prime}\right)$ has at most $\sqrt{5}^{t^{\prime}}$ leaves, where $t^{\prime}=\beta\left(F^{\prime}, L^{\prime}, l, k^{\prime}\right)$.

Proof. According to Lemma 8, $\left(F^{\prime}, L^{\prime}, l, k^{\prime}\right)$ is a valid input, $\alpha\left(F^{\prime}, L^{\prime}, l, k^{\prime}\right)<$ $\alpha(F, L, l, k)$, and the subtree of $S T(F, L, l, k)$ rooted by $\left(F^{\prime}, L^{\prime}, l, k^{\prime}\right)$ is $S T\left(F^{\prime}, L^{\prime}, l, k^{\prime}\right)$. Therefore the claim follows by the induction assumption.

If (F, L, l, k) has only one child $\left(F_{1}, L_{1}, l, k_{1}\right)$ then clearly the number of leaves of $S T(F, L, l, k)$ equals the number of leaves of the subtree rooted by $\left(F_{1}, L_{1}, l, k_{1}\right)$ which, by Claim 55, is at most $\sqrt{5}^{t_{1}}$, where $t_{1}=\beta\left(F_{1}, L_{1}, l, k_{1}\right)$. According to Lemma $7 t_{1} \leq t$ so the present theorem holds for the considered case. If (F, L, l, k) has 2 children $\left(F_{1}, L_{1}, l, k_{1}\right)$ and $\left(F_{2}, L_{2}, l, k_{2}\right)$ then the number of leaves of $S T(F, L, l, k)$ is the sum of the numbers of leaves of subtrees rooted by $\left(F_{1}, L_{1}, l, k_{1}\right)$ and $\left(F_{2}, L_{2}, l, k_{2}\right)$ which, by Claim 5 is at most $\sqrt{5}^{t_{1}}+\sqrt{5}^{t_{2}}$, where $t_{i}=\beta\left(F_{i}, L_{i}, l, k_{i}\right)$ for $i=1,2$. Taking into account that (F, L, l, k) is a non-trivial node and applying Lemma 7 we get that $t_{1}<t$ and $t_{2}<t$. hence the number of leaves of $S T(F, L, l, k)$ is at most $(2 / \sqrt{5}) *\left(\sqrt{5}^{t}\right)<\sqrt{5}^{t}$, so the theorem holds for the considered case as well.

For the case where (F, L, l, k) has 3 children, denote them by (F_{i}, L_{i}, l, k_{i}), $i=1,2,3$. Assume w.l.o.g. that $\left(F_{1}, L_{1}, l, k_{1}\right)=\left(F, L \cup\left\{l_{1}\right\}, l, k\right),\left(F_{2}, L_{2}, l, k_{2}\right)=$ $\left(F, L \cup\left\{l_{2}\right\}, l, k\right),\left(F_{3}, L_{3}, l, k_{3}\right)=(F \backslash C, l, k-1)$, where $C=\left(l_{1} \vee l_{2}\right)$ is the clause selected on steps 5 and 6 . Let $t_{i}=\beta\left(F_{i}, L_{i}, l, k_{i}\right)$ for $i=1,2,3$.

Claim $6 t \geq 2$ and $t_{3} \leq t-2$.
Proof. Note that $k>0$ because otherwise $\operatorname{FindCS}(F, L, l, k)$ does not apply itself recursively. Observe also that $\operatorname{SepSize}(F, \neg L, \neg l)=0$ because clause C can be selected only on Step 6 , which means that F has no walk from $\neg L$ to $\neg l$ and, in particular, F has no path from $\neg L$ to $\neg l$. Therefore $2 k-\operatorname{Sepsize}(F, \neg L, \neg l)=$ $2 k \geq 2$ and hence $t=\beta(F, L, l, k)=2 k \geq 2$. If $t_{3}=0$ the second statement of the claim is clear. Otherwise $t_{3}=2(k-1)-\operatorname{SepSize}\left(F \backslash\left(l_{1} \vee l_{2}\right), \neg L, \neg l\right)=$ $2(k-1)-0=2 k-2=t-2$.

Assume that some $S T\left(F_{i}, L_{i}, l, k_{i}\right)$ for $i=1,2$ has only one leaf. Assume w.l.o.g. that this is $S T\left(F_{1}, L_{1}, l, k_{1}\right)$. Then the number of leaves of $S T(F, L, l, k)$ is the sum of the numbers of leaves of the subtrees rooted by $\left(F_{2}, L_{2}, l, k_{2}\right)$ and $\left(F_{3}, L_{3}, l, k_{3}\right)$ plus one. By Claims 5 and 6 and Lemma 7 this is at most $\sqrt{5}^{t-1}+\sqrt{5}^{t-2}+1$. Then $\sqrt{5}^{t}-\sqrt{5}^{t-1}-\sqrt{5}^{t-2}-1 \geq \sqrt{5}^{2}-\sqrt{5}^{2-1}-\sqrt{5}^{2-2}-1=$ $5-\sqrt{5}-2>0$, the first inequality follows from Claim 6. That is, the present theorem holds for the considered case.

It remains to assume that both $S T\left(F_{1}, L_{1}, l, k_{1}\right)$ and $S T\left(F_{2}, L_{2}, l, k_{2}\right)$ have at least two leaves. Then for $i=1,2, S T\left(F_{i}, L_{i}, l, k_{i}\right)$ has a node having at least two children. Let $\left(F F_{i}, L L_{i}, l, k k_{i}\right)$ be such a node of $S T\left(F_{i}, L_{i}, l, k_{i}\right)$ which lies at the smallest distance from (F, L, l, k) in $S T(F, L, l, k)$.

Claim 7 The number of leaves of the subtree rooted by $\left(F F_{i}, L L_{i}, l, k k_{i}\right)$ is at most $(2 / 5) * \sqrt{5}^{t}$.

Proof. Assume that $\left(F F_{i}, L L_{i}, l, k k_{i}\right)$ has 2 children and denote them by $\left(F F_{1}^{*}, L L_{1}^{*}, l, k k_{1}^{*}\right)$ and $\left(F F_{2}^{*}, L L_{2}^{*}, l, k k_{2}^{*}\right)$. Then the number of leaves of the subtree rooted by $\left(F F_{i}, L L_{i}, l, k k_{i}\right)$ equals the sum of numbers of leaves of the subtrees rooted by $\left(F F_{1}^{*}, L L_{1}^{*}, l, k k_{1}^{*}\right)$ and $\left(F F_{2}^{*}, L L_{2}^{*}, l, k k_{2}^{*}\right)$. By Claim 5. this sum does not exceed $2 * \sqrt{5}^{t^{*}}$ where t^{*} is the maximum of $\beta\left(F F_{j}^{*}, L L_{j}^{*}, l, k k_{j}^{*}\right)$ for $j=1,2$. Note that the path from (F, L, l, k) to any $\left(F F_{j}^{*}, L L_{j}^{*}, l, k k_{j}^{*}\right)$ includes at least 2 non-trivial nodes besides $\left(F F_{j}^{*}, L L_{j}^{*}, l, k k_{j}^{*}\right.$), namely (F, L, l, k) and $\left(F F_{i}, L L_{i}, l, k k_{i}\right)$. Consequently, $t^{*} \leq t-2$ by Lemma 8 and the present claim follows for the considered case.

Assume that $\left(F F_{i}, L L_{i}, l, k k_{i}\right)$ has 3 children. Then let $t t_{i}=\beta\left(F F_{i}, L L_{i}, l, k k_{i}\right)$ and note that according to Claim [5] the number of leaves of the subtree rooted by $\left(F F_{i}, L L_{i}, l, k k_{i}\right)$ is at most $\sqrt{5}^{t t_{i}}$. Taking into account that $\left(F F_{i}, L L_{i}, l, k k_{i}\right)$ is a valid input by Lemma 8 and arguing analogously to the second sentence of the proof of Claim6, we see that $\operatorname{SepSize}\left(F F_{i}, \neg L L_{i}, \neg l\right)=0$. On the other hand, using the argumentation in the last paragraph of the proof of Lemma 7 we can see that $\operatorname{SepSize}\left(F_{i}, \neg L_{i}, l\right)>0$. This means that $\left(F_{i}, L_{i}, l, k_{i}\right) \neq\left(F F_{i}, L L_{i}, l, k k_{i}\right)$.

Moreover, the path from $\left(F_{i}, L_{i}, l, k_{i}\right)$ to $\left(F F_{i}, L L_{i}, l, k k_{i}\right)$ includes a pair of consecutive nodes $\left(F^{\prime}, L^{\prime}, l, k^{\prime}\right)$ and ($F^{\prime \prime}, L^{\prime \prime}, l, k^{\prime \prime}$), being the former the parent of the latter, such that $\operatorname{SepSize}\left(F^{\prime}, \neg L^{\prime}, \neg l\right)>\operatorname{SepSize}\left(F^{\prime \prime}, \neg L^{\prime \prime}, \neg l\right)$. This only can happen if $k^{\prime \prime}=k^{\prime}-1$ (for otherwise $\left(F^{\prime \prime}, L^{\prime \prime}, l, k^{\prime \prime}\right)=\left(F^{\prime}, L^{\prime} \cup\left\{l^{\prime}\right\}, l, k^{\prime}\right)$ for some literal l^{\prime} and clearly adding a literal to L^{\prime} does not decrease the size of the separator). Consequently, $\left(F^{\prime}, L^{\prime}, l, k^{\prime}\right)$ is a non-trivial node. Therefore, the path from (F, L, l, k) to $\left(F F_{i}, L L_{i}, l, k k_{i}\right)$ includes at least 2 non-trivial nodes besides $\left(F F_{i}, L L_{i}, l, k k_{i}\right):(F, L, l, k)$ and $\left(F^{\prime}, L^{\prime}, l, k^{\prime}\right)$. That is $t t_{i} \leq t-2$ by Lemma 8 and the present claims follows for this case as well which completes its proof.

It remains to notice that the number of leaves of $S T(F, L, l, k)$ is the sum of the numbers of leaves of subtrees rooted by $\left(F F_{1}, L L_{1}, l, k k_{1}\right),\left(F F_{2}, L L_{2}, l, k k_{2}\right)$, and $\left(F_{3}, L_{3}, l, k_{3}\right)$ which, according to Claims 5 and 7 is at most $5 * \sqrt{5}^{t-2}=$ $\sqrt{5}^{t}$.

Theorem 6. Let (F, L, l, k) be an instance of the parameterized 2-ASLASAT problem. Then the problem can be solved in time $O\left(5^{k} * k(n+k) *(m+|L|)\right)$, where $n=|\operatorname{Var}(F)|, m=|\operatorname{Clauses}(F)|$.

Proof. According to assumptions of the theorem, (F, L, l, k) is a valid input. Assume that F is represented by its implication graph $D=(V, A)$ which is almost identical to the implication graph of F with the only difference that $V(D)$ corresponds to $\operatorname{Var}(F) \cup \operatorname{Var}(L) \cup \operatorname{Var}\left(l^{\prime}\right)$, that is if for any literal l^{\prime} such that $\operatorname{Var}\left(l^{\prime}\right) \in(\operatorname{Var}(L) \cup\{\operatorname{Var}(l)\}) \backslash \operatorname{Var}(F), D$ has isolated nodes corresponding to l^{\prime} and $\neg l^{\prime}$. We also assume that the nodes corresponding to L, $\neg L, l, \neg l$ are specifically marked. This representation of (F, L, l, k) can be obtained in a polynomial time from any other reasonable representation. It follows from Theorem 4 that $\operatorname{FindCS}(F, L, l, k)$ correctly solves the parameterized 2ASLASAT problem with respect to the given input. Let us evaluate the complexity of $\operatorname{FindCS}(F, L, l, k)$. According to Lemma 8, the height of the search tree is at most $\alpha(F, L, l, k) \leq n+k$. Theorem 5 states that the number of leaves of $S T(F, L, l, k)$ is at most $\sqrt{5}^{t}$ where $t=\beta(F, L, l, k)$. Taking into account that $t \leq 2 k$, the number of leaves of $S T(F, L, l, k)$ is at most 5^{k}. Consequently, the number of nodes of the search tree is at most $5^{k} *(n+k)$. The complexity of FindCS (F, L, l, k) can be represented as the number of nodes multiplied by the complexity of the operations performed within the given recursive call.

Let us evaluate the complexity of $\operatorname{FindCS}(F, L, l, k)$ without taking into account the complexity of the subsequent recursive calls. First of all note that each literal of F belongs to a clause and each clause contains at most 2 distinct literals. Consequently, the number of clauses of F is at least half of the number of literals of F and, as a result, at least half of the number of variables. This notice is important because most of operations of $\operatorname{FindCS}(F, L, l, k)$ involve doing Depth-First Search (DFS) or Breadth-First Search (BFS) on graph D, which take $O(V+A)$. In our case $|V|=O(n+|L|)$ and $|A|=O(m)$. Since $n=O(m), O(V+A)$ can be replaced by $O(m+|L|)$.

The first operation performed by $\operatorname{FindCS}(F, L, l, k)$ is checking whether $S W R T(F, L \cup\{l\})$ is true. Note that this is equivalent to checking the satis-
fiability of a 2-CNF F^{\prime} which is obtained from F by adding clauses ($l^{\prime} \vee l^{\prime}$) for each $l^{\prime} \in L \cup\{l\}$. It is well known [17] that the given 2 -CNF formula F^{\prime} is not satisfiable if and only if there are literals l^{\prime} and $\neg l^{\prime}$ which belong to the same strongly connected component of the implication graph of F^{\prime}. The implication graph D^{\prime} of F^{\prime} can be obtained from D by adding arcs that correspond to the additional clauses. The resulting graph has $O(m+|L|)$ vertices and $O(m+|L|)$ arcs. The partition into the strongly connected components can be done by a constant number of applications of the DFS algorithm. Hence the whole Step 1 takes $O(m+|L|)$. Steps 2 and 3 take $O(1)$. According to Theorem 2 Step 4 can be performed by assigning all the arcs of D a unit flow, contracting all the vertices of L into a source s, identifying $\neg l$ with the $\operatorname{sink} t$, and checking whether $k+1$ units of flow can be delivered from s to t. This can be done by $O(k)$ iterations of the Ford-Fulkerson algorithm, where each iteration is a run of BFS and hence can be performed on $O(m+|L|)$. Consequently, Step 4 can be performed in $O((m+|L|) * k)$. Checking the condition of Step 5 can be done by BFS and hence takes $O(m+|L|)$. Moreover, if the required walk exists, BFS finds the shortest one and, as noted in the proof of Lemma 4. a required clause is the first clause of this walk. Hence, the whole Step 5 can be performed in $O(m+|L|)$. The proof of Lemma 4 also outlines an algorithm implementing Step 6: choose an arbitrary walk w from $\neg l$ to $\neg l$ in F, (which, as noted in the proof of Theorem 2, corresponds to a walk from l to $\neg l$ in D), find a satisfying assignment P of F which does not intersect with $\neg L$ and choose a clause of w whose both literals are satisfied by P. Taking into account the above discussion, all the operations take $O(m+|L|)$, hence Step 6 takes this time. Note that preparing an input for a recursive call takes $O(1)$ because this preparation includes removal of one clause from F or adding one literal to L (with introducing appropriate changes to the implication graph). Therefore Steps 7 and 8 take $O(1)$. Step 9 takes $O((m+|L|) * k)$ on the account of neutrality checking: $O(k)$ iterations of the Ford-Fulkerson algorithm are sufficient because $\operatorname{SepSize}(F, \neg L, \neg l) \leq k$ due to insatisfaction of the condition of Step 4 . Step 10 takes $O(1)$ on the account of input preparation for the recursive call. Thus the complexity of processing (F, L, l, k) is $O((m+|L|) * k)$.

Finally, note that for any subsequent recursive call $\left(F^{\prime}, L^{\prime}, l, k^{\prime}\right)$ the implication graph of $\left(F^{\prime}, L^{\prime}, l\right)$ is a subgraph of the graph of (F, L, l) : every change of graph in the path from (F, L, l, k) to $\left(F^{\prime}, L^{\prime}, l, k^{\prime}\right)$ is caused by removal of a clause or adding to the second parameter a literal of a variable of F. Consequently, the complexity of any recursive call is $O((m+|L|) * k)$ and the time taken by the entire run of $\operatorname{FindCS}(F, L, l, k)$ is $O\left(5^{k} * k(n+k) *(m+|L|)\right)$ as required.

5 Fixed-Parameter Tractability of 2-ASAT problem

In this section we prove the main result of the paper, fixed-parameter tractability of the 2-ASAT problem.

Theorem 7. The 2-ASAT problem with input (F, k) where F is a 2-CNF formula with possible repeated occurrences of clauses, can be solved in $O\left(15^{k} * k * m^{3}\right)$, where m is the number of clauses of F.

Proof. We introduce the following 2 intermediate problems.

Problem I1

Input: A satisfiable 2-CNF formula F, a non-contradictory set of literals
L, a parameter k
Output: A set $S \subseteq C l a u s e s(F)$ such that $|S| \leq k$ and $S W R T(F \backslash S, L)$ is true, if there is such a set S; 'NO' otherwise.

Problem I2

Input: A 2-CNF formula F, a parameter k, and a set $S \subseteq C l a u s e s(F)$ such $|S|=k+1$ and $F \backslash S$ is satisfiable
Output: A set $Y \subseteq C l a u s e s(F)$ such that $|Y|<|S|$ and $F \backslash Y$ is satisfiable, if there is such a set Y; 'NO' otherwise.

The following two claims prove the fixed-parameter tractability of Problem I1 through transformation of its instance into an instance of 2-ASLASAT problem and of Problem I2 through transformation of its instance into an instance of Problem I1. Then we will show that the 2 -asat problem with no repeated occurrence of clauses can be solved through transformation of its instance into an instance of Problem I2. Finally, we show that the 2 -asAT problem with repeated occurrences of clauses is FPT through transformation of its instance into an instance of 2-ASAT without repeated occurrences of clauses.

Claim 8 Problem I1 with the input (F, L, k) can be solved in $O\left(5^{k} * k * m^{2}\right)$, where, $m=\mid$ Clauses $(F) \mid$.

Proof. Observe that we may assume that $\operatorname{Var}(L) \subseteq \operatorname{Var}(F)$. Otherwise we can take a subset L^{\prime} such that $\operatorname{Var}\left(L^{\prime}\right)=\operatorname{Var}(F) \cap \operatorname{Var}(L)$ and solve problem I1 w.r.t. the instance $\left(F, L^{\prime}, k\right)$. It is not hard to see that the resulting solution applies to (F, L, k) as well.

Let P be a satisfying assignment of F. If $L \subseteq P$ then the empty set can be immediately returned. Otherwise partition L into two subsets L_{1} and L_{2} such that $L_{1} \subseteq P$ and $\neg L_{2} \subseteq P$.

We apply a two stages transformation of formula F. On the first stage we assign each clause of F a unique index from 1 to m, introduce new literals l_{1}, \ldots, l_{m} of distinct variables which do not intersect with $\operatorname{Var}(F)$, and replace the i-th clause $\left(l^{\prime} \vee l^{\prime \prime}\right)$ by two clauses $\left(l^{\prime} \vee l_{i}\right)$ and $\left(\neg l_{i} \vee l^{\prime \prime}\right)$. Denote the resulting formula by F^{\prime}. On the second stage we introduce two new literals l_{1}^{*} and l_{2}^{*} such that $\operatorname{Var}\left(l_{1}^{*}\right) \notin \operatorname{Var}\left(F^{\prime}\right), \operatorname{Var}\left(l_{2}^{*}\right) \notin \operatorname{Var}\left(F^{\prime}\right)$, and $\operatorname{Var}\left(l_{1}^{*}\right) \neq \operatorname{Var}\left(l_{2}^{*}\right)$. Then we replace in the clauses of F^{\prime} each occurrence of a literal of L_{1} by l_{1}^{*}, each occurrence of a literal of $\neg L_{1}$ by $\neg l_{1}^{*}$, each occurrence of a literal of L_{2} by l_{2}^{*}, and each occurrence of a literal of $\neg L_{2}$ by $\neg l_{2}^{*}$. Let F^{*} be the resulting formula.

We claim that $\left(F^{*},\left\{l_{1}^{*}\right\}, l_{2}^{*}\right)$ is a valid instance of the 2-ASLASAT problem. To show this we have to demonstrate that all the clauses of F^{*} are pairwise different and that $S W R T\left(F^{*}, l_{1}^{*}\right)$ is true.

For the former, notice that all the clauses of F^{*} are pairwise different because each clause is associated with the unique literal l_{i} or $\neg l_{i}$. This also allows us to introduce new notation. In particular, we denote the clause of F^{*} containing l_{i} by $C\left(l_{i}\right)$ and the clause containing $\neg l_{i}$ by $C\left(\neg l_{i}\right)$.

For the latter let P^{*} be a set of literals obtained from P by replacing L_{1} by l_{1}^{*} and $\neg L_{2}$ by $\neg l_{2}^{*}$. Observe that for each i, P^{*} satisfies either $C\left(l_{i}\right)$ or $C\left(\neg l_{i}\right)$. Indeed, let $\left(l^{\prime} \vee l^{\prime \prime}\right)$ be the origin of $C\left(l_{i}\right)$ and $C\left(\neg l_{i}\right)$ i.e. the clause which is transformed into $\left(l^{\prime} \vee l_{i}\right)$ and $\left(\neg l_{i} \vee l^{\prime \prime}\right)$ in F^{\prime}, then $\left(l^{\prime} \vee l_{i}\right)$ and $\left(\neg l_{i} \vee l^{\prime \prime}\right)$ become respectively $C\left(l_{i}\right)$ and $C\left(\neg l_{i}\right)$ in F^{*} (with possible replacement of l^{\prime} or $l^{\prime \prime}$ or both). Since P is a satisfying assignment of $F, l^{\prime} \in P$ or $l^{\prime \prime} \in P$. Assume the former. Then if $C\left(l_{i}\right)=\left(l^{\prime} \vee l_{i}\right), l^{\prime} \in P^{*}$. Otherwise, $l^{\prime} \in L_{1}$ or $l^{\prime} \in \neg L_{2}$. In the former case $C\left(l_{i}\right)=\left(l_{1}^{*} \vee l_{i}\right)$ and $l_{1}^{*} \in P^{*}$ by definition; in the latter case $C\left(l_{i}\right)=\left(\neg l_{2}^{*} \vee l_{i}\right)$ and $\neg l_{2}^{*} \in P^{*}$ by definition. So, in all the cases P^{*} satisfies $C\left(l_{i}\right)$. It can be shown analogously that if $l^{\prime \prime} \in P$ then P^{*} satisfies $C\left(\neg l_{i}\right)$. Now, let P_{2}^{*} be a set of literals which includes P^{*} and for each i exactly one of $\left\{l_{i} \neg l_{i}\right\}$ selected as follows. If P^{*} satisfies $C\left(l_{i}\right)$ then $\neg l_{i} \in P_{2}^{*}$. Otherwise $l_{i} \in P_{2}^{*}$. Thus P_{2}^{*} satisfies all the clauses of F^{*}. By definition $l_{1}^{*} \in P^{*} \subseteq P_{2}^{*}$. It is also not hard to show that P_{2}^{*} is non-contradictory and that $\operatorname{Var}\left(P_{2}^{*}\right)=\operatorname{Var}\left(F^{*}\right)$. Thus P_{2}^{*} is a satisfying assignment of F^{*} containing l_{1}^{*} which witnesses $S W R T\left(F^{*}, l_{1}^{*}\right)$ is true.

We are going to show that there is a set $S \subseteq C l a u s e s(F)$ such that $|S| \leq k$ and $S W R T(F \backslash S, L)$ is true if and only if $\left(F^{*},\left\{l_{1}^{*}\right\}, l_{2}^{*}\right)$ has a CS of size at most k.

Assume that there is a set S as above. Let $S^{*} \subseteq \operatorname{Clauses}\left(F^{*}\right)$ be the set consisting of all clauses $C\left(l_{i}\right)$ such that the clause with index i belongs to S. It is clear that $\left|S^{*}\right|=|S|$. Let us show that S^{*} is a CS of $\left(F^{*},\left\{l_{1}^{*}\right\}, l_{2}^{*}\right)$. Let P be a satisfying assignment of $F \backslash S$ which does not intersect with $\neg L$. Let P_{1} be the set of literals obtained from P by replacing the set of all the occurrences of literals of L_{1} by l_{1}^{*} and the set of all the occurrences of literals of L_{2} by l_{2}^{*}.

Observe that for each i, at least one of $\left\{C\left(l_{i}\right), C\left(\neg l_{i}\right)\right\}$ either belongs to S^{*} or is satisfied by P_{1}. In particular, assume that for some $i, C\left(l_{i}\right) \notin S^{*}$. Then the origin of $C\left(l_{i}\right)$ and $C\left(\neg l_{i}\right)$ belongs to $F \backslash S$ and it can be shown that P_{1} satisfies $C\left(l_{i}\right)$ or $C\left(\neg l_{i}\right)$ similarly to the way we have shown that P^{*} satisfies $C\left(l_{i}\right)$ or $C\left(\neg l_{i}\right)$ three paragraphs above.

For each i, add to P_{1} an appropriate l_{i} or $\neg l_{i}$ so that the remaining clauses of $F^{*} \backslash S^{*}$ are satisfied, let P_{2} be the resulting set of literals. Add to P_{2} one arbitrary literal of each variable of $\operatorname{Var}\left(F^{*} \backslash S^{*}\right) \backslash \operatorname{Var}\left(P_{2}\right)$. It is not hard to see that the resulting set of literals P_{3} is a satisfying assignment of $F^{*} \backslash S^{*}$, which does not contain $\neg l_{1}^{*}$ nor $\neg l_{2}^{*}$. It follows that S^{*} is a CS of $\left(F^{*},\left\{l_{1}^{*}\right\}, l_{2}^{*}\right)$ of size at most k.

Conversely, let S^{*} be a CS of $\left(F^{*},\left\{l_{1}^{*}\right\}, l_{2}^{*}\right)$ of size at most k. Let S be a set of clauses of F such that the clause of index i belongs to S if and only if
$C\left(l_{i}\right) \in S^{*}$ or $C\left(\neg l_{i}\right) \in S^{*}$. Clearly $|S| \leq\left|S^{*}\right|$. Let $S_{2}^{*} \subseteq \operatorname{Clauses}\left(F^{*}\right)$ be the set of all clauses $C\left(l_{i}\right)$ and $C\left(\neg l_{i}\right)$ such that the clause of index i belongs to S. Since $S^{*} \subseteq S_{2}^{*}$, we can specify a satisfying assignment P_{2}^{*} of $F^{*} \backslash S_{2}^{*}$ which does not contain $\neg l_{1}^{*}$ nor $\neg l_{2}^{*}$.

Let P be a set of literals obtained from P_{2}^{*} by removal of all $l_{i}, \neg l_{i}$, removal of l_{1}^{*} and l_{2}^{*}, and adding all the literals l^{\prime} of L such that l^{\prime} or $\neg l^{\prime}$ appear in the clauses of $F \backslash S$. It is not hard to see that $\operatorname{Var}(P)=\operatorname{Var}(F \backslash S)$ and that P does not intersect with $\neg L$.

To observe that P is a satisfying assignment of $F \backslash S$, note that there is a bijection between the pairs $C\left(l_{i}\right), C\left(\neg l_{i}\right)$ of clauses of $F^{*} \backslash S_{2}^{*}$ and the clauses of $F \backslash S$. In particular, each clause of $F \backslash S$ is the origin of exactly one pair $\left\{C\left(l_{i}\right), C\left(\neg l_{i}\right)\right\}$ of $F^{*} \backslash S_{2}^{*}$ in the form described above and each pair $\left\{C\left(l_{i}\right), C\left(\neg l_{i}\right)\right\}$ of $F^{*} \backslash S_{2}^{*}$ has exactly one origin in $F \backslash S$.

Now, let $\left(l^{\prime} \vee l^{\prime \prime}\right)$ be a clause of $F \backslash S$ which is the origin of $C\left(l_{i}\right)=\left(t^{\prime} \vee l_{i}\right)$ and $C\left(\neg l_{i}\right)=\left(\neg l_{i} \vee t^{\prime \prime}\right)$ of $F^{*} \backslash S_{2}^{*}$, where $l^{\prime}=t^{\prime}$ or t^{\prime} is the result of replacement of $l^{\prime}, t^{\prime \prime}$ has the analogous correspondence to $l^{\prime \prime}$. By definition of P_{2}^{*}, either $t^{\prime} \in P_{2}^{*}$ or $t^{\prime \prime} \in P_{2}^{*}$. Assume the former. In this case if $l^{\prime}=t^{\prime}$ then $l^{\prime} \in P$. Otherwise $t^{\prime} \in\left\{l_{1}^{*}, l_{2}^{*}\right\}$ and, consequently $l^{\prime} \in L$. By definition of $P, l^{\prime} \in P$. It can be shown analogously that if $t^{\prime \prime} \in P_{2}^{*}$ then $l^{\prime \prime} \in P$. It follows that any clause of $F \backslash S$ is satisfied by P.

It follows from the above argumentation that Problem I1 with input (F, L, k) can be solved by solving the parameterized 2-ASLASAT problem with input $\left(F^{*},\left\{l_{1}^{*}\right\}, l_{2}^{*}, k\right)$. In particular, if the output of the 2-ASLASAT problem on $\left(F^{*},\left\{l_{1}^{*}\right\}, l_{2}^{*}, k\right)$ is a set S^{*}, this set can be transformed into S as shown above and S can be returned; otherwise 'NO' is returned. Observe that $\left|\operatorname{Clauses}\left(F^{*}\right)\right|=O(m)$ and $\left|\operatorname{Var}\left(F^{*}\right)\right|=O(m+|\operatorname{Var}(F)|)$. Taking into account our note in the proof of Theorem 6 that $|\operatorname{Var}(F)|=O(m),\left|\operatorname{Var}\left(F^{*}\right)\right|=O(m)$. Also note that we may assume that $k<m$ because otherwise the algorithm can immediately returns Clauses $\left(F^{*}\right)$.

Substituting this data into the runtime of 2 -ASLASAT problem following from Theorem [6] we obtain that problem I1 can be solved in time $O\left(5^{k} * k * m *(m+\right.$ $\left.\left.\left|\left\{l_{1}^{*}\right\}\right|\right)\right)=O\left(5^{k} * k * m^{2}\right)$.

Claim 9 Problem I2 with input (F, S, k) can be solved in time $O\left(15^{k} * k * m^{2}\right)$, where, $m=\mid$ Clauses $(F) \mid$.

Proof We solve Problem I2 by the following algorithm. Explore all possible subsets E of S of size at most k. For the given set E explore all the sets of literals L obtained by choosing l_{1} or l_{2} for each clause $\left(l_{1} \vee l_{2}\right)$ of $S \backslash E$ and creating L as the set of all chosen literals. For all the resulting pairs (E, L) such that L is non-contradictory, solve Problem I1 for input ($F^{*}, L, k-|E|$) where $F^{*}=F \backslash S$. If for at least one pair (E, L) the output is a set S^{*} then return $E \cup S^{*}$. Otherwise return 'NO'. Assume that this algorithm returns $E \cup S^{*}$ such that S^{*} has been obtained for a pair (E, L). Let P be a satisfying assignment of $F^{*} \backslash S^{*}$ which does not intersect with $\neg L$. Observe that $P \cup L$ is non-contradictory, that $P \cup L$ satisfies all the clauses of $\operatorname{Clauses}\left(F^{*} \backslash S^{*}\right) \cup(S \backslash E)$ and that
$\operatorname{Clauses}\left(F^{*} \backslash S^{*}\right) \cup(S \backslash E)=C l a u s e s\left(F \backslash\left(S^{*} \cup E\right)\right)$. Let L^{\prime} be a set of literals, one for each variable of $\operatorname{Var}(S \backslash E) \backslash \operatorname{Var}(P \cup L)$. Then $P \cup L \cup L^{\prime}$ is a satisfying assignment of $F \backslash\left(S^{*} \cup E\right)$, i.e. the output $\left(S^{*} \cup E\right)$ is valid. Assume that the output of Problem I1 is 'NO' for all inputs but there is a set $Y \subseteq \operatorname{Clauses}(F)$ such that $|Y| \leq k$ and $F \backslash Y$ is satisfiable. Let $E=Y \cap S, S^{*}=Y \backslash S$. Let P be a satisfying assignment of $F \backslash Y$ and let L be a set of literals obtained by selecting for each clause C of $S \backslash E$ a literal of C which belongs to P. Then the subsets of P on the variables of $F^{*} \backslash S^{*}$ witnesses that $S W R T\left(F^{*} \backslash S^{*}, L\right)$ is true that is the output of problem I1 on (E, L) cannot be 'NO'. This contradiction shows that when the proposed algorithm returns 'NO' this output is valid, i.e. the proposed algorithm correctly solves Problem I2.

In order to evaluate the complexity of the proposed algorithm, we bound the number of considered combinations (E, L). Each clause $C=\left(l_{1} \vee l_{2}\right) \in S$ can be taken to E or l_{1} can be taken to L or l_{2} can be taken to L. That is, there are 3 possibilities for each clause, and hence there are at most 3^{k+1} possible combinations (E, L). Multiplying 3^{k+1} to the runtime of solving Problem I1 following from Claim 8, we obtain the desired runtime for Problem I2.

Let (F, k) be an instance of 2 -ASAT problem without repeated occurrences of clauses. Let C_{1}, \ldots, C_{m} be the clauses of F. Let F_{0}, \ldots, F_{m} be 2-CNF formulas such that F_{0} is the empty formula and for each i from 1 to $m, \operatorname{Clauses}\left(F_{i}\right)=$ $\left\{C_{1}, \ldots C_{i}\right\}$. We solve (F, k) by the method of iterative compression [16]. In particular we solve the 2-ASAT problems $\left(F_{0}, k\right), \ldots\left(F_{m}, k\right)$ in the given order. For each $\left(F_{i}, k\right)$, the output is either a CS S_{i} of F_{i} of size at most k or 'NO'. If 'NO' is returned for any $\left(F_{i}, k\right), i \leq m$, then clearly 'NO' can be returned for (F, k). Clearly, for $\left(F_{0}, k\right), S_{0}=\emptyset$. It remains to show how to get S_{i} from S_{i-1}. Let $S_{i}^{\prime}=S_{i} \cup\{C\}$. If $\left|S_{i}^{\prime}\right| \leq k$ then $S_{i}=S_{i}^{\prime}$. Otherwise, we solve problem $I 2$ with input $\left(F_{i}, S_{i}^{\prime}, k\right)$. If the output of this problem is a set then this set is S_{i}, otherwise the whole iterative compression procedure returns 'NO'. The correctness of this procedure can be easily shown by induction on i. In follows that 2 -ASAT problem with input $(F, k)=\left(F_{m}, k\right)$ can be solved by at most m applications of an algorithm solving Problem I2. According to Claim 9, Problem I2 can be solved in $O\left(15^{k} * k * m^{2}\right)$, so 2 -ASAT problem with input (F, k) can be solved in $O\left(15^{k} * k * m^{3}\right)$.

Finally we show that if (F, k) contains repeated occurrences of clauses then the 2-ASAT problem remains FPT and even can be solved in the same runtime. In order to do that, we transform F into a formula F^{*} with all clauses being pairwise distinct and show that F can be made satisfiable by removal of at most k clauses if and only if F^{*} can.

Assign each clause of F a unique index from 1 to m. Introduce new literals l_{1}, \ldots, l_{m} of distinct variables which do not intersect with $\operatorname{Var}(F)$. Replace the i-th clause $\left(l^{\prime} \vee l^{\prime \prime}\right)$ by two clauses $\left(l^{\prime} \vee l_{i}\right)$ and $\left(\neg l_{i} \vee l^{\prime \prime}\right)$. Denote the resulting formula by F^{*}. It is easy to observe that all the clauses of F^{*} are distinct. Let I be the set of indices of clauses of F such that the formula resulting from their removal is satisfiable and let P be a satisfying assignment of this resulting formula. Let $S^{*}=\left\{\left(l^{\prime} \vee l_{i}\right) \mid i \in I\right\}$. Clearly, $\left|S^{*}\right|=|I|$. Observe that $F^{*} \backslash S^{*}$ is
satisfiable. In particular, for every pair of clauses $\left(l^{\prime} \vee l_{i}\right)$ and $\left(\neg l_{i} \vee l^{\prime \prime}\right)$ at least one clause is either satisfied by P or belongs to S^{*}. Hence $F^{*} \backslash S^{*}$ can be satisfied by assignment which is obtained from P by adding for each i either l_{i} or $\neg l_{i}$ so that the remaining clauses are satisfied. Conversely, let S^{*} be a set of clauses of F^{*} of size at most k such that $F^{*} \backslash S^{*}$ is satisfiable and let P^{*} be a satisfying assignment of $F^{*} \backslash S^{*}$. Then for the set of indices I which consists of those i s such that the clause containing l_{i} or the clause containing $\neg l_{i}$ belong to S^{*}. Clearly $\left|S^{*}\right| \geq|I|$. Let F^{\prime} be the formula obtained from F by removal the clauses whose indices belong to I. Observe that a clause ($l^{\prime} \vee l^{\prime \prime}$) belongs to Clauses $\left(F^{\prime}\right)$ if and only if both $\left(l^{\prime} \vee l_{i}\right)$ and $\left(\neg l_{i} \vee l^{\prime \prime}\right)$ belong to Clauses $\left(F^{*} \backslash S^{*}\right)$. It follows that either l^{\prime} or $l^{\prime \prime}$ belong to P^{*}. Consequently the subset of P^{*} consisting of the literals of variables of F^{\prime} is a satisfying assignment of F^{\prime}.

The argumentation in the previous paragraph shows that the 2-ASAT problem with input (F, k) can be solved by solving the 2-ASAT problem with input $\left(F^{*}, k\right)$. If the output on $\left(F^{*}, k\right)$ is a set S^{*} then S^{*} is transformed into a set of indices I as shown in the previous paragraph and the multiset of clauses corresponding to this set of indices is returned. If the output of the 2-ASAT problem on input $\left(F^{*}, k\right)$ is 'NO' then the output on input (F, k) is 'NO' as well. To obtain the desired runtime, note that F^{*} has $2 m$ clauses and $O(m)$ variables and substitute this data to the runtime for 2 -ASAT problem without repeated occurrences of literals.

We conclude the paper by presenting a number of by-products of the main result. It is noticed in [6] that the parameterized 2-ASAT problem is FPT-equivalent to the vertex cover problem parameterized above the prefect matching (VC-PM). It is shown [15] that the VC-PM problem is FPT-equivalent to the vertex cover problem parameterized above the size of a maximum matching and that the latter problem is FPT-equivalent to a problem of finding whether at most k vertices can be removed from the given graph so that the size of the minimum vertex cover of the resulting graph equals its size of maximum matching. It follows from Theorem 7 that all these problems are FPT.

Acknowledgements

We thank Venkatesh Raman for pointing out several relevant references.

References

1. J. Bang-Jensen, G. Gutin Digraphs: Theory, Algorithms and Applications, Springer-Verlag, 2001.
2. J. Chen, Y. Liu, S. Lu An Improved Parameterized Algorithm for the Minimum Node Multiway Cut Problem., WADS 2007, pp. 495-506.
3. J. Chen, F. Fomin, Y. Liu, S. Lu, Y. Villanger, Improved Algorithms for the Feedback Vertex Set Problems., WADS 2007, pp. 422-433.
4. J. Chen, Y. Liu, S. Lu, B. O’Sullivan, I. Razgon, Directed Feedback Vertex Set is Fixed-Parameter Tractable, STOC 2008, to appear.
5. J. Chen, I. Kanj, Improved Exact Algorithms for MAX-SAT, Discrete Applied Mathematics, 142(1-3),2004,pp. 17-27.
6. E. Demaine, G. Gutin, D. Marx, U. Stege, Open Problems from Dagstuhl Seminar 07281, avaiable electronically at http://drops.dagstuhl.de/opus/volltexte/2007/1254/pdf/07281.SWM.Paper.1254.pdf
7. M. Grohe, M. Grüber, Parameterized Approximability of the Disjoint Cycle Problem., ICALP 2007, pp. 363-374.
8. J. Guo, F. Hüffner E. Kenar, R. Niedermeier, J. Uhlmann Complexity and Exact Algorithms for Multicut., SOFSEM 2006, pp. 303-312.
9. F. HüFFner Algorithm Engineering for Optimal Graph Bipartization., WEA 2005, pp.240-252.
10. F. Hüffner, R. Niedermeier, S. Wernicke, Techniques for Practical FixedParameter Algorithms., The Computer Journal, 51(1), 2008, pp. 7-25.
11. S. Кhot, V. Raman, Parameterized Complexity of Finding Subgraphs with Hereditary Properties., COCOON 2000, pp. 137-147.
12. M. Mahajan, V. Raman Parametrizing Above Guaranteed Values: MaxSat and MaxCut, Electronic Colloquium on Computational Complexity (ECCC), 4(33),1997.
13. M. Mahajan, V. Raman Parametrizing Above Guaranteed Values: MaxSat and MaxCut, Journal of Algorithms, 31(2), 1999, pp. 335-354.
14. D. Marx Parameterized graph separation problems., Theoretical Computer Science, 351(3), 2006, pp. 394-406.
15. S. Mishra, V. Raman, S. Saurabh, S. Sikdar, C.R. Subramanian The Complexity of Finding Subgraphs Whose Matching Number Equals the Vertex Cover Number, ISAAC 2007, pp. 268-279.
16. R. Niedermeier, Invitation to fixed-parameter algorithms, Oxford Lecture Series in Mathematics and its Applications, volume 31, 2006.
17. C. Papadimitriou, Computational Complexity, Addision-Wesley, 1994.
18. B. Reed, K. Smith, A. Vetta, Finding odd cycle transversals., Operations Research Letters 32(4),2004, pp.299-301.
19. A. Slivkins, Parametrized Tractability of Edge-Disjoint Paths on DAGs, ESA 2003, pp.482-493.

[^0]: ${ }^{1}$ Note that the clause $\left(l_{1} \vee l_{2}\right)$ is the same as the clause $\left(l_{2} \vee l_{1}\right)$.
 ${ }^{2}$ We implicitly assume that all the clauses considered in this paper have size 2

[^1]: ${ }^{3}$ We do not say ' P contains L ' because generally $\operatorname{Var}(L)$ may be not a subset of $\operatorname{Var}(F)$

[^2]: ${ }^{4}$ The correctness of this step follows from Corollary 1
 ${ }^{5}$ Doing the analysis, we will prove that on Steps 5 and $6 F$ has at least one clause with the required property

[^3]: ${ }^{6}$ Besides providing the upper bound on the height of $S T(F, L, l, k)$, this statement claims that $S T(F, L, l, k)$ is finite and hence we may safely refer to a path between two nodes.
 ${ }^{7}$ Note that this inequality applies to the case where $\left(F^{\prime}, L^{\prime}, l, k^{\prime}\right)=\left(F^{*}, L^{*}, l, k^{*}\right)$.

