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Abstract

A completion of amm-by-n matrix A with entries in{0, 1, «} is obtained by setting aX-entries
to constants 0 and 1. A system of semi-linear equations®fghas the fornrMx = f(x), where
M is a completion oA andf : {0,1}" — {0,1}™ is an operator, thgh coordinate of which can
only depend on variables correspondingentries in thaeth row of A. We conjecture that no such
system can have more thaf 2™ solutions, where > 0 is an absolute constant and (#y
is the smallest rank oveBF, of a completion ofA. The conjecture is related to an old problem
of proving super-linear lower bounds on the size of log-tHdpiolean circuits computing linear
operator— Mx. The conjecture is also a generalization of a classicaltgureabout how much
larger can non-linear codes be than linear ones. We prove special cases of the conjecture
and establish some structural properties of solution sets.

1 Introduction

One of the challenges in circuit complexity is to prove a sdpear lower bound for log-depth circuits
over{&,V,—} computing an explicitly given boolean operafar{0,1}" — {0, 1}". Attempts to solve
it have led to several weaker problems which are often ofpaddent interest. The problem is open
even if we impose an additional restriction that the depttiefcircuit isO(logn). It is even open for
linear log-depth circuits, that is, for log-depth circuits ovee thasis{®, 1}, in spite of the apparent
simplicity of such circuits. It is clear that the operatoosnputed by linear circuits must also be linear,
that is, be matrix-vector products— Mx over the fieldGF, = ({0,1},®,-),

An important result of Valiant [27] reduces the lower boupdgblem for log-depth circuits over
{&,V,—} to proving lower bounds for certain depth-2 circuits, whem allow arbitrary boolean
functions as gates.

1.1 Reduction to depth2 circuits

A depth-2 circuit ofwidth whasn boolean variableg,, ..., X, as input nodesw arbitrary boolean
functionshy,...,h, as gates on the middle layer, andarbitrary boolean functiongs,...,gm as
gates on the output layer. Direct input-output wires, cating input variables with output gates,
are allowed. Such a circuit computes an operdter (fq,..., fm) : {0,1}" — {0,1}™ if, for every
i=1,...,m,

fi(X) = gi(x,h1(x),...,hw(X)).
*Research of both authors supported by a DFG grant SCHN 303/4-
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Thedegreeof such a circuit is the maximum, over all output gaggsof the number of wires going
directly from input variablesq, ..., X, to the gateg;. That is, we ignore the wires incident with the
gates on the middle layer. Let dg(d) denote the smallest degree of a depth-2 circuit of width
computingf.

Itis clear that deg(f) =0 for f : {0,1}" — {0,1}": just put the functiondy, ..., f, on the middle
layer. Hence, this parameter is only nontrivial fer< n. Especially interesting is the case when
w = 0O(n/InInn) (see also Theorem 2.2 in [20] for more details):

Lemma 1.1 (Valiant [27]). If deg,(f) = n®® for w = O(n/InInn), then the operator f cannot be
computed by a circuit of depth(n) using Qn) constant fan-in gates.

Recently, there was a substantial progress in proving |ldwends on thesize of (that is, on
the total number of wires in) depth-2 circuits. Superlinkaver bounds of the forer(nIog2 n)
were proved using graph-theoretic arguments by analyzingessuperconcentration properties of the
circuit as a graph [6, 14, 15, 118,116,[2, 20] 21, 22]. Higherdptwounds of the fornﬂ(n3/2) were
proved using information theoretical arguments[[4, 9]. Bwg highest known lower bound on the
degreeof width w circuits has the form®((n/w)In(n/w)) [20], and is too weak to have a consequence
for log-depth circuits.

A natural question therefore was to improve the lower boundhe degree at least fdinear
circuits, that is, for depth-2 circuits whose middle gatesaell as output gates are linear boolean
functions (parities of their inputs). Such circuits comglihear operatorg — Mx for some(0, 1)-
matrix M; we work overGF,. By Valiant’s reduction, this would give a super-linear Embound for
log-depth circuits ove{®, 1}.

This last question attracted attention of many researdbegause of its relation to a purely alge-
braic characteristic of the underlying matik—its rigidity. Therigidity %wu (r) of a (0, 1)-matrix M
is the smallest number of entries Mf that must be changed in order to reduce its rank &/erto
r. It is not difficult to show (se€ [27]) that any linear deptleifcuit of width w computingMx must
have degree at leasfy (w)/n: If we set all direct input-output wires to 0, then the reisigitdegree-0
circuit will compute some linear transformatidix where the rank oM’ does not exceed the width
w. On the other handyl’ differs fromM in at mostdn entries, whereal is the degree of the original
circuit. Hence Zu(w) < dnfrom whichd > %y (w)/n follows.

Motivated by its connection to proving lower bounds for ldgpth circuits, matrix rigidity (over
different fields) was considered by many authadrs| [28, 1.7176,20] 25, 24, 10, 11, 19, 126] among
others. It is therefore somewhat surprising that the higkeewn lower bounds oy (r) (over
the field GR,), proved in [7/25] also have the for@((n?/r)In(n/r)), resulting to the same lower
boundQ((n/w)In(n/w)) on the degree of linear circuits as that for general deptheiits proved
in [20]. This phenomenon is particularly surprising, besmgeneral circuits may usebitrary (not
just linear) boolean functions as gates. We suspect thathtbence of higher lower bounds for linear
circuits than those for non-linear ones could be not justiacidence.

Conjecture 1 (Linearization conjecture for depth-2 circuit€)epth2 circuits can be linearized. That
is, every deptl® circuit computing a linear operator can be transformed isto equivalentinear
depth? circuit without substantial increase of its width or its deg.

If true, the conjecture would have important consequence®§-depth circuits. Assuming this
conjecture, any proof that every depth-2 circuit of width= O(n/InInn) with unbounded fan-in
parity gates for a given linear operatdix requires degree®® would imply thatMx requires a super-
linear number of gates in any log-depth circuit o{ér,V,—}. In particular, this would mean that



proving high lower bounds on matrix rigidity is a much mor#idult task than assumed before: such
bounds would yield super-linear lower bounds for log-degthuits over a general bas{#,V,—},
not just for circuits ove{ @, 1}.

As the first step towards Conjecture 1, in this paper we rédabea purely combinatorial conjec-
ture about partially defined matrices—timén-rank conjecturgand prove some results supporting this
last conjecture. This turns the problem about the linedareaof depth-2 circuits into a problem of
Combinatorial Matrix Theory concerned with properties ofmpletions of partially defined matrices
(see, e.g., the surveyl[8]). Hence, the conjecture may &sif Independent interest.

Unfortunately, we were not able to prove the conjecturedriutl generality. So far, we are only
able to prove that some of its special cases are true. Thd Meny surprising because the conjecture
touches a basic problem in circuit complexity: Can nondingates help to compute linear operators?
This paper is just the first step towards this question.

1.2 The Min-Rank Conjecture

A completionof a (0, 1, %)-matrix Ais a(0, 1)-matrix M obtained fromA by setting alk’s to constants
0 and 1. Acanonical completiomf A is obtained by setting all's in Ato 0.

If Ais anm-by-n matrix, then each its completidvi defines a linear operator mapping each vector
x € {0,1}" to a vectorMx € {0,1}™. Besides such (linear) operators we also consider geneesl o
Each operato6G : {0,1}" — {0,1}™ can be looked at as a sequer@&e- (gi,...,gm) of m boolean
functionsg; : {0,1}" — {0,1}.

We say that an operat@ = (91, . ..,0m) is consistenwith anm-by-n (0, 1, x)-matrix A = (&;j ) if
theith boolean functiorg; can only depend on those variabbgsfor which a; = +. That is, theith
componenig; of G can only depend on variables on which ilie row of A has stars (see Example

[1.8).

Definition 1.2. With some abuse in notation, we call a ket {0,1}" a solutionfor a partial matrix
Aif there is a completioM of A and an operato® such thaiG is consistent wittA andMx = G(x)
holds for allx € L. A solutionL is linear if it forms a linear subspace dD,1}" over GF,.

That is, a solution foA is aset Lof (0,1)-vectors of the formL = {x: Mx= G(x)}, whereM is
a completion ofA, andG is an operator consistent with A solutionL is linear, ifx@y € L for all
X,y € L.

Since, besides the consistency, there are no other restaain the operatds in the definition of
the solutionL, we can always assume thdtis the canonical completion &f (with all stars set to 0).

Observation 1.3 (Canonical completions)lf L = {x: Mx = G(x)} is a solution for A, and Mis
the canonical completion of A, then there is an operatérsGh that Gis consistent with A and
L={x: Mx=G(x)}.

Proof. Theith rowm of M must have the forrmy = m{ + p;, wheren? € {0,1}" is theith row of the
canonical completioM’ of A, andp; € {0,1}" is a vector with no 1’s in positions where tft row
of A has no stars. We can then define an oper@tor (97,...,9) by g/(X) :=aGi(X) ® (p;,X). (As
customary, the scalar product of two vecterge {0,1}" overGRy is (x,y) = ¥ ; Xyi mod 2.) Since
G was consistent witl®, the new operato6’ is also consistent witlh. Moreover, for every vector
x € {0,1}", we have thatm;,x) = gi(x) iff (m,x) = g{(x). O

We are interested in how much the maximum(8pt= max_|L| over all solutionsL for A can
exceed the maximum li\) = max_|L| over all linear solution& for A. It can be shown (Corollafy 6.3
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below) that
lin(A) = 20-mrA)

where m(A) is themin-rankof A defined as the smallest possible rank of its completion:
mr(A) = min{rk(M): M is a completion oA} .

If we only considerconstantoperatorsG, that is, operators witks(x) = b for someb € {0,1}™
and allx € {0,1}", then Linear Algebra tells us that no solution focan have more tharf'2" vectors,
wherer = rk(M) is the rank (ovelGF,) of the canonical completioM of A, obtained by setting all
stars to O.

If we only consideraffine operatorsG, that is, operators of the for®(x) = Hx® b whereH is
an m-by-n (0,1)-matrix, then no solution foA can have more than™2™® vectors, because then
the consistency o5(x) with A ensures that, for every completidvh of A, the matrixM @ H is a
completion ofA as well.

Remark 1.4. This last observation implies, in particular, that @pt< 2™ for all (0,1, )-
matricesA with at most onex in each row: In this case eacgjcan depend on at most one variable,
and hence, must be a linear boolean function.

We conjecture that a similar upper bound also holdsaforoperatorG, as long as it is consistent
with A. That is, we conjecture that linear operators are almostnaht

Conjecture 2 (Min-Rank Conjecture) There exists a constargt > 0 such that for every m-by-n
(0,1, )-matrix A we have thabpt(A) < 2"-¢™A o, equivalently,

opt(A) < 2" ("”Z(nA )>E- 1)

Remark 1.5. To have consequences for log-depth circuits, it would beighpby Lemma 111, that
the conjecture holds at least for= 0(1/loglogn).

Example 1.6. Toillustrate the introduced concepts, let us considerdhevfing system of 3 equations
in 6 variables:

X1 D Xg = X3 X5
X2 D X3 B Xg = X1 - (X5 D Xg) (2)
X4 = (X2 ®Xs) - (X3DXp)-

The corresponding0, 1, x)-matrix for this system is

0 1
A= 1 x|, 3
* *

o * B
P = O
* * %

* = %

and the system itself has the foivix = G(x), whereM is the canonical completion &

100001
M=(011100],
000100

IS



andG = (g1,02,03) : {0,1}® — {0,1}3 is an operator with

01(X) = X3 Xs;
P2(X) = X1+ (X D Xe) ;
93(X) = (X2 D Xs) - (X3 D Xs) -

The min-rank ofA is equal 2, and is achieved by the following completion:

100001
M=(011 100
011100

1.3 Our results

In Sectior 2 we prove the main consequence of the min-ranjectme for boolean circuits: If true,
it would imply that non-linear gates are powerless when aating linear operator$/x by depth-2
circuits (Lemmag 212 and 2.3).

In Sectiong B and]4 we prove some partial results supportongeCture$ 11 and 2. We first show
(Corollary[3.4) that every depth-2 circuit of widithcomputing a linear operator can be transformed
into an equivalentinear depth-2 circuit of the same degree and width at mogtus the maximum
number of wires in a matching formed by the input-output winéthe original circuit.

We then prove two special cases of Min-Rank Conjecture. Afs@, 1, x)-vectors isndependent
if they cannot be made linearly dependent 0@ by setting stars to constants 0 and 1 Alfs a
(0,1, x)-matrix, then the upper bound @B < 2"~" holds if the matrixA containsr independent
columns (Theorem 4.4). The same upper bound also hosdintainsr independent rows, and the
sets of star positions in these rows form a chain with resjpestt-inclusion (Theorem 4.111).

After that we concentrate on tletructureof solutions. In Sectiohl5 we show that solutions for a
(0,1, x)-matrix A are precisely independent sets in a Cayley graph over théatgroup({0,1}", @)
generated by a special 96t C {0,1}" of vectors defined by the matr& (Theoreni5.R).

In Section 6 we first show that every linear solution folies in the kernel of some completion
of A (Theoren{&.2). This, in particular, implies that (i) = 2™~ (Corollary[6.3), and gives an
alternative definition of the min-rank %) as the smallest rank of a boolean matrxsuch that
Hx #£ 0 for all x € Ka (Corollary[6.4). In Sectioh]l7 we show that non-linear salogéiL must be “very
non-linear”: ifsis the maximum number ofs in a row of A, and ifL contains a linear spa&é such
that no nozero vector with or fewer 1's is orthogonal t¥, thenL is contained in dinear solution
for A (Theoreni_Z11).

In Sectior 8 we consider the relation of the min-rank conjectvith error-correcting codes. We
define(0, 1, x)-matricesA, the solutions for which are error-correcting codes, armhsthat the min-
rank conjecture for these matrices is true: In this case dihgecture is implied by well known lower
and upper bounds on the size of linear and nonlinear erroectimg codes (Lemnia §.3).

For readers convenience, we summarize the introduced ptneé the end of the paper (see

Table[1).

2 Min-rank conjecture and depth-2 circuits

Let F be a depth-2 circuit computing a linear operater Mx, whereM is anm-by-n (0, 1)-matrix.
Say that thei, j)th entry ofM is seenby the circuit, if there is a direct wire from to theith output
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gate. Replace all entries bf seen by the circuit with’s, and letAg be the resultind0, 1, x)-matrix.

That is, given a depth-2 circuit computing a linear operatar— Mx, we replace by’s all entries of
M seen by the circuit, and denote the resultifgdl, «)-matrix by Ar. Note that the original matriji

is one of the completions @&; hence, rkM) > mr(Ag).

Lemma 2.1. Every linear deptt circuit F haswidth(F) > mr(Ag).

In particular, ifF computes a linear operatgr— Mx and has no direct input-output wires at all,
thenAr = M and widthF) > rk(M).

Proof. Let Mx be a linear operator computed By Every assignment of constants to direct input-
output wires leads to a depth-2 circuit of degrbe- 0 computing a linear operat@x, whereB is

a completion ofAr. This operator takes™#® different values. Hence, the operatdr: {0,1}" —
{0,1}" computed byw = width(F) boolean functions on the middle layer Bfmust take at least so
many different values, as well. This implies that the widtust be large enough to fulfill'2> 2k(B),
from whichw > rk(B) > mr(Ag) follows. O

Lemma 2.2. Every depth2 circuit F computing a linear operator can be transformedbiatn equiv-
alent linear depth2 circuit of the same degree and width at mostAg).

Together with LemmB 211, this implies that wid = mr(Ag) for every optimal linear depth-2
circuit F.

Proof. Letx — Mxbe the operator computed By and letA = Ar be the(0, 1, x)-matrix of F. We can
construct the desirelthear depth-2 circuit computing/ix as follows. Take a completioB of A with
rk(B) = mr(A). By the definition of completions, thiéh row b; of B has the fornty = & + p;, where
g is theith row of A with all stars set to 0, ang, is a (0, 1)-vector having no 1's in positions, where
this row of A has non-stars. Thiéh rowm; of the original(0, 1)-matrix M is of the formm = & +
wherem is a (0, 1)-vector which coincides witim in all positions, where theh row of A has stars,
and has 0’s elsewhere.

The matrixB hasr = rk(B) = mr(A) linearly independent rows. Assume w.l.0.g. that these are
the first rowsb, ..., b, of B, and add linear gates computing the scalar produgis x), ..., (br,X)
overGF, on the middle layer. Connect by wires each of these lineasgaith all input and all output
nodes. Note that thigh output gate, knowing the vectopsandny, can compute both scalar products
(p;,x) and(m,x) by only using existing direct wires from inputs, . .., X, to this gate. Hence, using
ther linear gategbs,x),..., (by,x) on the middle layer, thgh output gate, for < r, can also compute
the whole scalar produ¢m;, x) of the input vector with théth row of M by:

(M, %) = (@, %) @ (M, x) = (bi, ) & (p;, %) D (M}, x) .

Fori > r, just replace vectds; in this expression by the corresponding linear combinatidn, ..., b;.
We have thus constructed an equivalent linear depth-2itiofuhe same degree and of width=
mr(Ag). O

By Lemmd 2.2, the main question is: How much the width of auiirE can be smaller than the
min-rank of its matrixAg? Ideally, we would like to have that widfi) > € - mr(Ag): then the width
of the resultindinear circuit would be at most Je times larger than that of the original circiit

Lemmd 2.1 lower bounds the width lifiear circuits F in terms of the min-rank of thei(0, 1, x)-
matricesAr. We now show that the Min-Rank Conjecture implies a simikt falso for general
(non-linear) circuits.



Lemma 2.3. For every deptl circuit F computing a linear operator in n variables, we hahat
width(F) > n—log, opt(Ag) .

Hence, the Min-Rank Conjecture (stating that(@pt< 2"-¢™(") implies that widtiF) > ¢ -
mr(Ag).

Proof. Let M be anm-by-n (0,1)-matrix. Take a depth-2 circuf of width w computingMx, and

let Ar be the corresponding, 1,*)-matrix. LetH = (hy,...,h,) be an operator computed at the
gates on the middle layer, a®l= (gi,...,0m) an operator computed at the gates on the output layer.
Hence,Mx = G(x,H(x)) for all x € {0,1}". Fix a vectorb € {0,1}" for which the set. = {x €
{0,1}": Mx = G(x,b)} is the largest one; hencl,| > 2""". Note that the operat@®’(x) := G(x,b)
must be consistent with: its ith component(x) can only depend on input variablesto which the

ith output gateg; is connected. Hence, is a solution forAg, implying that optAg) > |L| > 2"V
from which the desired lower bourvd> n— log, opt(As ) on the width ofF follows. O

We can now show that the Min-Rank Conjecture (Conjedture@eéd implies the Linearization
Conjecture (Conjectuié 1).

Corollary 2.4. Conjecturd 2 implies Conjectuié 1.

Proof. Let F be a depth-2 circuit computing a linear operaton variables. Assuming Conjecturé 2,
Lemmal2.8 implies that - mr(Ag) < n—log,opt(Ar) < width(F). By Lemmal2.2, the circuiF
can be transformed into an equivalent linear depth-2 dimuthe same degree and width at most
mr(Ag) < width(F)/e. O

Hence, together with Valiant’s result, the Min-Rank Conhjee implies that a linear operatitx
requires a super-linear number of gates in any log-depthitiover{&, V,—}, if every depth-2 circuit
for Mx over {®,1} of widthw = O(n/InInn) requires degrea®.

Finally, let us show that the only “sorrow”, when trying tadiarize a depth-2 circuit, is the
possible non-linearity abutputgates—non-linearity of gates on the middle layer is no bl

Lemma 2.5. Let F be a deptl® circuit computing a linear operator. If all gates on the outpayer
are linear boolean functions, then F can be transformed amcequivalent linear deptB-circuit of
the same degree and width.

Proof. Let M be anm-by-n (0,1)-matrix, and letF be a depth-2 circuit of widthv computingMx.
LetH = (hy,...,hy) be the operatod : {0,1}" — {0,1}"Y computed by the gates on the middle layer.
Assume that all output gates Bfare linear boolean functions. LBtbe them-by-n adjacency(0,1)-
matrix of the bipartite graph formed by the direct inputguitwires, andC be them-by-w adjacency
(0,1)-matrix of the bipartite graph formed by the wires joining thates on the middle layer with
those on the output layer. Then

Mx = Bx$&C-H(x) for all x € {0,1}",
whereC - H(x) is the product of the matri€ with the vectory = H(x). Hence,
C-H(x) = Dx (4)

is a linear operator with = M & B. Write each vector = (xi,...,Xy) as the linear combination

n

X = i;xia (5)
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of unit vectorsey,...,e, € {0,1}", and replace the operatbl computed on the middle layer by a
linear operator

n
H'(x) := leiH(e',) (mod 2. (6)
i=
Then, using the linearity of the matrix-vector product, virtain that (with all sums mod 2):
C-H(x):D-<ZXi€1) by (4) and[(5)
= Z xDg linearity
= 3 XC-H(e) by @)
=C- (inH(a)) linearity
=C-H'(x) by (6).
Hence, we again have thisiix = Bx& C - H’(x), meaning that the obtaindidear circuit computes the
same linear operatdvix. O

3 Bounds onopt(A)

Recall that optA) is the largest possible number of vectors in a solution faverg 0, 1, x)-matrix A.
The simplest properties of this parameter are summariztéekifollowing

Lemma 3.1. Let A be an m-by-i0, 1, x)-matrix. If A’ is obtained by removing some rows of A, then
opt(A') > opt(A). If A= [B,C] where B is an m-by-p submatrix of A for soing p < n, then

opt(B) - opt(C) < opt(A) < opt(B)-2"P.

Proof. The first claim optA’) > opt(A) is obvious, since addition of new equations can only deereas
the number of solutions in any system of equations.

To prove optA) < opt(B) - 2"~ 9, take an optimal solutiohp = {x: Mx = G(x)} for A; hence,
|Lal = opt(A). Fix a vectorb € {0,1}"~P for which the set

Le = {y € {0,1}P: (y,b) € La}

is the largest one; hencf,g| > opt(A)/2"P. The completiorM of A has the formM = [M’';M"],
whereM’ is a completion oB andM” is a completion ofC. If we define an operatd®’ : {0,1}F —
{0.1}™ by

G/(y) := G(y,b)&M"b,

thenM’y = G/(y) for all y € Lg. Hence,Lg is a solution forB, implying that optA) < |Lg|- 2" P <
opt(B) - 2" P,

To prove optA) > opt(B) - opt(C), let Lg = {y € {0,1}P: M’y = G'(y)} be an optimal solution
for B, and letLc = {z€ {0,1}""P: M"z= G"(2)} be an optimal solution fo€. For any pairx =
(y,2) € Lg x L¢, we have thaMx = G(x), whereM = [M’,M"] andG(y, z) := G/ (y) & G’(z). Hence,
the setLg x Lc C {0,1}" is a solution forA, implying that optB) - opt(C) = |Lg x Lc| < opt(A), as
claimed. O



Let A be anm-by-n (0,1, «)-matrix. The min-rank conjecture claims that the largesinber
opt(A) of vectors in a solution foA can be upper bounded in terms of the min-ranliafs optA) <
2"-&¢m(A) The claim is true if the min-rank o is “witnessed” by somg0, 1)-submatrix ofA, that
is, if A contains g0, 1)-submatrix of rank equal to the min-rank &f This is a direct consequence of
the following simple

Lemma 3.2. If A is an m-by-n(0, 1, x)-matrix, thenopt(A) < 2"~"k(B) for every(0, 1)-submatrix B of
A.

Proof. Let B be ap-by-q (0,1)-submatrix ofA. SinceB has no stars, only constant operators can be
consistent withB. Hence, ifL C {0,1}9 is a solution forB, then there must be a vectbre {0,1}P
such thatBx= b for all x € L. This implies|L| < 29-(B)_ Together with Lemm&a3.1, this yields
opt(A) < 20-1k(B) , on—q _ on—rk(B) 0

The max-rankMr (A) of a (0,1,*)-matrix A is a maximal possible rank of its completion. liAe
of Ais either its row or its column. A&overof A is a setX of its lines covering all stars. Let c(&)
denote the smallest possible number of lines in a covér. of

Lemma 3.3. For every m-by-r{0, 1, x)-matrix A, we have that
Opt(A) < 2n—Mr(A)+cov(A) )

Proof. Given a coveiX of the stars imPA by lines, remove all these lines, and kgt be the resulting
(0,1)-submatrix ofA. Clearly, we have: MA) < rk(Ax) + |X|. (In fact, it is shown in|[[5] that
Mr(A) = minx (rk(Ax) + |X]|), where the minimum is over all cove¥sof A.) Take a coveKX of A of
size|X| = cov(A). Hence, M(A) < rk(Ax) +cov(A). SinceAx is a(0,1)-submatrix ofA, Lemmé&3.2
yields optA) < 2""k&) where rKAyx) > Mr(A) — |X| = Mr(A) — cov(A). O

Given a depth-2 circuiF, let m(F) denote the largest number of wires in a matching formed by
direct input-output wires. That is, () is the largest number cf-entries in the matriAs of F, no
two on the same line. By the well-known Konig—Egevary tieeo, stating that the size of a largest
matching in a bipartite graph is equal to the smallest seedfaes which together touch every edge,
we have that rtA) = cov(Ag). This leads to the following

Corollary 3.4. Every depth2 circuit F computing a linear operator can be transformedoiran
equivalent linear deptl-circuit F’ of the same degree and

width(F’) < width(F) +m(F).
Proof. Let A be the(0, 1,*)-matrix of F. By Lemmag 2.8 and 3.3, we have that

width(F) > n—log, opt(Ar) > n— [n— Mr(Ag) + cov(Ar )]
= Mr(Ag) — cov(Ag) = Mr(Ag) —m(F).

By Lemmd 2.2, the circuiF can be transformed into an equivalent linear depth-2 diafuhe same
degree and width at most (W) < Mr(Ag) < width(F) +m(F). O



4 Row and column min-rank

We are now going to show that the min-rank conjecture holdstfonger versions of min-rank—row
min-rank and column min-rank.

If Ais a(0,1,*)-matrix of min-rankr then, for every assignment of constants to stars, the egult
(0,1)-matrix will haver linearly independent columns as wellrabnearly independent rows. How-
ever, for different assignments these columns/rows mayiffegeht. It is natural to ask whether the
min-rank conjecture is true if the matrixhasr columns (or rows) that remain linearly independent
under any assignment of constants to stars?

Namely, say that0, 1, «)-vectors arelependenif they can be made linearly dependent 0@
by setting their-entries to a constants 0 and 1; otherwise, the vectormdependent

Remark 4.1. The dependence @0, 1, x)-vectors can be defined by adding{ta 1} a new elemenk
satisfyinga @« =@ a =« for a € {0,1,«}. Then a set of0, 1, x)-vectors is dependent iff some its
subset sums up to @, x)-vector. Indeed, ifomesubset sums up to @, x)-vector, then we can set
the x-entries to constants so that the corresponding subgét bf-vectors will sum up (oveGF,) to

an all-0 vector. On the other handnib subset sums up to(@, «)-vector, for every subset, there must
be a position in which all vectors in this subset have no stard the sum of these positions o0&,

is 1.

Remark 4.2. A basic fact of Linear Algebra, leading to the Gauss-Aldori is that linear inde-
pendence of vectorsy € {0,1}" implies that the vectorg+y andy are linear independent as well.
For (0,1, «)-vectors this does not hold anymore. Take, for examyple,(0,1) andy = (1,%). Then
XGy=(1,%) =Y.

For a(0,1,*)-matrix A, define itscolumn min-rankmre(A), as the maximum number of inde-
pendent columns, and itsw min-rank mroy(A), as the maximum number of independent rows. In
particular, both mgy(A) and mgy(A) are at least if A contains am x r “triangular” submatrix, that
is, a submatrix with zeroes below (or above) the diagonalcened on the diagonal:

1 ® ® @

01 ®» ®
210 0 1 "

0 0 0 1
where® € {0,1,x}. Itis clear that neither nggi(A) nor mrew(A) can exceed the min-rank 8f Later
(Lemma8.4 below) we will give an example of a mattixvhere both myg,(A) and mgoy(A) are by
a logarithmic factor smaller than 1i#). The question about a more precise relation between these
parameters remains open (see Problem 9.3).

Albeit for (0,1)-matrices we always have that their row-rank coincides wdlumn-rank, for

(0,1, x)-matrices this is no more true. In particular, for sofifel, x)-matricesA, we have that
Mirow(A) # Migel(A).

Example 4.3. Consider the followindO0, 1, )-matrix:

1 1 x 1
A=11 0 1 «
1 « 0O

Then mfow(A) = mr(A) = 3 but mgg(A) = 2. To see that mgw(A) = 3, just observe that the rows
cannot be made linearly dependent by setting the stars talO thre sum of all three vectors is not
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a {0, «}-vector because of the 1st column, and the pairwise sumsoar®rx}-vectors because, for

each pair of rows there is a column containing 0 and 1. To sgenihg(A) = 2, observe that the last

three columns are dependent (each row has a star). Moréawevery pair of these columns, there is
an assignment of constants to stars such that either théimgsi@, 1)-columns are equal or their sum
equals the first column.

We first show that the min-rank conjecture holds with “minkareplaced by “column min-rank”.

Theorem 4.4(Column min-rank) Let A be a(0, 1, x)-matrix with n columns and of column min-rank
r. Thenopt(A) < 2",

Proof. Any m-by-n (0, 1,x)-matrix B of column min-rankr must contain amm x r submatrixA of
min-rankr. Since optB) < opt(A)-2"" (Lemmal3.1), it is enough to show that off < 1 for all
m-by-r (0,1, x)-matricesA of min-rankr.

To do this, let. be a solution foA. Then there is an operat®= (g,...,9m) : {0,1}" — {0,1}™
such thatG is consistent withA and (g;,x) = gij(x) holds for allx e L and alli =1,...,m. Here
ai,...,am are the rows ofA with all stars set to 0.

For the sake of contradiction, assume that> 2 and fix any two vectorg # y € L. Our goal is
to construct a vectar € {0,1}™ and a completioM of A such thaMx = My = c. SinceM must have
rankr, this will give the desired contradiction, because at mbs¥#) = 20 = 1 vectorsz can satisfy
Mz=c.

If M is a completion ofA = (&), then itsith row must have the forrm = & @ p;, wherep; €
{0,1}" is some vector with no 1’s in positions where fltie row of A has no stars. To construct the
desired vectop, for eachi € [m], we consider two possible cases. (Recall that the vextarsly are
fixed.)

Case 1 (a,Xx) = (&,Y). In this case we can takg = 0 andc; = (&;,x). Then(m;,x) = (m,,y) =
(&,X) = ¢, as desired.

Case 2 (a,x) # (a,Yy). In this case we have thgi(x) # gi(y), that is, the vectorg andy must
differ in some positionj where theith row of A has a star. Then we can tage:= g; (the jth unit
vector) and;; := (g, x) @ X;. With this choice ofp;, we again have

(m,x) = (ai,X) @ (i, X) = (&, %) B (€],X) = (ai,X) DX =G
and, sincea;, x) # (a;,y) andx; #y;j,
(mLy) = (aiy) @ (pi.y) = (&,y) @ (e),y) = (&, X) &Xj =Ci. O

Example 4.5. It is not difficult to verify that, for the(0, 1, x)-matrix A given by [3), we have that
Mreol(A) = mr(A) = 2. Hence, no linear solution of the system of semi-linearéqus [2) can have
more than lifA) = 262 = 32 vectors. Theorefn 4.4 implies that, in faot solution can have more
than this number of vectors.

The situation withrow min-rank is more complicated. In this case we are only ablerése an
upper bound opA\) < 2"-" under an additional restriction that the star-positionhérows ofA form
a chain under set-inclusion.

Recall that(0, 1, )-vectors aréndependentf they cannot be made linearly dependent 0@
by setting stars to constants. The row min-rank dD4L, x)-matrix is the largest number of its
independent rows. Since adding new rows can only decredé®)oft is enough to considar-by-n
(0,1, *)-matricesA with mr(A) =r.
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If r =1, that is, ifA consists of just one row, then @¢p < 2"~! = 2"" holds. Indeed, since
mr(A) = 1, this row cannot be €0, x)-row. So, there must be at least one 1 in, say, the 1st position
Let La = {x: (a1,X) = 01(X)} be a solution forA, wherea; is the row ofA with all stars set to 0.
Take the unit vectoe; = (1,0,...,0) and split the vectors ifi0, 1}" into 2"~ pairs{x,x @ e; }. Since
the boolean functioy; cannot depend on the first variablg we have thag; (x® e;) = g1(X). But
(&, xder) = (a,x)d1+# (g,X). Hence, at most one of the two vectorandx @ e; from each pair
{x,x@® e} can lie inLa, implying that|La| < 2",

To extend this argument for matrices with more rows, we néedfollowing definition. Let
A = (gj) be anr-by-n (0,1,*)-matrix, anday,...,a be the rows ofA with all stars set to 0. Let
S ={]j: &; = =} be the set of star-positions in titf row of A. It will be convenient to describe the
star-positions by diagonal matrices. Namely,Detbe the incidence matrix of stars in tite row of
A. That is,D; is a diagonah-by-n (0, 1)-matrix whosejth diagonal entry is 1 iff € S. In particular,
Dix =0 means that; = O for all j € S.

Definition 4.6. A matrix A is isolatedif there exist vectorgy, ...,z € {0,1}" such that, for all <
i <r, we haveD;z =0 and

1 ifj=i
aj,%) = e - .
(@,2) {O if j<i.
If D1z = ... = Djz = 0, then the matrix istrongly isolated

Lemma 4.7. If Ais a strongly isolated r-by-if0, 1, x)-matrix, thenopt(A) < 2" ",

Proof. Letay,...,a be the rows ofA with all stars set to 0. We prove the lemma by inductiorron
The basis case= 1 is already proved above. For the induction stepl — r, let

La={xe{0,1}": (a,x) =gi(x) foralli=1,...,r}
be an optimal solution foA, and letB be a submatrix oA consisting of its first — 1 rows. Then
Lg ={x€{0,1}": (&,x) =gi(x) foralli=1,...,r — 1}

is a solution foiB. SinceA s strongly isolated, the matr&is strongly isolated as well. The induction
hypothesis implies that g| < 2"~ (=1,

Let z= z be ther-th isolating vector. For each roin=1,...,r — 1, the conditiongz a) = 0 and
Diz= 0 imply that((x® 2),a) = (x,a) andg;(X® z) = gi(x). That s,

x € Lgiff x@ze L.

For therth row, the conditionsz,a;) = 1 andD,z = 0 imply that (x® z),a;) # (X,&) whereas
o (X®2) =g (x). Thatis,
X€ Laiff Xz ¢ La.

Hence, for every vectox € Lg, only one of the vectors andx® z can belong td_, implying that
Opt(A) = |La| < |Lg|/2 < 2. O

We are now going to show théd, 1, x)-matrices with some conditions on the distribution of stars
in them are strongly isolated. For this, we need the follgniwo facts. Aprojection of a vector
X = (X1,...,%n) onto a set of positions= {i1,...,ix} is the vector

X[1= (X, - %) -

A (0,1, x)-vectorx is independent of 0, 1, x)-vectorsyy, ..., Y, if no completion ofx can be written
as a linear combination of some completions of these vectors
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Lemma4.8. Letxyy,...,Y be(0,1,x)-vectors, and k= {i: x # x}. If xis independent ofyy. ..y,
then X is also independent of ¥, ..., i.

Proof. Assume thak([, is dependent on the projectiogsg],, ..., Y, [i. Then there is an assignment of
stars to constants in the vectgysuch thak[, can be written as a linear combination of the projections

Yali,---, Yl onl of the resulting 0, 1)-vectorsy, . .., y,. But sincex has stars in all positions outside
|, these stars can be set to appropriate constants so thastileng (0, 1)-vectorx’ will be a linear
combination ofy;,...,V,, a contradiction. O

Lemma 4.9. Let ac {0,1}" be a vector and M be an m-by{0,1)-matrix of rank r<n—1. Ifais
linearly independent of the rows of M, then there exists &set{0,1}" of |Z| > 2"~"~1 vectors such
that, for all ze Z, we havez, a) = 1 and Mz= 0.

Proof. LetZ = {z: Mz=0,(a,z) = 1}, and letM’ be the matriXM with an additional rova. Note that
Z=ker(M)\ ker(M’), where kefM) = {z: Mz= 0} is the kernel oM. Since rKM’) =rk(M)+1<n,
we have thatker(M’)| = |ker(M)|/2, implying that

|Z| = |ker(M) \ ker(M")| = |ker(M)|/2 > on-r-1 -
Lemma 4.10. If Ais an r-by-n(0, 1, x)-matrix withmr(A) =r, then A is isolated.

Proof. Let aj,...,a be the rows ofA with all stars set to 0. Let C {1,...,n} be the set of all
star-free positions in théh row of A, and consider aifr — 1)-by-|I| (0,1)-matrix M; whose rows
are the projectiona’j = a;j || of vectorsa; with j # i onto the set. By Lemma[4.8, the projection
a = g [ of theith vectora onto| cannot be written as a linear combination of the rowsvpf
hence, rkM;) < |I| — 1. Since 21=kM)-1 > 20 — 1| emmal4.D gives us a vectdrc {0,1}/"l
such that(7, &) = 1 and(z,aj) = 0 for all j #i. But thenz := (Z,0) is the desired0,1)-vector:
Diz =Di-0=0,(z,a&) = (%,8) = 1, and(z,a;) = (Z,&;) = 0 for all rowsj #1i. O

Say that arr-by-n (0,1, x)-matrix A is star-monotonef the setsS;,...,S of star-positions in its
rows form a chain, thatis, 5 C S C ... CS.

Theorem 4.11(Star-monotone matrices)et A be a0, 1, x)-matrix with n columns. If A contains an
r-by-n star-monotone submatrix of min-rank r, thept(A) < 2",

Proof. Since addition of new rows can only decrease the size of éi@ojuve can assume thattself
is anr-by-n star-monotone matrix of min-rank Letay,...,a be the rows ofA with all stars set to
0. By Lemmd 4.1D, the matri& is isolated. That is, there exist vectass. ..,z € {0,1}" such that:
(a,zj) =1iff i = j,andDjz =0forall 1<i <r. SinceS; C § for all j <1, this last condition implies
thatD;z =0forall 1< j <i <r, thatis,Ais strongly isolated. Hence, we can apply Leniméa 471

5 Solutions as independent sets in Cayley graphs

LetA= (aj) be anm-by-n (0, 1,%)-matrix. In the definition of solutionk for A we take a completion
M of A and an operatd®(x), and require thatix = G(x) for all x € L. The operatoG = (9s,...,0m)
can be arbitrary—the only restriction is thatiils component; can only depend on variables corre-
sponding to stars in thigh row of A. In this section we show that the actdi@am of operatorss can
be ignored—only star-positions are important. To do thie,associate witth the following set of
“forbidden” vectors:

Ka={x€ {0,1}": 3i € [m] Dix=0and(a,x) =1},
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whereD; is the incidencen-by-n (0, 1)-matrix of stars in théth row of A, andg is theith row of A
with all stars set to 0. Henca is a unionKa = U ; Ki of maffine spaces

e (@) )

Lemma 5.1. For every vector x {0,1}", x € Ka if and only if Mx= 0 for all completions M of A.

Proof. (=): Take a vectox € Ka. Then there exists ane [m] such that vectok has zeroes in all
positions, where thigh row of A has stars, an¢h,x) = 1, whereg; is obtained by setting all stars in
this row to 0. So, it; is any completion of théh row of A then(b;,x) = (a,x) = 1. Thus, the scalar
product ofx with theith row of any completion oA must be equal to 1.

(«<=): Take a vectoxk ¢ Ka. We have to show that thevix = O for at least one completiav of A.
The fact that does not belong t&a means that for eaghe [m] either (i) (a;,x) = 0, or (i) (a;,x) =1
but vectorx has a 1 in some positiojy where thdth row of A has a star. We can therefore construct
theith rowm; of the desired completiokl of Awith Mx= 0 by takingm = &, if (i), andm, = & + €,
if (ii). In both cases we havén, x) = 0, as desired. O

The sum-sebf two sets of vector§ T C {0,1}" is the set of vectors
S+T={xdy: xeSandyeT}.
Theorem 5.2. A set LC {0,1}" is a solution for A if and only ifL+ L) "Ka = 0.

Proof. Observe that the sumd y of two vectors belongs ti iff these vectors coincide on all stars
of at least one row oA such that(a;,x) # (a;,y). By this observation, we see that the condition
(L+L)NKa=0is equivalent to:

Vx,ye L Vie[m: Dix=Djy implies (a,x) = (a,y). (7)

Having made this observation, we now turn to the actual pobdheoreni 5.2.

(=) LetL be a solution foA. Hence, there is an operat@r= (g, ...,gm) consistent withA such
that (a;,x) = gi(x) for all x € L and all rowsi € [m|. To show that thel. must satisfy[(I7), take any
two vectorsx,y € L and assume thd@;x = D;y. This means that vectorssandy must coincide in all
positions where théh row of A has stars. Sincg can only depend on these positions, this implies
6i(x) = gi(y), and hence(a;,X) = (a.y).

(<) Assume that C {0,1}" satisfies[(I7). We have to show that then there exists an aperat
G = (01,...,9m) consistent withA such that(a;, x) = g;(x) for all x € L andi € [m]; here, as beforey;
is theith row of A with all stars set to 0. Thigh row of A splits the set. into two subsets

LP={xeL: (a,x)=0} and L} = {xeL: (a,x) =1}.

Condition [T) implies thabjx # Djy for all (x,y) € L? x LL. That s, ifS is the set of star-positions in
theith row of A, then the projections|g of vectorsxin LiO onto these positions must be different from
all the projectiong/[g of vectorsy in L. Hence, we can find a boolean functign {0,1}5 — {0,1}
taking different values on these two sets of projectionds Tumction will then satisfyg; () = (&, x)
forallx e L. O

A cosetof a set of vectord. C {0,1}" is a setv+ L = {vé&x: x € L} with v e {0,1}". Since
(v+L)+ (v+L)=L+L, Theoreni5.R implies:
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Corollary 5.3. Every coset of a solution for @, 1, x)-matrix A is also a solution for A.

Remark 5.4. A Cayley graph over the Abelian groug0,1}", ) generated by a sé C {0,1}"

of vectors has all vectors ifi0,1}" as vertices, and two vectorsandy are joined by an edge iff
x@y € K. Theoreni 5.2 shows that solutions fof(al, x)-matrix A are precisely the independent sets
in a Cayley graph generated by a specialkset

Remark 5.5. If Ais anm-by-n (0,1)-matrix, thatis, has no stars at all, thén= {x: Ax+ 0}. Hence,
in this case, a sdt C {0,1}" is a solution forA iff there is a vectoib € {0,1}™ such thatAx = b for
all xe L. That s, in this case, kéh) = {x: Ax= 0} is an optimal solution.

6 Structure of linear solutions

By Theoreni 5.2, a set of vectdrsC {0,1}" is a solution for am+by-n (0, 1, x)-matrix A if and only if
(L+L)NKa=0, whereKa C {0,1}" is the set of “forbidden” vectors fak. Thuslinear solutions are
precisely vector subspaces{df, 1}" avoiding the seKa. Which subspaces these are? We will show
(Theoreni_6.R) that these are precisely the subspaces Igiirglg in the kernel of some completion
of A.

Each vector subspace {9,1}" is a kernel kefH ) = {x: Hx= 0} of some(0, 1)-matrixH. Hence,
linear solutions foA are given by matricelsl such thaHx # 0O for all x € Ka; in this case we also say
that the matrixH separates K from zero. By thespan-matrixof a (0, 1)-matrix H we will mean the
matrix H whose rows are all linear combinations of the rowsfof

Lemma 6.1. Let A be a(0,1, %)-matrix and H be(0, 1)-matrix. Therker(H) is a solution for A iffH
contains a completion of A.

Proof. To prove (<), suppose that some completith of A is a submatrix oH. Letx € Ka. By
LemmdX5.1, we know that thevix + 0, and hence, alsdx = 0. SinceHx = 0 would imply Hx =0,
we also have thatlx # 0.

To prove(=-), suppose that ké ) is a solution forA, that is,Hx # 0 for all x € Ka. Then, for
every rowi € [m] and every vectox € {0,1}", Hx= 0 andD;x = 0 imply that(a;,x) = 0. This means
thata; must be a linear combination of rows Hf andD;. Hence, for each, the vectora; must lie
in the vector space spanned by the row$ioéndD;, that is,a = a;'H @ BiTDi for some vectorm;
andp;. In other words, théth linear combinatiorr;” H of the rows ofH is theith rowa; @ ;' D; of a
particular completioM of A, implying thatM is a submatrix of, as desired. O

Theorem 6.2. Let A be a(0,1,x)-matrix. A linear subspace is a solution for A if and only ifst
contained in a kernel of some completion of A.

Proof. («): If alinear subspack C {0,1}" lies in a kernel of some completion AfthenLNKa =0,
by LemmdX5.IL. Sinck +L =L, the selL must be a solution foA, by Theoreni 5.2.

(=): LetL C {0,1}" be an arbitrary linear solution fok. ThenL+L =L andLNKa = 0.
Take a(0,1)-matrix H with L = ker(H). Since kefH) N Ka = 0, the matrixH separate¥a from
zero. Lemmas®]1 implies that théhmust contain some completiov of A. But thenL = ker(H) =

o~

ker(H) C ker(M), as claimed. O
Corollary 6.3. For any (0,1, *)-matrix A we have thain (A) = 2n-m"A),

Proof. By Theoreni .2, lifA) is the maximum ofker(M)| = 2-"(M) over all completionsvl of A.
Since m(A) is the minimum of rkM) over all completionsV of A, we are done. O
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Corollary 6.4 (Alternative definition of min-rank) For every(0, 1, )-matrix A we have
mr(A) = min{rk(H): Hx# Ofor all x € Ka}.

Proof. Let R be the smallest possible rank of(@, 1)-matrix separating<a from zero. To prove
mr(A) > R, let M be a completion oA with rk(M) = mr(A). By Lemmd5.1L, the matriM separates
Ka form zero. HenceR < rk(M) = mr(A).

To prove mfA) <R, letH be a(0,1)-matrix such thaH separate&, form zero and rkH) =
By Lemma 6.1, the matri¥d must contain a completiokl of A. Hence, mfA) < rk(M) < rk(H)
rk(H)=R.

> Oonax

By LemmdX5.1, the complement K is the union of kernels kék) of all completionsM of
So, Theorems B2 afd 6.2 imply that a sultset{0,1}" is:

e asolution forAiff L+L C |J {ker(M): M is a completion ofA};

e alinear solution foAA iff L C ker(M) for some completioM of A.

7 Structure of general solutions

The following theorem says that non-linear solutions mestiery non-linear”: they cannot contain
large linear subspaces. Recall that in Valiant's settiffg [(emmal1.1) we may assume that each
row of a (0,1, *)-matrix contains at most = n® stars, whered > 0 is an arbitrary small constant.
Define the co-distance of a vector space as the smallest ingighhon-zero vector in its orthogonal
complement.

Theorem 7.1.Let LC {0,1}" be a solution for an m-by-(0, 1, x)-matrix A, and let s be the maximum
number of stars in a row of A. If L contains a subspace of ctadie at least -1, then L lies in a
linear solution for A.

Proof. SinceL is a solution forA, W is a linear solution foA as well. Hence, by Theorem 6/ is
contained in a kernel of some completibhof A. Our goal is to show that then the entire solutlon
must be contained in kél). To show this, we will use the following simple fact.

Claim 7.2. Let W C {0,1}" be a linear subspace of co-distance at least k Then, for every k-
element subset S [n] and for every vector ¥ {0,1}", there is a vector x W such that x4 0 and

Yls=X[s.

Proof of Claim. The set of all projections of vectors W onto S forms a linear subspace. If this
subspace would be proper, then some non-zero vector, whpgers lies inS, would belong to the
orthogonal complement &%, a contradiction. O

Assume now that Z ker(M), and take a vectoy € L \ ker(M). Sincey ¢ ker(M), we have that
(m,y) = 1 for at least one rown; of M. Let Sbe the set of star-positions in tith row of A (hence,
IS <'s), and leta be this row ofA with all stars set to 0. By Clairh 4.2, there must be a vector
x € W C Lnker(M) with y[s= X[s, that is,Dj(x@®y) = 0. Butx € ker(M) implies that(m,x) = 0.
Hence,(m,x®y) = (m;,X) & (m,y) = (m;,y) = 1. Since the vectas; can only differ fromm in star-
positions of thath row of A and, due td;(x®Yy) = 0, the vectoix@y has no 1's in these positions,
we obtain thata,x@y) = 1. Hence, the vectot® y belongs tKa, a contradiction withqy € L.

This completes the proof of Theorém17.1. O
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8 Relation to codes

Let 1<r < n be integers. A (binary) error-correcting code of minimadtdncer + 1 is a setlC C
{0,1}" of vectors, any two of which differ in at least- 1 coordinates. A code igear if it forms a
linear subspace ovéF,. The question on how good linear codes are, when compareshttimear
ones, is a classical problem in Coding Theory. We now willgliaat this is just a special case of a
more general “og#A) versus lifA)” problem for (0, 1, x)-matrices, and that Min-Rank Conjecture in
this special case holds true.

An (n,r)-code matrix or just anr-code matrixif the numbem of columns is not important, is a
(0,1, *)-matrix with n columns andn= (r +1)(}) rows, each of which consists of-r stars and at
most one 0. The matrix is constructed as follows. For eveslement subses of [n] = {1,...,n}
include inA a block ofr +1 rowsawith g =« foralli ¢ S a € {0,1} foralli € S and|{i € S: & =
0}| < 1. That s, each of these rows has stars outSided has at most one 0 withf Forr = 3 and
S={1,2,3} such a block looks like

PR OoR
R OR R
ORr R R
* X K *x
¥ X K X

A Hamming ball around the all-0 vector 0 is defined by

Ball(r) = {x€ {0,1}": 0< |x| <r},
where|x| = X3 + - - - + Xy is the number of 1's ix.
Observation 8.1. If A is an r-code matrix, then K= Ball(r) \ {0}.

Proof. Observe that no vectore {0,1}", x + 0 can be orthogonal to alb- 1 vectors 11®dey,...,1®
e in {0,1}" with at most one 0. Indeed, {k,1) = 0 then(x,1®g) =x; foralli=1,...,r. By this
observation, a vectorbelongs tKj iff there is anr-element seS C [n] of positions such that]s# 0
andx[s= 0, that is, iffx # 0 andx € Ball(r). O

Observation 8.2. If A is an(n,r)-code matrix, then the solutions for A are error-correcticogdes of
minimal distance ¢ 1, and linear solutions for A are linear codes.

Proof. We have(L+L)N (Ball(r)\ {0}) =0iff [x&y| >r+1forallx#y €L, thatis, iff every two
vectorsx # y € L differ in at leastr + 1 positions. Hence, every solution for eitode matrixA is a
code of minimal distance at least- 1, and linear solutions are linear codes. O

Lemma 8.3. For code matrices, the min-rank conjecture holds with a tamis > 0.

Proof. Let Abe an(n,r)-code matrix; hence&ka = Ball(r) \ {0}. Sett := | (r—1)/2]. Since|x®y| <

2t <r for all x,y € Ball(t), the sum of any two vectors=# y from Ball(t) lies in K, implying that
Ball(t) is a clique in the Cayley graph generatedKy: Since, by Remark 5.4, solutions férare
independent sets in this graph, and since in any graph théewof its vertices divided by the clique
number is an upper bound on the size of any independent sebtam:

opt(A) < 2"/|Ball(t)| = 2" / Z (?) , ®)
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which is the well-known Hamming bound for codes. On the otieard, Gilbert-Varshamov bound
says that linear codes #0, 1}" of dimensionk and minimum distancd exist, if

5
in(a) > 2" / Zj (?) . 9)

Together with[(B), this implies that the inequality (1) heldith £ about /2. O

Hence,

The example of code matrices also shows that the gap betweerank and row/column min-
rank may be at least logarithmic m

Lemma 8.4. If A is an (n,r)-code matrix, thermr(A) = Q(rIn(n/r)) but mre(A) < r + 1 and
Mrow(A) < 2r.

Proof. To prove mfA) = Q(rIn(n/r)), recall thatKa = Ball(r) \ {0}. Hence, Corollary 6l4 implies
that mi(A) is the smallest possible rank of@ 1)-matrix H such that kefH) nBall(r) C {0}. On the
other hand, for any such matr, its kernelL = ker(H) is a (linear) code of minimal distance at least
r + 1 containing|L| = 2""*(H) vectors. Since, by Hamming bourid (8), no cadef distance at least

r 4+ 1 can have more tha = 2"/(n/r)°(") vectors, we have that

rk(H) =n—log,|L| > n—log,N = Q(rIn(n/r)).

To prove that myo(A) <r + 1, suppose thah contains somen x k submatrixB of min-rankk.
Since allk columns must be independent, at least one baf B must bex-free and contain an odd
number|b| of 1's. But every row ofA (and hence, alsb) can contain at most one 0, implying that
|b| > k—1. Together withb| <, this implies thak <r + 1.

To prove that mew(A) < 2r, recall that each row oA consists ol —r stars and at most one 0;
the remaining (or r — 1) entries are 1's. Suppose now thatontains some sef of |X| =k+1
independent rows. That is, no subset of these rows can belmaddy dependent by settings to 0
or 1. The rows inX must be, in particulampairwiseindependent. This, in particular, means that the
setX can contain at most one row without O-entries. SoYlet X be a set ofY| = k rows containing
0-entries. Take any two rows# y € Y with x; = 0 andy; = 0. Sincex andy are independent and have
only x's or 1's outside their O-entries, we have thiag j and eithex; = 1 ory; = 1. This implies that
the total number of 1's in the rows df must be at least the numbéj) of pairs of vectors ir¥Y. So,
there must exist a row € Y with |x| > ('g)/]Y\ = (k—1)/2. Together withx| <r — 1, this implies
thatk < 2r — 1, and thus, thaiX| = k+ 1 < 2r. O

9 Conclusion and open problems

In this paper we pose a conjecture about systems of senairleguations and show its relation to
proving super-linear lower bounds for log-depth circuidde then give a support for the conjecture by
proving that some its weaker versions are true. We also shatwsblutions are independent sets in
particular Cayley graphs, thus turning the conjecture iroeengeneral (combinatorial) setting. Using
this, we prove several structural properties of sets oftewla that might be useful when tackling the
original conjecture.
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We defined solutions for a given-by-n (0, 1, x)-matrix Aas sets C {0,1}" of vectorsx satisfying
a system of equations
(&,X) = gi(Dix) i=1,....m, (10)

whereg; is theith row of A with all stars replaced by @; is an arbitrary boolean function, afy is

a diagonaln-by-n (0, 1)-matrix corresponding to stars in ti& row of A. We have also shown (see
RemarK5.}) that solutions f@are precisely the independent sets in a Cayley graph ovéitibkan
group({0,1}", @) generated by a special set of vectors

Ka = {x: JiDijx=0and(a,x) =1}. (11)
The following two questions about possible generalizatiohthe min-rank conjecture naturally arise:

1. What if instead of diagonal matric& in (10) we would allow othef0, 1)-matrices?

2. What if instead of special generating siéts defined by[(1l1), we would allow other generating
sets?

The following two examples show that the min-rank conjegtteinnot be carried too far: its general-
ized versions are false.

Example 9.1(Bad generating sets). Let G be a Cayley graph generated by thelset {0,1}" of
all vectors with more than— 2,/n ones. IfL C {0,1}" consist of all vectors with at most/2— /n
ones, therfL 4 L) NK = 0, that is L is an independent set @& of size|L| > 2"~ ©°9" Byt anylinear
independent sdt’ in G is a vector space of dimension at mast 2,/n. Hence,|L'| < 2"~2V", and
the gaplL|/|L’| can be as large a$2/'™.

Note, however, that there is a big difference between thk set constructed and the s&g aris-
ing form (0, 1, x)-matricesA: generating seta must be almost “closed downwards”. In particular, if
x € Ka thenall nonzero vectors, obtained froxby flipping some even number of its 1's to 0's, must
also belong tda. Hence, this example does not refute the min-rank conjectsarsuch.

Example 9.2(Bad matricedD;). Let us now look what happens if we allow the matrié®s...,Dn
in the definition of a system of semi-linear equatiohs| (10)abgtrary nx n (0,1)-matrices. A
completionM of A can then be defined as(@,1)-matrix with rowsm = & + aiTDi. Now define
mr(A|D4,...,Dy) as the minimal rank of such a completionA&f Observe that this definition coin-
cides with the “old” min-rank, if we take thB;’s to be the diagonal matrices corresponding the stars
in theith row of A.

However, Example 9l1 shows that the min-rank conjecturalsefin this generalized setting. To
see why, we can define appropriate matriée, ..., Dy such that the corresponding $&t defined
by (11) consists of vectors with more than- 2,/n ones: for an arbitrary vector with more than
n— 2,/nones just defing; andD; such that the systel;x = 0, (a;,X) = 1 hasv as its only solution.

Except of the obvious open problem to prove or disprove thealization conjecture (Conjec-
ture[1) or the min-rank conjecture (Conjectlte 2), theresax@ral more concrete problems.

We have shown (Lemnia 8.4) that the gap between min-rank amdatumn min-ranks may be
as large as In. It would be interesting to fin€0, 1, x)-matricesA with larger gap.

Problem 9.3. How large can the gapr(A)/ max{mrco(A), Mrow(A)} be?
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The next question concerns the cligue numéé6G,) of (that is, the largest number of vertices
in) Cayley graph$5a generated by the sets of the skgsC {0,1}" of the form [11). By Remark 54,
solutions forA are independent sets in this graph. Hence(Apts just the independence number
a(Ga) of this graph. Since in aniN-vertex graphG we have thatw(G) - a(G) < N, this yields
opt(A) < 2"/w(Gp). On the other hand, it is easy to see thgG,) < 2™ whereM is a canonical
completion ofA obtained by setting alt’s to 0: If C C {0,1}" is a clique inGp, then we must have
Mx #£ My for all x £ y € C, because otherwise the vectap y would not belong td<a.

Problem 9.4. Give a lower bound om(Ga) in terms of min-ranknr(A) of A.

Finally, it would be interesting to eliminate an annoyingjugement in Theorern 4.11 that the
matrix A must be star-monotone.

Problem 9.5. If Ais an r-by-n(0, 1, x)-matrix of min-rank r, is thept(A) < 2" "?
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Table 1: This table summarizes the concepts introducedisrptiper. HereA is a partially defined
m x n matrix with entries from{0, 1, x}.

Concept

Notation

Meaning

Completion ofA

Canonical completion o
Min-rank

Max-rank

OperatorG consistent withA

Solution forA

Linear solution forA

Min-Rank Conjecture
Independence of (0,1, x)-
vectors

Row min-rank

Column min-rank
Incidence matrix of’s

Set of forbidden vectors

mi(A)
MI(A)

opt(A)
lin(A)

Miow(A)
Mdol(A)
Di

Ka

A (0,1)-matrix obtained fromA by setting itsx-
entries to O and 1.
All x-entries ofA set to 0.
Minimal rank overGF, of a completion ofA.
Maximal rank ovelGF, of a completion ofA.
The ith coordinate ofG : {0,1}" — {0,1}™ can
only depend on variables corresponding e
entries in thath row of A.
AsetlL C {0,1}" of the formL = {x: Mx=G(x)},
whereM is a completion ofA, andG is an operator
consistent withA.
A solution for A forming a linear subspace of
{0,1}".
Maximum size of a solution foA.
Maximum size of a linear solution fdk; lin(A) =
znfmr(A)_

opA) < 2"-&™(A for a constant > 0.
Cannot be made linear dependent by settisgo
constants.
Maximal number of independent rows.
Maximal number of independent columns.
Diagonal(0, 1)-matrix withD;i[], j] = 1 iff Afi, j] =
X,
All vectors x € {0,1}" such thatDix = 0 and
(&,x) = 1, whereg is theith row of A with all
stars set to 0. Main property: is a solution forA
iff (L+L)NKa=0.
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