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Abstract

A completion of anm-by-nmatrixA with entries in{0,1,∗} is obtained by setting all∗-entries
to constants 0 and 1. A system of semi-linear equations overGF2 has the formMx= f (x), where
M is a completion ofA and f : {0,1}n → {0,1}m is an operator, theith coordinate of which can
only depend on variables corresponding to∗-entries in theith row ofA. We conjecture that no such
system can have more than 2n−ε·mr(A) solutions, whereε > 0 is an absolute constant and mr(A)
is the smallest rank overGF2 of a completion ofA. The conjecture is related to an old problem
of proving super-linear lower bounds on the size of log-depth boolean circuits computing linear
operatorsx 7→ Mx. The conjecture is also a generalization of a classical question about how much
larger can non-linear codes be than linear ones. We prove some special cases of the conjecture
and establish some structural properties of solution sets.

1 Introduction

One of the challenges in circuit complexity is to prove a super-linear lower bound for log-depth circuits
over{& ,∨,¬} computing an explicitly given boolean operatorf : {0,1}n →{0,1}n. Attempts to solve
it have led to several weaker problems which are often of independent interest. The problem is open
even if we impose an additional restriction that the depth ofthe circuit isO(logn). It is even open for
linear log-depth circuits, that is, for log-depth circuits over the basis{⊕,1}, in spite of the apparent
simplicity of such circuits. It is clear that the operators computed by linear circuits must also be linear,
that is, be matrix-vector productsx→ Mx over the fieldGF2 = ({0,1},⊕, ·),

An important result of Valiant [27] reduces the lower boundsproblem for log-depth circuits over
{& ,∨,¬} to proving lower bounds for certain depth-2 circuits, wherewe allow arbitrary boolean
functions as gates.

1.1 Reduction to depth-2 circuits

A depth-2 circuit ofwidth w hasn boolean variablesx1, . . . ,xn as input nodes,w arbitrary boolean
functions h1, . . . ,hw as gates on the middle layer, andm arbitrary boolean functionsg1, . . . ,gm as
gates on the output layer. Direct input-output wires, connecting input variables with output gates,
are allowed. Such a circuit computes an operatorf = ( f1, . . . , fm) : {0,1}n → {0,1}m if, for every
i = 1, . . . ,m,

fi(x) = gi(x,h1(x), . . . ,hw(x)) .

∗Research of both authors supported by a DFG grant SCHN 503/4-1.
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Thedegreeof such a circuit is the maximum, over all output gatesgi , of the number of wires going
directly from input variablesx1, . . . ,xn to the gategi . That is, we ignore the wires incident with the
gates on the middle layer. Let degw( f ) denote the smallest degree of a depth-2 circuit of widthw
computing f .

It is clear that degn( f ) = 0 for f : {0,1}n →{0,1}n: just put the functionsf1, . . . , fn on the middle
layer. Hence, this parameter is only nontrivial forw < n. Especially interesting is the case when
w= O(n/ ln lnn) (see also Theorem 2.2 in [20] for more details):

Lemma 1.1 (Valiant [27]). If degw( f ) = nΩ(1) for w = O(n/ ln lnn), then the operator f cannot be
computed by a circuit of depth O(lnn) using O(n) constant fan-in gates.

Recently, there was a substantial progress in proving lowerbounds on thesizeof (that is, on
the total number of wires in) depth-2 circuits. Superlinearlower bounds of the formΩ(nlog2n)
were proved using graph-theoretic arguments by analyzing some superconcentration properties of the
circuit as a graph [6, 14, 15, 18, 16, 2, 20, 21, 22]. Higher lower bounds of the formΩ(n3/2) were
proved using information theoretical arguments [4, 9]. Butthe highest known lower bound on the
degreeof width w circuits has the formΩ((n/w) ln(n/w)) [20], and is too weak to have a consequence
for log-depth circuits.

A natural question therefore was to improve the lower bound on the degree at least forlinear
circuits, that is, for depth-2 circuits whose middle gates as well as output gates are linear boolean
functions (parities of their inputs). Such circuits compute linear operatorsx 7→ Mx for some(0,1)-
matrix M; we work overGF2. By Valiant’s reduction, this would give a super-linear lower bound for
log-depth circuits over{⊕,1}.

This last question attracted attention of many researchersbecause of its relation to a purely alge-
braic characteristic of the underlying matrixM—its rigidity. Therigidity RM(r) of a (0,1)-matrix M
is the smallest number of entries ofM that must be changed in order to reduce its rank overGF2 to
r. It is not difficult to show (see [27]) that any linear depth-2circuit of width w computingMx must
have degree at leastRM(w)/n: If we set all direct input-output wires to 0, then the resulting degree-0
circuit will compute some linear transformationM′x where the rank ofM′ does not exceed the width
w. On the other hand,M′ differs fromM in at mostdn entries, whered is the degree of the original
circuit. Hence,RM(w)≤ dn from whichd ≥ RM(w)/n follows.

Motivated by its connection to proving lower bounds for log-depth circuits, matrix rigidity (over
different fields) was considered by many authors, [23, 1, 17,7, 16, 20, 25, 24, 10, 11, 19, 26] among
others. It is therefore somewhat surprising that the highest known lower bounds onRM(r) (over
the fieldGF2), proved in [7, 25] also have the formΩ((n2/r) ln(n/r)), resulting to the same lower
boundΩ((n/w) ln(n/w)) on the degree of linear circuits as that for general depth-2 circuits proved
in [20]. This phenomenon is particularly surprising, because general circuits may usearbitrary (not
just linear) boolean functions as gates. We suspect that theabsence of higher lower bounds for linear
circuits than those for non-linear ones could be not just a coincidence.

Conjecture 1(Linearization conjecture for depth-2 circuits). Depth-2 circuits can be linearized. That
is, every depth-2 circuit computing a linear operator can be transformed intoan equivalentlinear
depth-2 circuit without substantial increase of its width or its degree.

If true, the conjecture would have important consequences for log-depth circuits. Assuming this
conjecture, any proof that every depth-2 circuit of widthw = O(n/ ln lnn) with unbounded fan-in
parity gates for a given linear operatorMx requires degreenΩ(1) would imply thatMx requires a super-
linear number of gates in any log-depth circuit over{& ,∨,¬}. In particular, this would mean that
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proving high lower bounds on matrix rigidity is a much more difficult task than assumed before: such
bounds would yield super-linear lower bounds for log-depthcircuits over a general basis{& ,∨,¬},
not just for circuits over{⊕,1}.

As the first step towards Conjecture 1, in this paper we relateit to a purely combinatorial conjec-
ture about partially defined matrices—themin-rank conjecture, and prove some results supporting this
last conjecture. This turns the problem about the linearization of depth-2 circuits into a problem of
Combinatorial Matrix Theory concerned with properties of completions of partially defined matrices
(see, e.g., the survey [8]). Hence, the conjecture may also be of independent interest.

Unfortunately, we were not able to prove the conjecture in its full generality. So far, we are only
able to prove that some of its special cases are true. This is not very surprising because the conjecture
touches a basic problem in circuit complexity: Can non-linear gates help to compute linear operators?
This paper is just the first step towards this question.

1.2 The Min-Rank Conjecture

A completionof a(0,1,∗)-matrix A is a(0,1)-matrixM obtained fromA by setting all∗’s to constants
0 and 1. Acanonical completionof A is obtained by setting all∗’s in A to 0.

If A is anm-by-n matrix, then each its completionM defines a linear operator mapping each vector
x∈ {0,1}n to a vectorMx∈ {0,1}m. Besides such (linear) operators we also consider general ones.
Each operatorG : {0,1}n → {0,1}m can be looked at as a sequenceG = (g1, . . . ,gm) of m boolean
functionsgi : {0,1}n → {0,1}.

We say that an operatorG= (g1, . . . ,gm) is consistentwith anm-by-n (0,1,∗)-matrix A= (ai j ) if
the ith boolean functiongi can only depend on those variablesx j for which ai j = ∗. That is, theith
componentgi of G can only depend on variables on which theith row of A has stars (see Example
1.6).

Definition 1.2. With some abuse in notation, we call a setL ⊆ {0,1}n a solutionfor a partial matrix
A if there is a completionM of A and an operatorG such thatG is consistent withA andMx= G(x)
holds for allx∈ L. A solutionL is linear if it forms a linear subspace of{0,1}n overGF2.

That is, a solution forA is aset Lof (0,1)-vectors of the formL = {x: Mx= G(x)}, whereM is
a completion ofA, andG is an operator consistent withA. A solutionL is linear, if x⊕ y∈ L for all
x,y∈ L.

Since, besides the consistency, there are no other restrictions on the operatorG in the definition of
the solutionL, we can always assume thatM is the canonical completion ofA (with all stars set to 0).

Observation 1.3 (Canonical completions). If L = {x: Mx = G(x)} is a solution for A, and M′ is
the canonical completion of A, then there is an operator G′ such that G′ is consistent with A and
L = {x: M′x= G′(x)}.

Proof. The ith row mi of M must have the formmi = m′
i + pi , wherem′

i ∈ {0,1}n is theith row of the
canonical completionM′ of A, andpi ∈ {0,1}n is a vector with no 1’s in positions where theith row
of A has no stars. We can then define an operatorG′ = (g′1, . . . ,g

′
m) by g′i(x) := gi(x)⊕〈pi ,x〉. (As

customary, the scalar product of two vectorsx,y∈ {0,1}n overGF2 is 〈x,y〉= ∑n
i=1 xiyi mod 2.) Since

G was consistent withA, the new operatorG′ is also consistent withA. Moreover, for every vector
x∈ {0,1}n, we have that〈mi ,x〉= gi(x) iff 〈m′

i ,x〉= g′i(x).

We are interested in how much the maximum opt(A) = maxL |L| over all solutionsL for A can
exceed the maximum lin(A)=maxL |L| over all linear solutionsL for A. It can be shown (Corollary 6.3
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below) that
lin(A) = 2n−mr(A) ,

where mr(A) is themin-rankof A defined as the smallest possible rank of its completion:

mr(A) = min{rk(M) : M is a completion ofA} .

If we only considerconstantoperatorsG, that is, operators withG(x) = b for someb ∈ {0,1}m

and allx∈ {0,1}n, then Linear Algebra tells us that no solution forA can have more than 2n−r vectors,
wherer = rk(M) is the rank (overGF2) of the canonical completionM of A, obtained by setting all
stars to 0.

If we only consideraffineoperatorsG, that is, operators of the formG(x) = Hx⊕b whereH is
an m-by-n (0,1)-matrix, then no solution forA can have more than 2n−mr(A) vectors, because then
the consistency ofG(x) with A ensures that, for every completionM of A, the matrixM ⊕H is a
completion ofA as well.

Remark 1.4. This last observation implies, in particular, that opt(A) ≤ 2n−mr(A) for all (0,1,∗)-
matricesA with at most one∗ in each row: In this case eachgi can depend on at most one variable,
and hence, must be a linear boolean function.

We conjecture that a similar upper bound also holds foranyoperatorG, as long as it is consistent
with A. That is, we conjecture that linear operators are almost optimal.

Conjecture 2 (Min-Rank Conjecture). There exists a constantε > 0 such that for every m-by-n
(0,1,∗)-matrix A we have thatopt(A)≤ 2n−ε ·mr(A) or, equivalently,

opt(A)≤ 2n
(

lin(A)
2n

)ε
. (1)

Remark 1.5. To have consequences for log-depth circuits, it would be enough, by Lemma 1.1, that
the conjecture holds at least forε = o(1/ log logn).

Example 1.6.To illustrate the introduced concepts, let us consider the following system of 3 equations
in 6 variables:

x1⊕x6 = x3 ·x5

x2⊕x3⊕x4 = x1 · (x5⊕x6) (2)

x4 = (x2⊕x5) · (x3⊕x6) .

The corresponding(0,1,∗)-matrix for this system is

A=




1 0 ∗ 0 ∗ 1
∗ 1 1 1 ∗ ∗
0 ∗ ∗ 1 ∗ ∗


 , (3)

and the system itself has the formMx= G(x), whereM is the canonical completion ofA:

M =




1 0 0 0 0 1
0 1 1 1 0 0
0 0 0 1 0 0


 ,
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andG= (g1,g2,g3) : {0,1}6 →{0,1}3 is an operator with

g1(x) = x3 ·x5 ;

g2(x) = x1 · (x5⊕x6) ;

g3(x) = (x2⊕x5) · (x3⊕x6) .

The min-rank ofA is equal 2, and is achieved by the following completion:

M′ =




1 0 0 0 0 1
0 1 1 1 0 0
0 1 1 1 0 0


 .

1.3 Our results

In Section 2 we prove the main consequence of the min-rank conjecture for boolean circuits: If true,
it would imply that non-linear gates are powerless when computing linear operatorsMx by depth-2
circuits (Lemmas 2.2 and 2.3).

In Sections 3 and 4 we prove some partial results supporting Conjectures 1 and 2. We first show
(Corollary 3.4) that every depth-2 circuit of widthw computing a linear operator can be transformed
into an equivalentlinear depth-2 circuit of the same degree and width at mostw plus the maximum
number of wires in a matching formed by the input-output wires of the original circuit.

We then prove two special cases of Min-Rank Conjecture. A setof (0,1,∗)-vectors isindependent
if they cannot be made linearly dependent overGF2 by setting stars to constants 0 and 1. IfA is a
(0,1,∗)-matrix, then the upper bound opt(A) ≤ 2n−r holds if the matrixA containsr independent
columns (Theorem 4.4). The same upper bound also holds ifA containsr independent rows, and the
sets of star positions in these rows form a chain with respectto set-inclusion (Theorem 4.11).

After that we concentrate on thestructureof solutions. In Section 5 we show that solutions for a
(0,1,∗)-matrix A are precisely independent sets in a Cayley graph over the Abelian group({0,1}n,⊕)
generated by a special setKA ⊆ {0,1}n of vectors defined by the matrixA (Theorem 5.2).

In Section 6 we first show that every linear solution forA lies in the kernel of some completion
of A (Theorem 6.2). This, in particular, implies that lin(A) = 2n−mr(A) (Corollary 6.3), and gives an
alternative definition of the min-rank mr(A) as the smallest rank of a boolean matrixH such that
Hx 6= 0 for all x∈ KA (Corollary 6.4). In Section 7 we show that non-linear solutionsL must be “very
non-linear”: if s is the maximum number of∗’s in a row ofA, and ifL contains a linear spaceV such
that no nozero vector withs or fewer 1’s is orthogonal toV, thenL is contained in alinear solution
for A (Theorem 7.1).

In Section 8 we consider the relation of the min-rank conjecture with error-correcting codes. We
define(0,1,∗)-matricesA, the solutions for which are error-correcting codes, and show that the min-
rank conjecture for these matrices is true: In this case the conjecture is implied by well known lower
and upper bounds on the size of linear and nonlinear error correcting codes (Lemma 8.3).

For readers convenience, we summarize the introduced concepts at the end of the paper (see
Table 1).

2 Min-rank conjecture and depth-2 circuits

Let F be a depth-2 circuit computing a linear operatorx→ Mx, whereM is anm-by-n (0,1)-matrix.
Say that the(i, j)th entry ofM is seenby the circuit, if there is a direct wire fromx j to theith output

5



gate. Replace all entries ofM seen by the circuit with∗’s, and letAF be the resulting(0,1,∗)-matrix.
That is, given a depth-2 circuitF computing a linear operatorx→ Mx, we replace by∗’s all entries of
M seen by the circuit, and denote the resulting(0,1,∗)-matrix byAF . Note that the original matrixM
is one of the completions ofAF ; hence, rk(M)≥ mr(AF).

Lemma 2.1. Every linear depth-2 circuit F haswidth(F)≥ mr(AF).

In particular, ifF computes a linear operatorx 7→ Mx and has no direct input-output wires at all,
thenAF = M and width(F)≥ rk(M).

Proof. Let Mx be a linear operator computed byF. Every assignment of constants to direct input-
output wires leads to a depth-2 circuit of degreed = 0 computing a linear operatorBx, whereB is
a completion ofAF . This operator takes 2rk(B) different values. Hence, the operatorH : {0,1}n →
{0,1}w computed byw= width(F) boolean functions on the middle layer ofF must take at least so
many different values, as well. This implies that the widthwmust be large enough to fulfill 2w ≥ 2rk(B),
from whichw≥ rk(B)≥ mr(AF) follows.

Lemma 2.2. Every depth-2 circuit F computing a linear operator can be transformed into an equiv-
alent linear depth-2 circuit of the same degree and width at mostmr(AF).

Together with Lemma 2.1, this implies that width(F) = mr(AF) for every optimal linear depth-2
circuit F.

Proof. Let x→Mx be the operator computed byF , and letA=AF be the(0,1,∗)-matrix ofF . We can
construct the desiredlinear depth-2 circuit computingMx as follows. Take a completionB of A with
rk(B) = mr(A). By the definition of completions, theith row bi of B has the formbi = ai + pi, where
ai is theith row of A with all stars set to 0, andpi is a(0,1)-vector having no 1’s in positions, where
this row ofA has non-stars. Theith rowmi of the original(0,1)-matrix M is of the formmi = ai +m′

i,
wherem′

i is a(0,1)-vector which coincides withmi in all positions, where theith row of A has stars,
and has 0’s elsewhere.

The matrixB hasr = rk(B) = mr(A) linearly independent rows. Assume w.l.o.g. that these are
the first rowsb1, . . . ,br of B, and addr linear gates computing the scalar products〈b1,x〉, . . . ,〈br ,x〉
overGF2 on the middle layer. Connect by wires each of these linear gates with all input and all output
nodes. Note that theith output gate, knowing the vectorspi andm′

i, can compute both scalar products
〈pi,x〉 and〈m′

i ,x〉 by only using existing direct wires from inputsx1, . . . ,xn to this gate. Hence, using
ther linear gates〈b1,x〉, . . . ,〈br ,x〉 on the middle layer, theith output gate, fori ≤ r, can also compute
the whole scalar product〈mi,x〉 of the input vector with theith row ofM by:

〈mi,x〉= 〈ai ,x〉⊕ 〈m′
i,x〉= 〈bi ,x〉⊕ 〈pi,x〉⊕ 〈m′

i ,x〉 .

For i > r, just replace vectorbi in this expression by the corresponding linear combinationof b1, . . . ,br .
We have thus constructed an equivalent linear depth-2 circuit of the same degree and of widthr =
mr(AF).

By Lemma 2.2, the main question is: How much the width of a circuit F can be smaller than the
min-rank of its matrixAF? Ideally, we would like to have that width(F)≥ ε ·mr(AF): then the width
of the resultinglinear circuit would be at most 1/ε times larger than that of the original circuitF.

Lemma 2.1 lower bounds the width oflinear circuitsF in terms of the min-rank of their(0,1,∗)-
matricesAF . We now show that the Min-Rank Conjecture implies a similar fact also for general
(non-linear) circuits.
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Lemma 2.3. For every depth-2 circuit F computing a linear operator in n variables, we havethat

width(F)≥ n− log2opt(AF) .

Hence, the Min-Rank Conjecture (stating that opt(A) ≤ 2n−ε ·mr(A)) implies that width(F) ≥ ε ·
mr(AF).

Proof. Let M be anm-by-n (0,1)-matrix. Take a depth-2 circuitF of width w computingMx, and
let AF be the corresponding(0,1,∗)-matrix. Let H = (h1, . . . ,hw) be an operator computed at the
gates on the middle layer, andG= (g1, . . . ,gm) an operator computed at the gates on the output layer.
Hence,Mx = G(x,H(x)) for all x ∈ {0,1}n. Fix a vectorb ∈ {0,1}w for which the setL = {x ∈
{0,1}n : Mx= G(x,b)} is the largest one; hence,|L| ≥ 2n−w. Note that the operatorG′(x) := G(x,b)
must be consistent withA: its ith componentg′i(x) can only depend on input variablesx j to which the
ith output gategi is connected. Hence,L is a solution forAF , implying that opt(AF) ≥ |L| ≥ 2n−w

from which the desired lower boundw≥ n− log2 opt(AF) on the width ofF follows.

We can now show that the Min-Rank Conjecture (Conjecture 2) indeed implies the Linearization
Conjecture (Conjecture 1).

Corollary 2.4. Conjecture 2 implies Conjecture 1.

Proof. Let F be a depth-2 circuit computing a linear operator inn variables. Assuming Conjecture 2,
Lemma 2.3 implies thatε ·mr(AF) ≤ n− log2opt(AF) ≤ width(F). By Lemma 2.2, the circuitF
can be transformed into an equivalent linear depth-2 circuit of the same degree and width at most
mr(AF)≤ width(F)/ε .

Hence, together with Valiant’s result, the Min-Rank Conjecture implies that a linear operatorMx
requires a super-linear number of gates in any log-depth circuit over{& ,∨,¬}, if every depth-2 circuit
for Mx over{⊕,1} of width w= O(n/ ln lnn) requires degreenΩ(1).

Finally, let us show that the only “sorrow”, when trying to linearize a depth-2 circuit, is the
possible non-linearity ofoutputgates—non-linearity of gates on the middle layer is no problem.

Lemma 2.5. Let F be a depth-2 circuit computing a linear operator. If all gates on the output layer
are linear boolean functions, then F can be transformed intoan equivalent linear depth-2 circuit of
the same degree and width.

Proof. Let M be anm-by-n (0,1)-matrix, and letF be a depth-2 circuit of widthw computingMx.
Let H = (h1, . . . ,hw) be the operatorH : {0,1}n →{0,1}w computed by the gates on the middle layer.
Assume that all output gates ofF are linear boolean functions. LetB be them-by-n adjacency(0,1)-
matrix of the bipartite graph formed by the direct input-output wires, andC be them-by-w adjacency
(0,1)-matrix of the bipartite graph formed by the wires joining the gates on the middle layer with
those on the output layer. Then

Mx= Bx⊕C ·H(x) for all x∈ {0,1}n,

whereC ·H(x) is the product of the matrixC with the vectory= H(x). Hence,

C ·H(x) = Dx (4)

is a linear operator withD = M⊕B. Write each vectorx= (x1, . . . ,xn) as the linear combination

x=
n

∑
i=1

xiei (5)
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of unit vectorse1, . . . ,en ∈ {0,1}n, and replace the operatorH computed on the middle layer by a
linear operator

H ′(x) :=
n

∑
i=1

xiH(ei) (mod 2) . (6)

Then, using the linearity of the matrix-vector product, we obtain that (with all sums mod 2):

C ·H(x) = D ·
(
∑xiei

)
by (4) and (5)

=∑xiDei linearity

=∑xiC ·H(ei) by (4)

=C ·
(
∑xiH(ei)

)
linearity

=C ·H ′(x) by (6).

Hence, we again have thatMx= Bx⊕C ·H ′(x), meaning that the obtainedlinear circuit computes the
same linear operatorMx.

3 Bounds onopt(A)

Recall that opt(A) is the largest possible number of vectors in a solution for a given (0,1,∗)-matrix A.
The simplest properties of this parameter are summarized inthe following

Lemma 3.1. Let A be an m-by-n(0,1,∗)-matrix. If A′ is obtained by removing some rows of A, then
opt(A′)≥ opt(A). If A = [B,C] where B is an m-by-p submatrix of A for some1≤ p≤ n, then

opt(B) ·opt(C)≤ opt(A)≤ opt(B) ·2n−p .

Proof. The first claim opt(A′)≥ opt(A) is obvious, since addition of new equations can only decrease
the number of solutions in any system of equations.

To prove opt(A) ≤ opt(B) · 2n−q, take an optimal solutionLA = {x: Mx = G(x)} for A; hence,
|LA|= opt(A). Fix a vectorb∈ {0,1}n−p for which the set

LB = {y∈ {0,1}p : (y,b) ∈ LA}

is the largest one; hence,|LB| ≥ opt(A)/2n−p. The completionM of A has the formM = [M′,M′′],
whereM′ is a completion ofB andM′′ is a completion ofC. If we define an operatorG′ : {0,1}p →
{0,1}m by

G′(y) := G(y,b)⊕M′′b,

thenM′y= G′(y) for all y∈ LB. Hence,LB is a solution forB, implying that opt(A) ≤ |LB| ·2n−p ≤
opt(B) ·2n−p.

To prove opt(A) ≥ opt(B) ·opt(C), let LB = {y ∈ {0,1}p : M′y = G′(y)} be an optimal solution
for B, and letLC = {z∈ {0,1}n−p : M′′z= G′′(z)} be an optimal solution forC. For any pairx =
(y,z) ∈ LB×LC, we have thatMx= G(x), whereM = [M′,M′′] andG(y,z) := G′(y)⊕G′′(z). Hence,
the setLB×LC ⊆ {0,1}n is a solution forA, implying that opt(B) ·opt(C) = |LB×LC| ≤ opt(A), as
claimed.
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Let A be anm-by-n (0,1,∗)-matrix. The min-rank conjecture claims that the largest number
opt(A) of vectors in a solution forA can be upper bounded in terms of the min-rank ofA as opt(A)≤
2n−ε ·mr(A). The claim is true if the min-rank ofA is “witnessed” by some(0,1)-submatrix ofA, that
is, if A contains a(0,1)-submatrix of rank equal to the min-rank ofA. This is a direct consequence of
the following simple

Lemma 3.2. If A is an m-by-n(0,1,∗)-matrix, thenopt(A)≤ 2n−rk(B) for every(0,1)-submatrix B of
A.

Proof. Let B be ap-by-q (0,1)-submatrix ofA. SinceB has no stars, only constant operators can be
consistent withB. Hence, ifL ⊆ {0,1}q is a solution forB, then there must be a vectorb∈ {0,1}p

such thatBx= b for all x ∈ L. This implies|L| ≤ 2q−rk(B). Together with Lemma 3.1, this yields
opt(A)≤ 2q−rk(B) ·2n−q = 2n−rk(B).

Themax-rankMr(A) of a (0,1,∗)-matrix A is a maximal possible rank of its completion. Aline
of A is either its row or its column. Acoverof A is a setX of its lines covering all stars. Let cov(A)
denote the smallest possible number of lines in a cover ofA.

Lemma 3.3. For every m-by-n(0,1,∗)-matrix A, we have that

opt(A)≤ 2n−Mr(A)+cov(A) .

Proof. Given a coverX of the stars inA by lines, remove all these lines, and letAX be the resulting
(0,1)-submatrix ofA. Clearly, we have: Mr(A) ≤ rk(AX) + |X|. (In fact, it is shown in [5] that
Mr(A) = minX (rk(AX)+ |X|), where the minimum is over all coversX of A.) Take a coverX of A of
size|X|= cov(A). Hence, Mr(A)≤ rk(AX)+cov(A). SinceAX is a(0,1)-submatrix ofA, Lemma 3.2
yields opt(A)≤ 2n−rk(AX), where rk(AX)≥ Mr(A)−|X|= Mr(A)−cov(A).

Given a depth-2 circuitF, let m(F) denote the largest number of wires in a matching formed by
direct input-output wires. That is, m(F) is the largest number of∗-entries in the matrixAF of F, no
two on the same line. By the well-known König–Egeváry theorem, stating that the size of a largest
matching in a bipartite graph is equal to the smallest set of vertices which together touch every edge,
we have that m(A) = cov(AF). This leads to the following

Corollary 3.4. Every depth-2 circuit F computing a linear operator can be transformed into an
equivalent linear depth-2 circuit F ′ of the same degree and

width(F ′)≤ width(F)+m(F) .

Proof. Let AF be the(0,1,∗)-matrix of F. By Lemmas 2.3 and 3.3, we have that

width(F)≥ n− log2 opt(AF)≥ n− [n−Mr(AF)+cov(AF)]

= Mr(AF)−cov(AF) = Mr(AF)−m(F) .

By Lemma 2.2, the circuitF can be transformed into an equivalent linear depth-2 circuit of the same
degree and width at most mr(AF)≤ Mr(AF)≤ width(F)+m(F).
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4 Row and column min-rank

We are now going to show that the min-rank conjecture holds for stronger versions of min-rank—row
min-rank and column min-rank.

If A is a(0,1,∗)-matrix of min-rankr then, for every assignment of constants to stars, the resulting
(0,1)-matrix will haver linearly independent columns as well asr linearly independent rows. How-
ever, for different assignments these columns/rows may be different. It is natural to ask whether the
min-rank conjecture is true if the matrixA hasr columns (orr rows) that remain linearly independent
under any assignment of constants to stars?

Namely, say that(0,1,∗)-vectors aredependentif they can be made linearly dependent overGF2

by setting their∗-entries to a constants 0 and 1; otherwise, the vectors areindependent.

Remark 4.1. The dependence of(0,1,∗)-vectors can be defined by adding to{0,1} a new element∗
satisfyingα ⊕∗= ∗⊕α = ∗ for α ∈ {0,1,∗}. Then a set of(0,1,∗)-vectors is dependent iff some its
subset sums up to a(0,∗)-vector. Indeed, ifsomesubset sums up to a(0,∗)-vector, then we can set
the∗-entries to constants so that the corresponding subset of(0,1)-vectors will sum up (overGF2) to
an all-0 vector. On the other hand, ifnosubset sums up to a(0,∗)-vector, for every subset, there must
be a position in which all vectors in this subset have no stars, and the sum of these positions overGF2

is 1.

Remark 4.2. A basic fact of Linear Algebra, leading to the Gauss-Algorithm, is that linear inde-
pendence of vectorsx,y∈ {0,1}n implies that the vectorsx+ y andy are linear independent as well.
For (0,1,∗)-vectors this does not hold anymore. Take, for example,x = (0,1) andy= (1,∗). Then
x⊕y= (1,∗) = y.

For a(0,1,∗)-matrix A, define itscolumn min-rank, mrcol(A), as the maximum number of inde-
pendent columns, and itsrow min-rank, mrrow(A), as the maximum number of independent rows. In
particular, both mrrow(A) and mrcol(A) are at leastr if A contains anr × r “triangular” submatrix, that
is, a submatrix with zeroes below (or above) the diagonal andones on the diagonal:

∆ =




1 ⊛ ⊛ ⊛

0 1 ⊛ ⊛

0 0 1 ⊛

0 0 0 1


 ,

where⊛ ∈ {0,1,∗}. It is clear that neither mrcol(A) nor mrrow(A) can exceed the min-rank ofA. Later
(Lemma 8.4 below) we will give an example of a matrixA where both mrcol(A) and mrrow(A) are by
a logarithmic factor smaller than mr(A). The question about a more precise relation between these
parameters remains open (see Problem 9.3).

Albeit for (0,1)-matrices we always have that their row-rank coincides withcolumn-rank, for
(0,1,∗)-matrices this is no more true. In particular, for some(0,1,∗)-matricesA, we have that
mrrow(A) 6= mrcol(A).

Example 4.3. Consider the following(0,1,∗)-matrix:

A=




1 1 ∗ 1
1 0 1 ∗
1 ∗ 0 0


 .

Then mrrow(A) = mr(A) = 3 but mrcol(A) = 2. To see that mrrow(A) = 3, just observe that the rows
cannot be made linearly dependent by setting the stars to 0 or1: the sum of all three vectors is not
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a {0,∗}-vector because of the 1st column, and the pairwise sums are not {0,∗}-vectors because, for
each pair of rows there is a column containing 0 and 1. To see that mrcol(A) = 2, observe that the last
three columns are dependent (each row has a star). Moreover,for every pair of these columns, there is
an assignment of constants to stars such that either the resulting (0,1)-columns are equal or their sum
equals the first column.

We first show that the min-rank conjecture holds with “min-rank” replaced by “column min-rank”.

Theorem 4.4(Column min-rank). Let A be a(0,1,∗)-matrix with n columns and of column min-rank
r. Thenopt(A)≤ 2n−r .

Proof. Any m-by-n (0,1,∗)-matrix B of column min-rankr must contain anm× r submatrixA of
min-rank r. Since opt(B) ≤ opt(A) ·2n−r (Lemma 3.1), it is enough to show that opt(A) ≤ 1 for all
m-by-r (0,1,∗)-matricesA of min-rankr.

To do this, letL be a solution forA. Then there is an operatorG= (g1, . . . ,gm) : {0,1}r →{0,1}m

such thatG is consistent withA and 〈ai ,x〉 = gi(x) holds for all x ∈ L and all i = 1, . . . ,m. Here
a1, . . . ,am are the rows ofA with all stars set to 0.

For the sake of contradiction, assume that|L| ≥ 2 and fix any two vectorsx 6= y∈ L. Our goal is
to construct a vectorc∈ {0,1}m and a completionM of A such thatMx= My= c. SinceM must have
rankr, this will give the desired contradiction, because at most 2r−rk(M) = 20 = 1 vectorszcan satisfy
Mz= c.

If M is a completion ofA = (ai j ), then itsith row must have the formmi = ai ⊕ pi wherepi ∈
{0,1}n is some vector with no 1’s in positions where theith row of A has no stars. To construct the
desired vectorpi for eachi ∈ [m], we consider two possible cases. (Recall that the vectorsx andy are
fixed.)

Case 1: 〈ai ,x〉= 〈ai ,y〉. In this case we can takepi = 0 andci = 〈ai,x〉. Then〈mi ,x〉= 〈mi ,y〉=
〈ai,x〉= ci , as desired.

Case 2: 〈ai ,x〉 6= 〈ai ,y〉. In this case we have thatgi(x) 6= gi(y), that is, the vectorsx andy must
differ in some positionj where theith row of A has a star. Then we can takepi := ej (the jth unit
vector) andci := 〈ai,x〉⊕x j . With this choice ofpi, we again have

〈mi ,x〉= 〈ai ,x〉⊕ 〈pi ,x〉= 〈ai,x〉⊕ 〈ej ,x〉= 〈ai ,x〉⊕x j = ci

and, since〈ai ,x〉 6= 〈ai,y〉 andx j 6= y j ,

〈mi ,y〉= 〈ai,y〉⊕ 〈pi,y〉= 〈ai ,y〉⊕ 〈ej ,y〉= 〈ai ,x〉⊕x j = ci .

Example 4.5. It is not difficult to verify that, for the(0,1,∗)-matrix A given by (3), we have that
mrcol(A) = mr(A) = 2. Hence, no linear solution of the system of semi-linear equations (2) can have
more than lin(A) = 26−2 = 32 vectors. Theorem 4.4 implies that, in fact,no solution can have more
than this number of vectors.

The situation withrow min-rank is more complicated. In this case we are only able toprove an
upper bound opt(A)≤ 2n−r under an additional restriction that the star-positions inthe rows ofA form
a chain under set-inclusion.

Recall that(0,1,∗)-vectors areindependentif they cannot be made linearly dependent overGF2

by setting stars to constants. The row min-rank of a(0,1,∗)-matrix is the largest numberr of its
independent rows. Since adding new rows can only decrease opt(A), it is enough to considerr-by-n
(0,1,∗)-matricesA with mr(A) = r.
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If r = 1, that is, ifA consists of just one row, then opt(A) ≤ 2n−1 = 2n−r holds. Indeed, since
mr(A) = 1, this row cannot be a(0,∗)-row. So, there must be at least one 1 in, say, the 1st position.
Let LA = {x: 〈a1,x〉 = g1(x)} be a solution forA, wherea1 is the row ofA with all stars set to 0.
Take the unit vectore1 = (1,0, . . . ,0) and split the vectors in{0,1}n into 2n−1 pairs{x,x⊕e1}. Since
the boolean functiong1 cannot depend on the first variablex1, we have thatg1(x⊕e1) = g1(x). But
〈ai,x⊕e1〉 = 〈ai,x〉⊕1 6= 〈ai ,x〉. Hence, at most one of the two vectorsx andx⊕e1 from each pair
{x,x⊕e1} can lie inLA, implying that|LA| ≤ 2n−1.

To extend this argument for matrices with more rows, we need the following definition. Let
A = (ai j ) be anr-by-n (0,1,∗)-matrix, anda1, . . . ,ar be the rows ofA with all stars set to 0. Let
Si = { j : ai j = ∗} be the set of star-positions in theith row of A. It will be convenient to describe the
star-positions by diagonal matrices. Namely, letDi be the incidence matrix of stars in theith row of
A. That is,Di is a diagonaln-by-n (0,1)-matrix whosejth diagonal entry is 1 iffj ∈ Si . In particular,
Dix= 0 means thatx j = 0 for all j ∈ Si .

Definition 4.6. A matrix A is isolated if there exist vectorsz1, . . . ,zr ∈ {0,1}n such that, for all 1≤
i ≤ r, we haveDizi = 0 and

〈a j ,zi〉=
{

1 if j = i;

0 if j < i.

If D1zi = . . .= Dizi = 0, then the matrix isstrongly isolated.

Lemma 4.7. If A is a strongly isolated r-by-n(0,1,∗)-matrix, thenopt(A)≤ 2n−r .

Proof. Let a1, . . . ,ar be the rows ofA with all stars set to 0. We prove the lemma by induction onr.
The basis caser = 1 is already proved above. For the induction stepr −1 7→ r, let

LA = {x∈ {0,1}n : 〈ai ,x〉= gi(x) for all i = 1, . . . , r}
be an optimal solution forA, and letB be a submatrix ofA consisting of its firstr −1 rows. Then

LB = {x∈ {0,1}n : 〈ai,x〉= gi(x) for all i = 1, . . . , r −1}
is a solution forB. SinceA is strongly isolated, the matrixB is strongly isolated as well. The induction
hypothesis implies that|LB| ≤ 2n−(r−1).

Let z= zr be ther-th isolating vector. For each rowi = 1, . . . , r −1, the conditions〈z,ai〉= 0 and
Diz= 0 imply that〈(x⊕z),ai〉= 〈x,ai〉 andgi(x⊕z) = gi(x). That is,

x∈ LB iff x⊕z∈ LB.

For the rth row, the conditions〈z,ar〉 = 1 andDrz= 0 imply that 〈(x⊕ z),ar〉 6= 〈x,ar〉 whereas
gr(x⊕z) = gr(x). That is,

x∈ LA iff x⊕z 6∈ LA.

Hence, for every vectorx∈ LB, only one of the vectorsx andx⊕zcan belong toLA, implying that

opt(A) = |LA| ≤ |LB|/2≤ 2n−r .

We are now going to show that(0,1,∗)-matrices with some conditions on the distribution of stars
in them are strongly isolated. For this, we need the following two facts. Aprojection of a vector
x= (x1, . . . ,xn) onto a set of positionsI = {i1, . . . , ik} is the vector

x↾I= (xi1, . . . ,xik) .

A (0,1,∗)-vectorx is independent of(0,1,∗)-vectorsy1, . . . ,yk if no completion ofx can be written
as a linear combination of some completions of these vectors.
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Lemma 4.8. Let x,y1, . . . ,yk be(0,1,∗)-vectors, and I= {i : xi 6= ∗}. If x is independent of y1, . . . ,yk,
then x↾I is also independent of y1↾I , . . . ,yk↾I .

Proof. Assume thatx↾I is dependent on the projectionsy1↾I , . . . ,yk↾I . Then there is an assignment of
stars to constants in the vectorsyi such thatx↾I can be written as a linear combination of the projections
y′1↾I , . . . ,y′k↾I on I of the resulting(0,1)-vectorsy′1, . . . ,y

′
k. But sincex has stars in all positions outside

I , these stars can be set to appropriate constants so that the resulting(0,1)-vectorx′ will be a linear
combination ofy′1, . . . ,y

′
k, a contradiction.

Lemma 4.9. Let a∈ {0,1}n be a vector and M be an m-by-n(0,1)-matrix of rank r≤ n−1. If a is
linearly independent of the rows of M, then there exists a setZ ⊆ {0,1}n of |Z| ≥ 2n−r−1 vectors such
that, for all z∈ Z, we have〈z,a〉= 1 and Mz= 0.

Proof. Let Z= {z: Mz= 0,〈a,z〉= 1}, and letM′ be the matrixM with an additional rowa. Note that
Z= ker(M)\ker(M′), where ker(M)= {z: Mz= 0} is the kernel ofM. Since rk(M′)= rk(M)+1≤ n,
we have that|ker(M′)|= |ker(M)|/2, implying that

|Z|= |ker(M)\ker(M′)|= |ker(M)|/2≥ 2n−r−1 .

Lemma 4.10. If A is an r-by-n(0,1,∗)-matrix withmr(A) = r, then A is isolated.

Proof. Let a1, . . . ,ar be the rows ofA with all stars set to 0. LetI ⊆ {1, . . . ,n} be the set of all
star-free positions in theith row of A, and consider an(r − 1)-by-|I | (0,1)-matrix Mi whose rows
are the projectionsa′j = a j ↾I of vectorsa j with j 6= i onto the setI . By Lemma 4.8, the projection
a′i = ai ↾I of the ith vectorai onto I cannot be written as a linear combination of the rows ofMi;
hence, rk(Mi) ≤ |I | − 1. Since 2|I |−rk(Mi)−1 ≥ 20 = 1, Lemma 4.9 gives us a vectorz′i ∈ {0,1}|I |
such that〈z′i,a′i〉 = 1 and〈z′i ,a′j〉 = 0 for all j 6= i. But thenzi := (z′i ,0) is the desired(0,1)-vector:
Dizi = Di ·0= 0, 〈zi ,ai〉= 〈z′i ,a′i〉= 1, and〈zi,a j〉= 〈z′i ,a′j〉= 0 for all rows j 6= i.

Say that anr-by-n (0,1,∗)-matrix A is star-monotoneif the setsS1, . . . ,Sr of star-positions in its
rows form a chain, that is, ifS1 ⊆ S2 ⊆ . . .⊆ Sr .

Theorem 4.11(Star-monotone matrices). Let A be a(0,1,∗)-matrix with n columns. If A contains an
r-by-n star-monotone submatrix of min-rank r, thenopt(A)≤ 2n−r .

Proof. Since addition of new rows can only decrease the size of a solution, we can assume thatA itself
is anr-by-n star-monotone matrix of min-rankr. Let a1, . . . ,ar be the rows ofA with all stars set to
0. By Lemma 4.10, the matrixA is isolated. That is, there exist vectorsz1, . . . ,zr ∈ {0,1}n such that:
〈ai,zj〉= 1 iff i = j, andDizi = 0 for all 1≤ i ≤ r. SinceSj ⊆Si for all j < i, this last condition implies
thatD jzi = 0 for all 1≤ j < i ≤ r, that is,A is strongly isolated. Hence, we can apply Lemma 4.7.

5 Solutions as independent sets in Cayley graphs

Let A= (ai j ) be anm-by-n (0,1,∗)-matrix. In the definition of solutionsL for A we take a completion
M of A and an operatorG(x), and require thatMx= G(x) for all x∈ L. The operatorG= (g1, . . . ,gm)
can be arbitrary—the only restriction is that itsith componentgi can only depend on variables corre-
sponding to stars in theith row of A. In this section we show that the actualform of operatorsG can
be ignored—only star-positions are important. To do this, we associate withA the following set of
“forbidden” vectors:

KA = {x∈ {0,1}n : ∃i ∈ [m] Dix= 0 and〈ai ,x〉= 1} ,
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whereDi is the incidencen-by-n (0,1)-matrix of stars in theith row of A, andai is the ith row of A
with all stars set to 0. Hence,KA is a unionKA =

⋃m
i=1Ki of maffine spaces

Ki =

{
x:

(
Di

ai

)
x=

(
0
1

)}
.

Lemma 5.1. For every vector x∈ {0,1}n, x∈ KA if and only if Mx6= 0 for all completions M of A.

Proof. (⇒): Take a vectorx ∈ KA. Then there exists ani ∈ [m] such that vectorx has zeroes in all
positions, where theith row of A has stars, and〈ai ,x〉= 1, whereai is obtained by setting all stars in
this row to 0. So, ifbi is any completion of theith row ofA then〈bi,x〉= 〈ai ,x〉= 1. Thus, the scalar
product ofx with the ith row of any completion ofA must be equal to 1.

(⇐): Take a vectorx 6∈ KA. We have to show that thenMx= 0 for at least one completionM of A.
The fact thatx does not belong toKA means that for eachi ∈ [m] either (i)〈ai ,x〉= 0, or (ii) 〈ai ,x〉= 1
but vectorx has a 1 in some positionj, where theith row of A has a star. We can therefore construct
theith rowmi of the desired completionM of A with Mx= 0 by takingmi = ai , if (i), andmi = ai +ej ,
if (ii). In both cases we have〈mi ,x〉= 0, as desired.

Thesum-setof two sets of vectorsS,T ⊆ {0,1}n is the set of vectors

S+T = {x⊕y: x∈ Sandy∈ T} .

Theorem 5.2. A set L⊆ {0,1}n is a solution for A if and only if(L+L)∩KA = /0.

Proof. Observe that the sumx⊕y of two vectors belongs toKA iff these vectors coincide on all stars
of at least one row ofA such that〈ai ,x〉 6= 〈ai ,y〉. By this observation, we see that the condition
(L+L)∩KA = /0 is equivalent to:

∀x,y∈ L ∀i ∈ [m] : Dix= Diy implies 〈ai,x〉= 〈ai ,y〉. (7)

Having made this observation, we now turn to the actual proofof Theorem 5.2.
(⇒) Let L be a solution forA. Hence, there is an operatorG= (g1, . . . ,gm) consistent withA such

that 〈ai,x〉 = gi(x) for all x∈ L and all rowsi ∈ [m]. To show that thenL must satisfy (7), take any
two vectorsx,y∈ L and assume thatDix= Diy. This means that vectorsx andy must coincide in all
positions where theith row of A has stars. Sincegi can only depend on these positions, this implies
gi(x) = gi(y), and hence,〈ai ,x〉= 〈ai ,y〉.

(⇐) Assume thatL ⊆ {0,1}n satisfies (7). We have to show that then there exists an operator
G= (g1, . . . ,gm) consistent withA such that〈ai ,x〉= gi(x) for all x∈ L andi ∈ [m]; here, as before,ai

is theith row ofA with all stars set to 0. Theith row ofA splits the setL into two subsets

L0
i = {x∈ L : 〈ai ,x〉= 0} and L1

i = {x∈ L : 〈ai ,x〉= 1} .

Condition (7) implies thatDix 6= Diy for all (x,y) ∈ L0
i ×L1

i . That is, ifSi is the set of star-positions in
theith row ofA, then the projectionsx↾Si of vectorsx in L0

i onto these positions must be different from
all the projectionsy↾Si of vectorsy in L1

i . Hence, we can find a boolean functiongi : {0,1}Si →{0,1}
taking different values on these two sets of projections. This function will then satisfygi(x) = 〈ai ,x〉
for all x∈ L.

A cosetof a set of vectorsL ⊆ {0,1}n is a setv+ L = {v⊕ x: x ∈ L} with v ∈ {0,1}n. Since
(v+L)+ (v+L) = L+L, Theorem 5.2 implies:
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Corollary 5.3. Every coset of a solution for a(0,1,∗)-matrix A is also a solution for A.

Remark 5.4. A Cayley graph over the Abelian group({0,1}n,⊕) generated by a setK ⊆ {0,1}n

of vectors has all vectors in{0,1}n as vertices, and two vectorsx andy are joined by an edge iff
x⊕y∈ K. Theorem 5.2 shows that solutions for a(0,1,∗)-matrix A are precisely the independent sets
in a Cayley graph generated by a special setKA.

Remark 5.5. If A is anm-by-n (0,1)-matrix, that is, has no stars at all, thenKA = {x: Ax 6= 0}. Hence,
in this case, a setL ⊆ {0,1}n is a solution forA iff there is a vectorb∈ {0,1}m such thatAx= b for
all x∈ L. That is, in this case, ker(A) = {x: Ax= 0} is an optimal solution.

6 Structure of linear solutions

By Theorem 5.2, a set of vectorsL⊆{0,1}n is a solution for anm-by-n (0,1,∗)-matrixA if and only if
(L+L)∩KA= /0, whereKA ⊆{0,1}n is the set of “forbidden” vectors forA. Thus,linear solutions are
precisely vector subspaces of{0,1}n avoiding the setKA. Which subspaces these are? We will show
(Theorem 6.2) that these are precisely the subspaces lying entirely in the kernel of some completion
of A.

Each vector subspace of{0,1}n is a kernel ker(H)= {x: Hx= 0} of some(0,1)-matrixH. Hence,
linear solutions forA are given by matricesH such thatHx 6= 0 for all x∈ KA; in this case we also say
that the matrixH separates KA from zero. By thespan-matrixof a (0,1)-matrix H we will mean the
matrix Ĥ whose rows are all linear combinations of the rows ofH.

Lemma 6.1. Let A be a(0,1,∗)-matrix and H be(0,1)-matrix. Thenker(H) is a solution for A iffĤ
contains a completion of A.

Proof. To prove(⇐), suppose that some completionM of A is a submatrix ofĤ. Let x ∈ KA. By
Lemma 5.1, we know that thenMx 6= 0, and hence, alsôHx 6= 0. SinceHx= 0 would implyĤx= 0,
we also have thatHx 6= 0.

To prove(⇒), suppose that ker(H) is a solution forA, that is,Hx 6= 0 for all x ∈ KA. Then, for
every rowi ∈ [m] and every vectorx∈ {0,1}n, Hx= 0 andDix= 0 imply that〈ai,x〉= 0. This means
that ai must be a linear combination of rows ofH andDi. Hence, for eachi, the vectorai must lie
in the vector space spanned by the rows ofH andDi, that is,ai = α⊤

i H ⊕β⊤
i Di for some vectorsα i

andβ i . In other words, theith linear combinationα⊤
i H of the rows ofH is theith rowai ⊕β⊤

i Di of a
particular completionM of A, implying thatM is a submatrix of̂H, as desired.

Theorem 6.2. Let A be a(0,1,∗)-matrix. A linear subspace is a solution for A if and only if itis
contained in a kernel of some completion of A.

Proof. (⇐): If a linear subspaceL ⊆ {0,1}n lies in a kernel of some completion ofA thenL∩KA = /0,
by Lemma 5.1. SinceL+L = L, the setL must be a solution forA, by Theorem 5.2.

(⇒): Let L ⊆ {0,1}n be an arbitrary linear solution forA. ThenL+ L = L and L∩KA = /0.
Take a(0,1)-matrix H with L = ker(H). Since ker(H)∩KA = /0, the matrixH separatesKA from
zero. Lemma 6.1 implies that then̂H must contain some completionM of A. But thenL = ker(H) =
ker(Ĥ)⊆ ker(M), as claimed.

Corollary 6.3. For any(0,1,∗)-matrix A we have thatlin(A) = 2n−mr(A).

Proof. By Theorem 6.2, lin(A) is the maximum of|ker(M)|= 2n−rk(M) over all completionsM of A.
Since mr(A) is the minimum of rk(M) over all completionsM of A, we are done.

15



Corollary 6.4 (Alternative definition of min-rank). For every(0,1,∗)-matrix A we have

mr(A) = min{rk(H) : Hx 6= 0 for all x ∈ KA} .

Proof. Let R be the smallest possible rank of a(0,1)-matrix separatingKA from zero. To prove
mr(A)≥ R, let M be a completion ofA with rk(M) = mr(A). By Lemma 5.1, the matrixM separates
KA form zero. Hence,R≤ rk(M) = mr(A).

To prove mr(A)≤ R, let H be a(0,1)-matrix such thatH separatesKA form zero and rk(H) = R.
By Lemma 6.1, the matrix̂H must contain a completionM of A. Hence, mr(A)≤ rk(M)≤ rk(Ĥ) =
rk(H) = R.

By Lemma 5.1, the complement ofKA is the union of kernels ker(M) of all completionsM of A.
So, Theorems 5.2 and 6.2 imply that a subsetL ⊆ {0,1}n is:

• a solution forA iff L+L ⊆⋃ {ker(M) : M is a completion ofA};

• a linear solution forA iff L ⊆ ker(M) for some completionM of A.

7 Structure of general solutions

The following theorem says that non-linear solutions must be “very non-linear”: they cannot contain
large linear subspaces. Recall that in Valiant’s setting (cf. Lemma 1.1) we may assume that each
row of a (0,1,∗)-matrix contains at mosts= nδ stars, whereδ > 0 is an arbitrary small constant.
Define the co-distance of a vector space as the smallest weight of a non-zero vector in its orthogonal
complement.

Theorem 7.1.Let L⊆{0,1}n be a solution for an m-by-n(0,1,∗)-matrix A, and let s be the maximum
number of stars in a row of A. If L contains a subspace of co-distance at least s+1, then L lies in a
linear solution for A.

Proof. SinceL is a solution forA, W is a linear solution forA as well. Hence, by Theorem 6.2,W is
contained in a kernel of some completionM of A. Our goal is to show that then the entire solutionL
must be contained in ker(M). To show this, we will use the following simple fact.

Claim 7.2. Let W⊆ {0,1}n be a linear subspace of co-distance at least k+ 1. Then, for every k-
element subset S⊆ [n] and for every vector y∈ {0,1}n, there is a vector x∈W such that x6= 0 and
y↾S= x↾S.

Proof of Claim. The set of all projections of vectors inW onto S forms a linear subspace. If this
subspace would be proper, then some non-zero vector, whose support lies inS, would belong to the
orthogonal complement ofW, a contradiction.

Assume now thatL 6⊆ ker(M), and take a vectory∈ L \ker(M). Sincey 6∈ ker(M), we have that
〈mi ,y〉 = 1 for at least one rowmi of M. Let Sbe the set of star-positions in theith row of A (hence,
|S| ≤ s), and letai be this row ofA with all stars set to 0. By Claim 7.2, there must be a vector
x ∈W ⊆ L∩ ker(M) with y↾S= x↾S, that is,Di(x⊕ y) = 0. But x∈ ker(M) implies that〈mi ,x〉 = 0.
Hence,〈mi,x⊕y〉= 〈mi ,x〉⊕〈mi ,y〉= 〈mi,y〉= 1. Since the vectorai can only differ frommi in star-
positions of theith row of A and, due toDi(x⊕y) = 0, the vectorx⊕y has no 1’s in these positions,
we obtain that〈ai,x⊕y〉= 1. Hence, the vectorx⊕y belongs toKA, a contradiction withx,y∈ L.

This completes the proof of Theorem 7.1.
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8 Relation to codes

Let 1≤ r < n be integers. A (binary) error-correcting code of minimal distancer + 1 is a setC ⊆
{0,1}n of vectors, any two of which differ in at leastr +1 coordinates. A code islinear if it forms a
linear subspace overGF2. The question on how good linear codes are, when compared to non-linear
ones, is a classical problem in Coding Theory. We now will show that this is just a special case of a
more general “opt(A) versus lin(A)” problem for(0,1,∗)-matrices, and that Min-Rank Conjecture in
this special case holds true.

An (n, r)-code matrix, or just anr-code matrixif the numbern of columns is not important, is a
(0,1,∗)-matrix with n columns andm= (r +1)

(n
r

)
rows, each of which consists ofn− r stars and at

most one 0. The matrix is constructed as follows. For everyr-element subsetS of [n] = {1, . . . ,n}
include inA a block ofr +1 rowsa with ai = ∗ for all i 6∈ S, ai ∈ {0,1} for all i ∈ S, and|{i ∈ S: ai =
0}| ≤ 1. That is, each of these rows has stars outsideSand has at most one 0 withinS. For r = 3 and
S= {1,2,3} such a block looks like




1 1 1 ∗ · · · ∗
0 1 1 ∗ · · · ∗
1 0 1 ∗ · · · ∗
1 1 0 ∗ · · · ∗


 .

A Hamming ball around the all-0 vector 0 is defined by

Ball(r) = {x∈ {0,1}n : 0≤ |x| ≤ r} ,

where|x|= x1+ · · ·+xn is the number of 1’s inx.

Observation 8.1. If A is an r-code matrix, then KA = Ball(r)\{0}.

Proof. Observe that no vectorx∈ {0,1}r , x 6= 0 can be orthogonal to allr+1 vectors 1,1⊕e1, . . . ,1⊕
er in {0,1}r with at most one 0. Indeed, if〈x,1〉 = 0 then〈x,1⊕ei〉 = xi for all i = 1, . . . , r. By this
observation, a vectorx belongs toKA iff there is anr-element setS⊆ [n] of positions such thatx↾S6= 0
andx↾S= 0, that is, iffx 6= 0 andx∈ Ball(r).

Observation 8.2. If A is an(n, r)-code matrix, then the solutions for A are error-correctingcodes of
minimal distance r+1, and linear solutions for A are linear codes.

Proof. We have(L+L)∩ (Ball(r)\{0}) = /0 iff |x⊕y| ≥ r +1 for all x 6= y∈ L, that is, iff every two
vectorsx 6= y∈ L differ in at leastr +1 positions. Hence, every solution for anr-code matrixA is a
code of minimal distance at leastr +1, and linear solutions are linear codes.

Lemma 8.3. For code matrices, the min-rank conjecture holds with a constant ε > 0.

Proof. Let A be an(n, r)-code matrix; hence,KA = Ball(r)\{0}. Sett := ⌊(r −1)/2⌋. Since|x⊕y| ≤
2t < r for all x,y∈ Ball(t), the sum of any two vectorsx 6= y from Ball(t) lies in KA, implying that
Ball(t) is a clique in the Cayley graph generated byKA. Since, by Remark 5.4, solutions forA are
independent sets in this graph, and since in any graph the number of its vertices divided by the clique
number is an upper bound on the size of any independent set, weobtain:

opt(A)≤ 2n/|Ball(t)|= 2n
/ t

∑
i=0

(
n
i

)
, (8)
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which is the well-known Hamming bound for codes. On the otherhand, Gilbert-Varshamov bound
says that linear codes in{0,1}n of dimensionk and minimum distanced exist, if

d−2

∑
i=0

(
n−1

i

)
< 2n−k .

Hence,

lin(A)≥ 2n
/ r

∑
i=0

(
n
i

)
. (9)

Together with (8), this implies that the inequality (1) holds with ε about 1/2.

The example of code matrices also shows that the gap between min-rank and row/column min-
rank may be at least logarithmic inn.

Lemma 8.4. If A is an (n, r)-code matrix, thenmr(A) = Ω(r ln(n/r)) but mrcol(A) ≤ r + 1 and
mrrow(A)≤ 2r.

Proof. To prove mr(A) = Ω(r ln(n/r)), recall thatKA = Ball(r) \{0}. Hence, Corollary 6.4 implies
that mr(A) is the smallest possible rank of a(0,1)-matrix H such that ker(H)∩Ball(r)⊆ {0}. On the
other hand, for any such matrixH, its kernelL = ker(H) is a (linear) code of minimal distance at least
r +1 containing|L|= 2n−rk(H) vectors. Since, by Hamming bound (8), no codeL of distance at least
r +1 can have more thanN = 2n/(n/r)O(r) vectors, we have that

rk(H) = n− log2 |L| ≥ n− log2N = Ω(r ln(n/r)) .

To prove that mrcol(A) ≤ r +1, suppose thatA contains somem× k submatrixB of min-rankk.
Since allk columns must be independent, at least one rowb of B must be∗-free and contain an odd
number|b| of 1’s. But every row ofA (and hence, alsob) can contain at most one 0, implying that
|b| ≥ k−1. Together with|b| ≤ r, this implies thatk≤ r +1.

To prove that mrrow(A) ≤ 2r, recall that each row ofA consists ofn− r stars and at most one 0;
the remainingr (or r − 1) entries are 1’s. Suppose now thatA contains some setX of |X| = k+ 1
independent rows. That is, no subset of these rows can be madelinearly dependent by setting∗’s to 0
or 1. The rows inX must be, in particular,pairwise independent. This, in particular, means that the
setX can contain at most one row without 0-entries. So, letY ⊆ X be a set of|Y|= k rows containing
0-entries. Take any two rowsx 6= y∈Y with xi = 0 andy j = 0. Sincex andy are independent and have
only ∗’s or 1’s outside their 0-entries, we have that:i 6= j and eitherx j = 1 oryi = 1. This implies that
the total number of 1’s in the rows ofY must be at least the number

(k
2

)
of pairs of vectors inY. So,

there must exist a rowx∈Y with |x| ≥
(k

2

)
/|Y| = (k−1)/2. Together with|x| ≤ r −1, this implies

thatk≤ 2r −1, and thus, that|X|= k+1≤ 2r.

9 Conclusion and open problems

In this paper we pose a conjecture about systems of semi-linear equations and show its relation to
proving super-linear lower bounds for log-depth circuits.We then give a support for the conjecture by
proving that some its weaker versions are true. We also show that solutions are independent sets in
particular Cayley graphs, thus turning the conjecture in a more general (combinatorial) setting. Using
this, we prove several structural properties of sets of solutions that might be useful when tackling the
original conjecture.
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We defined solutions for a givenm-by-n (0,1,∗)-matrixAas setsL⊆{0,1}n of vectorsxsatisfying
a system of equations

〈ai ,x〉= gi(Dix) i = 1, . . . ,m, (10)

whereai is theith row of A with all stars replaced by 0,gi is an arbitrary boolean function, andDi is
a diagonaln-by-n (0,1)-matrix corresponding to stars in theith row of A. We have also shown (see
Remark 5.4) that solutions forA are precisely the independent sets in a Cayley graph over theAbelian
group({0,1}n,⊕) generated by a special set of vectors

KA = {x: ∃i D ix= 0 and〈ai,x〉= 1} . (11)

The following two questions about possible generalizations of the min-rank conjecture naturally arise:

1. What if instead of diagonal matricesDi in (10) we would allow other(0,1)-matrices?

2. What if instead of special generating setsKA, defined by (11), we would allow other generating
sets?

The following two examples show that the min-rank conjecture cannot be carried too far: its general-
ized versions are false.

Example 9.1(Bad generating setsK). Let G be a Cayley graph generated by the setK ⊆ {0,1}n of
all vectors with more thann−2

√
n ones. IfL ⊆ {0,1}n consist of all vectors with at mostn/2−√

n
ones, then(L+L)∩K = /0, that is,L is an independent set inG of size|L| ≥ 2n−O(logn). But anylinear
independent setL′ in G is a vector space of dimension at mostn−2

√
n. Hence,|L′| ≤ 2n−2

√
n, and

the gap|L|/|L′| can be as large as 2Ω(
√

n).
Note, however, that there is a big difference between the setK we constructed and the setsKA aris-

ing form (0,1,∗)-matricesA: generating setsKA must be almost “closed downwards”. In particular, if
x∈ KA thenall nonzero vectors, obtained fromx by flipping some even number of its 1’s to 0’s, must
also belong toKA. Hence, this example does not refute the min-rank conjecture as such.

Example 9.2(Bad matricesDi). Let us now look what happens if we allow the matricesD1, . . . ,Dm

in the definition of a system of semi-linear equations (10) bearbitrary n× n (0,1)-matrices. A
completionM of A can then be defined as a(0,1)-matrix with rowsmi = ai +α⊤

i Di. Now define
mr(A|D1, . . . ,Dr) as the minimal rank of such a completion ofA. Observe that this definition coin-
cides with the “old” min-rank, if we take theDi ’s to be the diagonal matrices corresponding the stars
in the ith row ofA.

However, Example 9.1 shows that the min-rank conjecture is false in this generalized setting. To
see why, we can define appropriate matricesA,D1, . . . ,Dm such that the corresponding setKA defined
by (11) consists of vectors with more thann− 2

√
n ones: for an arbitrary vectorv with more than

n−2
√

n ones just defineai andDi such that the systemDix= 0,〈ai,x〉= 1 hasv as its only solution.

Except of the obvious open problem to prove or disprove the linearization conjecture (Conjec-
ture 1) or the min-rank conjecture (Conjecture 2), there areseveral more concrete problems.

We have shown (Lemma 8.4) that the gap between min-rank and row/column min-ranks may be
as large as lnn. It would be interesting to find(0,1,∗)-matricesA with larger gap.

Problem 9.3. How large can the gapmr(A)/max{mrcol(A),mrrow(A)} be?
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The next question concerns the clique numberω(GA) of (that is, the largest number of vertices
in) Cayley graphsGA generated by the sets of the setsKA ⊆ {0,1}n of the form (11). By Remark 5.4,
solutions forA are independent sets in this graph. Hence, opt(A) is just the independence number
α(GA) of this graph. Since in anyN-vertex graphG we have thatω(G) ·α(G) ≤ N, this yields
opt(A)≤ 2n/ω(GA). On the other hand, it is easy to see thatω(GA)≤ 2rk(M), whereM is a canonical
completion ofA obtained by setting all∗’s to 0: If C ⊆ {0,1}n is a clique inGA, then we must have
Mx 6= My for all x 6= y∈C, because otherwise the vectorx⊕y would not belong toKA.

Problem 9.4. Give a lower bound onω(GA) in terms of min-rankmr(A) of A.

Finally, it would be interesting to eliminate an annoying requirement in Theorem 4.11 that the
matrix A must be star-monotone.

Problem 9.5. If A is an r-by-n(0,1,∗)-matrix of min-rank r, is thenopt(A)≤ 2n−r?
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Table 1: This table summarizes the concepts introduced in this paper. HereA is a partially defined
m×n matrix with entries from{0,1,∗}.

Concept Notation Meaning

Completion ofA A (0,1)-matrix obtained fromA by setting its∗-
entries to 0 and 1.

Canonical completion ofA All ∗-entries ofA set to 0.
Min-rank mr(A) Minimal rank overGF2 of a completion ofA.
Max-rank Mr(A) Maximal rank overGF2 of a completion ofA.
OperatorG consistent withA The ith coordinate ofG : {0,1}n → {0,1}m can

only depend on variables corresponding to∗-
entries in theith row of A.

Solution forA A setL ⊆{0,1}n of the formL = {x: Mx=G(x)},
whereM is a completion ofA, andG is an operator
consistent withA.

Linear solution forA A solution for A forming a linear subspace of
{0,1}n.

opt(A) Maximum size of a solution forA.
lin(A) Maximum size of a linear solution forA; lin(A) =

2n−mr(A).
Min-Rank Conjecture opt(A)≤ 2n−ε ·mr(A) for a constantε > 0.
Independence of (0,1,∗)-
vectors

Cannot be made linear dependent by setting∗’s to
constants.

Row min-rank mrrow(A) Maximal number of independent rows.
Column min-rank mrcol(A) Maximal number of independent columns.
Incidence matrix of∗’s Di Diagonal(0,1)-matrix withDi[ j, j] = 1 iff A[i, j] =

∗.
Set of forbidden vectors KA All vectors x ∈ {0,1}n such thatDix = 0 and

〈ai ,x〉 = 1, whereai is the ith row of A with all
stars set to 0. Main property:L is a solution forA
iff (L+L)∩KA = /0.
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