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Abstract

The bandwidth of an n-vertex graph G is the minimum value b such that the vertices of G
can be mapped to distinct integer points on a line without any edge being stretched to a distance
more than b. Previous to the work reported here, it was known that it is NP-hard to approximate
the bandwidth within a factor better than 3/2. We improve over this result in several respects.
For certain classes of graphs (such as cycles of cliques) for which it is easy to approximate the
bandwidth within a factor of 2, we show that approximating the bandwidth within a ratio better
than 2 is NP-hard. For caterpillars (trees in which all vertices of degree larger than two lie on
one path) we show that it is NP-hard to approximate the bandwidth within any constant, and
that an approximation ratio of c

p
log n/ log log n will imply a quasi-polynomial time algorithm

for NP (when c is a sufficiently small constant).

1 Introduction

Let G = (V, E) be an undirected graph on n vertices, which without loss of generality in our context
can be assumed to be connected. A linear arrangement (a.k.a. layout, or numbering) of G is a one
to one mapping f : V → {1, . . . , n}. The bandwidth of the layout f , bG(f) is defined as

bG(f) = max
(u,v)∈E

|f(u) − f(v)|

The bandwidth of a graph, denoted as bG or simply b, when G is clear from the context is

bG = min
f

bG(f)

The bandwidth problem is NP-hard, and in this paper we present new hardness of approximation
results for it. To aid in the discussion of previous results and our results, we present a few classes
of graphs.

Definition 1 A caterpillar is a tree composed of a path called the backbone and other paths connected
to the backbone called strands (a.k.a. hairs). In other words, a caterpillar is a tree on which all
vertices of degree greater than 2 lie on a single path.

For caterpillars, it is natural to consider linear arrangements that are monotone with respect
to the backbone vertices. The minimum bandwidth among all such linear arrangements is referred
to as the unfolded bandwidth. However, the bandwidth problem per-se does not require the linear
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arrangement to be monotone with respect to the backbone vertices. We say that a linear arrangement
is folded at backbone vertex v, if the two neighbors of v on the backbone both lie to the left of v
(that is, are mapped to smaller numbers than v is), or both lie to the right of v (are mapped to
larger numbers than v is).

Definition 2 A clique cycle graph is a graph composed of a set of cliques, where each clique has a
special vertex, and the special vertices are connected as a cycle.

Definition 3 A ringed caterpillar is a caterpillar with the endpoints of the backbone joined by an
edge.

Definition 4 A circular arc graph is a graph whose vertices are intervals (a.k.a. arcs) on a circle
and there is an edge between two vertices if the corresponding intervals intersect. A unit (or uniform)
circular arc graph is one in which all intervals are of the same length (and in particular, no interval
strictly contains another interval).

Definition 5 A δ-dense graph is a graph in which the degree of every vertex is at least δn.

Definition 6 An asteroidal triple in a graph is a set of three distinct vertices such that removing
any one of them and all its neighbors leaves the other two in the same connected component. (Equiv-
alently, for any two of them there is a path connecting them and not passing through the neighborhood
of the other vertex.) An asteroidal triple free graph or AT-free graph for short is a graph with no
asteroidal triples.

Observe for example that a caterpillar with strand length 1 is an AT-free graph.
The local density of a graph is an easily computable lower bound on the bandwidth of a graph.

Definition 7 For a vertex v in a graph and a positive integer r, let Nr(v) denote the set of vertices
at distance at most r from v. Then the local density of a graph G is

DG = max
v,r

|Nr(v)|

2r

It can easily be seen that for every graph bG ≥ DG.

1.1 Related work

Before discussing related work, let us clarify the historical perspective. A preliminary version of the
current manuscript [32] appeared already in 1998. A combination of the level of complication of the
proofs and space limitations imposed on the preliminary version led to the situation that the most
interesting claims in the preliminary version appeared without proofs. The current version attempts
to remedy this situation by presenting the full proofs. The proofs as written in the current version
are based on ideas similar to those discussed in the preliminary version, but the details and the
notation are different. Some of the results presented in the current version (the growth rate of the
hardness ratio as a function of n) were not stated in the preliminary version. Some of the related
work that will be surveyed (most notably [11]) appeared in between the preliminary version and
the current version of this work. Hence the historic order among results is not clear-cut, but this
does not lead to confusion regarding the contribution of the work reported here compared to work
of others.

For general graphs, the following results are known. There are graphs (even trees) for which the
local density is not a tight lower bound on the bandwidth, in the sense that bG ≥ Ω(DG log n). On
the other hand, there are relatively simple polynomial time (randomized) algorithms that compute a
linear arrangement of bandwidth at most O(DG(log n)7/2) [8, 23], and O(DG(log n)5/2) for trees [14].
A somewhat better approximation ratio (but against the actual bandwidth rather than the local
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density) can be obtained using mathematical programming, namely O(bG(log n)3(log log n)1/4) [7,
24]. The analysis of all these algorithms is based on the notion of volume respecting embeddings that
was introduced in [8]. On the negative side, Blache et. al. [2] showed that it is hard to approximate
the bandwidth better than a factor of 4

3 − ǫ on trees and 3
2 − ǫ on general graphs (in both cases,

ǫ > 0 can be taken to be an arbitrarily small constant).
The bandwidth of caterpillars received a lot of attention. For caterpillars of strand length at

most 2, the bandwidth problem can be solved in polynomial time [1]. Monien [27] showed that
bandwidth of caterpillars of strand length at most 3 is NP-complete. The reduction crucially uses
gadgets which forces the backbone to fold. In [4] it was shown that there are caterpillars with bG ≥
Ω(DG log n/ log log n). Feige and Talwar [11] showed that the unfolded bandwidth of caterpillars
can be approximated within a constant factor, that the gap between folded and unfolded bandwidth
of caterpillars is at most O(log n/ log log n), and that for some caterpillars this gap is indeed as large
as Ω(log n/ log log n). They also showed an algorithm that provides an unfolded linear arrangement
of bandwidth at most O(DG log n/ log log n). The combination of these results implies that there
is a polynomial time algorithm that approximates the bandwidth of caterpillars within a ratio of
O(log n/ log log n), and that further improvement would require both folding of caterpillars and
comparing against a lower bound which is tighter than the local density lower bound.

Other classes of graphs that are mentioned in this paper also received attention in the past.
In [21] it is shown that the bandwidth of asteroidal-triple-free graphs can be approximated within a
factor of 2. A factor 2 approximation for circular arc graphs and some other related graphs appears
in [22]. A 3-approximation algorithm for δ-dense graphs appears in [17] .

There are many other results known on the bandwidth, including exact algorithms for very
restricted classes of graphs, approximation algorithms for some special classes of graphs, heuristics
for general graphs, and algorithms with super-polynomial running time. Though we do not discuss
all these results, we attempted to include many of these known results in the references to this paper.

1.2 Our results

Our main results are the following.

Theorem 1 For every ǫ > 0, it is NP-hard to approximate the bandwidth of ringed caterpillars of
hair length 1 within a ratio of 2 − ǫ.

The most significant feature of Theorem 1 is that it is tight in the sense that there are simple
algorithms that do approximate the bandwidth of ringed caterpillars with hair length 1 within a ratio
of 2 [22]. The proof of the theorem easily extends to other classes of graphs for which approximation
ratio 2 is known, such as cycles of cliques and circular arc graphs with uniform arc lengths.

Theorem 2 For every constant c > 0, it is NP-hard to approximate the bandwidth of caterpillars of
hair length 1 within a ratio of c. Moreover, under the assumption that NP (say, 3SAT, to be specific)
cannot be solved in time nO(logn/ log log n), there is no polynomial time algorithm that approximates

the bandwidth of caterpillars within a ratio better than c′
√

log n
log log n , where c′ > 0 is some sufficiently

small constant.

There are two significant features in Theorem 2. One is that it establishes NP-hardness for any
constant ratio. The other is that it also addresses nonconstant approximation ratios. The question
of what it would take to obtain a hardness ratio that matches (up to constant factors) the known
approximation ratio O(log n/ log log n) [11] will be discussed in Section 4.12.

Similar to the approach of [2], our proof of Theorem 1 is based on a direct reduction from
an NP-hard problem (such as 3SAT), and does not attempt to build on any previous hardness of
approximation result. In particular, we make no use of the PCP theorem and its variants which is a
common methodology for proving hardness of approximation results. To simplify the presentation,
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we choose an NP-hard problem with more symmetries than 3SAT, namely, the problem BM4SAT
(balanced monotone 4SAT, see Section 2.2). The main new challenges in the proof of Theorem 1
compared to the proofs in [2] is that in Theorem 1 the reduction needs to produce ringed caterpillars
for which the optimal linear arrangement involves extensive folding of the backbone. (Finding the
optimal layout of a ringed caterpillar with strand length 1 can be done in polynomial time if it is
known that the number of folding locations is bounded by a constant.) In [2], no notion of folding
is required (since the graphs produced by the reduction were more general than the simple graphs
in our reductions). Beyond the issue of forcing the folding, the improvement of approximation ratio
from 3/2 in [2] to 2 in Theorem 1 is mainly a result of paying more attention to details and extracting
the maximum out of the proof technique.

The proof of Theorem 2 is considerably more complicated than the proof of Theorem 1. The
idea is to start by proving a constant hardness of approximation result for some constant larger
than 1 (say, 3/2), and then recursively amplifying it by creating large caterpillars in which smaller
caterpillars are embedded. The base case of this recursive construction appears to be conceptually
not that different from the proofs of Theorem 1. However, this analogy is misleading. Setting
things up so that the recursion works properly and indeed amplifies the hardness result involves
many additional issues that significantly complicate the proofs. To illustrate a major source of
the difficulty, compare the issue of hardness amplification for bandwidth with that of hardness
amplification for the maximum clique problem. For maximum clique, a certain graph product
results in squaring the size of the clique [13], and hence squaring also the hardness of approximation
gap. By repeatedly applying this product, the gap can be made arbitrarily large. For the bandwidth
problem, no such graph product can exist, as it would lead (by taking a super-constant number
of iterations) to hardness of approximation ratios larger than the approximation ratios that one
can achieve algorithmically, implying that NP has quasi-polynomial time algorithms. Indeed, our
recursive approach does not increases uniformly the bandwidth of all graphs. For some graphs it
increases the bandwidth (by a factor of Ω(k) after k recursive applications) and for others it does
not. The hardness of approximation gap is created because original yes instances of the BM4SAT
problem give rise to caterpillars for which recursion does not increase the bandwidth, whereas no
instances give rise to caterpillars for which recursion does increase the bandwidth. The need to
reach such a distinction comes up already in the base case of the recursion, and additional levels
of difficulty are introduced with every level of the recursion. For example, the number of different
types of “gadgets” used by our construction grows as the number of levels of the recursion grows.

The preliminary version [32] of our paper states some additional hardness of approximation
results. We chose not to include proofs of these results in this manuscript since the additional value
that they provide does not seem to justify making this manuscript longer than it already is.

A different approach for proving hardness of approximation results for bandwidth was suggested
by Shimon Kogan (private communication, 2004). It uses a reduction from the problem of Balanced
Bipartite Independent Set (BBIS). This last problem is currently known not to be approximable
unless NP has subexponential time algorithms [10, 18]. Using the principles outlined by Simon
Kogan, we prove the following proposition that addresses questions that were left open in [21, 17].

Proposition 3 There is no PTAS for the bandwidth problem on asteroidal-triple-free graphs (and
neither on graphs of minimum degree n/2) unless NP has subexponential time algorithms.

Possibly, the statement of Proposition 3 can be strengthened so as to show NP-hardness. How-
ever, we chose to include this proposition in this weak form because its proof is simple, and illustrates
a different approach for showing that approximating the bandwidth is a difficult task.

1.3 Organization of this paper

In Section 2 we present components that are common to the proofs of both of our main theo-
rems. This includes the notion of bucketwidth, the problem of BM4SAT, various basic subgraphs
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of caterpillars (such as paths, brushes), the principles behind basic gadgets (keys and holes), and
the intended interpretation of various segments of a caterpillar that give a correspondence between
the structure of a caterpillar and the original BM4SAT instance. Section 2 also includes a special
subsection 2.7 that contains much of the terminology that is used in the proofs of Theorems 1 and 2,
for easy reference in case of need.

In Section 3 we prove Theorem 1. This proof can also serve as an introduction to the more difficult
proof of Theorem 2 which appears in Section 4. Section 5 contains the proof of Proposition 3 and
can be easily understood without reading any of the other sections.

2 Preliminaries

2.1 Bandwidth versus bucketwidth

Definition 8 A bucket arrangement of a graph is a placement of its vertices into consecutive buck-
ets, such that the endpoints of an edge are either in the same bucket or in adjacent buckets. The
bucketwidth is the number of vertices in the most loaded bucket. The bucketwidth of a graph is the
minimum bucketwidth of all bucket arrangements of the graph.

The following lemma is well known [11]. We give a proof for completeness.

Lemma 4 Let b denote the bandwidth of a graph G and bw its bucketwidth. Then bw ≤ b ≤ 2bw.

Proof: Given a bucket arrangement for a graph G with bucketwidth bw, create a linear arrange-
ment bucket by bucket, where vertices in the same bucket are ordered in an arbitrary order. This
gives a linear arrangement with bandwidth at most 2bw.

Given a linear arrangement with bandwidth b, create a bucket layout of bucketwidth at most bw
by dividing the vertices in the linear arrangement in groups of size b and putting each in its own
bucket. 2

While proving a hardness of approximation which is “large” (Section 4), it will be more convenient
to present our result as one concerning the hardness of approximating bucketwidth of caterpillars,
rather than bandwidth. Recall that by Lemma 4, hardness of approximating bucketwidth within a
factor of ρ implies hardness of approximating bandwidth within a factor of ρ/2. Since in our case we
will be able to make ρ an arbitrarily large constant (and even super-constant), ρ/2 will be a value
of the same nature. Hence the same hardness results that we will prove for bucketwidth will apply
also to bandwidth.

In fact, even when proving a hardness of factor 2 (Section 3) it will be more convenient for
us to first consider bucketwidth, and then translate the result to bandwidth by showing that for
the particular graphs that are constructed by our reductions, the bucketwidth and bandwidth are
roughly the same (rather than being a factor of 2 from each other as might happen in Lemma 4).

2.2 BM4SAT

Our hardness of approximation result for bucketwidth will be by a reduction from BM4SAT. We
shall use 2n to denote the number of variables in the input BM4SAT instance, and m to denote the
number of clauses. The term yes instance will always refer to the BM4SAT instance being satisfiable,
whereas the term no instance will refer to the BM4SAT instance not being satisfiable.

Balanced Monotone 4-Satisfiability (BM4SAT)

Input A boolean formula ξ =
∧m

j=1(vj1 ∨ vj2 ∨ vj3 ∨ vj4) on variables v1, v2, . . . , v2n, where each
vji

∈ {v1, . . . , v2n}. The terms of the form (vj1 ∨ vj2 ∨ vj3 ∨ vj4) are called clauses and are
denoted as Cj .
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Problem Given a boolean formula ξ, in a yes instance of the problem there exists an assignment
A of the variables such that it sets exactly n variables to true and in every clause exactly
two variables are set to true. In a no instance of the problem, no assignment of the variables
satisfies exactly two variables in each clause.

Proposition 5 BM4SAT is NP-complete.

We first define the Uniform 3-Hypergraph 2-Coloring problem, which we later reduce to
BM4SAT. A hypergraph H = (X, Y ) is a finite set X of vertices and a collection Y of non-empty
subsets of X called edges. A Uniform 3-hypergraph is a hypergraph for which all edges are of size
exactly 3. A 2-coloring is a mapping φ : X → {0, 1} such that no edge of H has all vertices of
the same color. The Uniform 3-Hypergraph 2-Coloring (U3H2C) problem is known to be
NP-complete (this problem is a special case of Set Splitting and was shown to be NP-complete
by Lovász [25]; see also [13]).

Proof: Given an instance H = (X, Y ) of U3H2C we define a BM4SAT instance ξH as follows:

• For each vertex x ∈ X , we introduce a variable vx. For each edge y ∈ Y , we introduce a
variable vy. Also, for each element z ∈ X ∪ Y we introduce a variable vz.

• For each edge y ∈ Y with y = {x1, x2, x3} we define a clause vx1 ∨ vx2 ∨ vx3 ∨ vy. The instance
ξH is a conjunction of all clauses of above kind. Note that variables of type vz do not appear
in any clause.

There is a natural correspondence between the assignment of variables in ξH and a 2-coloring of
H . Assume that there are 2n variables and m clauses in the BM4SAT instance.

• On a yes instance of ξH there exists an assignment of variables which satisfies exactly two
variables in each clause and also exactly n variables overall. Define a coloring φ which maps
those vx variables set to true to the color 0. As each edge in H has a corresponding clause in
ξH and exactly one extra vertex is introduced for every edge, it has two vertices of different
colors.

• Now we show that a 2-colorable hypergraph H transforms to a yes instance of BM4SAT. To
do this we show an assignment of the variables given the mapping φ : X → {0, 1}. The
assignment sets all vertices with color 0 to true. For each edge y ∈ Y we look at the number of
vertices set to 0. The variable vy is set to true if y has more 1 colored vertices than 0 colored
vertices and vice versa. The extra vertices vz are asigned arbitrary values in a way that the
number of variables assigned to true is exactly equal to number of variables assigned false.
This assignment sets exactly two variables in each clause and n variables overall to true.

2

2.3 Folding

As shown in [11], the unfolded bandwidth of a caterpillar can be approximated within a constant fac-
tor. Hence to prove our stronger hardness of approximation results (Theorem 2), it is inevitable that
we shall construct caterpillars in which minimizing the bucketwidth requires folding the backbone.
Folding the backbone causes distinct vertices of the backbone to share the same bucket. Depending
on where the backbone is folded, there are different choices of which vertices are those who share the
same bucket. At a very high level, the hardness of approximation results that we prove are based on
the difficulty of deciding in which locations to fold the backbone, and consequently, which are the
groups of vertices that are placed in the same buckets. An over-simplification of our approach is to
think of some of the backbone vertices as light and some as heavy (Section 2.4). The bucketwidth
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of a bucket arrangement will be roughly proportional to the maximum number of heavy backbone
vertices that are placed in the same bucket. On yes instances our reduction would produce caterpil-
lars that can be folded in such a way that every bucket contains at most one heavy backbone vertex
(together with arbitrarily many light backbone vertices). On no instances our reduction would pro-
duce caterpillars for which no matter how they are folded, there will be a bucket with many heavy
backbone vertices. In both cases, if the backbone is not folded at all, the bucketwidth will be very
large (hence the need to fold), but the gadget ensuring this last property in not based on the notion
of heavy backbone vertices. Instead it is based on another class of backbone vertices that we call
folding vertices. These folding vertices are the only backbone vertices in the caterpillar that are
attached to strands of length greater than 1 (see Section 4.2 for more details).

The notion of folding is crucial in a similar way to the proof of Theorem 1. For example, it is easy
to see that dynamic programming can be used to compute the bucketwidth of a ringed caterpillar
of strand length one in time that is nO(f), where f is the maximum number of backbone vertices
in which folding occurs. We note that for ringed caterpillars, it is inevitable that the backbone be
folded in at least two locations. This will suffice in order to make the use of special folding vertices
unnecessary. Hence the ringed caterpillars produced by our reductions will indeed only have strands
of length 1.

2.4 Paths and brushes

We introduce here a notion of light and heavy backbone vertices. A light backbone vertex is one that
has no strands connected to it, and a heavy backbone vertex is one that has many strands connected
to it. To localize the effect of these strands, they will all be of the minimum possible length, namely,
length 1. The number of such strands will be denoted by b, which roughly corresponds to our
intended bucketwidth.

In addition to dealing with individual backbone vertices that are light or heavy, it will be conve-
nient for us to deal also with whole consecutive portions of the backbone that are light or heavy.

For light portions of the caterpillars, we introduce the notion of a path. For an integer value
x > 0, a path Px is a sequence of x consecutive backbone vertices, none of which has any strands
connected to it. (Fig 1)

Figure 1: A path of length 6

For heavy portions of the caterpillars, we introduce the notion of a brush. For an integer value
x > 0, a brush Bx is a sequence of x consecutive backbone vertices, each of which has exactly b
strands of length one connected to it. (Fig 2)

b

Figure 2: A brush of length 4. Each vertex in the backbone has b vertices attached to it.

2.5 Keys and holes – simplified version

A very useful abstraction in our reduction (and earlier reductions of [2]) is the notion of keys and
holes (where the word hole is used in the sense of a keyhole). Later on we shall describe several
types of key-hole pairs. Here we present the most basic key-hole construct.
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Fix two positive integers x and y with y much larger than x. Then a portion of the caterpillar
of the form PyBxPy can serve as a key, and a portion of the caterpillar of the form ByPxBy can
serve as the corresponding hole. The key and hole are said to be aligned in a bucket arrangement if
there is a sequence of y + x + y consecutive buckets such that the backbone vertices of the key are
placed in order in these buckets, and the backbone vertices of the hole are placed in order in these
buckets. Note that in this case each bucket contains at most one heavy vertex (a backbone vertex
from a brush) from the key-hole pair in each bucket. The key and hole are said to be misaligned in
a bucket arrangement if there is at least one bucket with two heavy backbone vertices in it (either
both from the key, or both from the hole, or one from the key and one from the hole).

Later we will construct more complicated key-hole pairs. The keys will still involve basic con-
structs of the form PyBxPy (for various values of x and y), and we call the brush Bx a tooth. The
holes will involve basic constructs of the form ByPxBy, and we call the path Px a dent. Various types
of key-hole pairs can differ by the number of teeth that they have (and hence also by the number of
dents), and by the size of the teeth (the values of x and y). We shall also need to refine the notion
of a key and a hole being misaligned, so that it can be used also in recursive constructions.

Figure 3: An aligned key-hole pair. The heavy vertices are displayed as darker than the light vertices.
Each bucket has exactly one heavy vertex.

Figure 4: A misaligned key-hole pair. Some buckets have 2 or more heavy vertices and others have
none. We count only the heavy vertices in each bucket.

2.6 Segments of the caterpillar

In our reduction, the caterpillar will have several disjoint segments, where a segment is a set of con-
secutive backbone vertices together with all strands that are connected to them. Each segment has
a corresponding interpretation in the BM4SAT instance. Here we shall present the main segments,
but leave the description of their exact structure until later. It suffices at this stage to think of
each segment as a sequence of paths and brushes of various sizes (that depend on the nature of the
segment).

There will be two segments that we call formula segments. One of them is the SAT segment and
the other the UNSAT segment. These two segments will be mirror images of each other in the sense
that they follow the same pattern of paths and brushes, but in opposite directions. This pattern
will encode the structure of the BM4SAT formula in the following sense. The SAT segment will
mostly be composed of brushes. It will be partitioned into m subsegments, one for each clause. Each
subsegment will contain (among other things) two holes that we call functional holes, corresponding
to the requirement that in order to satisfy the clause exactly two of its variables need to be set
to true. The UNSAT segment has the same structure (in reverse direction), and this time the two
functional holes in a clause subsegment correspond to the requirement that two variables need to be
set to false.

There will be 2n segments that we call variable segments, one for every variable. Each variable
segment will mostly be composed of paths and will have (among other things) a number of keys (that
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we call functional keys) that equals the number of clauses in which the variable appears. The spacing
between these keys (number of backbone vertices separating them) along one variable segment will
roughly match the spacing in a formula segment between the clause subsegments that correspond
to the clauses in which the variable appears.

All the segments described above belong to the backbone of one caterpillar. The caterpillar in our
reduction will include gadgets that force it to fold in a certain way (or else pay in the bucketwidth).
The consequence of the folding is that one may think of the bucket arrangement as having an active
region that is visited by all segments. In a sense, one may think of all segments as starting at the
same bucket in the middle of the active region, with the SAT segment laid out to the right and the
UNSAT segment laid out to the left. For each variable segment, the intention is that if the variable
is set to true it is laid out to the right, and if it is set to false it is laid out to the left. For yes
instances, all functional keys would find a corresponding functional hole to fit in. For no instances,
three functional keys (from three different variables) will end up on one clause subsegment (that has
only two functional holes), because some clause has either at least three variables set to true (and
then the clause subsegment will be in the SAT segment) or at least three variables set to false (and
then the clause subsegment will be in the UNSAT segment). This will give us the required gap in
the bandwidth.

v1

vi

v2n

CmCm C1C1C2 C2 CjCj
SATUNSAT

Figure 5: (a) There are two formula segments which are mirror images of each other. (b) Each
clause subsegment has two functional holes. (c) Each variable segment is either laid out to the right
or left.

As the above description shows, various segments of the caterpillar have a corresponding inter-
pretation in the BM4SAT formula, and we are able to express the action of setting a variable to
true and to false, to check how many variables satisfy a clause, and to penalize the bucketwidth
if there is a clause in which the number of variables set to true is not exactly two. This is the
functional aspect of our reduction. However, the reduction also has many structural aspects which
force the caterpillar to fold in such a way that allow the functional aspects to manifest themselves.
The structural gadgets of the reduction will be described later.

2.7 Terminology

Let G1 and G2 be two caterpillars. The graph G1G2 or G2 (in case G1 = G2 = G) is defined
by concatenating the backbones of the two caterpillars ie, the rightmost backbone vertex of G1 is
attached to the leftmost backbone vertex of G2 by an edge.

Given two caterpillars G and H , the caterpillar G spans the caterpillar H in a bucket arrangement
if the backbone of G contributes to all the buckets to which the backbone of H contributes to.

For easy reference in case of need, we list here many of the terms that we use in the proofs
of Theorems 1 and 2, a short reminder as to what they mean, and the sections in which they are
defined. Note that some of terms are defined only in subsequent sections.

• n. Half the number of variables in the BM4SAT instance. (Section 2.2.)

• m. The number of clauses in the BM4SAT instance. (Section 2.2.)
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• yes and no instances. Always refer to the BM4SAT instance that is the source of the reduction.
(Section 2.2.)

• light vertex. A backbone vertex with no strands. (Section 2.3.)

• heavy vertex. A backbone vertex with b unit length strands. (Sections 2.3 and 2.4.)

• path. A consecutive sequence of light backbone vertices. (Section 2.4.)

• brush. A consecutive sequence of heavy backbone vertices. (Section 2.4.)

• b. The number of strands connected to a heavy vertex (unit length strands) or folding vertex
(long strands). Will roughly correspond to the bucketwidth in case of yes instances. b is much
larger than n, and assumed to be odd. (Section 2.4.)

• keys and holes. Types of gadgets that are introduced in Section 2.5, and elaborated on in later
sections.

• teeth and dents. Subparts of keys and holes (Section 2.5).

• span. See above (Section 2.7).

• i-coupling. Set of buckets in which a key Ki has fit a hole Hi (Section 3.1).

• folding gadget. A very long brush followed by an equally long path. (Section 3.2. Used for
ringed caterpillars of hair length 1.)

• folding vertex. A backbone vertex with b long strands connected to it. (Sections 2.3 and 4.2.
Used for caterpillars.)

• functional versus structural. A functional gadget encodes a decision regarding setting a
BM4SAT variable to true or false. A structural gadget forces folding of the caterpillar in
a way that makes the functional gadgets effective. (See end of Section 2.6 and beginning of
Section 3.1.)

• segments of a caterpillar. Connected subgraphs of the caterpillar that can be viewed as high
level building blocks. The two formula segments encode the clauses, and the 2n variable
segments encode the variables. (Section 2.6.) The middle segment lies between the two for-
mula segments and enforces a certain alignment between variable segments and the formula
segments. (Section 3.2.)

• subsegments. Each formula segment is composed of m clause subsegments. Likewise, every
variable segment is composed of m clause subsegments. (Section 2.6.)

• active region. The set of buckets that contains the formula segments. Folding gadgets forces
the variable segments to also reach the active region. (Section 2.6.)

• shallow layout. A bucket arrangement whose bucketwidth is smaller than the intended buck-
etwidth for no instances. (Section 3.5.)

• canonical layout. A bucket arrangement in which the structural folds occur at their intended
locations. (Section 3.5.)

• Gi. The caterpillar produced at the ith level of the recursive construction. (Section 4.1.)

• gi. Length of backbone of caterpillar Gi. (Section 4.1.)

• k-pile. A bucket that suffers k hits. (Section 4.3.)
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• hit. Either a heavy vertex, or b/3 strand vertices whose strands are attached to the same
folding vertex. (Section 4.3.)

• X . A caterpillar of the form Gk−1B∆. (Section 4.6.)

• stack. If two or more Gk−1 share a set of buckets then a stack is formed. The number of Gk−1

contributing to this set is called the height of the stack. (Section 4.6.)

3 Ringed caterpillars

In this section, we prove Theorem 1, showing the hardness of approximating the bandwidth of ringed
caterpillars of strand-length 1 within a factor of (2 − ǫ), for every constant ǫ > 0. This result is an
immediate consequence of the following theorem, which we prove in this section.

Theorem 6 Given a boolean formula ξ =
∧m

j=1(vj1 ∨ vj2 ∨ vj3 ∨ vj4 ) and a constant ǫ > 0, there is
an efficient construction of a graph Gξ = (V, E) such that

• Gξ is a ringed caterpillar of hair length at most 1.

• The number of vertices in Gξ is bounded by poly(n)b.

• If ξ is a yes instance of BM4SAT then the bandwidth of G : b(Gξ) ≤ b + cn, where c is a
constant.

• If ξ is a no instance of BM4SAT then the bucketwidth of G : bw(Gξ) > (2 − ǫ)b.

Theorem 6 distinguishes between bandwidth and bucketwidth. From Lemma 4 and Theorem 6
we conclude that if ξ is a yes instance of BM4SAT then Gξ has bandwidth at most b + cn and
if ξ is a no instance the bandwidth is at least (2 − ǫ)b. As b can be made much larger than n
(e.g., b = O(n2)), this implies a (2 − ǫ) hardness result for bandwidth on ringed caterpillars of hair
length 1.

3.1 Designing keys and holes

Recall Section 2.5 which introduced the concept of keys and holes.
At a high level, one can make a distinction between two classes of keys and holes, depending

on their intended usage. One class is that of structural keys and holes. Their purpose is to force
the caterpillar to fold in certain ways, regardless of whether the caterpillar corresponds to a yes or
a no instance. The other class is that of the functional ones. The decision of which hole to put a
functional key in will roughly correspond to a decision whether to set a variable of the BM4SAT
instance to true or false.

In this section the construction of structural and functional keys are based on the same idea, and
the choice of which type of key-hole pair is used for structural purposes and which type is used for
functional purposes to quite arbitrary. In contrast, in Section 4, function keys and structural keys
will need to have additional properties that are not required here, and these will lead to different
types of keys for each class.

Before presenting the types of keys and holes used in this section, we present two technical
lemmas whose goal is to (formally) establish (the intuitive fact) that there are a limited number of
ways in which brushes can be laid out in a bucket arrangement without suffering a high penalty in
the bucketwidth.

Lemma 7 Let B1 and B2 be two brushes and in a particular bucket layout both of them contribute
to a sequence of buckets bi+1, bi+2, . . . , bi+ℓ with ℓ ≥ 4

ǫ . Then the bucketwidth of this layout is larger
than (2 − ǫ)b.

11



Proof: Each brush contributes at least one heavy backbone vertex in each bucket [bi+1, bi+ℓ].
Hence, the 2bℓ respective strand vertices go into at most ℓ + 2 buckets. By averaging over these
buckets, the bucketwidth is at least:

bw ≥
2ℓ + 2bℓ

ℓ + 2

= (2 −
4

ℓ + 2
)(b + 1)

> (2 − ǫ)b

2

We next show that a brush cannot be folded on itself ie., all backbone vertices within the brush
lie roughly between the leftmost backbone vertex (the bucket in which it lies) and the rightmost
backbone vertex (the bucket in which it lies) in every bucket arrangement with bucketwidth at most
(2 − ǫ)b.

Lemma 8 Let Bx be a brush of length x. Consider an arbitrary bucket arrangement with bucketwidth
at most (2 − ǫ)b. Let the bucket in which the rightmost and the leftmost backbone vertices of Bx lie
in be r and l respectively. Without loss of generality assume that l ≤ r. Then:

a. Every backbone vertex of Bx lies in [l − ℓ, r + ℓ], where ℓ = 4
ǫ .

b. |r − l| ≥ x
2 (1 + ǫ

2 ) − O(1
ǫ ).

Proof: To prove the first part of the lemma, assume for the sake of contradiction that the
backbone contributes to buckets r + ℓ + 1 (or l− ℓ− 1). This implies that the backbone contributes
at least two vertices per bucket from r to r + ℓ (or to l− ℓ to l). Similar to Lemma 7, this will imply
a bucketwidth larger than (2 − ǫ)b.

The second part of the lemma follows from averaging. As all backbone vertices lie within [l −
ℓ, r + ℓ], we have that

(2 − ǫ)b ≥
(b + 1)x

(r − l) + 2ℓ + 2

|r − l| ≥
x

2 − ǫ
− 2ℓ − 2

≥
x

2
(1 +

ǫ

2
) − O(

1

ǫ
)

2

We now design three different key-hole pairs (Fig 6). For this we use parameters ℓ > Ω(1/ǫ),
λ > Ω(ℓ/ǫ) and δ > Ω(λ/ǫ). For a key-hole pair (Ki, Hi) define hi as the length of the backbone of
Hi (and Ki).

K1 = PδBλPδ

K2 = PδBλPλBλPδ

K3 = PδBλPλBλPλBλPδ

H1 = BδPλBδ

H2 = BδPλBλPλBδ

H3 = BδPλBλPλBλPλBδ

Figure 6: The key-hole pairs

A key is made of structures of the form PBP and a hole is made of structures of the form BPB,
where P and B are paths and brushes of some length. We say that a key K fits a hole H if every
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tooth of K is spanned by a dent of H and the bucketwidth of the arrangement is b + 2. A key K
does not fit a hole H if in every bucket arrangement where a tooth of K is spanned by a dent of H ,
the bucketwidth of the arrangement is > (2 − ǫ)b. For a bucket arrangement, an i-coupling is a key
Ki fitting a hole Hi.

Figure 7: The key K2 fits the hole H2

Lemma 9 For the key-hole pairs as defined in Figure 6,

a. A key Ki fits a hole Hj≥i.

b. A key Ki cannot fit a hole Hj<i

c. An i-coupling cannot span another tooth. (Once a hole is coupled with its respective key, no
additional keys fit it).

Proof:

a. We give a bucket arrangement with bucketwidth b + 2. Lay out the backbone vertices of Hj in
consecutive buckets. Likewise lay out the backbone vertices of Kj in consecutive buckets, with
the leftmost backbone vertex of Ki at the same bucket as the leftmost backbone vertex of Hj , and
similarly for the rightmost vertices. Put every strand vertex in the same bucket as the backbone
vertex it is attached to. This layout has bucketwidth b + 2; b from the strands and one each from
the backbones of Ki and Hj .

b. We show that K3 does not fit H2. (The other cases to consider are proved in a similar manner.)
The brush Bλ of H2 occupies ar least roughly λ/2 buckets (by Lemma 8). The layout of the two
dents in H2 cannot overlap (again, a consequence of the layout of the brush Bλ and Lemma 8).
Each tooth of K3 can overlap with at most one dent of H2 (as otherwise it crosses over the
brush Bλ, contradicting Lemma 7). Hence two teeth of K3 need to be placed in one dent of H2.
They can use up to ℓ buckets to either side of the set of buckets in which the dent is placed (by
Lemma 7). Hence two brushes each of size λ are placed in at most λ+2ℓ buckets, and a standard
averaging arguments (using the fact that ℓ < ǫλ) shows that at least one bucket must contain
more than (2 − ǫ)b vertices

c. The proof is based on the number of teeth being at least one more than the number of dents.
Details are similar to the previous item, and hence omitted.

2

The key-hole pair (K1, H1) will be used as a functional key-hole pair and the key-hole pairs
(K2, H2) and (K3, H3) will be used as structural key-hole pairs.
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3.2 Forcing the main structural folds

The high level structure of the ringed caterpillar Gξ will be as follows. It will have 2n + 2 segments
connected in a ring. This includes two formula segments which are adjacent, the SAT segment and
the UNSAT segment, and 2n variable segments. In the corresponding bucket arrangement, we call
the buckets used by the formula segments the active region. We will need to force a fold between
the formula segments and the variable segments so that the variable segments will also fall in the
active region. In fact, each variable segment will be similar in length to a formula segment, and we
shall need to enforce many folds, roughly one per variable.

To ensure that the variable segments are placed in the active area, we shall place a folding gadget
(formally defined in Section 3.3) between the UNSAT segment and its adjacent variable segment and
between the SAT segment and its adjacent variable segment. The folding gadget will be composed
of a very long brush and a slightly longer path. The only way to avoid large bucketwidth (and still
close the ring) would be to layout one long brush to the left of the active region the other long brush
to the right of the active region, and use the long paths to return to the active region.

Proposition 10 (See Section 3.5) For no instance, either all variable segments fall in the active
region or the bucketwidth is at least 2 − ǫ)b.

We need each of the 2n variable segments to start in between the SAT and UNSAT segments. It
can then be laid out either to the left which corresponds to setting the variable to false, or to the
right which corresponds to setting it to true. For this reason we introduce what we call a middle
segment. It is formed by a sequence of 2n holes of type H3. Each of the 2n variable segments starts
with a key of type K3. The hole H3 appears nowhere else in the graph Gξ. This insures that the
variable always starts at the middle segment. We put the middle segment between the SAT and
UNSAT segments.

M

v1

v2n

v2

SATUNSAT

Figure 8: (a) Formula segments lie between folding gadget (represented in black). (b) Variable
segments lie in the active region. (c) M is the middle segment.

3.3 The full graph

Recall that we wish to obtain a hardness of approximation ratio of 2−ǫ. In Section 3.1 we introduced
a parameter ℓ = Ω(1/ǫ). We shall also use parameters denoted by Greek letters where α > β > γ >
δ > λ. We require that α > Ω(β/ǫ), γ > Ω(nδ/ǫ), δ > Ω(λ/ǫ) and λ > Ω(ℓ/ǫ).

We now describe the various parts of our graph. Note that we shall be using the concatenation
notation introduced in Section 2.7. Recall also that Bx is a brush of length x, Py a path of length
y, and Ki and Hi are various types of keys and holes. We shall use hi to denote the length of the
backbone of a hole of type Hi.

Sat: is C1 . . . Cm, where Cj is the clause subsegment for the clause j.
Unsat: is the mirror image of SAT ie., Cm . . . C1.
Clause Subsegment: is BγH2

1BγHn
2 .

Middle Segment: is (H3)
2n.
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Folding Gadget: is BαPα+β . Here β is the sum of the length of the backbone of SAT (or UNSAT)
segment.
Hole Group: Is a group of holes concatenated by the end points of their backbones. The graph
Gξ has hole groups of three types: (H1)

2, (H2)
n and (H3)

2n.
Slackness: We shall not distinguish between different holes in the same hole group. Hence for
example, a key K2 may be placed in any of the n holes in a hole group (H2)

n. For this reason we
introduce the concept of slackness around each key, where the amount of slackness depends on the
type of hole group. The slackness will be of type 1, 2 or 3, and be in form of paths of length P2h1 ,
Pnh2 and P2nh3 , corresponding to hole groups (H1)

2, (H2)
n and (H3)

2n respectively. Keys of types
K1, K2 and K3 appear in the variable segments. Every key of type i will have slackness of type i on
both sides of the key. This gives us the freedom to choose an arbitrary hole in the hole group to fit
the key in. We denote the slackness by s, and its type is the same as that of the key adjacent to it.
Variable Segments: each variable vi will be associated with a variable segment sK3sv

1
i . . . vm

i Pβ .

Here vj
i denotes the jth subsegment of the variable segment vi. (Note that this is an abuse of

notation, in contradiction to our concatenation notation, under which vj
i would have been interpreted

as a caterpiller vi concatenated j times. We hope that no confusion will arise because of this notation
abuse.)
Variable Subsegment: vj

i is PγsK1sPγsK2s, if variable vi appears in clause Cj and PγP2h1PγsK2s
if vi does not appear in Cj .

A summary of the various parts of the graph appears in Figure 9.

SAT = C1 . . . Cm

UNSAT = Cm . . . C1

M = (H3)
2n

Cj = Bγ(H1)
2Bγ(H2)

n

vi = K3v
1
i . . . vm

i Pβ

vj
i = PγP2h1PγK2 if vi 6∈ Cj

= PγK1PγK2 if vi ∈ Cj

Figure 9: Every key of type i has a slackness of the same type on both sides of the key. For simplicity
of the description, we have omitted the slackness from this figure.

The overall structure of the graph is depicted in Fig 10.

Bα − Cm − . . . − C1 − M − C1 − . . . − Cm − Bα

�
�

Pα − Pβ − v1− . . . . . . −v2n − Pβ − Pα
�
�

Figure 10: The final graph Gξ. The length of Pβ as well as the variable segments is roughly equal
to the length of the SAT and UNSAT segments.

In summary, the graph Gξ contains the following basic gadgets: Brushes, Paths, Hole Groups,
and Keys. There are three kinds of key-hole pairs. The first type (K1, H1) is used as a functional
gadget with H1 in Cj and K1 in vj

i if vi appears in Cj . There are two holes H2 in each Cj corre-
sponding to the fact that exactly two variables are set to true in a yes instance of the problem. The
second type (K2, H2) is a structural gadget. This one makes sure that exactly n variables lie in the
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buckets corresponding to SAT (and exactly n for UNSAT), i.e., exactly n variables are set to true
and exactly n are set to false. Also, it makes sure that the vj

i part contributes to the same buckets
as the Cj part. The last type (K3, H3) makes sure that after laying vi{j:1...m} the Pβ is used to span
SAT or UNSAT segment to reach the middle segment. This is achieved by putting 2n holes H3 in
M and one key K3 at the beginning of each vi.

3.4 Layout on a yes instance

x

PSfrag

UNSAT SATM

v1
1

vm
1

v1
i

vm
i

K3

K3

K3

K3

Pβ

Pβ

Pβ
PβPα Pα

Hn
2H2

1

K2

Figure 11: Layout in the yes case a. The satellite box shows how the variable subsegment is laid
out on top of the corresponding clause subsegment b. The variables set to true are laid out to the
right and those set to false are laid out to the left

We show now that for a yes instance of the problem there exists a bucket layout of the graph
Gξ with bucketwidth at most b + O(n). Furthermore, this bucket layout can be converted to a
linear arrangement of bandwidth similar to this bucketwidth. The layout is shown in Fig 11. The
explanation is as follows:

• We start by putting BαUNSATMSATBα in consecutive buckets at the rate of one backbone
vertex per bucket. The strands connected to a particular backbone vertex are put in the same
bucket as the backbone.

• We use the Pα to span the brush Bα and use the right Pβ to span SAT and the left Pβ to span
UNSAT.

• We start with the variable v1. We use the slackness of 2nh3 to put the key K3 in some H3 out
of the 2n available ones. The K3 is followed by another slackness 2nh3. This is used to span
the rest of M to reach the beginning of SAT if v is set to true or span the appropriate part of
M to reach the beginning of UNSAT if v1 is set to false. The slackness is used in a way that
does not increase the bucketwidth of any bucket by more than a constant per variable. For
example, if say we want to put the key in hole 3 (out of 2n available ones) then the slackness
2nh3 is used as follows. We start by putting two vertices a bucket beforehand (may involve
laying out some vertices on the previous γ brush) such that we spend the P2nh3 before we reach
hole 3. We spend the next path of P2nh3 again two vertices a bucket when necessary. After
this, for each clause Cj , we use the subsegment v1j to span Cj by fitting the structural keys
in the structural hole and functional keys in the functional hole (if available). After spanning
Cm by v1m, a path Pβ follows. This is used to span SAT or UNSAT to reach the beginning of
M .

• Each variable is laid out using exactly the same principles as explained for v1. It is laid out to
the right if the variable is set to true and it is laid out to the left if it is set to false. Whenever
a key needs to placed in a particular hole group, a yet unoccupied hole from that group is
chosen for that purpose.
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• After laying v2n the right path Pβ follows which we already laid out in the first item. The
slackness following the key K3 is used to join v2n to the right path Pβ . This completes the
layout.

The layout above ensures that every structural key of type K3 will be placed in a distinct hole of
type H3 in the middle segment. If exactly n variables are set to true (and n variables set to false),
this ensures that every structural key of type K2 will be placed in a distinct hole of type H2. If
every clause is satisfied by exactly two literals this ensures that every functional key of type K1 is
placed in a distinct hole of type H1. Overall, every bucket contains at most one heavy vertex and
at most O(n) light vertices, and the bucketwidth in b + O(n).

The bucket arrangement above can be converted to a linear arrangement as follows. We put all
the backbone vertices at the bottom of each bucket and then we do the layout by numbering the
vertices in the bucket bottom to top and the buckets themselves left to right. From the discussion
above, all the buckets contain at most one backbone vertex from SAT (or UNSAT), n from the paths
Pβ and at most a constant per variable. So the number of backbone vertices is at most O(n) per
bucket. The fact that only backbone vertices are involved in edges between adjacent buckets implies
that the bandwidth of the above layout is at most b + O(n). Taking b to be much larger than n/ǫ,
the bandwidth is at most b(1 + O(ǫ)).

3.5 Layout on a no instance

We say that a layout is shallow if the bucketwidth of the layout is at most (2 − ǫ)b. In this section,
we show that a shallow layout of Gξ exists if and only if it corresponds to a yes instance of BM4SAT
(in which case the bucketwidth is actually b + O(n), as shown in Section 3.4).

Informally, we say that a bucket-arrangement of Gξ is canonical if the layout follows the general
structure depicted in Figure 10. This includes several aspects.

i. The brushes Bα of the two folding gadgets do not overlap. The region between them is then
called the active region, and contains the formula segments and the middle segments.

ii. The folding gadget is indeed folded. Namely, the variable segments lie in the active region.

iii. The key of type K3 of every variable segment vi is spanned by the middle segment M .

iv. The structural key K2 of vj
i is spanned by the structural hole group of Cj (either of the SAT

segment or of the UNSAT segment).

v. The functional key K1 (if any) of vj
i is spanned by the structural hole group of Cj (either of the

SAT segment or of the UNSAT segment).

We shall show that any shallow layout has to be canonical, and that a canonical layout of Gξ

can be shallow only if the BM4SAT formula ξ is a yes instance.
In a bucket layout, let Y -buckets denote the set of buckets to which the subgraph Y contributes

to. In all cases of interest Y will be a connected subgraph, and in this case Y -buckets will be
consecutive in every layout.

Lemma 11 Let D be a connected subgraph which is a concatenation of brushes of length at least λ
and of holes, but no paths (expect for the paths of length λ that are parts of holes), and let B be a
brush of length at least δ. Then in any shallow layout, B cannot be spanned by D.

Proof: A brush Bδ occupies at least δ/2 buckets (Lemma 8). Any brush appearing in D can
overlap at most ℓ of the B-buckets (Lemma 7), and hence cannot overlap any of the middle δ/2− 2ℓ
buckets of the B-buckets. It follows that these buckets must be spanned by a path. The longest
path in D is of length λ ≪ δ, and is two short to span these buckets. 2

The following lemma establishes the structure of the active region in a shallow layout.
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Lemma 12 In a shallow layout

a. The brushes Bα of the two folding gadgets do not overlap.

b. The segment UNSATMSAT lies between the buckets to which the brushes Bα contribute to, and
can overlap with each of these brushes by at most δ buckets (rightmost buckets of the left folding
gadget and leftmost buckets of the right folding gadget).

c. Consider a brush Bγ appearing in UNSATMSAT. The subgraph of UNSATMSAT to the right
of Bγ can overlap at most δ rightmost buckets among Bγ-buckets. Likewise, the subgraph of
UNSATMSAT to the left of Bγ can overlap at most δ leftmost buckets among Bγ-buckets.

d. Consider two consecutive hole groups in UNSATMSAT, and recall that they have a brush Bγ

between them. There must be at least γ
2−ǫ − 2δ buckets (occupied by vertices from Bγ) that

separate between the two hole groups.

Proof: The subgraph BαUNSATMSATBα is composed only of brushes of length at least δ and
holes, and form an example of a graph of type D as defined in Lemma 11. Any δ consecutive
backbone vertices from a brush Bα or from a brush Bγ in UNSATMSAT can serve as the brush B
in Lemma 11. A moment’s reflection shows that Lemma 12 follows in a straightforward way from
Lemma 8 and Lemma 11. Details omitted. 2

We now concentrate on the layout of the variable segments and how they interact with the
formula segments in a shallow layout.

Lemma 13 In a shallow layout

a. Every variable segment v1, v2, . . . , v2n is spanned by BαUNSATMSATBα.

b. For every i ∈ {1, 2, 3}, every key of type Ki fits a hole of type Hi, and no two keys fit in the same
hole.

Proof: The brushes Bα in each of the two folding gadgets occupy at least α
2−ǫ buckets (Lemma

8). Every path in a variable segment is of length at most β (+ some low order terms), and β < ǫα.
Each variable segment contains also brushes of size λ ≫ ℓ (as part of the keys). Lemma 7 then
implies that a variable segment cannot span Bα.

Only one possibility remains, which is to use the paths Pα of the folding gadgets in order to
cross over the Bα brushes, and then all variable segments lie in the active region. In this case, every
variable segment is spanned by BαUNSATMSATBα as desired. Observe that it is not possible to
have all variable segments to the left of the left folding gadget (or to the right of the right folding
gadget), because then a path of length α + β must go over at least 2 α

2−ǫ buckets (so as to close the
ring).

Now we show part (b) of Lemma 13. The formula segments (ie., UNSATMSAT) is composed of
hole groups separated by brushes of size γ. A tooth must lie in a dent (while possibly occupying at
most ℓ buckets of any brush, see Lemma 7). Furthermore, the number of keys of type i is exactly
equal to the number of holes of type i. As a key K3 cannot fit either H2 or H1, it must fit a
hole H3 (item (b) in Lemma 9). A filled hole H3 cannot fit another K3 (item (c) in Lemma 9).
Hence, all H3 holes are filled. Similarly, a key K2 cannot fit a filled hole H3 or a hole H1 (items
(c) and (b) respectively in Lemma 9). Hence it must fit a hole H2. Continuing as above we see
that all H2 holes must be occupied and that the keys of type K1 must occupy all holes of type H1. 2

Lemma 14 In a shallow layout

a. The structural key K2 of vj
i lies in the corresponding structural hole group of Cj in either SAT

or UNSAT segment.
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b. The functional key K1 of vj
i (if present) lies in the corresponding functional hole group of Cj in

either SAT or UNSAT segment.

c. A variable segment fits all its keys to only one of the formula segments (either SAT or UNSAT,
but not both).

Proof: We argue inductively. Each vi has a key of type K3 which must fit in one of the holes in
M , as shown in Lemma 13.

a. We show that the structural keys K2 in each vj
i must lie in the corresponding hole groups (H2)

n.
Consider the first structural key K2 corresponding to C1. This key either fits a hole group in SAT
or UNSAT. Without loss of generality, assume that it fits a hole group in SAT. This structural
key is separated by a path of length 2nh3 + 2γ + nh2 from K3. As γ > O(nδ/ǫ) this path cannot
span to the next set of holes of type H2 (or later) as then a path of length 2γ (+ low order terms)
will have to span over 4 γ

2−ǫ −8δ buckets (item (d) of Lemma 12) which is impossible since δ ≪ ǫγ.
Hence, the first K2 must lie in the first set of holes of type H2. This argument is valid for all
vi. As all holes fit exactly one key of the same type and C1 has n H2 holes, exactly n variables
are laid out to the right and the rest to the left. Arguing inductively, we assume that all the H2

holes in Cj<k are filled, and the key K2 of vk−1
i lies in the hole group of Ck−1. The key K2 of vk

i

must lie in the hole group of Ck as the path separating the K2 keys in vk−1
i and vk

i cannot span
to the next set of H2 holes (the argument is the same as the argument for the base case).

b. Having established item (b), placing a functional key K1 of vj
i in the functional hole group of

a clause C′
j with j 6= j′ will force the path Pγ connecting K1 to an adjacent K2 (or adjacent

K3 if j = 1) to cross a distance of at least roughly 3γ/2 (by item (d) of Lemma 12), which is
impossible.

c. This item follows from the previous items. A variable once folded to the left or right must span
to the next set of holes and cannot span to the previous ones (as they are already filled).

2

Lemmas 12, 13 and 14 established that any shallow layout is canonical. We can now conclude.

Lemma 15 If Gξ has a shallow layout then ξ is a yes instance of BM4SAT.

Proof: If ξ is a no instance of BM4SAT then it has no satisfying assignment ie., every truth
assignment of the variables either sets more than 2 variables in a clause to true or more than 2
variables in a clause to false. This translates to fitting 3 keys K1 to fit in 2 holes H1 or fitting 2 K1

keys in 1 H1 hole in either SAT or UNSAT segment. This is a contradiction to item (c) of Lemma 9.
2

We can now summarize the proof of Theorem 1.
Proof: We reduce the BM4SAT instance ξ to a ringed caterpillar of hair length at most 1 as

in Section 3.3. This graph Gξ has all the properties listed in Theorem 6. To summarize the graph
Gξ has poly(n)b vertices. If ξ is a yes instance of BM4SAT then the bandwidth of Gξ is b + O(n)
(Section 3.4). Furthermore, if ξ is a no instance of BM4SAT then there is no shallow layout for
Gξ ie., all layouts have bucketwidth larger than (2 − ǫ)b. In this case the bandwidth is larger than
(2 − ǫ)b (Lemma 4). 2

The prove of Theorem 1 easily generalizes to some other simple families of graphs.

Corollary 16 The bandwidth problem on clique cycle graphs and unit circular arc graphs is NP-hard
to approximate within a factor of (2 − ǫ) for any constant ǫ > 0.

19



Proof: The graph Gξ from Section 3.3 can be converted to a clique cycle graph or a unit circular
arc graph preserving the rest of the properties listed in Theorem 6. To convert the ringed cater-
pillar with strand length 1 to a clique cycle graph, join by an edge every two strand vertices that
are connect to the same heavy vertex. The new graph by definition is a clique cycle graph. This
conversion has essentially no effect on the proof of hardness. To convert the clique cycle graph to a
unit circular arc graph do the following. In each clique, rather than have one clique vertex as the
connecting vertex (the original backbone vertex for the ringed caterpillar), have two such vertices
– one for the connection in the clockwise direction and one for the connection in the anti-clockwise
direction. Again, this conversion has essentially no effect on the proof of hardness. 2

3.6 Tightness of the hardness results

In [22] it is shown that the bandwidth of circular arc graphs can be approximated within a factor
of 2. The three simple families of graphs that we considered here are all special cases of circular
arc graphs. For unit circular arc graphs this is obvious. For ringed caterpillars of hair length 1,
the backbone vertices form intervals that overlap only this intervals of the neighboring backbone
vertices. For every heavy vertex, the associated strand vertices form small disjoint intervals that are
contained in the interval of the backbone vertex. For clique cycle graphs, the clique vertices form
small intervals that overlap and are contained in the interval of the respective backbone vertex.

To make our paper self contained, we sketch a simple argument that explains how an approxima-
tion ratio of 2 comes out naturally for the special case of clique cycle graph. Let G be a clique cycle
graph with cliques C1, . . . , Cn. The layout of a graph of this kind is shown in the Fig 13 and 12.
Each clique is laid out in the following manner. We put the vertices of the clique before the vertex
on the cycle.
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Figure 12: The layout for a even clique cycle graph
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Figure 13: The layout for a odd clique cycle graph

The bandwidth of the graph is at least the maximum clique size of the graph (−1). Also, the
bandwidth of the layout given above is at most 2 maxi |Ci|. Hence, if the layout is denoted as f
then b(f) ≤ 2bopt + 2. If the maximum clique size (and hence the bandwidth) is a constant then
the bandwidth can be calculated exactly [30]. For non-constant clique size 2

bopt
is subconstant and

hence the approximation factor of this simple algorithm is 2, up to low order terms. As Corollary 16
shows, even this very simple algorithm has a nearly best possible approximation ratio.
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4 Caterpillars

We now show the hardness of approximating the bandwidth of caterpillars. We remind the reader
that we actually show the hardness of approximating the bucketwidth. As we will be able to make
the hardness ratio quite large and the gap between bandwidth and bucketwidth is at most a factor
of 2, the hardness for bandwidth remains of the same nature.

4.1 Recursion

To obtain hardness of approximation results within large ratios, we shall use recursion. That is, we
shall construct a sequence of caterpillars G1, G2, . . .. For every i, the number of vertices in Gi+1 will
be larger than the number of vertices in Gi by a multiplicative factor of O(nO(1)iΘ(i)). Hence for

i < n, caterpillar Gi will have nO(i2) vertices. For simplicity we assume that G1 is a brush of length
1, independent of the input formula.

Our construction will be recursive in the sense that for every i, Gi+1 will have the same general
structure as Gi but on a larger scale, and furthermore, Gi+1 will contain several copies of Gi

embedded within some of its brushes.
Let us explain now the effect of embedding a copy of Gi in a brush. Let gi denote the length

of the backbone of Gi. The total number of vertices in Gi will be roughly gib. On yes instances,
there will be a layout of Gi in gi(1 − o(1)) buckets (the loss of o(1) factor is the result of folding
of the backbone, and the reason why the loss is only an o(1) factor is that all folding events take
place in a small portion of the backbone), and hence the average number of vertices per-bucket will
be b(1 + o(1)). On yes instances, indeed every bucket will have b(1 + o(1)) vertices, which is similar
to the number of vertices per bucket is a natural layout of a brush. Hence Gi embeds naturally
within brushes. On no instances, the average number of vertices per bucket will still be roughly b,
but it will become unavoidable that some buckets have significantly more vertices ie., Ω(bi). Hence
on no instances copies of Gi may be thought of as brushes that contain some irregularities (certain
portions correspond to buckets with too many vertices, other portions may correspond to buckets
with too few vertices).

To understand how the approximation ratio behaves as a function of the recursion level i we
introduce a notion of a k-pile. At this stage the reader may think of a k-pile in a bucket arrangement
as a bucket that contains k heavy vertices. (Later, when we introduce gadgets for folding, this
definition will be revised.)

On yes instances we will maintain the property that throughout all levels of the recursion, every
Gi will have a bucket arrangement in which no bucket contains more than one heavy vertex. Hence
we will only have 1-piles. On no instances, we will maintain the property that in any bucket
arrangement, Gi must have an i-pile. To carry on this property inductively, we shall embed copies
of Gi in the keys of Gi+1 (and elsewhere). Now if a key and hole of Gi+1 are misaligned, it would
force a copy of Gi in the key to lie in a region that is a brush in the hole, and hence one more heavy
vertex will be added to the i-pile of Gi, making it an i + 1 pile.

4.2 A simple folding gadget

We now explain how one can force the backbone of a caterpillar to fold (a structural fold). Recall
that earlier we introduced the notions of light and heavy backbone vertices. We now introduce a
folding vertex. This is a backbone vertex with b strands attached to it. Each of these strands is very
long (to be specified in Section 4.9).

Assume for simplicity that in the caterpillar Gi+1 we have a formula segment immediately fol-
lowed by a variable segment. As explained in Section 2.6, we would like to force the caterpillar to
fold so that the formula segment and the variable segment both share the same set of buckets. We
can do so by placing a folding vertex in between. In addition, in each one of the segments we embed
copies of Gi, which on no instances are known to include i-piles.
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Assume that the caterpillar is laid out without folding. Then there are i-piles on both sides of
the folding vertex. Regardless of which side a long strand is dropped to, it will hit an i-pile. (If the
long strands are long enough, then keeping all their vertices in buckets close to the folding vertex is
not an option, because then the bucketwidth will be too large. Hence they have to extend a long
distance either to the right or to the left.) As there are b long strands and only two sides, some
i-pile will receive b/2 strand vertices (this will be revised in Section 4.3). If we think of b/2 strand
vertices as being the equivalent of one heavy vertex, then this i-pile becomes an (i + 1)-pile.

Hence to avoid creating an (i + 1)-pile, one must fold the caterpillar roughly at the location of
the folding vertex. Then one can drop all long strands to one side, and put both segments on the
other side.

Gk−1
Gk−1

b b

Figure 14: A folding vertex and a possible bucket arrangement with small bucketwidth. Assume
that the paths are long.

4.3 Piles

Having introduced the notion of folding vertex, we are now ready to formally define the notion of a
pile. A k-pile is a bucket that contains at least k hits. A hit is one of the following:

1. A heavy hit: a heavy backbone vertex.

2. A folding hit: at least b/3 strand vertices whose strands are all attached to the same folding
vertex.

Let us elaborate on the definition above. It is our intention that for yes instances the correspond-
ing caterpillar will have a bucket arrangement that has only 1-piles (and 0-piles), but no i-piles for
i ≥ 2, and that for no instances, for every i ≥ 1, the corresponding caterpillar Gi will have i-piles.
Our definition of hits implies that if a bucket arrangement contains a k-pile, the bucketwidth is
Ω(kb), which is the conclusion that we wish to reach for no instances. However, note that the defi-
nition does not imply that if there are only 1-piles, the bucketwidth is b(1 + o(1)). For example, in
a certain bucket arrangement it might be that with respect to each of k different folding vertices, a
bucket contains b/4 strand vertices that are connected to the folding vertex. This forces bucketwidth
of Ω(kb) without creating even a single folding hit. Hence the definition by itself does not suffice
when treating yes instances. However, it will be the case that in the bucket arrangement for yes
instances, for every bucket and for every folding vertex, a folding hit will correspond to exactly b
strand vertices placed in the bucket, and the absence of a folding hit will correspond to 0 strand
vertices placed in the bucket. Hence for our particular bucket arrangements for yes instances, it will
be the case that having only 1-piles will imply a bucketwidth of (1 + o(1))b.

4.4 The key lemma

Having introduced the notion of a k-pile, we can state our main lemma.

Lemma 17 Given an instance of BM4SAT with 2n variables, for every positive integer k one can
construct in time O(Nk) a caterpillar Gk with Nk ≤ nck2

vertices, where c is some universal constant.
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1. On yes instances, Gk has a bucket arrangement with bucketwidth b + O(nk).

2. On no instances, every bucket arrangement of Gk has a k-pile.

Theorem 2 will follow from Lemma 17 by choosing b to be much larger than nk. On yes instances
the bucketwidth will then be essentially b, up to low order terms. On no instances, the existence of
a k-pile implies that there is a bucket such that this bucket, possibly together with the two buckets
on either side of it, must contain Ω(kb) vertices. Hence the bucketwidth has to be Ω(kb). This gives
a mutiplicative gap of Ω(k) between the bucketwidth of yes and no instances.

Lemma 17 will be proved by induction on k.

4.5 Structural keys and holes

Here we explain how to construct different types of key-hole pairs. The types of key-hole pairs that
are presented in this section are the structural ones, whose purpose is to force the caterpillar to fold
in certain ways, regardless of whether the caterpillar corresponds to a yes instance or a no instance.
The purpose of having several types of key-hole pairs is so that each key can fit a hole of its own
type, but cannot fit a hole of a different type. (The notion of fit will be made precise later.)

The number of different types of key-hole pairs will depend on the level of the recursion we are
in. We now explain how to construct key-hole types for graph Gk. The number of key-hole types
will be O(k), and for concreteness let us assume that it is 2k (which is more than we need). Each key
will start after a very long path, and will contain a sequence of teeth (the number of teeth depends
on the key type) that are separated by paths, and will be followed by another long path. Each tooth
of a key is a sequence of copies of Gk−1 (the number of copies depends on the key type). The hole
that matches a key is a dual of the key in the sense that every path is replaced by a brush of the
same length, and every tooth is replaced by a path of the same length (that we call a dent). Hence
there is a natural bucket arrangement in which the key and hole of the same type are aligned, and
every bucket is either a 1-pile, or a pile of the same type that it was in Gk−1. We now explain how to
construct the pattern of teeth in different key types so that a key does not fit in a hole of a different
type.

G
(2k)i+11

k−1
G

(2k)i+11

k−1

B(2k)2k−i+1

#(teeth) = (2k)2k−i+1

Figure 15: The basics structure of a structural key-hole pair of the same type ie., (Ki, Hi).

In general, the idea is that keys of the lower types will have more teeth, whereas keys of the
higher types will have wider teeth. Hence keys of the lower types cannot fit holes of a higher type,
because these holes do not have enough dents, and keys of a higher type cannot fit holes of a lower
type because the dents are too small. For concreteness, we choose the following parameters. For
every i ∈ {1, . . . , 2k}, the number of copies of Gk−1 in a tooth of a key of type i is (2k)i+11. The
number of teeth in a key of type i is (2k)2k−i+1. The length of a path between two teeth in key of
type i is (2k)i+9gk−1. Hence the largest key (key of type 1) has less than kckgk−1 backbone vertices,
for some constant c.

A key Ki fits a hole Hi in the sense that there is a bucket arrangement for Ki (the natural one,
placing every new backbone vertex in a new bucket) and a corresponding bucket arrangement for
Hi (the natural one, starting at the same bucket as the bucket arrangement for Ki) in which every
tooth of Ki is spanned by a dent of Hi. As a result, the level of pileness of this bucket arrangement
is the same as that of Gk−1 (copies of which compose the teeth).
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We say that a key Ki cannot fit a hole Hj if in any bucket layout in which some bucket contains
at least one vertex from one tooth of Ki and at least one vertex from one dent of Hj it must be the
case that the level of pileness of the layout increases (compared to the pileness of a bucket layout
for Gk−1).

To show that a key Ki cannot fit a hole Hj 6=i we make the following verifiable statements
regarding the construction and its implications.

a. Holes are constructed with simple brushes and paths (dents). The length of a brush in hole Hj is
(2k)j+9gk−1. This brush lies in at least 2(2k)j+8gk−1 consecutive buckets or a k-pile is created.

b. The length of every tooth in key Ki is (2k)i+11gk−1. As Gk−1 cannot be spanned by a simple
brush, a brush from Hj can have an intersection of at most gk−1 buckets with a tooth of Ki.
This implies that most part of a tooth (except for gk−1 buckets at either end) must be spanned
by a dent.

c. The length of paths in key Ki is (2k)i+9gk−1. The simple brushes in Hj occupy at least
2(2k)j+8gk−1 buckets. If j > i then if one tooth of Ki is spanned by a dent of Hj then all
teeth corresponding to Ki must be spanned by the same dent of Hj .

Consider now what happens if one vertex of a tooth of a key Ki is in the same bucket as a vertex
of a dent of Hj (and j 6= i). If i > j then every tooth of Ki is at least a factor of 2k larger than
every dent of Hj . As implied by (b) above, most part of the tooth must be spanned by a dent. This
requires (2k)i+11 copies of Gk−1 to be placed in at most (2k)i+10gk−1 +2gk−1 buckets, causing by a
local density argument a bucketwidth greater than kb. (Recall that the number of vertices in Gk−1

is roughly gk−1b. See Sections 4.1 and 4.10.)
If i < j, then all teeth of Ki must lie in a single dent of Hj (by (c) above). The length of a

dent in Hj is (2k)j+11gk−1 and the length of all tooth put together in Ki is (2k)2k−i+1(2k)i+11gk−1,
which is (2k)2k+12gk−1. The largest dent (for j = 2k) is of size (2k)2k+11gk−1. The size of all teeth
put together is a factor 2k larger than the size of a single dent, again leading to bucketwidth greater
than kb.

Summarizing, we have the following proposition.

Proposition 18 For every k the above construction of 2k key-hole pair types has the following
properties:

1. Every key (or hole) has backbone length at most kckgk−1, where gk−1 is the length of the
backbone of Gk−1.

2. On yes instances (where Gk−1 has at most 1-piles), if in a bucket arrangement a key is placed
in a hole of the same type, then no t-pile with t > 1 is created by this.

3. On no instances (where Gk−1 has (k− 1)-piles), if in a bucket arrangement a vertex of a tooth
of a key is placed at the same bucket as a vertex of a dent of a hole of a different type, a k-pile
is created.

4.6 Stacks

Before describing the construction of functional keys and holes, we present here a gadget that will
be used in their construction. This gadget is an alternating sequence of Gk−1 and a simple brush
of size ∆. We use X to denote Gk−1B∆, and then the gadget is X l

∆ for some l > 1. We denote the
length of the backbone of Gk−1 by gk−1. Hence, in any bucket arrangement, the backbone of Gk−1

can contribute to at most gk−1 consecutive buckets. The value of ∆ will typically be larger than
kgk−1.
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To remind the reader, a gadget H spans a gadget W in a bucket arrangement if the backbone of
H contributes to all buckets to which the backbone of W contributes. A simple observations is that
if Gk−1 has a (k − 1)-pile and if it is spanned by a simple brush, a k-pile is created.

If two or more copies of Gk−1 contribute to the same bucket in a linear arrangement then a stack
is formed. The number of Gk−1 contributing to this bucket is called the height of the stack. See Fig
16 for a pictorial definition.

Gk−1B

Figure 16: A stack. The dotted line represents the intersecting bucket.

Lemma 19 If ∆ ≥ 2kgk−1 and Gk−1 forms a k − 1-pile, then in any bucket arrangement with no
k-pile, for any two consecutive Gk−1 in the gadget X l

∆ defined above one of the following happens:
either they share a common bucket forming a stack or they lie at least ∆

k − 2gk−1 buckets apart.

Proof: A simple brush of length ∆ contributes to at least ∆
k consecutive buckets. Gk−1 con-

tributes to at most gk−1 consecutive buckets. A simple brush cannot span Gk−1. Hence Gk−1 must
lie on one side of the buckets in which B∆ contributes to (with an intersection of at most gk−1

buckets on the left or right end). If any two consecutive Gk−1 do not form a stack then they are a
distance ∆

k − 2gk−1 buckets apart. 2

Lemma 20 If the bucketwidth of a bucket arrangement is smaller than kb, then the height of every
stack is at most 2k.

Proof: This follows from a local density argument. We remind the reader that the number of
vertices in Gk−1 is roughly gk−1b (mentioned in Section 4.1 and proved in Section 4.10). As all
Gk−1 in a stack share at least one common bucket (call it t), they all lie in the buckets numbered

[t − gk−1, t + gk−1]. This means that the bucketwidth is at least 2kgk−1b
2gk−1

or kb. 2

Lemma 21 Consider two gadgets L1 = X l1≥4k
∆ and L2 = X l2≥4k

2k∆ with ∆ > 4gk−1. Then in any
bucket layout with no k-pile, neither gadget can span the other.

Proof: The stacks in L2 are at least bucket distance 2∆− 2gk−1 apart (from Lemma 19). Also,
each gadget forms at least two stacks. The distance between consecutive stacks in L1 is at most
∆ + 2gk−1 (the distance between the consecutive Gk−1 is an upper bound), while in L2 it is at least
2∆−2gk−1. Hence for one of the gadgets to span the other a copy of Gk−1 in L1 needs to be spanned
by a brush of L2, creating a k-pile. 2

We summarize the results in this section.

Proposition 22 If Gk−1 has a (k − 1)-pile and a bucket arrangement has no k-piles then

• A simple brush cannot span Gk−1.

• All stacks in the bucket arrangement have height < 2k.
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• If ∆ > 2kgk−1 then two consecutive Gk−1 in a gadget X l
∆ = (Gk−1B∆)l either form a stack

or are at least ∆
k − 2gk−1 buckets apart.

• Neither one of two gadgets X l1≥4k
∆>0 and X l2>4k

2k∆ can span the other if ∆ > 4gk−1.

4.7 Functional keys

We now describe the key-hole pairs that we call functional. The decision of in which hole to place
a functional key will roughly correspond to a decision of whether to set a variable in the BM4SAT
formula to true or false.

For functional holes (which we will denote by H), we wish to design four different subtypes of
functional keys (K1 up to K4; note that here, a superscript of {1,2,3,4} does not represent repetition
but rather the subtype of functional key) with the following properties:

1. Each of K1, K2, K3, K4 by itself fits H . This will be immediate from the construction below.

2. Each of K1, K2, K3, K4 does not fit any structural hole (of Section 4.5). See item c below.

3. No structural key (of Section 4.5) fits in hole H . See item d below.

4. Two keys Kp and Kq for 1 ≤ p < q ≤ 4 do not fit together in H . See Lemma 24.

Property 4 is the one that makes this new type of keys special. Without it we could make
K1 = K2 = K3 = K4 = K and the new key-hole pair would be no different than the ones that
we introduced in Section 4.5. The reason why we will need four subtypes of keys is because every
clause in BM4SAT has four variables.

All four subtypes of keys follow the same high level pattern. They are separated from other keys
by long paths on either side. Each subtype of key starts with a wide tooth of length gk−1(2k)11,
followed by a path of length gk−1(2k)5, and then an alternating pattern of (2k)2k+3 teeth (Gk−1)

l

(for l = gk−1(2k)9) and paths Pgk−1(2k)4 . The difference between the four subtypes of keys is in

the composition of the wide tooth. The wide tooth of Kp∈{1,2,3,4} is the gadget X l
∆=(2k)pgk−1

with

l = (2k)11−p ie., of size (2k)11gk−1.
We now describe the hole H as it appears in caterpillar Gk. As always, the hole is separated

from other holes by long brushes on either side of it. The hole H starts with a wide dent (path) of
length (2k)11gk−1. This is followed by a brush of length (2k)5gk−1. After that comes a pattern of
(2k)2k+3 alternating paths (dents) and brushes, of size (2k)9gk−1 and (2k)4gk−1 respectively.

∆

(2k)3gk−1

(2k)2gk−1

(2k)gk−1

gk−1

B∆

Gk−1

K1

K2

K3

K4

Figure 17: Wide tooth in different types of key K
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Proposition 23 For every k, the above construction of functional keys has the properties (1) to (4)
listed above.

To prove the above proposition, we make observations similar to the ones in Section 4.5.

a. Holes are constructed with simple brushes and paths. The length of a brush in hole Hj is
(2k)5gk−1. This brush lies in at least 2(2k)4gk−1 consecutive buckets or a k-pile is created.

b. Keys contain teeth composed of (Gk−1)
l and paths. As Gk−1 cannot be spanned by a simple

brush, a brush from Hj (defined in Section 4.5) or a brush from H can have an intersection of at
most gk−1 buckets with a tooth of K. This implies that most parts of a tooth (except at most
gk−1 buckets on either side) must be spanned by a dent. This observation is termed as a tooth
must lie in a dent .

c. We now show that K does not fit any structural holes defined in Section 4.5. There are two
types of paths in the key K. The first is a single path of length (2k)5gk−1 appearing after the
wide tooth. The second is (2k)2k+3 paths of length (2k)4gk−1. The brushes in Hj are much
longer than both of these paths. Hence all teeth of K must lie in the same dent of Hj for any j.
The largest dent corresponding to H2k is (2k)2k+11gk−1. On the other hand, all teeth of K put
together contribute gk−1(2k)9 × (2k)2k+3 or gk−1(2k)2k+12, which is a factor 2k larger. Hence, a
k-pile will be created.

d. Every tooth of Ki is much larger than any dent in H . As a tooth must fit a dent, a k-pile will be
created. Hence no structural key defined in Section 4.5 fits a hole H .

Lemma 24 Two functional keys Kp and Kq with p 6= q do not fit in the same hole H.

Proof: For Kp to fit in the hole H , the wide tooth must lie in the wide dent (and likewise
for Kq). The wide tooth of width (2k)11gk−1 is followed by a comparatively small path of size
(2k)5gk−1. This implies that either the wide tooth ends close to the end of the wide dent, or also
the first tooth of the key is placed in the wide dent. If the first case applies both to Kp and Kq,
there will be a large intersection between the bucket layouts of the two wide teeth. But Lemma 21
implies that only small parts of the wide teeth can span each other (as their ∆s are at least a factor
of 2k apart), leading to a contradiction. Hence the second case applies, and then the first tooth of
(say) Kp is placed in the wide dent (in addition to the wide teeth). Since the length of path between
neighboring teeth is a factor of 2k shorter than the brush between the wide dent and the first dent,
this implies (if no k-pile is created) that all teeth of Kp must be placed in the wide dent. But their
total size is much larger that the size of the wide dent, again forcing bucketwidth greater than bk. 2

4.8 Forcing the main structural folds

This section is a modified version of Section 3.2 that applied to ringed caterpillars.
The high level structure of a caterpillar Gk will be as follows. It will have two formula segments,

the SAT segment and the UNSAT segment. They will be followed by 2n variable segments. In
the corresponding bucket arrangement, we call the buckets used by the formula segments the active
region. We will need to force a fold between the formula segments and the variable segments so that
the variable segments will also fall in the active region. In fact, each variable segment will be similar
in length to a formula segment, and hence we shall need to enforce additional folds so as to prevent
the variable segments from escaping from the active region to either side.

To force folding, we shall place a folding vertex between the UNSAT segment and the first variable
segment. To force subsequent variable segments from extending beyond the beginning of the SAT
segment, we shall place another folding vertex just before the SAT segment.
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Proposition 25 (see Section 4.11) For no instances, either all variable segments of Gk are in the
active region or a k-pile is created.

We need each of the 2n variable segments to start in between the SAT and UNSAT segments.
It can then be laid out either to the left which corresponds to setting the variable to false or to
the right which corresponds to setting it to true. Recall that in Section 3.2 we introduced a middle
segment for this purpose, between the SAT and UNSAT segments. It was formed by a sequence of
as many holes of a special type as the variables in the BM4SAT instance. Each variable segment
starts with a key of this special type. This insured that each variable segment starts at the middle
segment.

The caterpillar Gk will also contain a middle section, similar to the ringed caterpillars of Sec-
tion 3.2. However, we shall in addition introduce another set of special keys (and corresponding
holes) that are placed at the end of variable segments (specifically, as part of their mth subseg-
ment), which force the variable segments to stretch all the way until nearly the folding vertex.
Having introduced these additional special keys, it is not clear that the middle segment plays a
significant role in our reductions, but nevertheless we keep it as part of Gk as it aids intuition.

M

v1

v2n

v2

SATUNSAT

Figure 18: (a) Formula segments lie between folding vertices (the strands attached to the folding
vertices are represented in black). (b) Variable segments lie in the active region. (c) M is the middle
segment.

4.9 The full reduction

For notational convenience, we define a function p : N → {0, 1, . . . , k + 5,∞}.

p(j) =







j mod (k + 5) + 1 if 0 < j < m
∞ if j = m
0 if j = 0

When j is clear from the context we will denote p(j) by p. The construction of Gk will require
k + 7 types of structural key hole pairs. In Section 4.5 we explained how to construct 2k such
types, which suffices whenever k ≥ 7. (The case k < 7 can simply be treated as if k = 7. Details
omitted.) We choose arbitrarily k + 7 types of structural key hole pairs from Section 4.5, and for
notational convenience we rename them as (H0, K0), (H1, K1), . . . , (Hk+5, Kk+5), (H∞, K∞). Key-
hole pairs (H0, K0) will be used in the middle segment, and key-hole pairs (H∞, K∞) will be used
in the m-th clause subsegment. Together they will be used to enforce that each variable segment
spans a formula segment (either SAT or UNSAT), starting in the middle segment and ending at
the last clause subsegment). The other types of structural key-hole pairs will be used periodically
throughout the formula segments. We denote the length of the backbone of Hj by hj and the length
of the backbone of Gk−1 by gk−1. Let hmax be the maximum backbone size of the holes among
H, H0, . . . , H∞ (recall that H denotes the functional hole).

We shall use the following two parameters that signify a very large value α = 4n2(2k)10hmax and
an extremely large value ℓ = 10kn2α. (The exact choices for the values of α and ℓ are somewhat
arbitrary, and are meant to convey a tradeoff between being very large but still polynomially bounded
in the other parameters.)
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Empty Clauses: For notational convenience, we augment the set of clauses by k+5 new empty
clauses (with no variables). As such, the subgraphs that encode them will have structural holes but
no functional holes. We name the empty clauses C1, . . . , Ck+5, and hence will need to add k + 5 to
the index of the original clauses. Though the new number of clauses is m + k + 5, we shall keep
notation simple and rename this number as m. The reason for adding the empty clauses will become
clear later (see the paragraph after Lemma 34).

kαα H2
Hn

p

Figure 19: Clause subsegment

Clause Subsegment: The clause subsegment contains n structural holes and two functional
holes (or none for the empty clauses). The type of functional hole depends on the index of the clause.
For clause Cj with j > k + 5, the subsegment is BαH2BkαHn

p . See Fig 19. For empty clauses the
corresponding clause subsegment is BαB2hBkαHn

p (the functional holes are replaced by brushes).
The clause subsegment for the last clause Cm is special. Very importantly, its structure is different
in SAT and UNSAT segments. The Bkα brush in Cm is replaced by (X∆)l where l = kα

∆+gk−1
(see

Section 4.6 for the notation X). For the subsegment of Cm in the SAT segment we call this construct
Es (E for “end” and s for “sat”), and the value of ∆ is α

(2k)4 . For UNSAT we call it Eu and the value

of ∆ is α
(2k)3 . We denote the clause subsegment Cm in the SAT segment Cs

m and in the UNSAT

segment Cu
m.

Sat: is C1 . . . Cm−1C
s
m.

Unsat: is the mirror image of C1 . . . Cu
m.

Middle Segment: is H2n
0 .

Hole Group: Holes of the same type will come in groups, called hole groups. There are
k + 8 types of hole groups, each corresponding to a different type of hole. They are H2, H2n

0 , Hn
1 ,

. . . , Hn
k+5, and Hn

∞.
Slackness: We shall not distinguish between different holes in the same hole group. Hence for

example, a key Ki will be allowed to fit any hole in the hole group Hn
i . For this reason we introduce

the concept of slackness around each key, where the amount of slackness depends on the type of hole
group. The slackness will be of type H , H0, . . . , H∞. It is denoted as s, s0, . . . , sk+5, s∞ and is
paths of lengths 2h, 2nh0, nh1, . . . , nhk+5, and nh∞ respectively. Each key appearing in the variable
segment has the slackness of the same type before and after the key eg., K is actually sKs and Kpj

is actually sp(j)Kp(j)sp(j). This gives us the freedom to choose an arbitrary hole in the hole group
to fit the key in. For simplicity of notation we will denote sKs as K and so on.

Empty variable: Augment the set of variables by a new variable e called the empty variable.
This variable appears in no clauses and hence has no functional keys. In fact, it will have only one
structural key, of type K0 (that fits in the middle segment).

Variable Segment: The variable segment for a single variable v starts with a key of type K0

(intended to be laid in a hole of type H0 is the middle segment). This is followed by m forward
subsegments v1, . . . , vm. (Note that here superscripts do not mean concatenation notation. Namely
vj

i is not a caterpillar vi concatenated j times. We hope that no confusion will arise because of
this notation abuse.) The variable segment ends by a backward path that is used to span either
the SAT of UNSAT segment when returning to the middle section. Hence its length is the same as
the backbone length of the SAT segment, and hence the backward path will be denoted by PSAT .
Altogether, the variable segment for variable v is K0v

1 . . . vmPSAT .
Variable Subsegment: Subsegment vj of variable v is PαY PkαKp. Here Y is a functional key

K if v appears in Cj and P2h otherwise. See Fig 20 for a pictorial definition. As there are four types
of functional keys (see Section 4.7) and four variables in clause Cj , each of these four variables will
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α kα

K

Kp

Kp

sp sps

Figure 20: Variable subsegments. Bottom figure applies if v does not appear in Cj . Top figure
applies if v appears in Cj . Here s is P2h and sp is Pnhp

, see Slackness

have a different type of functional key in its corresponding subsegment vj . The key Kp is intended
to lie in one of the holes of a hole group Hn

p in a certain clause subsegment. Recall that to make it
possible for the key to lie in any of these holes (out of n possible ones), we add slackness: a path of
length nhp on both sides of Kp. For simplicity of notation Kp will mean spKpsp. It is important
that the amount nhp of slackness is a low order term compared to α.

Folding Vertex: is a single vertex F with b strands of length ℓ.
A summary of the various parts appears in Figure 21.
The overall structure of the graph is depicted in Figure 22.

Gk = PℓLFSRPSAT VPℓ ℓ = 10kn2α

FS = UNSATMSAT

M = (H0)
2n

SAT = C1C2 . . . Cm−1C
s
m

UNSAT = (C1C2 . . . Cm−1C
u
m)−1

Cj = BαH2BkαHn
p(j) X∆ = Gk−1B∆

Cs
m = BαH2Es

mHn
∞ Es

m = X l1
∆1

, l1 = k(2k)4, ∆1 = α
(2k)4+gk−1

Cu
m = BαH2Eu

mHn
∞ Eu

m = X l2
∆2

, l2 = k(2k)3, ∆2 = α
(2k)3+gk−1

V = v1 . . . v2n

vi = K0v
1
i . . . vm

i PSAT

ej = PαP2hPkαKp(j)

vj
i = PαP2hPkαKp(j) if vi 6∈ Cj

= PαKPkαKp(j) if vi ∈ Cj

Figure 21: (a) G−1 is the mirror image of G. (b) R and L are right and left folding vertices
respectively. A folding vertex is a vertex with b strands of length ℓ attached to it. (c) The type of
functional key K is chosen from one of four functional key types K1,K2,K3,K4, where the choices
for the four variables that correspond to the same clause Cj are all different. (d) The superscripts
in Cu

m, Cs
m, vbj and vj do not mean concatenation but denote various subsegments.

We conclude this section with the following Proposition concerning the size of the graph Gk.

Proposition 26 Let gi denote the number of backbone vertices in Gi. Then:

1. The diameter of Gi is gi.
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Figure 22: The full graph Gk. Also shows the layout in the yes instance.

2. The number of vertices in Gi is bgi, up to low order additive terms.

3. gi = gi−1n
O(1)iΘ(i).

Proof: The parameter ℓ is chosen to be sufficiently large so that the length of the backbone of
Gi is roughly 2ℓ (the contribution of the two paths Pℓ) plus low order terms. (1) The two most
distant vertices of Gi are the endpoints of the backbone. (2) The total number of vertices in Gi is
2bℓ (from the strands of the folding vertices) plus low order terms. (3) Comparing ℓ to gi−1, we see
that ℓ is a polynomial in n, i times α, that α is a polynomial in n, i times hmax, and hmax is of the
order of kO(k) times gi−1. 2

4.10 Layout on yes instances

Proposition 27 If the BM4SAT instance is satisfiable then the bucketwidth of the graph Gk for all
k is at most b + O(nk).

The proposition is proved by induction. For the base case, G1 is simply a brush of length 1,
and hence has bucketwidth at most b (in fact, ⌈(b + 1)/3⌉). For the inductive step, assume that
Gk−1 has bucketwidth b + O(n(k − 1)). In this case, we may think of Gk−1 as being a essentially a
brush of length gk−1. (The length is slightly shorter due to folding of the backbone, but not much
shorter because the major part of the backbone, the paths Pℓ, is not folded. The number of hairs
attached to each backbone vertex of this imaginary brush should be thought of a slightly larger than
b, namely b + O(n(k − 1)).)

We now describe the bucket layout of the caterpillar Gk, given a satisfying assignment to the
BM4SAT formula. We shall assume for convenience that in this satisfying assignment v2n is set to
true. (This assumption can be made without loss of generality, as flipping all variables also gives a
satisfying assignment.)

• The backbone vertices of the path Pℓ, folding vertex L, formula segment UNSAT, middle
segment M , formula segment SAT and folding vertex R are laid in order.

• The strands attached to the folding vertex R are dropped to the right, at the rate of one vertex
per bucket. The strands attached to the folding vertex L are dropped to the left, at the rate
of one vertex per bucket.

• The set of buckets occupied by the backbone of UNSATMSAT will be called the active region.
In the active region, every hair vertex is placed in the same bucket as its connecting backbone
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vertex. This applies to brushes, and by analogy, to copies of Gk−1 (which we said may be
thought of as brushes for the purpose of the layout).

• The backbone vertices of PSAT V will all be placed in the active region, in a way to be described
next. The same convention of placing hairs in the same buckets as the backbone vertex to
which they are attached applies also here.

• The path PSAT , whose length equals that of the backbone of SAT, is used to span SAT, going
from R to M .

• V is composed of 2n variable segments. Variable segments of variables assigned true will be
laid out to the right (over MSAT) and variables assigned false will be laid out to the left (over
UNSATM). Since both cases follow exactly the same pattern, we shall describe the layout of
only one variable v that is assumed to be assigned true.

• Assume that just before laying out v the bucket arrangement has reached a certain bucket x.
Recall that v = K0v

1 . . . vmPSAT . Recall also that K0 has slackness (paths of length 2nh0) on
both sides. Pick an arbitrary yet unoccupied hole H0 in M . Denote its starting location by
y. The first path of length 2nh0 can be used in order to reach y from x. If y it too close, the
path can overshoot the location of y and then return to y. Hence reaching y by the path can
be done while placing at most two vertices in any single bucket. There after K0 is placed in
H0. Thereafter, the other slackness path can be used as before (placing at most two vertices
per bucket) to reach the first bucket of the SAT segment. Now each vj = PαY PkαKp (with
Y either a functional key or a path) spans the corresponding Cj = BαH2BkαHn

p . Also here,
the structural key Kp(j) can be placed in and arbitrary unoccupied hole in the structural hole
group, using the slackness around Kp(j), and likewise for the functional key if it exists. The
fact that exactly n variables are set to true implies that an unoccupied structural hole can
always be found, and the fact that exactly two variables within a clause are set to true implies
that an unoccupied functional hole can be found (if needed). Finally, the backward path PSAT

is used in order to return to the middle segment M .

• For the last variable v2n, there is no need to use the backward path PSAT in order to return
to M . In fact, this backward path is redundant and can be omitted from the description of
Gk. (Alternatively, it can be “wasted” by spanning halfway along SAT and back.) The final
path Pℓ is no used to span over the ℓ buckets that contain the strands of the folding vertex R.

We observe the following for the above layout

• Each variable contributes one structural keys in each clause subsegment in either SAT or
UNSAT. As exactly n variable segments are folded to each side, this brings the total to n
structural keys on both SAT and UNSAT segments (per clause subsegment).

• Each variable segment contributes one key to the middle segment. This brings the total to 2n
K0 keys.

• The assignment is a satisfying one. Hence, each clause subsegment in SAT as well as UNSAT
segment gets 2 functional keys.

• The number of keys of each type (functional and structural) equals the number of holes of
each type available in the clause subsegment and the middle segment.

• Each path of V contributes at most two vertices to any single bucket. Moreover, every bucket
is visited by at most O(n) paths.

It follows from the above that indeed, the bucketwidth of Gk exceeds that of Gk−1 by at most
at additive term of O(n).
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4.11 Canonical layout for no instances

A bucket layout of Gk is called shallow if the layout has no k-pile and no bucket with bk vertices.
We shall show that for no instances of BM4SAT, the corresponding caterpillar Gk does not have a
shallow layout. The proof is by induction. Recall that Gk is a brush of length 1. Hence it has a
heavy vertex and any layout of it has a 1-pile (a bucket with one heavy vertex).

For the inductive step, we assume that every bucket layout of Gk−1 must contain a (k − 1)-pile,
and we need to prove that every layout of Gk must contain a k-pile. Our proof will use an informal
notion of a canonical layout, similar in structure to the layout in figure 22). Here are properties a
canonical layout must satisfy (up to taking a mirror image). These properties will be made more
precise later.

i. Without loss of generality, the folding vertex R is placed to the right of the folding vertex L
(or in the same bucket, an option that will disqualified later). The key property for a canonical
layout is that the strands of R are folded to the right and the strands of L are folded to the left.
The region between L and R will be called the active region.

ii. All keys of V (the variable segments) are placed in the active region.

iii. The hole groups of the segments UNSATMSAT are placed in the active region in order, one after
the other. (We do not require that the holes within a hole group are also placed in order.)

iv. Keys K0 of variable segments are placed in the hole group H2n
0 in M .

v. For every variable v and subsegment vj with j ≥ k + 5, the structural key is placed in a hole in
the corresponding structural hole group in Cj .

vi. If the structural key Kj+5 lies in SAT (or UNSAT) for some variable v then all structural and
functional keys of v for j > k + 5 remain in SAT (or UNSAT, respectively).

vii. For every clause Cj and variable v contained in Cj , the functional key of subsegment vj is placed
in the functional hole group H2 of Cj .

We will show that any shallow bucket layout must be canonical in the sense explained above.
Then item (vii) will imply that if the BM4SAT instance is not satisfiable, three functional keys
need to be placed in two functional holes. This will create a k-pile (by the results of Section 4.7)
contradicting the assumption that a shallow layout exists.

To show that a shallow layout must be canonical, we start by considering the folding vertices L
and R. Recall that a bucket suffers a folding hit if it contains at least b/3 vertices of strands of a
folding vertex.

We call the set of buckets which suffer a folding hit folding buckets. We call the ones suffering
the hit because of R as right folding buckets and the ones suffering the hit due to L as left folding
buckets.

Lemma 28 In any bucket layout with bucketwidth less than kb, for each of the folding vertices L
and R, there is a consecutive set of at least ℓ/6k buckets starting at the bucket of the folding vertex
that all suffer folding hits.

Proof: Let F denote the bucket in which the folding vertex lies. We claim that either b/3
strands extend ℓ/6k to the left, or b/3 strands extend ℓ/6k to the right. Otherwise, b/3 strands are
fully contained in ℓ/3k buckets, and this the length of each strand is ℓ, some bucket contains kb
vertices. Assume then without loss of generality that b/3 strands extend ℓ/6k to the right. Each of
these strands contributes at least one vertex to every bucket that it spans, and hence there are at
least ℓ/6k consecutive buckets to the right of F that suffer a folding hit. 2
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We say that the strands of a folding vertex are folded to the right if the ℓ/6k buckets to the
right of it suffer a folding hit, and to the left otherwise (in which case the ℓ/6k buckets to the right
of it suffer a folding hit). Observe that under this definition, Lemma 28 implies that the strands of
every folding vertex are folded either to the right or to the left (and not both). Hence the notion of
direction of folding of strands in item (i) is well defined.

We now prove that the strands of R must be folded to the right and those of L to the left. First,
note that one cannot fold the strands of R to the left and at the same time the strands of L to the
right. This will create a consecutive block of roughly ℓ/3k folding hits with L and R placed near
the middle of the block. (We use here the fact that ℓ/k is much larger than the distance in Gk

between L and R.) In this case the copies of Gk−1 that are embedded within other parts of Gk will
necessarily be placed in buckets in this block, leading to a k-pile (k − 1 from Gk−1 plus one folding
hit).

Hence it remains to address the case that the strands of L and R are folded to the same direction,
without loss of generality, to the right. Observe that in this case, no copy of Gk−1 can be placed in
buckets to the right of L. This is the place where we use the gadgets Es and Eu that were placed
in the clause subsegments of Cm is SAT and UNSAT.

Lemma 29 In a shallow layout (in which without loss of generality R is not placed to the left of L)
the strands of R are folded to the right and the strands of L are folded to the left.

Proof: The SAT as well as the UNSAT segment is constructed of hole groups and simple brushes.
The brush closest to R in the SAT segment (in clause Cm) was replaced by Es = (Gk−1B α

(2k)4
)k(2k)4 ,

and the brush closest to L in the UNSAT segment was replaced by Eu = (Gk−1B α

(2k)3
)k(2k)3 . Both

Es and Eu are separated from their respective folding vertex by a hole group of relatively small size,
Hn

∞.
Assume for the sake of contradiction that both the strands of R and the strands of L are folded

to the right. In this case, the major part of Es and of Eu must lie to the left of L (since they
contain copies of Gk−1, and the k − 1 piles in these copies cannot lie to the right of L). One of the
two (Es or Eu) extends at least as much as the other to the left. Say that this is Eu. Recall that
Proposition 22 shows that if Eu spans Es then a k-pile is created. The proof of this proposition
easily applies also to our setting (in which Eu extends to the left more than Es does), because the
rightmost buckets reached by Eu and Es are nearly the same (at most nh∞ to the left of L, at most

α
(2k)3 to the right of L, whereas the total backbone length of Es or Eu is much large, kα). This will

lead to the creation of a k-pile. 2

This completes the proof of item (i). We may no assume without loss of generality that in fact
all strands of a given folding vertex are folded to the same direction (to the right for R and to the
left for L). Hence the active region is assumed not to suffer any folding hits.

Having used Eu and Es for the proof of item (i), we no longer need their special structure, and it
will now be convenient for us to think of them simply as brushes Bkα. This is not a true description
of them, because in addition to brushes they contain copies of Gk−1. Replacing Es and Eu by
brushes simplifies the proofs that follow, because then we do not need to deal with Eu and Es as
separate special cases in many of the arguments that we make. So as to simplify the presentation
we use the following convention.

Convention: For all other purposes except for proving item (i), Es and Eu can be replaced by
brushes bkα.

All the claims that follow can be proved also without making the convention. However, the
proofs become much longer. The key insight of why the convention can be made is that even though
Es and Eu contain copies of Gk−1, each such copy has much longer brushes on both sides.

Given item (i), the proof of item (ii) is straightforward. All buckets (within reachable distance)
except for those in the active region suffer folding hits. Every key contains copies of Gk−1, and they
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contain k − 1 piles. Hence all keys (meaning, or more exactly, all the k − 1 piles that they contain)
lie in the active region, or else a k-pile is created.

We now turn to prove item (iii).
We say that a key intersects a hole if at least one vertex of a tooth of the key is placed in the

same bucket of at least one vertex of a dent in the hole. Let us first observe the following lemma.

Lemma 30 Every key from every variable segment must intersect a hole of the same type as the
key.

Proof: As we have seen, all keys must be placed in the active region. The portion of the caterpil-
lar between L and R is UNSATMSAT and it must span the active region. UNSATMSAT is composed
only of brushes and holes. (Recall our convention regarding Es and Eu. This is one place where it
is used. There will be other such places but they will not be mentioned explicitly.) So as not to
create a k-pile, a key must intersect some hole (as otherwise, a copy of Gk−1 is spanned by a brush,
creating a k-pile). By the properties of our construction of keys and holes, the hole a key is placed
in (or if formally it is placed in more than one hole, then at least one of these holes) has to be of
the same type as the key, or otherwise a k-pile is created (see Sections 4.5 and 4.7). 2

Keys of the variable segments are in the active region and need to be placed in holes. Hence
UNSATMSAT need to provide these holes. However, an important aspect of item (iii) is not just that
the holes of UNSATMSAT are placed in the active region, but also that they are placed in order. We
now establish the consequences of deviated from the natural order.

We shall use the following notation. An i-coupling is a key Ki placed in hole Hi. A hole is
destroyed (at some point of describing the bucket layout) if no key can be placed in it without
creating a k-pile. A hole group is a concatenation of holes of the same type (for example, H2, or
Hn

p(j)).

Lemma 31 Let H ′ denote a hole of an arbitrary type T ′. If in a bucket arrangement H ′ is spanned
by a sequence of brushes and holes of types different than T ′, then the hole is destroyed.

Proof: To begin with, only keys of type T ′ can fit in H ′. So assume that one attempts to place
such a key K ′ in H ′. If H ′ is spanned by a sequence of brushes and holes of other types, then with
respect to this sequence, K ′ does not interest a hole of type T ′, contradicting Lemma 30. 2

Corollary 32 A hole-key coupling of a certain type cannot be spanned by a concatenation of simple
brushes and hole groups of other types, unless a k-pile is created.

We have not completely proved item (iii) yet, but we have shown that if it does not hold then
necessarily some holes are destroyed. Destroying a single hole does not have major consequences,
because two keys of the same type may be able to fit one hole of the same type, in the sense that
no k-pile is created. Hence as long as a fair fraction of holes within a hole group remain, no k-pile
needs to be created. However if all holes in a hole group are destroyed, then (as we shall see),
certain keys will not have any holes to be placed in. Hence for the moment, all the reader needs
to remember regarding item (iii) is that either all hole groups of are placed in order, or some hole
group is destroyed.

The proof of item (iv) is straightforward. Keys of type K0 can only be placed in holes of type
H0, and only the middle segment has such holes. In particular, this means that the middle segment
needs to lie in the active region. The following lemma provides some additional content, as it shows
that the middle segment indeed lies between the UNSAT and SAT segments.

Lemma 33 In a shallow layout, there is no bucket that contains vertices both from the SAT segment
and from the UNSAT segment.
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Proof: We have just shown above that there is a 0-coupling in the buckets corresponding to the
middle segment M . If SAT and UNSAT share a bucket, then they jointly span the active region,
and this 0-coupling is in the active region. This contradicts Corollary 32. 2

We now prove item v. For every variable v, it will be proved by induction on its subsegments
vj . It will be more convenient for us to start the induction at j = m and go down. This is because
the functional key in vm is of type K∞, and the only places where holes of type H∞ appear are the
clause subsegment Cm (in SAT and in UNSAT). As we have already established (see Lemma 30) that
K∞ must be placed in an H∞ hole, then indeed the structural key of vm is placed in the structural
hole group of Cm (either in Cs

m or in Cu
m). For concreteness, let us assume that it is placed in Cs

m

(in the SAT segment). The inductive step is proved in the following lemma.

Lemma 34 Consider an arbitrary shallow bucket arrangement for Gk−1. Let v be an arbitrary
variable for which the structural key K∞ of vm is placed in the structural hole group Hn

∞ of Cs
m.

Then for every other subsegment vj with j ≥ k + 5, the structural key of vj lies in the structural
hole group of Cj of the SAT segment.

Proof: We show this inductively, assuming that the structural key of vj+1 is placed in a structural
hole of Cj+1 and showing that the corresponding statement for j. The base case of j = m is given.

The structural key of vj is of type Kp(j). Hence it must be placed in hole group of type Hp(j).
Such a hole indeed appears in Cj , and our intention is that this is indeed the hole group in which
the structural key is placed. However, there are other values j′ for which p(j′) = p(j), and hence it
remains to show that the structural key is not placed in a hole group of such a Cj′ . There are three
cases to consider.

Turning backward. This is the case j′ > j. Note that for p(j′) = p(j) it must be that j′ ≥ j+k+5.
Also, by induction, there is an i-coupling for all i satisfying j + 1 ≤ i ≤ j′. By Corollary 32, none
of the corresponding holes can be spanned by brushes and other types of holes, implying that all
clauses from Cj+2 up to Cj′−1 are laid out between Cj+1 and Cj′ . This is more than k clauses, and
hence Cj′ is too far to be reached from Cj+1 (unless all the k-clauses are compressed to a number
of buckets comparable to the backbone length of one clause, but then the bucketwidth is kb).

Fast forward. This is the case j′ < j, which in fact implies j′ ≤ j − k− 5. As before, j′ is simply
to far unless part of one of the clauses in between Cj+1 and Cj′ spans either the hole used by vj+1

in Cj+1, or the hole in Cj′ intended for use by vj . Whichever case holds, the corresponding hole is
destroyed by Corollary 32, contradicting the assumption that a key is placed in it. (There is another
case to consider in which the hole group of Cj′ is placed in the same buckets as the hole group of
Cj . This does not destroy these holes, but then we may think of the key of vj as being placed in Cj

rather than Cj′ , and continue with the inductive proof.)
Jump to UNSAT. This is the case that one tries to place the structural hole of vj in the UNSAT

segment rather than in the SAT segment. Here, the assumption that j ≥ k + 5 again ensures that
the distance to be jump is large (more than k clauses) and an argument as above applies. 2

Observe that Lemma 34 proves not only item (v), but also item (vi). In fact, it also implies most
of the remaining aspects of item (iii), except for the layout of the clauses C1, . . . , Ck+5. However,
these clauses are empty, and hence we shall not care about their layout.

We now prove item (vii). Without loss of generality, this will be done only for variables placed
in the SAT segment.

Lemma 35 In a shallow layout, if a variable v is laid out on the SAT segment and v appears in a
clause Cj in the BM4SAT instance, then the functional key corresponding to variable subsegment vj

lies in the functional hole group of Cj .

Proof: Observe that we can assume that j > k + 5, because clauses up to k + 5 are empty. We
have seen in Lemma 34 that the structural key of vj−1 is placed in the functional hole group of Cj−1.
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The distance in Gk between the functional key of vj and the structural key of vj−1 is roughly α (plus
low order terms). Every functional hole except for the functional hole group of Cj is separated in Gk

from the functional hole group of Cj−1 by at least one brush Bkα. This corresponds to a distance too
far to cross (unless the brush Bkα spans only α buckets, but then the bucketwidth is at least kα). 2

We can now finish off the proof.

Lemma 36 If Gk corresponds to a no instance of BM4SAT then every bucket arrangement of Gk

has a k-pile.

Proof: Assume for the sake of contradiction that there is a shallow layout for Gk. Then as we
have seen (proving items (i) up to (vii)) this layout must be canonical. In a canonical layout, there
is a natural correspondence between the segment (SAT or UNSAT) in which a variable segment is
placed and a true/false assignment to the variable. Consider now the placement of the functional
keys in this layout. It there are at most two functional keys in every functional hole group, there
must be exactly two functional keys in every functional hole group (the number of functional keys
is equal to the number of functional holes). Hence this corresponds to a BM4SAT assignment that
satisfies exactly two variables per clause, contradiction the assumption that this is a no instance.

It follows that some functional hole group (with two holes) contains at least three functional
keys. As each key has to be placed in some hole, two keys are placed in the same hole. These are
different types of functional keys, because with every variable associated with the clause we associate
a different type of functional key. Lemma 24 now imply that k-pile is created. 2

4.12 Summary

We can now complete the proof of Theorem 2.
Proof: Given a BM4SAT formula ξ, pick b to be much larger than kn (for example b = kn2) and

construct the graph Gk as described in Section 4.9. If the BM4SAT formula is satisfiable, then the
graph has bucketwidth b + O(kn) (by Section 4.10), and hence bandwidth at most 2b + O(kn) (by
Lemma 4). If the BM4SAT formula is not satisfiable, then any bucket arrangement of Gk creates a
k-pile, and hence has bucketwidth Ω(kb) (see Section 4.11). The same lower bound applies to the
bandwidth (by Lemma 4). Hence the gap between yes and no instances is Ω(k).

The size of Gk can be computed from Proposition 26. For constant k it is nO(k). This establishes
the NP-hardness result. To prove hardness of approximation results within larger ratios, observe
that for every k the size of Gk is at most nO(k)kO(k2). Picking k ≃ log n

log log n gives caterpillars of size

N = kO(k2) and then k = Ω(
√

log N/ log log N). 2

We would have liked to get a hardness of approximation ratio of Ω(log n/ log log n) for caterpillars,
matching the algorithmic result of [11] up to constant factors. We do not get such a result because
the size of the caterpillars Gk grows too quickly as a function of k. The main reason for this fast
growth is our construction of structural keys (Section 4.5). Their sizes are proportional to kO(k).
If instead we could use structural keys of size proportional to kO(1) (and still make the rest of the
reduction work), then the size of Gk would be N = nO(k), and picking k = nδ would allow us to
obtain an Ω(log N/ log log N) hardness result for caterpillars (unless NP has subexponential time
algorithms).

5 Hardness on asteroidal triple free graphs

In this section we prove Proposition 3. As noted in the introduction, the general scheme for such
proofs (via a reduction for BBIS) was communicated to us by Shimon Kogan.
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Balanced Bipartite Independent Set (BBIS)

Input A bipartite graph G = (X ∪ Y, E) with |X | = |Y | = n/2.

Problem Find the maximum value of k such that G contains an independent set I = (IX ⊆
X) ∪ (IY ⊆ Y ) with |IX | = |IY | = k.

Theorem 37 [18] For some ǫ > 0, no polynomial time algorithm can distinguish between bipartite
graphs G(X ∪ Y, E) for which BBIS has a value k ≥ 4ǫn (that we call yes instances) and bipartite
graphs G(X, Y ) for which BBIS has a value k ≤ ǫn (that we call no instances), unless NP has
subexponential time algorithms.

Based on Theorem 37, we now prove Proposition 3.
Proof: To reduce a BBIS instance G(X, Y ) into an instance G′ of bandwidth, we change each of

the two sets X and Y into cliques. Observe that G′ is at least n/2-dense (assuming that G did not
have isolated vertices, an assumption that holds in the proof of Theorem 37) and AT-free (because
every set of three vertices contains two vertices from the same clique, and hence cannot form an
asteroidal triple).

On a yes instance G(X ∪ Y, E) of BBIS, let IX and IY be the optimal solution. For G′, take a
linear arrangement in which the vertices of IX are the first vertices, the vertices of IY are the last
vertices, and other vertices are placed in arbitrary order in between. As there are no edges between
IX and IY , the bandwidth is at most n − k ≤ n − 4ǫn.

On a no instance G(X ∪ Y, E) of BBIS, let k′ be largest such that G′ has bandwidth at least
n − 2k′. In any linear arrangement achieving this bandwidth there are no edges between the first
k′ vertices (call them I1) and the last k′ vertices (call them I2). Also, for I1 and I2 one of them
must lie entirely in X and the other entirely in Y . (Otherwise there will be edges between I1 and
I2, because X and Y are cliques in G′). Hence the BBIS instance has value at least k′. Being a no
BBIS instance, we conclude that k′ ≤ ǫn.

Theorem 37 now implies that unless NP has subexponential algorithms, it is hard to distinguish
between bandwidth at most (1 − 4ǫ)n and bandwidth at least (1 − 2ǫ)n. The ratio between these
two values is at least 1 + ǫ for some fixed ǫ > 0, excluding the possibility of a PTAS. 2
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