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REPRESENTING REAL NUMBERS IN A GENERALIZED

NUMERATION SYSTEM

EMILIE CHARLIER, MARION LE GONIDEC, AND MICHEL RIGO

Abstract. We show how to represent an interval of real numbers in an ab-
stract numeration system built on a language that is not necessarily regular.
As an application, we consider representations of real numbers using the Dyck
language. We also show that our framework can be applied to the rational
base numeration systems.

1. Introduction

In [LR02], P. Lecomte and the third author showed how to represent an interval
of real numbers in an abstract numeration system built on a regular language
satisfying some suitable conditions. In this paper, we provide a wider framework
and we show that their results can be extended to abstract numeration systems
built on a language that is not necessarily regular. Our aim is to provide a unified
approach for the representation of real numbers in various numeration systems
encountered in the literature [AFS08, DT89, LR01, Lot02].

This paper is organized as follows. In the second section, we recall some useful
definitions and results from automata theory. In Section 3, we restate the general
framework of [LR02]. Then in Section 4, we show that the infinite words obtained
as limits of words of a language are exactly the infinite words having all their pre-
fixes in the corresponding prefix closure. In view of this result, we shall consider
only abstract numeration systems built on a prefix-closed language to represent
the reals. One can notice that usual numeration systems like integer bas systems,
β-numeration or substitutive numeration systems are all built on prefix-closed lan-
guages [DT89, Lot02]. In Section 5, we show how to represent an interval [s0, 1] of
real numbers in a generalized abstract numeration system built on a language sat-
isfying some general hypotheses. Finally, in Section 6, we give three applications of
our methods, that were not settled yet by the results of [LR02]. First, we consider
a non-regular language L such that its prefix-language Pref(L) is regular. In a sec-
ond part, we consider the representation of real numbers in the generalized abstract
numeration system built on the language of the prefixes of the Dyck words. In this
case, neither the Dyck language D nor its prefix-closure Pref(D) are recognized by
a finite automaton. We compute the complexity functions of this language, i.e., for
each word w, the function mapping an integer n onto Card(w−1D ∩ {a, b}n), and
we show that we can apply our results to the corresponding abstract numeration
system. The third application that we consider is the abstract numeration system
built on the language L 3

2
recently introduced in [AFS08]. We show that our method

leads, up to some scaling factor, to the same representation of the reals as the one
given in [AFS08].

2. Preliminaries

Let us recall some usual definitions. For more details, see for instance [Eil74] or
[Sak03]. An alphabet is a non-empty finite set of symbols, called letters. A word
over an alphabet Σ is a finite or infinite sequence of letters in Σ. The empty word
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is denoted by ε. The set of finite (resp. infinite) words over Σ is denoted by Σ∗

(resp. Σω). The set Σ∗ is the free monoid generated by Σ with respect to the
concatenation product of words and with ε as neutral element. A language (resp.
ω-language) over Σ is a subset of Σ∗ (resp. Σω). If w is a finite word over Σ, the
length of w, denoted by |w|, is the number of its letters and if a ∈ Σ, then |w|a is
the number of occurrences of a in w. If w is a finite (resp. infinite) word over Σ,
then for all i ∈ [[0, |w| − 1]] (resp. i ∈ N), w[i] denotes its (i + 1)st letter, for all
0 ≤ i ≤ j ≤ |w|−1 (resp. 0 ≤ i ≤ j), the factor w[i, j] of w is the word w[i] · · ·w[j],
and for all i ∈ [[0, |w|]] (resp. i ∈ N), w[0, i − 1] is the prefix of length i of w, where
we set w[0,−1] := ε. The set of prefixes of a word w (resp. a language L) is denoted
by Pref(w) (resp. Pref(L)). Notice that indices are counted from 0.

One can endow Σω ∪Σ∗ with a metric space structure as follows. If x and y are
two distinct infinite words over Σ, define the distance d over Σω by d(x, y) := 2−ℓ

where ℓ = inf{i ∈ N | x[i] 6= y[i]} is the length of the maximal common prefix
between x and y. We set d(x, x) = 0 for all x ∈ Σω. This distance can be extended
to Σω ∪ Σ∗ by replacing the finite words z by z#ω, where # is a new letter not in
Σ. A sequence (w(n))n≥0 of words over Σ converges to an infinite word w over Σ if

d(w(n), w) → 0 as n → +∞.
A deterministic (finite or infinite) automaton over an alphabet Σ is is a directed

graph A = (Q, q0,Σ, δ, F ), where Q is the set of states, q0 is the initial state,
F ⊆ Q is the set of final states and δ : Q × Σ → Q is the transition function.
The transition function can be naturally extended to Q × Σ∗ by δ(q, ε) = q and
δ(q, aw) = δ(δ(q, a), w) for all q ∈ Q, a ∈ Σ and w ∈ Σ∗. We often use q · w as
shorthand for δ(q, w). A state q ∈ Q is accessible (resp. coaccessible) if there exists
a word w ∈ Σ∗ such that δ(q0, w) = q (resp. δ(q, w) ∈ F ) and A is accessible (resp.
coaccessible) if all its state are accessible (resp. coaccessible). A word w ∈ Σ∗ is
accepted by A if δ(q0, w) ∈ F . The set of accepted words is the language recognized
by A. A deterministic automaton is said to be finite (resp. infinite) if its set of
states is finite (resp. infinite). A language is regular if it is recognized by some
deterministic finite automaton (DFA).

Among all the deterministic automata recognizing a language, one can distin-
guish the minimal automaton of this language, which is unique up to isomorphism
and is defined as follows. The minimal automaton of a language L over an alpha-
bet Σ is the deterministic automaton AL = (QL, q0,L,Σ, δL, FL) where the states
are the sets w−1L = {x ∈ Σ∗ |wx ∈ L}, for any w ∈ Σ∗, the initial state is
q0,L = ε−1L = L, the final states are the sets w−1L with w ∈ L and the transition
function δL is defined by δL(w

−1L, a) = (wa)−1 L for all w ∈ Σ∗ and all a ∈ Σ. By
construction, AL is accessible and the set of accepted words is exactly L. It is well
known that AL is finite if and only if L is regular. The trim minimal automaton of
a language is the minimal automaton of this language from which the only possible
sink state has been removed, i.e. we keep only the coaccessible states. In this case,
the transition function can possibly be a partial function.

If L is the language recognized by a deterministic automatonA = (Q, q0,Σ, δ, F ),
Lq := {w ∈ Σ∗ | δ(q, w) ∈ F} is the language of the words accepted from the state
q in A and uq(n) (resp. vq(n)) is the number of words of length n (resp. less or
equal to n) in Lq. The maps uq : N → N are called the complexity functions of A.
The language L is polynomial if uq0(n) is O(nk) for some non-negative integer k

and exponential if uq0(n) is Ω(θn) for some θ > 1, i.e., if there exists a constant
c > 0 such that uq0(n) ≥ c θn for infinitely many non-negative integers n.
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3. Generalized Abstract Numeration Systems

If L is a language over a totally ordered alphabet (Σ, <), the genealogical (or
radix) ordering <gen over L induced by < is defined as follows. The words of the
language are ordered by increasing length and for words of the same length, one
uses the lexicographical ordering induced by <. Recall that for two words x, y ∈ Σ∗

of same length, x is lexicographically less than y if there exist w, x′, y′ ∈ Σ∗ and
a, b ∈ Σ such that x = wax′, y = wby′ and a < b. The lexicographical ordering is
naturally extended to infinite words.

Definition 1. A (generalized) abstract numeration system is a triple S = (L,Σ, < )
where L is an infinite language over a totally ordered alphabet (Σ, <). Enumerating
the words of L using the genealogical order <gen induced by the ordering < on Σ
gives a one-to-one correspondence repS : N → L mapping the non-negative integer
n onto the (n + 1)st word in L. In particular, 0 is sent onto the first word in the
genealogically ordered language L. The reciprocal map is denoted by valS : L → N

and for all w ∈ L, valS(w) is called the S-numerical value of w.

Compare with [LR01], we do not ask the language of the numeration to be
regular. It is the reason for the introduction of the terminology “generalized”.

Example 2. Let Σ = {a, b}, L = {w ∈ Σ∗ : ||w|a − |w|b| ≤ 1}, and S = (L,Σ, a <

b). The minimal automaton of L is given in Figure 1. The first words of the L are

ε, a, b, ab, ba, aab, aba, abb, baa, bab, bba, aabb, abab, abba, baab, . . .

0 1 2 3-1-2-3
a a a

bbbbbb

a a a a

bb

a

Figure 1. The minimal automaton of L.

The following proposition is a result from [LR02] extended to any language. This
shows how to compute the numerical value of a word in the numeration language.

Proposition 3. Let S = (L,Σ, <) be a (generalized) abstract numeration system
and let A = (Q, q0,Σ, δ, F ) be a deterministic automaton recognizing L. If w ∈ L,
then we have

valS(w) = vq0(|w| − 1) +

|w|−1
∑

i=0

∑

a<w[i]

uq0·w[0,i−1]a(|w| − i− 1).

4. Languages L with Uncountable Adh(L)

The notion of adherence has been introduced in [Niv78] and has been extensively
studied in [BN80].

Definition 4. Let L be a language over an alphabet Σ. The adherence of L,
denoted by Adh(L), is the set of infinite words over Σ whose prefixes are prefixes
of words in L:

Adh(L) = {w ∈ Σω | Pref(w) ⊆ Pref(L)}.
Notice that Adh(L) is empty if and only if L is finite.
For the usual topology on Σ∗∪Σω, the closure L̄ of a language L over Σ satisfies

the equality: L̄ = L ∩ Adh(L).
The following lemma gives a characterization of the adherence of a language

[BN80]. We give a proof for the sake of completeness.



4 E. CHARLIER, M. LE GONIDEC, AND M. RIGO

Lemma 5. Let L be a language over an alphabet Σ. The adherence of L is the set
of infinite words over Σ that are limits of words in L:

Adh(L) = {w ∈ Σω | ∃(w(n))n≥0 ∈ LN, w(n) → w}.
Proof. Take an infinite word w in Adh(L). Then for all n ≥ 0, we have w[0, n −
1] ∈ Pref(L). Thus for all n ≥ 0, there exists a finite word z(n) ∈ Σ∗ such that
w(n) := w[0, n − 1]z(n) belongs to L. Obviously w(n) → w and w belongs to the
r.h.s. set in the statement. Conversely, take an infinite word w which is the limit
of a sequence (w(n))n≥0 of words in L. Then for all ℓ ≥ 0, there exists n ≥ 0

such that we have w[0, ℓ − 1] ∈ Pref(w(n)) ⊆ Pref(L). This shows that w belongs
to Adh(L). �

The notion of center of a language can be found in [BN80].

Definition 6. Let L be a language over an alphabet Σ. The center of L, denoted
by Center(L), is the prefix-closure of the adherence of L:

Center(L) = Pref(Adh(L)).

The next lemma gives a characterization of the center of a language [BN80].
Again we give a proof for the sake of completeness.

Lemma 7. Let L be a language over an alphabet Σ. The center of L is the set of
words which are prefixes of an infinite number of words in L:

Center(L) = {w ∈ Pref(L) | w−1L is infinite}.
Proof. Take a word w in Center(L). By defnition, there exists a infinite word z

over Σ such that wz belongs to Adh(L). Then for all n ≥ 0, wz[0, n− 1] belongs
to Pref(L). Thus for all n ≥ 0, there exists a finite word y(n) ∈ Σ∗ such that
w(n) := wz[0, n − 1]y(n) belongs to L, and there are infinitely many such words
w(n). Conversely, let w be a prefix of infinitely many words in L. There exists
a letter a ∈ Σ such that wa is a prefix of infinitely many words in L. Iterating
this argument, there exists a sequence (an)n≥0 of letters in Σ such that wa0 · · · an
belongs to Pref(L) for all n ≥ 0. This implies that wa0a1 · · · belongs to Adh(L).
Hence w belongs to Center(L). �

Definition 8. If L is a language over an alphabet Σ,

L∞ = {w ∈ Σω | ∃∞n ∈ N, w[0, n− 1] ∈ L}
denotes the set of infinite words over Σ having infinitely many prefixes in L.

Again, observe that L∞ is empty if and only if L is finite.
The following lemma is obvious.

Lemma 9. For any language L, we have L∞ ⊆ Adh(L). Moreover, if L is a
prefix-closed language, then L∞ = Adh(L).

Let us recall two results from [LR02].

Proposition 10. Let L be a regular language. The set Adh(L) is uncountably
infinite if and only if, in any deterministic finite automaton accepting L, there
exist at least two distinct cycles (p1, . . . , pr, p1) and (q1, . . . , qs, q1) where r, s ≥ 2,
starting from the same accessible and coaccessible state p1 = q1.

Proposition 11. Let L be a regular language. The set L∞ is uncountably infinite
if and only if, in any deterministic finite automaton accepting L, there exist at least
two distinct cycles (p1, . . . , pr, p1) and (q1, . . . , qs, q1) where r, s ≥ 2, starting from
the same accessible state p1 = q1 and such that each of them contains at least a
final state.
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It is well known [SYZS92] that the set of regular languages splits into two parts:
the set of exponential languages and the set of polynomial languages. The polyno-
mial regular languages over an alphabet Σ are exactly those that are finite union
of languages of the form

(1) x1y
∗
1x2y

∗
2 · · ·xky

∗
kxk+1

where k ≥ 0 and the xi’s and the yi’s are finite words over Σ. Consequently, in
view of Proposition 10, the following result is obvious.

Corollary 12. If L is a regular language, then the following assertions are equiv-
alent:

• Adh(L) is an uncountable set;
• L is exponential;
• Pref(L) is exponential.

If the considered language is not regular, then only the sufficient conditions of
Proposition 10 and Proposition 11 hold true. They can be reexpressed as follows.

Proposition 13. If, in any deterministic automaton accepting a language L, there
exist at least two distinct cycles (p1, . . . , pr, p1) and (q1, . . . , qs, q1) where r, s ≥ 2,
starting from the same accessible and coaccessible state p1 = q1, then the set Adh(L)
is uncountably infinite and L is exponential.

Proposition 14. If, in any deterministic automaton accepting a language L, there
exist at least two distinct cycles (p1, . . . , pr, p1) and (q1, . . . , qs, q1) where r, s ≥ 2,
starting from the same accessible state p1 = q1 and such that each of them contains
at least a final state, then the set L∞ is uncountably infinite and L is exponential.

There exist non-regular exponential languages with an uncountable associated
set L∞, and thus also with an uncountable set Adh(L), that are recognized by
a deterministic automaton without distinct cycles satisfying condition of Proposi-
tion 13. For instance, see Example 43 of Section 6 about the 3

2 -number system.
Notice that the corresponding trim minimal automaton depicted in Figure 6 has an
infinite number of final states. Note that, by considering automata having a finite
set of final states, we get back the necessary condition of Proposition 11.

Proposition 15. Let L be a language recognized by a deterministic automaton A
having a finite set of final states. The set L∞ is uncountably infinite if and only if
there exist in A at least two distinct cycles (p1, . . . , pr, p1) and (q1, . . . , qs, q1) where
r, s ≥ 2, starting from the same accessible state p1 = q1 and such that each of them
contains at least a final state.

Proof. In view of Proposition 13, we only have to show that the condition is neces-
sary. Since there is only a finite number of final states, if w ∈ L∞, then there exist
a final state f and infinitely many n such that q0 · w[0, n − 1] = f . If A does not
contain such distinct cycles, then this implies that any word in L∞ is of the form
xyω, where x, y are finite words. Since there is a countable number of such words,
we would get that L∞ is a countable set. The conclusion follows. �

Corollary 16. Let L be a language recognized by a deterministic automaton A
having a finite set of final states. If L∞ is an uncountable set, then L is exponential.

Remark 17. Any deterministic automaton recognizing a non-regular prefix-closed
language has an infinite number of final states. Indeed, in such an automaton, all
coaccessible states are final.

There exist exponential (and prefix-closed) languages L with a countable, and
even finite, set Adh(L). We give an example of such a language.
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Example 18. Let L = {w ∈ {a, b}∗ | ∃u ∈ {a, b}∗ : w = a⌊
|w|
2

⌋u}. We have

uL(n) =

{

2
n
2 if n ≡ 0 mod 2,

2
n+1

2 if n ≡ 1 mod 2

and Adh(L) = L∞ = {aω}. The minimal automaton of L is depicted in Figure 2.

a a a

b b b b

a, ba, ba, ba, b

a, b

a

a, b

Figure 2. The minimal automaton of L.

5. Representation of Real Numbers

In the framework of [LR02], a real number is represented in an abstract numer-
ation system built on a regular language L as a limit of a sequence of words of L.
Observe that in this context, thanks to Lemma 5, the set of possible representations
of the considered reals is Adh(L). Therefore, one could consider abstract numera-
tion systems built on the prefix-language instead of the one built on the language
itself, see Remark 20 and Remark 21. This point of view is relevant if we compare
this with the framework of the classical integer base b ≥ 2 numeration systems.
Indeed, in these systems, the numeration language is

Lb := {1, 2, . . . , b− 1}{0, 1, . . . , b− 1}∗,
which is of course a prefix-closed language. Notice that this is also the case for non-
standard numeration systems like β-numeration systems and substitutive numera-
tion systems. Adopting this new framework, we consider only abstract numeration
systems built on prefix-closed languages. Therefore, to represent real numbers,
we do not distinguish anymore abstract numeration systems built on two distinct
languages L and M such that Pref(L) = Pref(M).

Let S = (L,Σ, <) be a generalized abstract numeration system built on a prefix-
closed language L. Let A = (Q, q0,Σ, δ, F ) be an accessible deterministic automa-
ton recognizing L. We make the following assumptions:

Hypotheses.

(H1) The set Adh(L) is uncountable;

(H2) ∀w ∈ Σ∗, ∃rw ≥ 0: limn→+∞
uq0·w(n−|w|)

vq0 (n)
= rw ;

(H3) ∀w ∈ Adh(L), limℓ→+∞ rw[0,ℓ−1] = 0.

Observe that for all w 6∈ Center(L), we have rw = 0.
Recall that, since L is a prefix-closed language, we have Adh(L) = L∞, see

Lemma 9.

Notation. We set r0 := rε and

s0 := 1− r0 = lim
n→+∞

vq0(n− 1)

vq0(n)
.

Remark 19. In [LR02] are considered regular languages L with uncountably infi-
nite Adh(L) such that, for each state q of a DFA recognizing L, either Lq is finite, or
uq(n) ∼ Pq(n)θ

n
q where Pq ∈ R[X ] and θq ≥ 1. One can notice that such languages
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satisfy the hypotheses (H1), (H2) and (H3) above. Indeed, for all states q and all
ℓ ≥ 0, it can be shown that

lim
n→+∞

uq(n− ℓ)

vq0 (n)
=

aq (θq0 − 1)

θℓ+1
q0

where θq0 > 1 and aq := limn→+∞
uq(n)
uq0

(n) . Since Q is finite, this is sufficient to

verify our assumptions. Notice also that for the integer base b numeration system,
the three hypotheses are trivially satisfied.

We shall represent real numbers by infinite words w of Adh(L) by considering
the corresponding limit

(2) lim
n→+∞

valS(w[0, n− 1])

vq0(n)
.

Our aim is to show that for all w ∈ Adh(L), the limit (2) exists, see Proposi-
tion 26.

Remark 20. If the considered abstract numeration system is built on a language
that is not prefix-closed, we cannot guarantee that the limit (2) exists. Consider
for instance the abstract numeration system built on the language L of Example 2,
which is not prefix-closed. The sequences ((ab)n)n≥0 and ((ab)na)n≥0 of words
in L converge to the same infinite word (ab)ω, but the corresponding numerical
sequences do not converge to the same real number. More precisely, using notation
of Example 2, we have

(3) lim
n→+∞

valS((ab)
n)

v0(2n)
=

3

4
and lim

n→+∞

valS((ab)
na)

v0(2n+ 1)
=

3

5
,

so that the limit

lim
n→+∞

valS((ab)
ω [0, n− 1])

v0(n)

does not exist. This essentially comes from the staircase behaviour of (u0(n))n≥0.
We have that for all n ≥ 0,

u0(n) =

{
(

n
n
2

)

if n ≡ 0 mod 2,

2
(

n
n−1

2

)

if n ≡ 1 mod 2.

This implies in particular that limn→+∞
v0(n−1)
v0(n)

does not exist. Indeed, using

Stirling formula and [Bou07, Ch. V.4, Prop. 2], we have

(4) v0(2n) ∼
8

3
√
π
n− 1

2 4n and v0(2n− 1) ∼ 5

3
√
π
n− 1

2 4n (n → +∞).

Hence,

lim
n→+∞

v0(2n− 1)

v0(2n)
=

5

8
and lim

n→+∞

v0(2n)

v0(2n+ 1)
=

2

5
.

By Proposition 3, we obtain that for all n ≥ 1,

valS((ab)
n)

v0(2n)
=

v0(2n− 1)

v0(2n)
+

∑n−1
i=0 u2(2i)

v0(2n)
,

valS((ab)
na)

v0(2n+ 1)
=

v0(2n)

v0(2n+ 1)
+

∑n−1
i=0 u2(2i+ 1)

v0(2n+ 1)
.
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Using again Stirling formula, we get

u2(2i) =

(

2i

i− 1

)

∼ 1√
π
i−

1
2 4i (i → +∞),

u2(2i+ 1) =

(

2i+ 1

i

)

+

(

2i+ 1

i− 1

)

∼ 4√
π
i−

1
2 4i (i → +∞).

Therefore, by [Bou07, Ch. V.4, Prop. 2] and in view (4), it follows that

lim
n→+∞

∑n−1
i=0 u2(2i)

v0(2n)
=

1

8
and lim

n→+∞

∑n−1
i=0 u2(2i+ 1)

v0(2n+ 1)
=

1

5
.

and we obtain the limits of (3).

Remark 21. Considering prefix-closed languages not only avoids numerical con-
vergence problems as in Remark 20 but also permits to get rid of problems arising
from languages L such that there is infinitely many n for which L ∩ Σn = ∅ as
discussed in [LR02, Remark 4].

Definition 22. If w ∈ Adh(L) is such that limn→+∞
valS(w[0,n−1])

vq0 (n)
= x, we say

that w is an S-representation of x.

Example 23. Consider the abstract numeration system built on the Dyck language
that will be described in Example 42. Table 1 gives some numerical approximations.

We will see further that limn→+∞
valS((aab)ω[0,n−1])

vq0 (n)
= 39

49 = 0.79592 · · · .

w valS(w) vq0(|w|) valS(w)
vq0 (|w|)

a 1 2 0.50000
aa 2 4 0.50000
aab 5 7 0.71429
aaba 9 13 0.69231
aabaa 17 23 0.73913
aabaab 32 43 0.74419
aabaaba 60 78 0.76923
aabaabaa 112 148 0.75676
aabaabaab 213 274 0.77737
aabaabaaba 404 526 0.76806
aabaabaabaa 771 988 0.78036
aabaabaabaab 1479 1912 0.77354
aabaabaabaaba 2841 3628 0.78308
aabaabaabaabaa 5486 7060 0.77705
aabaabaabaabaab 10591 13495 0.78481
...

...
...

...
Table 1. Some numerical approximations.

Notice that for all w ∈ Adh(L), we have valS(w[0, n−1]) ∈ [vq0(n−1), vq0(n)−1]
for all n ≥ 1. Therefore, the represented real numbers x must belong to the interval
[s0, 1].

Like in [LR02], we divide [s0, 1] into subintervals Iy , for all prefixes y of infinitely
many words in L. For each ℓ ≥ 0, Center(L) ∩ Σℓ is the set of words of length ℓ

which are prefixes of infinitely many words of L. For each y ∈ Center(L) ∩ Σℓ and
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20 40 60 80 100

0.780

0.785

0.790

0.795

Figure 3. The first 100 values of valS((aab)
ω [0,n−1])

vq0 (n)
.

n ≥ ℓ ≥ 0, define

αy,n :=
vq0(n− 1)

vq0 (n)
+

∑

x<y

x∈Center(L)∩Σℓ

uq0·x(n− ℓ)

vq0(n)

and

Iy,n :=

[

αy,n, αy,n +
uq0·y(n− ℓ)

vq0 (n)

]

.

Then, in view of Hypothesis (H2), for all y ∈ Center(L) ∩ Σℓ, we can define the
limit interval

Iy := lim
n→+∞

Iy,n = [αy, αy + ry ],

where

αy := lim
n→+∞

αy,n = s0 +
∑

x<y

x∈Center(L)∩Σℓ

rx.

Moreover, we set Iy := ∅ for all y ∈ L \Center(L). From [LR02], we know that for
all ℓ ≥ 0, we have

[s0, 1] =
⋃

y∈Center(L)∩Σℓ

Iy

and for all y, z ∈ Σ∗,

(5) Iyz ⊆ Iy .

More precisely, if a1, . . . , ak are the letters of Σ and if a1 < · · · < ak, then for all
y ∈ Center(L) and all j ∈ [[1, k]] such that yaj ∈ Center(L), one has

(6) Iyaj
=

[

αy +

j−1
∑

i=1

ryai
, αy +

j
∑

i=1

ryai

]

.

Remark 24. Let y, z be words in Σ∗ such that yz ∈ L. If y is prefix of infinitely
many words in L and if |z| is large enough so that every word of length |yz| has a
prefix in Center(L) ∩ Σ|y|, then we have
(7)

valS(yz) = vq0(|yz|−1)+
∑

x<y

x∈Center(L)∩Σ|y|

uq0·x(|z|)+
|yz|−1
∑

i=|y|

∑

x<yz[0,i]
|x|=i+1

uq0·x(|yz|−i−1).
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Lemma 25. Let w ∈ Adh(L). For all ℓ ≥ 0, w[0, ℓ− 1] belongs to Center(L) ∩ Σℓ

and the limit

lim
ℓ→+∞

αw[0,ℓ−1]

exists.

Proof. The first part is obvious since w[0, ℓ − 1] is a prefix of w[0, n − 1] for any
n ≥ ℓ, see Lemma 7. For the second part, on the one hand, observe that (5) implies
that for all ℓ ≥ 1, αw[0,ℓ−1] ≤ αw[0,ℓ]. On the other hand, we have also that for
all ℓ ≥ 1, αw[0,ℓ−1] ≤ 1. Hence, (αw[0,ℓ−1])ℓ≥1 is a bounded and non-decreasing
sequence, so it must converge. �

Notation. For all w ∈ Adh(L), αw := limℓ→+∞ αw[0,ℓ−1].

Note that we have αw ≥ αw[0,ℓ−1] for all ℓ ≥ 1.

Proposition 26. For all w ∈ Adh(L), we have

lim
n→+∞

valS(w[0, n− 1])

vq0 (n)
= αw.

Proof. Let w ∈ Adh(L). For all ℓ and n such that n ≥ ℓ ≥ 1, we have

(8) αw[0,ℓ−1],n ≤ valS(w[0, n− 1])

vq0(n)
< αw[0,ℓ−1],n +

uq0·w[0,ℓ−1](n− ℓ)

vq0(n)
.

Let ε > 0. For all ℓ ≥ 1, there exists N(ℓ) ≥ ℓ such that for all n ≥ N(ℓ), we have

αw[0,ℓ−1] −
ε

2
<

valS(w[0, n− 1])

vq0(n)
< αw[0,ℓ−1] + rw[0,ℓ−1] +

ε

2
.

By Hypothesis (H3) and Lemma 25, there exists also k ∈ N such that for all ℓ ≥ k,

rw[0,ℓ−1] <
ε

2
and 0 < αw − αw[0,ℓ−1] <

ε

2
.

It follows that for all n ≥ N(k),

αw − ε < αw[0,k−1] −
ε

2
<

valS(w[0, n− 1])

vq0(n)
< αw + ε

and the conclusion follows. �

The preceding proposition allows us to define the S-value of an infinite word
in Adh(L).

Definition 27. The application valS : Adh(L) → [s0, 1] : w 7→ αw is called the
S-value function.

Proposition 28. If w, z ∈ Adh(L) are such that w is lexicographically less than z,
then valS(w) ≤ valS(z).

Proof. Let w, z ∈ Adh(L). We deduce from (6) that if k := inf{i ∈ N |w[i] < z[i]},
then ∀ℓ ≥ k, we have αw[0,ℓ−1] ≤ αz[0,ℓ−1] and the proposition holds. �

Recall now a result from [BB97].

Lemma 29. If K is an infinite language over a totally ordered alphabet, then
Adh(K) contains a minimal element for the lexicographical ordering.

This leads to the following definition.

Definition 30. For all y ∈ Center(L), my (resp. My) denotes the least (resp.
greater) word in Adh(L) in the lexicographical ordering having y as a prefix.
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Notice that for all y ∈ Center(L), we have my = wv (resp. My = wu), where u

(resp. v) is the minimal (resp. maximal) word in Adh(y−1L) for the lexicographical
ordering.

Example 31. Continuing Example 23, we have maab = aabaω and Maab =
aabb(ab)ω.

Lemma 32. For all y ∈ Center(L), one has

valS(my) = αy and valS(My) = αy + ry.

Proof. Let y ∈ Center(L). From (6), we get that for all ℓ ≥ |y|, αmy [0,ℓ−1] = αy

and αMy [0,ℓ−1] + rMy [0,ℓ−1] = αy + ry. Therefore, we obtain that for all ℓ ≥ |y|,
αy ≤ valS(my) ≤ αy + rmy [0,ℓ−1],

αy + ry − rMy [0,ℓ−1] ≤ valS(My) ≤ αy + ry .

We conclude by using Hypothesis (H3). �

Proposition 33. The S-value function is uniformly continuous.

Proof. Let w, z ∈ Adh(L). Assume that d(w, z) = 2−ℓ. Then w[0, ℓ−1] = z[0, ℓ−1]
and, in view of Lemma 32, the S-values valS(w) and valS(z) belong to Iw[0,ℓ−1].
Thus | valS(w) − valS(z)| ≤ rw[0,ℓ−1] → 0 as ℓ → +∞ by Hypothesis (H3). The
conclusion follows. �

Using Lemma 32, we are able to give an expresssion of the S-value of a word in
Adh(L).

Proposition 34. For all w ∈ Adh(L),

valS(w) = s0 +

+∞
∑

i=0

∑

a<w[i]

rw[0,i−1]a.

Proof. Let w ∈ Adh(L). Using (6), we get that for all n ≥ 1,

αw[0,n−1] = s0 +
∑

x<w[0,n−1]
x∈Center(L)∩Σn

rx

= s0 +

n−1
∑

i=0

∑

a<w[i]

∑

|y|=n−i−1

rw[0,i−1]ay

= s0 +
n−1
∑

i=0

∑

a<w[i]

rw[0,i−1]a.

Letting n tend to infinity in the latter equality, we get the expected result. �

The following proposition links together the framework of [LR02], where are
mainly considered converging sequences of words, and the framework that has been
developed in the present section to represent real numbers.

Proposition 35. Let K be a language over a totally ordered alphabet (Σ, <) such
that its prefix-closure Pref(K) satisfies Hypotheses (H1), (H2), and (H3), and
let S = (Pref(K),Σ, <) be the abstract numeration system built on Pref(K). If
(w(n))n≥0 ∈ KN is a sequence of words such that w(n) → w, then we have

lim
n→+∞

valS(w
(n))

vq0(|w(n)|) = αw.
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Proof. Let (w(n))n≥0 ∈ KN be a sequence of words such that w(n) → w. Thanks
to Lemma 5, this implies that Pref(w) ⊆ Pref(K). For any ℓ ≥ 1, there exists
N(ℓ) ≥ ℓ such that for all n ≥ N(ℓ), w(n)[0, ℓ − 1] = w[0, ℓ − 1]. Then in view of
(7) and (8), for all ℓ ≥ 1 and for all n ≥ N(ℓ), we have

∣

∣

∣

∣

∣

valS (w[0, |wn| − 1])

vq0(|wn|) − valS
(

w(n)
)

vq0(|wn|)

∣

∣

∣

∣

∣

≤ uq0·w[0,ℓ−1](|wn| − ℓ)

vq0(|wn|) .

Let ε > 0. By Hypothesis (H2), for all ℓ ≥ 1, there exists M(ℓ) ≥ ℓ such that for
all n ≥ M(ℓ),

uq0·w[0,ℓ−1](|wn| − ℓ)

vq0 (|wn|) < rw[0,ℓ−1] +
ε

2
.

By Hypothesis (H3), there exists k ∈ N such that for all ℓ ≥ k, rw[0,ℓ−1] <
ε
2 . Then

for all n ≥ max(N(k),M(k)), we have
∣

∣

∣

∣

∣

valS (w[0, |wn| − 1])

vq0(|wn|) − valS
(

w(n)
)

vq0(|wn|)

∣

∣

∣

∣

∣

< ε.

�

To conclude this section, we recall some results from [BB97] interesting for our
study.

Proposition 36. If K is an infinite algebraic language over a totally ordered alpha-
bet, then the minimal word of Adh(K) is ultimately periodic and can be effectively
computed.

Definition 37. Let K be a language over a totally ordered alphabet. The minimal
language of K, denoted by min(K) is the language of the smallest words of each
length for the lexicographical ordering:

min(K) = {w ∈ K | ∀z ∈ K, |w| = |z| ⇒ w <lex z}.
Proposition 38. If K is an infinite language such that K = Center(K), then we
have min(K) = Pref(mε).

Corollary 39. If K is an infinite algebraic language such that K = Center(K),
then Pref(mε) is a regular language.

Of course, all these results can be adapted to the case of the maximal word of
the adherence of a language.

Transposed to the context of this paper, these results can be related to synctatical
properties of the endpoints of the intervals Iy , for y ∈ Center(L).

Corollary 40. Assume that the language L is algebraic. Then for all y ∈ Center(L),
the infinite words my and My are ultimately periodic.

Notice that in general, there exist ultimately periodic representations that are
not endpoints of any interval Iy , where y ∈ Center(L). For instance, in the integer
base 10 numeration system, we have that the representation of 1

3 is 0.33333 · · ·
and 1

3 is not the endpoint of any interval of the form
[

k
10ℓ

, k+1
10ℓ

]

, where ℓ ≥ 1 and

k ∈ [[0, 10ℓ − 1]].

6. Applications

In this section, we apply our techniques to three examples to represent real
numbers in situations that were not settled in [LR02]. The first one shows how it
can be easier to consider the prefix-closure of the language instead of the language
itself.
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Example 41. Consider again the language L = {w ∈ {a, b}∗ | ||w|a − |w|b| ≤ 1}
of Example 2. This language is not prefix-closed. We have Pref(L) = {a, b}∗,
which is of course a regular language. For the abstract numeration system S =
(Pref(L), {a, b}, a < b), the hypotheses (H1), (H2) and (H3) are trivially satisfied.
More precisely, for all w ∈ {a, b}∗, we have rw = 2−|w|−1. Using the same notation
as in Example 2, we have

lim
n→+∞

v0(n− 1)

v0(n)
=

1

2
.

Therefore, we represent the interval [ 12 , 1]. For all ℓ ≥ 1, Center(L) ∩ Σℓ = {a, b}ℓ
and the intervals corresponding to words of length ℓ are exactly the intervals
[

k
2ℓ
, k+1

2ℓ

]

, for any k ∈ [[0, 2ℓ − 1]].

The second example illustrates the case of a non-regular language with a non-
regular prefix-language.

Example 42. The Dyck language is the language

D := {w ∈ {a, b}∗| |w|a = |w|b and ∀u ∈ Pref(w), |u|b ≥ |u|a}
of the well-parenthesized words over two letters. Its (infinite) minimal automaton
AD = {Q, q0, {a, b}, δ, {q0}) is represented in Figure 4. For each m ≥ 0, define

dm = (am)
−1

D = {w ∈ {a, b}∗| amw ∈ D} and d−1 = ∅, so that Q = {dm |m ≥
0} ∪ {d−1}. Notice that in Figure 4, the states dm are simply denoted by m.

0 1 2 3

-1

a

b
b

a

b

a

b

a, b

a

b

Figure 4. The minimal automaton of D.

It has been proved in [LG08] that for all m ≥ 0,

udm
(n) =

{

0 if n < m or m 6≡ n mod 2,
m+1
n+1

(

n+1
n−m

2

)

if n ≥ m and m ≡ n mod 2.

By Stirling’s formula, we get that for all m ≥ 0,

ud2m
(2n) ∼ 2m+ 1√

π
n− 3

2 4n (n → +∞),(9)

ud2m+1
(2n+ 1) ∼ 2(2m+ 2)√

π
n− 3

2 4n (n → +∞).(10)

The Dyck language is not prefix-closed. Hence we consider the abstract numer-
ation system S = (P, {a, b}, a < b) built on the language

P := Pref(D) = {w ∈ {a, b}∗| ∀u ∈ Pref(w), |u|b ≥ |u|a}
of the prefixes of the Dyck words. The (infinite) minimal automaton of P is AP =
(Q, q0, {a, b}, δ, F ). It is represented in Figure 5. Since the minimal automaton
AP of P and the minimal automaton AD of D are nearly the same, we rename
the states of AP by pm := dm. Hence the udm

’s denotes the complexity functions
of AD and the upm

’s denotes the complexity functions of AP . By Proposition 13,
Adh(P ) = Adh(D) is uncountable and Hypothesis (H1) is satisfied.
Observe that for all m ≥ 0,

upm
(n) =

{

2n if n ≤ m,

2upm
(n− 1)− udm

(n− 1) if n > m.
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0 1 2 3

-1

a

b
b

a

b

a

b

a, b

a

b

Figure 5. The minimal automaton of Pref(D).

Hence we get that for all m ≥ 0,

upm
(n) =

{

2n if n ≤ m,

2n −∑n−1
i=m udm

(i) 2n−i−1 if n > m.

We have that for all m ≥ 0,

upm
(2n) ∼ m+ 1√

π
n− 1

2 4n (n → +∞),(11)

upm
(2n+ 1) ∼ vpm

(2n) ∼ 2(m+ 1)√
π

n− 1
2 4n (n → +∞),(12)

vpm
(2n+ 1) ∼ 4(m+ 1)√

π
n− 1

2 4n (n → +∞).(13)

We prove only (11) since the same techniques can be applied to obtain (12) and
(13). Let us first show that for all m ≥ 0, we have

(14)

+∞
∑

i=m

ud2m
(2i) 4−i = 2 and

+∞
∑

i=m

ud2m+1
(2i+ 1) 4−i = 4.

We compute only the first sum, the second one can be treated in similar way. In
view of (9) and [Bou07, Ch. V.4, Prop. 2], for all m ≥ 0, we have

+∞
∑

i=n

ud2m
(2i)4−i ∼ 2m+ 1√

π

+∞
∑

i=n

i−
3
2 (n → +∞)

and the series
+∞
∑

i=m

ud2m
(2i)4−i

is convergent. Consequently, for all m ≥ 0, the series

+∞
∑

i=m

ud2m
(2i) zi

is uniformly convergent over {z ∈ C | |z| ≤ 1
4} because for all q ≥ p ≥ m, we have

sup
|z|≤ 1

4

∣

∣

∣

∣

∣

∣

q
∑

i=p

ud2m
(2i) zi

∣

∣

∣

∣

∣

∣

≤
q
∑

i=p

ud2m
(2i)4−i.

Then observe that for all m ≥ 0 and i ≥ m such that i ≡ m mod 2, we have

udm
(i) = Card{w(0)bw(1)b · · · bw(m) | ∀j ∈ [[0,m]], w(j) ∈ D,

m
∑

j=0

|w(j)| = i−m}

=
∑

ℓ0+···+ℓm= i−m
2





m
∏

j=0

Cℓj



 =
[

z
i−m

2

]

(

+∞
∑

n=0

Cn zn
)m+1
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where Cn := ud0
(2n) = 1

2n+1

(

2n+1
n

)

is the nth Catalan number [GKP94] and [zn]f
is the coefficient of zn in the power series f . It is well known that

+∞
∑

n=0

Cn zn =
1−

√
1− 4z

2z

for |z| < 1
4 . Hence we get that for all m ≥ 0,

+∞
∑

i=m

ud2m
(2i) zi = zm

(

+∞
∑

n=0

Cn zn
)2m+1

=
(1−

√
1− 4z)

2m+1

2 · 4mzm+1

Therefore, we obtain the desired first sum of (14) by letting z tend to 1
4 in the

corresponding formula. We now come back on (11). For all 0 ≤ m < n, we have

up2m
(2n) = 4n − 1

2

n−1
∑

i=m

ud2m
(2i) 4n−i =

1

2
4n

+∞
∑

i=n

ud2m
(2i) 4−i

and

up2m+1
(2n) = 4n − 1

4

n−1
∑

i=m

ud2m+1
(2i+ 1) 4n−i =

1

4
4n

+∞
∑

i=n

ud2m+1
(2i+ 1) 4−i.

Notice that
∑+∞

i=n i−
3
2 ∼ 2n− 1

2 . Finally we obtain that for all m ≥ 0,

up2m
(2n) ∼ 2m+ 1√

π
n− 1

2 4n and up2m+1
(2n) ∼ 2m+ 2√

π
n− 1

2 4n,

proving (11).
Let us now verify that the language P satisfies our three hypotheses. From the

previous reasoning, we get that for all m ≥ 0 and all ℓ ≥ 0,

lim
n→+∞

upm
(n− ℓ)

vp0
(n)

= (m+ 1) 2−ℓ−1.

For all w ∈ P , rw := (mw + 1) 2−|w|−1 where mw is defined by p0 · w = pmw
and

for all w 6∈ P , rw := 0. Hence Hypothesis (H2) is satisfied. Let now w ∈ Adh(D).
Observe that mw[0,ℓ−1] ≤ ℓ for all ℓ ≥ 1. Therefore, for all w ∈ Adh(D), we have

rw[0,ℓ−1] ≤ (ℓ+ 1)2−ℓ−1 → 0 as ℓ → ∞ and Hypothesis (H3) is satisfied.
Since

lim
n→+∞

vp0
(n− 1)

vp0
(n)

=
1

2
,

we represent the interval [ 12 , 1]. We have Center(D) ∩ Σℓ = P ∩ {a, b}ℓ. Any word

of P begins with a, so that Ia = [ 12 , 1]. We have Center(D) ∩Σ2 = {aa, ab} and Ia
is partitioned into two subintervals:

Iaa =

[

1

2
,
7

8

]

and Iab =

[

7

8
, 1

]

Then Center(D) ∩ Σ3 = {aaa, aab, aba}. Thus Iab = Iaba and Iaa is partitioned
into two new subintervals

Iaaa =

[

1

2
,
3

4

]

, Iaab =

[

3

4
,
7

8

]

, Iaba =

[

7

8
, 1

]

.

Then Center(D) ∩ Σ4 = {aaaa, aaab, aaba, aabb, , abaa, abab} and we get

Iaaaa =

[

1

2
,
21

32

]

, Iaaab =

[

21

32
,
3

4

]

, Iaaba =

[

3

4
,
27

32

]

,

Iaabb =

[

27

32
,
7

8

]

, Iabaa =

[

7

8
,
31

32

]

, Iabab =

[

31

32
, 1

]

.
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As stated by Corollary 40, since the languageD is algebraic, for all y ∈ Center(D),
the representations of the endpoints of the interval Iy are ultimately periodic.
Let Qx denotes the set of all the representations of x. We have Q 1

2
= {aω}

and Q1 = {(ab)ω}. Now let x ∈ (12 , 1) be an endpoint of some interval, i.e.,

x = inf Iw = sup Iz for some w, z ∈ Center(D) ∩ Σℓ with ℓ ≥ 0. We have
Qx = {w̄(ab)ω, zaω}, where w̄ is the smallest Dyck word having w as a prefix.

The third example illustrates the case of a generalized abstract numeration sys-
tems generating endpoints of the intervals Iy having no ultimately periodic S-
representations. It also shows that our methods for representing reals generalize
the ones involved to represent reals in the 3

2 -number system and by extension the
rational base number systems as well.

Example 43. Consider the language L := L 3
2
recognized by the deterministic

automaton A = (N ∪ {−1}, 0, {0, 1, 2}, δ,N) where the transition function δ is de-
fined as follows: δ(n, a) = 1

2 (3n + a) if n ∈ N and a ∈ {0, 1, 2} are such that
1
2 (3n + a) ∈ N and δ(n, a) = −1 otherwise. This language has been introduced
and studied in [AFS08]. In particular, it has been shown that the automaton A is
the minimal automaton of L, that L is a non-algebraic prefix-closed language and
that Adh(L) is uncountable. Moreover, no element of Adh(L) is ultimately peri-
odic. The corresponding trim minimal automaton is depicted in Figure 6, where
all states are final.

0

1

2

3 4

5 6 7

8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23 24 25 26

2

1

0 2

1
0 2

1
0 2

1

0 2 1 0 2 1

0 2 1 0 2 1 0 2 1

Figure 6. First levels of the trim minimal automaton of L 3
2
.

Let (Gn)n≥0 be the sequence of integers defined by:

G0 = 1 and ∀n ∈ N, Gn+1 :=

⌈

3

2
Gn

⌉

.

From [AFS08], we find

u0(0) = 1 and ∀n ∈ N, u0(n+ 1) = Gn+1 −Gn.
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It has been shown in [AFS08] that for all n ≥ 0, Gn = ⌊K
(

3
2

)n⌋, where K :=
K(3) = 1.6222705 · · · is the constant discussed in [OW91, HH97, Ste03]. Consider
now the abstract numeration system S = (L, {0, 1, 2}, 0 < 1 < 2) built on this
language. From [AFS08], we know that for all w ∈ L,

valS(w) =
1

2

|w|−1
∑

i=0

w[i]

(

2

3

)|w|−1−i

.

Consequently, for all w ∈ Adh(L), we have

valS(w) =
1

3K

+∞
∑

i=0

w[i]

(

2

3

)i

.

Now let us verify that L satisfies Hypothesis (H2) and (H3). Recall that, for all
x ∈ L, Mx (resp. mx) denotes the maximal (resp. minimal) word in Adh(L) for
the lexicographic ordering having x as a prefix. We have that, for all x ∈ L,

rx = |Ix| = valS(Mx)− valS(mx)

=
1

3K

+∞
∑

i=|x|

(Mx[i]−mx[i])

(

2

3

)i

=
1

3K

(

2

3

)|x| +∞
∑

i=0

(Mx[i+ |x|]−mx[i + |x|])
(

2

3

)i

≥ 0

and Hypothesis (H2) is satisfied. For all x ∈ L, since Mx[i]−mx[i] ≤ 2 for all i ≥ 0,
we obtain from that

rx ≤ 2

K

(

2

3

)|x|

→ 0 as |x| → +∞.

Therefore, if w ∈ Adh(L), then limℓ→+∞ w[0, ℓ − 1] = 0 and Hypothesis (H3) is
also satisfied.

Open poblems

• Find a necessary condition on any automaton recognizing a language L so
that the corresponding ω-language Adh(L) is uncountable.

• Let D2 be the Dyck language for two kinds of parentheses. It is well-
known that for every algebraic language L, there exists a faithful sequential
mapping f such that f(Adh(D2)) = Adh(f(D2)) = Adh(L), see [BN80,
Theorem 6] for details. Let S and T be abstract numeration systems built
respectively on Pref(D2) and Pref(L). Give a mapping g such that the
following diagram commutes.

Adh(D2)
f

//

valS

��

Adh(L)

valT

��

[s0, 1] g
// [t0, 1]
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