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ABSTRACT. The homomorphism problem for relational structures istsstract way of formulating
constraint satisfaction problems (CSP) and various prodii@ database theory. The decision version
of the homomorphism problem received a lot of attention terditure; in particular, the way the
graph-theoretical structure of the variables and conganfluences the complexity of the problem
is intensively studied. Here we study the problem of enutivegall the solutions with polynomial
delay from a similar point of view. It turns out that the enuat®n problem behaves very differently
from the decision version. We give evidence that it is urijikbat a characterization result similar to
the decision version can be obtained. Nevertheless, we shotrivial cases where enumeration can
be done with polynomial delay.

1. Introduction

Constraint satisfaction problems (CSP) form a rich classigifrithmic problems with applica-
tions in many areas of computer science. We only mentiorbdatasystems, where CSPs appear
in the guise of the conjunctive query containment problechthe closely related problem of eval-
uating conjunctive queries. It has been observed by FedkVardi [14] that as abstract problems,
CSPs are homomorphism problems for relational structufdgorithms for and the complexity
of constraint satisfaction problems have been intenseigiet (e.g.[[20] 10,/4,/5]), not only for
the standard decision problems but also optimization esss{e.qg.[[3| 22, 23, 24]) and counting
versions (e.g..[6,17,/8, 13]) of CSPs.

In this paper we study the@SP enumeration problerthat is, problem of computing all solutions
for a given CSP instance. More specifically, we are intecestethe question which structural
restrictions on CSP instances guarantee tractable entiomepgoblems. “Structural restrictions”
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are restrictions on the structure induced by the constra@ntthe variables. Example of structural
restrictions is “every variable occurs in at most 5 constsdior “the constraints form an acyclic
hypergraplﬁ]." This can most easily be made precise if we view CSPs as homginson problems:
Given two relational structure&, B, decide if there is a homomorphism frointo B. Here the
elements of the structure correspond to the variables of the CSP and the elements efrieure

B correspond to the possible values. Structural restristéoe restrictions on the structuke If A is

a class of structures, th&iSP (A, —) denotes the restriction of the general CSP (or homomorphism
problem) where the “left hand side” input structuteis taken from the classl. ECSP(A, —)
denotes the corresponding enumeration problem: Given édional structure®s € A andB,
compute the set of all homomorphisms fraimto B. The enumeration problem is of particular
interest in the database context, where we are usually mpirderested in the question of whether
the answer to a query is nonempty, but want to compute aksuplthe answer. We will also briefly
discuss the correspondirsgarchproblem: Find a solution if one exists, deno®dSP (A, —).

It has been shown in [2] th&CSP(.A, —) can be solved in polynomial time if and only if the
number of solutions (that is, homomorphisms) for all instmis polynomially bounded in terms
of the input size and that this is the case if and only if thadtres in the clasgl have bounded
fractional edge cover number. However, usually we cannpeeixthe number of solutions to be
polynomial. In this case, we may ask which conditions.4muarantee thaECSP(.A, —) has a
polynomial delay algorithm. Avolynomial delay algorithnfior an enumeration problem is required
to produce the first solution in polynomial time and thenatmely compute all solutions (each
solution only once), leaving only polynomial time betwewm tsuccessive solutions. In particular,
this guarantees that the algorithms computes all soluiiopslynomial total timethat is, in time
polynomial in the input size plus output size.

It is easy to see th&CSP(.A, —) has a polynomial delay algorithm if the cladshas bounded
tree width. It is also easy to see that there are clagbed unbounded tree width such that
ECSP(A, —) has a polynomial delay algorithm. It follows from our resulbat examples of such
classes are the class of all grids or the class of all completghs with a loop on every vertex. It
is known that the decision proble@SP (.4, —) is in polynomial time if and only if the cores of the
structures ind have bounded tree width [17] (provided the arity of the ca@nsts is bounded, and
under some reasonable complexity theoretic assumptigngpre of a relational structured is a
minimal substructured’ C A such that there is a homomorphism frofrto .A’; minimality is with
respect to inclusion. It is easy to see that all cores of &istre are isomorphic. Hence we usually
speak of “the” core of a structure. Note that the core of a @idl of any other bipartite graph with
at least one edge) is a single edge, and the core of a compégik gith all loops present (and of
any other graph with a loop) is a single vertex with a loop of fte core of a complete graph with
no loops is the graph itself. As a polynomial delay algoritfiman enumeration algorithms yields
a polynomial time algorithm for the corresponding decigmwablem, it follows thattCSP (A, —)
can only have a polynomial delay algorithm if the cores ofdhrectures in4 have bounded tree
width. Unfortunately, there are examples of clasgethat have cores of bounded tree width, but
for which ECSP(.A, —) has no polynomial delay algorithm unless-ANP (see Example 3.2).

Our main algorithmic results show thBCCSP (A, —) has a polynomial delay algorithm if the
cores of the structures id have bounded tree width and if, in addition, they can be reddch a
sequence of “small steps.” Aendomorphisnof a structure is a homomorphism of a structure to
itself. A retractionis an endomorphism that is the identity mapping on its imdgeery structure

The other type of restrictions studied in the literature @PGire “constraint language restrictions”, that is, retitms
on the structure imposed by the constraint relations ondhesg. An example of a constraint language restrictionlls “a
clauses of a SAT instance, viewed as a Boolean CSP, are Huorsed".
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has a retraction to its core. However, in general, the only twamap a structure to its core may
be by collapsing the whole structure at once. As an examplgsider a path with a loop on both
endpoints. The core consists of a single vertex with a loMoré precisely, the two cores are the
two endpoints with their loops.) The only endomorphism @ 8tructure to a proper substructure
maps the whole structure to its core. Compare this with abathonly has a loop on one endpoint.
Again, the core is a single vertex with a loop, but now we cacthethe core by a sequence of
retractions, mapping a path of lengtto a subpath of length — 1 and then to a subpath of length

n — 2 et cetera. We prove that il is a class of structures whose cores have bounded tree width
and can be reached by a sequence of retractions each of wilicimoves a bounded number of
vertices, theECSP (A, —) has a polynomial delay algorithm.

We also consider more general sequences of retractionsdomerphism from a structure to
its core. We say that a sequence of endomorphisms from digeuy, to a substructuré; C A,
from A, to a substructuré.,, . .., to a structuré\,, hasbounded widthf A,, and, for each < n, the
“difference betweer; andA;_,” has bounded tree width. We prove that if we are given a sexpien
of endomorphisms of bounded width together with the inputcstire A, then we can compute all
solutions by a polynomial delay algorithm. Unfortunately,general we cannot compute such a
sequence of endomorphisms efficiently. We prove that evewiftih 1 it is NP-complete to decide
whether such a sequence exists.

Finally, we remark that our results are far from giving a ctetgclassification of the classgs
for which ECSP(.A, —) has a polynomial delay algorithm and those classes for wihidbes not.
Indeed, we show that it will be difficult to obtain such a clisation, because such a classification
would imply a solution to the notoriously op&SP dichotomy conjectue Feder and Vardi [14]
(see Sectioh]3 for details).

Due to space restrictions several proofs are omitted.

2. Preliminaries

Relational structures. A vocabularyr is a finite set ofrelation symbolsof specified arities. A
relational structureA overr consists of a finite sed called theuniverseof A and for each relation
symbol R € 7, say, of arityr, anr-ary relationR* C A". Note that we require vocabularies and
structures to be finite. A structuee is asubstructureof a structureB if A C B and R* C RE for

all R € 7. We write A C B to denote that is a substructure d8 andA C B to denote that is

a proper substructure oB, that is,A C B andA # B. A substructured C B is inducedif for all

R € 7, say, of arityr, we haveR* = R® N A”. For a subsefl C B, we write B[ A] to denote the
induced substructure @ with universeA.

Homomor phisms. We often abbreviate tupl€s, ..., a;) by a. If fis a mapping whose domain
containsay, . ..,a;, we write f(a) to abbreviate(f(a1),..., f(ax)). A homomorphisnfrom a
relational structure\ to a relational structur® is a mappingp : A — B such that for allR € 7
and all tuplesa € R" we havep(a) € R®. A partial homomorphisnon C C Ato B is a
homomorphism of\[C] to B. It is sometimes useful when designing examples to excledaio
homomorphisms or endomorphisms. The simplest way to doishiat use unary relations. For
example, ifR is a unary relation an¢z) € R* we say that, has colorR. Now if b € B does not
have colorR then no homomorphism from to B mapsa to b.

Two structuresA andB arehomomorphically equivalent there is a homomorphism from
to B and also a homomorphism frofhto A. Note that if structured andA’ are homomorphically
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equivalent, then for every structuBethere is a homomorphism from to B if and only if there is a
homomorphism fron\’ to B; in other words: the instancéd, B) and(A’, B) of the decision CSP
are equivalent. However, the two instances may have vastireht sizes, and the complexity of
solving the search and enumeration problems for them canbaigjuite different. Homomorphic
equivalence is closely related to the concept of the corestliature: A structurd\ is acoreif there

is no homomorphism fror to a proper substructure éf. A core of a structuré\ is a substructure
A’ C A such that there is a homomorphism fr@to A’ andA’ is a core. Obviously, every core
of a structure is homomorphically equivalent to the streetWWe observe another basic fact about
cores:

Observation 2.1. Let A andB be homomorphically equivalent structures, and\eandB’ be cores
of A andB, respectively. Therd’ andB’ are isomorphic. In particular, all cores of a structérare
isomorphic. Therefore, we often speaktioé core ofA.

Observation 2.2. Itis easy to see that it is NP-hard to decide, given strustiire€ B, whetherA is
isomorphic to the core dB. (For an arbitrary graply, let A be a triangle an@® the disjoint union
of G with A. ThenA is a core ofB8 if and only if G is 3-colorable.) Hell and NeSetf|l [19] proved
that it is co-NP-complete to decide whether a graph is a core.

Tree decompositions. A tree decompositionf a graphG is a pair(T, B), whereT is a tree and3
is a mapping that associates with every nede V(T') a setB; C V(G) such that (1) for every
v € V(G) the set{t € V(T')|v € B;} is connected ir{’, and (2) for everye € E(G) there is a
t € V(T) such thate C B;. The setsB,, fort € V(T'), are called théagsof the decomposition. It
is sometimes convenient to have the tiém a tree decomposition rooted; we always assume it is.
Thewidth of a tree decompositiofil’, B) is max{|B;| | t € V(T')} — 1. Thetree widthof a graph
G, denoted by tW(G), is the minimum of the widths of all tree decompositiong-of

We need to transfer some of the notions of graph theory tdrarpirelational structures. The
Gaifman graph(also known agprimal graph of a relational structuré. with vocabularyr is the
graphG(A) with vertex setA and an edge betweenandb if a # b and there is a relation symbol
R € 1, say, of arityr, and a tupl€a, . ..,a,) € R® such thata,b € {ai,...,a,}. We can now
transfer graph-theoretic notions to relational structute particular, a subsd® C A is connected
in a structureA if it is connected inG(A). A tree decompositionf a structureA can simply be
defined to be a tree-decomposition(éfA ). Equivalently, a tree decomposition &fcan be defined
directly by replacing the second condition in the definitidiiree decompositions of graphs by (2')
foreveryR € 7 and(ay, ... ,a,) € R* thereis & € V(T) such that{ay, ...,a,} C B;. AclassC
of structures habounded tree widtif there is aw € N such that tWA) < w for all A € C. A class
C of structures habounded tree width modulo homomorphic equivaleihtigere is aw € N such
that everyA € C is homomorphically equivalent to a structure of tree widtimast w.

Observation 2.3. A structureA is homomorphically equivalent to a structure of tree widtmast
w if and only if the core ofA has tree width at mosb.

The Constraint Satisfaction Problem. For two classesAd and B of structures, th€onstraint Sat-
isfaction ProblemCSP (A, B), is the following problem:

CSP(A, B)
Instance: A € A,B e B
Problem: Decide if there is a homomorphism frafnto B.
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The CSP is a decision problem. The variation of it we studyhis paper is the following
enumeration problem:

ECSP(A, B)
Instance: A € A,B € B
Problem: Output all the homomorphisms frofato B.

We shall also refer to the search proble&fi;SP (A, BB), in which the goal is to find one solution
to a CSP-instance or output ‘no’ if a solution does not exists

If one of the classesl, B is the class of all finite structures, then we denote the spoed-
ing CSPs byCSP(A, —), CSP(—, B) (respectively, ECSP(A, —), ECSP(—, B), SCSP(A, —),
SCSP(—, B)).

The decision CSP has been intensely studied. If a @as§ structures has bounded arity
then CSP(C, —) is solvable in polynomial time if and only i has bounded tree width modulo
homomorphic equivalence [17]. If the arity 6fis not bounded, several quite general conditions on
a class of structures have been identified that guarantgagmlal time solvability ofCSP(C, —),
see, e.0.[16, 12, 18]. Problems of the fo@ifiP(—,C) have been studied mostly in the case when
C is 1-element. Problems of this type are sometimes refeoesnon-uniform It is conjectured
that every non-uniform problem is either solvable in polyrial time or NP-complete (the so-called
Dichotomy Conjectune[14]. Although this conjecture is proved in several parée cases [20,]9,
10,[4], in its general form it is believed to be very difficult.

A search CSP is clearly no easier than the correspondingidegbroblem. While any non-
uniform search proble®CSP(—, C) is polynomial time reducible to its decision versiofP(—,C)
[11], nothing is known about the complexity of search prad&CSP(C, —) except the result we
state in Sectioh]3. Paper [25] provides some initial resuitshe complexity of non-uniform enu-
merating problems.

3. Tractablestructures for enumer ation

Since even an easy CSP may have exponentially many solutiensiodel of choice for ‘easy’
enumeration problems is algorithms with polynomial defa][ An algorithm Alg is said to solve
a CSPwith polynomial delayWPD for short) if there is a polynomigb(n) such that, for every
instance of sizer, Alg outputs ‘no’ in a time bounded by(n) if there is no solution, otherwise it
generates all solutions to the instance such that no soligtioutput twice, the first solution is output
after at mosp(n) steps after the computation starts, and time between dimgputvo consequent
solutions does not exceedn ).

If a class of relational structuréshas bounded arity, the aforementioned result of Grohe [17]
imposes strong restrictions on enumeration problems Bl&VA/PD.

Observation 3.1. If a class of relational structurgswith bounded arity does not have bounded tree
width modulo homomorphic equivalence, the@'SP(C, —) is not WPD, unless PNP.

Unlike for the decision version, the converse is not truaurfsted tree width modulo homomor-
phic equivalence does not imply enumerability WPD.

Example 3.2. Let A; be the disjoint union of &-clique and a loop and letl = {A; | & >
1}. Clearly, the core of each graph i has bounded tree width (in fact, it is a single element),
henceCSP(A, —) is polynomial-time solvable. For an arbitrary graphwithout loops, letB’
be the disjoint union of8 and a loop. It is clear that there is always a trivial homorn@m
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from A, (for any & > 1) to B’ that maps everything into the loop. There exist homomormpsis
different from the trivial one if and only i contains ak-clique. Thus if we are able to check
in polynomial time whether there is a second homomorphismn tve are able to test# has a
k-clique. Therefore, althougb’SP (A, —) andSCSP (A, —) are polynomial-time solvable, a WPD
enumeration algorithm fdECSP (A, —) would imply P= NP.

It is not difficult to show thattCSP(C, —) is enumerable WPD i€ has bounded tree width.
For space restrictions we do not include a direct proof astéad we derive it from a more general
result in Sectiohl4. Thus enumerability WPD has a differesattaibility criterion than the decision
version, and this criterion lies somewhere between bourdewidth and bounded tree width
modulo homomorphic equivalence. Thus in order to ensurethigasolutions can be enumerated
WPD, we have to make further restrictions on the way the siraccan be mapped to its bounded
tree width core. The main new definition of the paper requihas the core is reached by “small
steps”

Let A be arelational structure with univerge We say that\ has a sequence of endomorphisms
of width k if there are subsetd = Ay D A; D ... D A, # (0 and homomorphismg, ..., v,
such that

(1) ; is a homomorphism fromA[A4;_;] to A[A4;],

(3) if G is the primal graph of\, then the tree width of7[A; \ A;11] is at mostk for every

0<1<nm;

(4) the structure induced hy,, has tree width at most.

In Sectior{ 4, we show that enumeration fdr, B) can be done WPD if a sequence of bounded
width endomorphisms fak is given in the input. Unfortunately, we cannot claim tR&tSP (A, —)
can be done WPD if every structure ihhas such a sequence, since we do not know how to find
such sequences efficiently. In fact, as we show in SeCtidridhard to check if a width-1 sequence
exists for a given structure. Furthermore, we show a clasghere every structure has a width-2
sequence, blECSP (A, —) cannot be done WPD, unlessPNP. This means that it is not possible
to get around the problem of not being able to find the seqeficeexample, by finding sequences
with somewhat larger width or by constructing the sequencend the enumeration).

Thus having a bounded width sequence of endomorphisms itheaight tractability crite-
rion. We then investigate a more restrictive notion, whaeekiound is not on the tree width of the
difference of the layers but on the number of elements in tfierdnces. However, in the rest of
the section, we give evidence that enumeration problemvalsiel WPD cannot be characterized in
simple terms relying on tree width. For instance, a desonpif search problems solvable in poly-
nomial time would imply a description of non-uniform deoisiproblems solvable in polynomial
time. This is shown via an analogous result for the searcéiamiof the problem, which might be
of independent interest. Byt & B we denote the disjoint union of relational structuteandB.

Lemma3.3. LetB be a relational structure, which is a core, and &tbe{A ®B | A — B}. Then
CSP(—,B) is solvable in polynomial time if and only if so is the probIB@SP (Cg, —).

Proof. If the decision problen®SP(—, B) is solvable in polynomial time we can construct an algo-
rithm that given an instandg\, C) of CSP(Cg, —) computes a solution in polynomial time. Indeed,
asCSP(—, B) is solvable in polynomial time by the aforementioned resti[iL1] it is also polyno-
mial time to find a homomorphism from a given structur@tprovided one exists. & € Cg such a
homomorphismp exists by the definition afg. So our algorithms, first, finds some homomorphism
. Then it decides by brute force whether or not there existsnadmorphismy’ from B to C (note
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that this can be done in polynomial time for every fix@d If such a homomorphism does not exist
then we can certainly guarantee that there is no homomanpinan A to C. Otherwise we obtain
a required homomorphism as follows: Lety(a) = ¢'(a) for a € B, andy(a) = ¢’ o p(a) for

a € A.

Conversely, assume that we have an algorithm Alg that findslwdien of any instance of
CSP(Cg, —) in polynomial time, sayp(n). We construct from it an algorithm that sov@éSP(—, B).
Given an instanceA, B) of CSP(—, B) we call algorithm Alg with inputA ©B andB. Additionally
we count the number of steps performed by Alg in such a waywieattop if Alg has not finished
in p(n) steps. If Alg produces a correct answer then we have to betafletain from it a homo-
morphism fromA to B. If Alg’s answer is not correct or the clock reach€s) steps we know that
Alg failed. The only possible reason for that is tat> B does not belong t6g, which implies that
A is not homomorphic t@. [

In what follows we transfer this result to enumeration peof$. LetA be a class of relational
structures. The clasd’ consists of all structures built as follows: Takec .4 and add to i A|
independent vertices.

Lemma3.4. Let.A be a class of relational structures. The@SP (A, —) is solvable in polynomial
time if and only ifECSP(A’, —) is solvable WPD.

Proof. If ECSP(A, —) is enumerable WPD, then for any structdrec A’ it takes time polynomial
in |A’| to find the first solution. Sinc&’ is only twice of the size of the corresponding structire
it takes only polynomial time to solV&CSP (A, —).

Conversely, given a structute = A U I € A’, whereA € A andI is the set of independent
elements, and any structuBe The first homomorphism from’ to B can be found in polynomial
time, sinceSCSP(.A, —) is polynomial time solvable and the independent verticesbeamapped
arbitrarily. Let the restriction of this homomorphism omtobe ¢. Then while enumerating all
possible|B|4! extensions of» we buy enough time to enumerate all homomorphisms fiota B
using brute force. m

4. Sequence of bounded width endomor phisms

In this section we show that for every fixdd all the homomorphisms from to B can be
enumerated with polynomial delay if a sequence of wikltehdomorphisms of is given in the
input. Given a sequencdy, ..., A, andyy, ..., ¢, as in the definition of a sequence of width
endomorphisms, we denatg A;] by A;.

We will enumerate the homomorphisms fraxrto B by first enumerating the homomorphisms
from A, A,,_1, ... to B and then transforming them to homomorphisms frano B using the
homomorphismsp;. We obtain the homomorphisms frofy, by extending the homomorphism
from A;;; to the set4; \ A;;1; Lemmal4.1l below will be useful for this purpose. In order to
avoid producing a homomorphism multiple times, we need iatel classification (see definitions
of elementary homomorphisms and of the index of a homomsnphi

Lemma4.l. LetA, B be relational structures and’; C Xs C A subsets, and lgfy be a homomor-
phism fromA[X] to B. For every fixed, there is a polynomial-time algorithtHOMOMORPHISM
ExT(A,B, X1, Xs, go) that decides whethey, can be extended to a homomorphism fibfiX | to
B, if the tree width of induced subgragh X, \ X;] of the Gaifman graph of is at mostk.
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The index of a homomorphismp from A to B is the largest such thatp can be written as
p = Yo o...op for some homomorphismp from A; to B. In particular, ifo cannot be
written asp = 1) o 1, then the index ofp is 0. Observe that if the index of is at leastt, then
there is a unique) such thatp = ¢ o ¢; o ... o 1: This follows from the fact thap; o ... o
is a surjective mapping from to A;, thus if’ and+)” differ on A;, theny’ o ¢; o ... 0 1 and
" oy o... 0 differ on A. A homomorphismy from A; to B is elementary if it cannot be
written asy) = v’ o ;1. A homomorphism iseducibleif it is not elementary.

Lemma 4.2. If a homomorphism) from A; to B is elementary, thep = ¢ o ¢; o ... 0 ¢ has
index exactlyt. Conversely, if homomorphism from A to B has indext and can be written as
p=1Yoy;o...o0p,then the homomorphisgfrom A; to B is elementary.

Lemmal4.2 suggests a way of enumerating all the homomorghfssm A to B: for ¢t =
0,...,n, we enumerate all the elementary homomorphisms f#grto B, and for each such homo-
morphismy, we computer = o ;0. ..0p1. To this end, we need the following characterization
of elementary homomorphisms:

Lemma 4.3. A homomorphisng from A, to B is reducible if and only if
(1) ¥(z) = p(y) for everyz,y € A with 11 () = p11(y), i.e., for everyz € Ay, Y(x)
has the same valug for everyz with ¢, (z) = z, and
(2) the mapping defined hy (z) := b, is a homomorphism from;; to B.

Lemmal[4.8 gives a way of testing in polynomial time whetheiv&my homomorphismy is
elementary: we have to test whether one of the two condigmewiolated. We state this in a more
general form: we can test in polynomial time whether a paniappinggy can be extended to an
elementary homomorphism, if the structure induced by the elements wheyés not defined has
bounded tree width. We fix values every possible way in whitthdonditions of Lemm@a 4.3 can
be violated and use ®MOMORPHISM-EXT to check whether there is an extension compatible with
this choice. In order to efficiently enumerate all the pdssiiolations of the second condition, the
following definition is needed:

Given a relationk® of arity r, abad prefixis a tuple(bs, ..., bs) € B* with s < r such that

(1) there is no tupléby, ..., bs, bsi1,...,b,) € R® for anyb,,1,...,b. € B, and

(2) thereis atupl€by, ..., bs_1,Cs,Cs41,...,¢) € R® for somec,, ..., ¢, € B.

If (by,...,b,) ¢ R®, then there is a uniqué < s < r such that the tupléb,, ..., b,) is a
bad prefix: there has to be ansuch that(by,...,b,) cannot be extended to a tuple BF, but
(b1,...,bs—1) can.

Lemma 4.4. The relationR® has at mostR®| - (|B| — 1) - r bad prefixes, where is the arity of
the relation.

Lemma 4.5. Let X be a subset ofi; and letgy be a mapping fromX to B. For every fixedk,
there is a polynomial-time algorithLEMENTARY-EXT (¢, X, go ) that decides whethej, can be
extended to an elementary homomorphism ffono B, if the tree width of the structure induced
by A; — X is at mostk.

We enumerate the elementary homomorphisms in a specific dedfimed by the following
precedence relation. Letbe an elementary homomorphism fraxpto B and lety) be an elemen-
tary homomorphism fronk\; to B for some; > i. Homomorphismy is the parentof ¢ (¢ is a
child of ¢) if ¢ restricted toA;; can be written ag o ; o ... o ¢; 9. Ancestoranddescendant
relations are defined as the reflexive transitive closurbeparent and child relations, respectively.
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Note that an elementary homomorphism framto B has exactly one parent for< n and a
homomorphism from\,, to B has no parent. Fix an arbitrary ordering of the elementd.ofor
0<i<nand0 <j < |4\ Ai11| let 4;; be the union of4;;; and the firstj elements of
A; \Ai+1- Note thatAm = Ai+1 andAi7|Ai\A A;.

Lemma 4.6. Letvy be a mapping fron¥; ; to B that can be extended to an elementary homomor-
phism fromA; to B. Assume that a sequence of widtkndomorphisms is given fér. For every
fixedk, there is a polynomial-delay, polynomial-space algoritBhEMENTARY-ENUM (4, j,¢) that
enumerates all the elementary homomorphisnis; dihat extendg and all the descendants of these
homomorphisms.

i+1| =

By calling ELEMENTARY-ENUM(n, 0, go ) (Wheregy is a trivial mapping froni) to B), we can
enumerate all the elementary homomorphisms. By the oltsmmia Lemmd 4.R, this means that
we can enumerate all the homomorphisms frbrio B.

Theorem 4.7. For every fixedk, there is a polynomial-delay, polynomial-space algorittimat,
given structuresd, B, and a sequence of widthendomorphisms of, enumerates all the homo-
morphisms frorm to B.

Theoreni 4.]7 does not provide a complete description of &taskstructures solvable WPD.

Corollary 4.8. There is a class4 of relational structures such that not all structures frofrhave
a sequence of width endomorphisms andCSP(.A, —) is solvable WPD.

Proof. Let A be the class of structures that are the disjoint union of p bred a core. Obviously,
SCSP(A, —) is polynomial time solvable. Therefore, by Lemma €SP (A’, —) is solvable with
polynomial delay. However, it is not hard to see tHatoes not have a sequence of endomorphisms
of bounded tree width. [

Furthermore, as we will see in the next section it is hard,dnegal, to find a sequence of
bounded width endomorphims. Still, we can find a sequencaddmorphisms for a structue if
we impose two more restrictions on such a sequence.

A retractionp of a structureA is called ak-retraction if at mostk nodes change their value
according tap. A structure is &-coreif the only k-retraction is the identity. A&-core of a structure
is anyk-core obtained by a sequencekefetractions.

Lemma 4.9. All k-cores of a structureé\ are isomorphic.

Lemma4.® amounts to say that when searching for a sequericestifactions converging to
a k-core we can use the greedy approach and include, as the sexben of such a sequence, any
k-retraction with required properties. With this in handswesv can apply Theoren 4.7.

Theorem 4.10. Letk > 0 be a positive integer and I€t be a class of structures such that the
core of every structure i@ has tree width at most. Then, the enumeration probleBCSP(C, —)
is solvable WPD.

Corollary 4.11. If C is a class of structures of bounded tree width ti&0iSP(C, —) is solvable
WPD.
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5. Hardnessresults

The first result of this section shows that finding a sequericGadomorphisms of bounded
width can be difficult even in simplest cases.

Theorem 5.1. It is NP-complete to decide if a structure has a sequencewidih retractions to
the core.

The second result shows tHaCSP(.A, —) can be hard even if every structurehhas a se-
guence of width-2 endomorphisms. Note that this resultésnmparable with Theorem 5.1, since
an enumeration algorithm (in theory) does not necessaale to compute an sequence of endo-
morphisms. We need the following lemma:

Lemmab.2. If G is a planar graph, then it is possible to find a partitiob, V2) of its vertices in
polynomial time such tha®[V;] and G[V>] have tree width at most

Proposition 5.3. There is a classA of relational structures such that every structure frofrhas
a sequence of width 2 endomorphisms to the core, and suclh@roblemECSP (A, —) is not
solvable WPD, unles® = NP.

Proof. Let A be a class of graphs built in the following way. Take a 3-calbde planar grapld-
and its partition(V7, V3) according to Lemm@5.2. Using colorings we can ensure(hiata core.
Then we take a disjoint union of this graph with a triangléaving all the colors and a cogy; of
G[V1]. Let A denote the resulting structure.

CLAIM 1. A has a sequence of width-2 endomorphisms.

Let ¢» be a 3-coloring ofG that is a homomorphism into the triangle, antithe bijective
mapping fromG; to G[V;]. Theny; is defined to act ag on G, asy’ on G and identically on
T. Endomorphismps is just the 3-coloring of7 U 1 induced byy. The images ofp; andp, are
T U G[V1] andT, respectively, so all the conditions on a sequence of wadtiomomorphisms are
easily checkable.

CLAIM 2. The RANAR GRAPH 3-COLORING PROBLEMIs Turing reducible t&CSP(A, —).

Given a planar grapli we find its partition(V;, V) and create a structurk, as described
above. Then we apply an algorithm that enumerates solutioFi€’SP(.A, —) We may assume that
such an algorithm stops with some time bound regardlesshehétis 3-colorable or not. If the
algorithm succeeds we can now produce a 3-coloring.of [

6. Conjunctive queries

When making a query to a database one usually needs to olafaiesvof only those variables
(attributes) (s)he is interested in. In terms of homomais this can be translated as follows: For
relational structured\, B, and a subset” C A, we aim to list those mappings froli to B which
can be extended to a full homomorphism frémo B. In other words, we would like to enumerate
all the mappings fronY” to B that arise as the restriction of some homomorphism foro B.
Clearly, this problem significantly differs from the reguknumeration problem. A mapping from
Y to B can be extendible to a homomorphism in many ways, possitggerpolynomially many,
and an enumeration algorithm would list all of them. In thast@ase scenario it would list them
before turning to the next partial mapping. If this happeémsay destroy polynomiality of the delay
between outputting consecutive solutions.

In this section we treat the dNJUNCTIVE QUERY EVALUATION PROBLEM as follows.
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CQE(A, B)

Instance: A e A, Be B, Y CA

Problem: Output all partial mappings fromy” to B ex-
tendible to a homomorphism frova to B.

We present two results, first one of them shows that the pmobl§E(.A, —) is WPD whenA
is a class of structures of bounded tree width, the secondlaimas that, modulo some complexity
assumptions, in contrast to enumeration problems thisatdmngeneralized to structures with
cores of bounded tree width fér> 2.

Theorem 6.1. If Ais a class of structures of bounded width tHeQE(.A, —) is solvable WPD.

Proof. We use Lemmé&4l1 to show that algorithm CQB+BIDED-WIDTH of Figure[1 does the
job. Indeed, this algorithms backtracks only if outputs laitson. m

Theoreni 6.1l does not generalize to classes of structuresekhmres have bounded width.

Example 6.2. Recall that the MILTICOLORED CLIQUE problem (cf. [15]) is formulated as fol-
lows: Given a humbek and a vertex;-colored graph, decide if the graph containg-elique all
vertices of which are colored different colors. This probles W [1]-complete, i.e., has no time
f(k)nc algorithm for any functiory and constant, unless FP¥ W [1]. We reduce this problem to
CQE(A, —) whereA is the class of structures whose 2-cores are 2-elementiloleddrelow.

Let us consider relational structures with two binary and twary relations. This structure
can be thought of as a graph whose vertices and edges havd tmeteo colors, say, red and
blue, accordingly to which of the two binary/unary relasdhey belong to. Led, be the relational
structure with universéay, ..., ax, y1,. .., yx}, Whereay, ..., a; are red whileyy, . . ., y are blue.
Then{as,...,ax} induces a red clique, that is evety, a; (i, j are not necessarily different) are
connected with a red edge, and eggis connected ta; with a blue edge. It is not hard to see that
every pair of a red and blue vertices induces a 2-core of thistsire. Setd = {A;, | k € N}.

The reduction of the MLTICOLORED CLIQUE problem toCQE(.A, —) goes as follows. Given
a k-colored graphz = (V, E)) whose coloring induces a partition &f into classesB;, ..., By.
Then we define structures, B and a se” C A. We setA = A, Y = {y1,...,yx}. Then let
B =V U{by,...,b}, the elements oF are colored red and the induced substruciiifé] is the

Figure 1: Algorithm CQE-BUNDED-WIDTH
Input: Relational structured, B, andY = {Y;,...,Y;,} C A
Output: A list of mappingsy: Y — B extendible to a homomorphism frofato B
Stepl setm=0,0=0,S; =B,i € [m], complete=false
Step 2 whilenot completedo
Step2.1 if m < {thendo
Step2.1.1 search S,,4+1 untilab € S,,+1 is found such that there exists a homomorphism extending
© U{ym+1 — b} andremove all members of5,,, 1 preceding inclusive
Step 2.1.2  if such a existsthenset o := p U {y;nt1 = b}, m:=m+1
Step2.1.3 ese
Step2.1.3.1 ifm#Othenset o = @1y, 4.
Step 2.1.3.2 elseset complete:true
Step 2.2 esethendo
Step2.2.1  output ¢
Step2.2.2  set ¢ =Py, ym_}p mi=L—1
endwhile

_pyandS,, 1 :=B,m:==m-1
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graphG (without coloring) whose edges are colored also red. Binall . . . , b, are made blue and
eachb; is connected with a blue edge with every vertex frém

It is not hard to see that any homomorphism méps ...,a;} to V andY to {b1,...,bx},
and that the number of homomorphisms that do not agre€ does not exceet*. Moreover,G
contains a&-colored clique if and only if there is a homomorphism frénio B that mapsy” onto
{b1,...,bx}. If there existed an algorithm solvifgQE(.A, —) WPD, say, time needed to compute
the first and every consequent solution is bounded by a poliaip(n), then time needed to list all
solutions is at most*p(n). This means that MLTICOLORED CLIQUE is FPT, a contradiction.
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